Skip to main content
Log in

Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding “assembly factors”, that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdrakhmanova A, Zickermann V, Bostina M et al (2004) Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 1658:148–156

    Article  CAS  PubMed  Google Scholar 

  • Angerer H, Zwicker K, Wumaier Z et al (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 437:279–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battersby BJ, Shoubridge EA (2001) Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum Mol Genet 10:2469–2479

    Article  CAS  PubMed  Google Scholar 

  • Breen GAM, Scheffler IE (1979) Respiration-deficient Chinese hamster cell mutants: biochemical characterization. Somat Cell Genet 5:441–451

    Article  CAS  PubMed  Google Scholar 

  • Burnett KG, Scheffler IE (1981) Integrity of mitochondria in a mammalian cell mutant defective in mitochondrial protein synthesis. J Cell Biol 90:108–115

    Article  CAS  PubMed  Google Scholar 

  • Calvo SE, Tucker EJ, Compton AG et al (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao L, Shitara H, Sugimoto M, Hayashi J, Abe K, Yonekawa H (2009) New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoSGenet 5:e1000756

    Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol. Cell Proteomics 2:117–126

    Article  CAS  Google Scholar 

  • Day C, Scheffler IE (1982) Mapping of the genes for some components of complex I of the electron transport chain on the X chromosome of mammals. Somat Cell Genet 8:691–707

    Article  CAS  PubMed  Google Scholar 

  • De RD, Panelli D, Sardanelli AM, Papa S (2008) cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal 20:989–997

    Article  Google Scholar 

  • DeFrancesco L, Scheffler IE, Bissell MJ (1976) A respiration-deficient Chinese hamster cell line with a defect in NADH-Coenzyme Q reductase. J Biol Chem 251:4588–4595

    CAS  PubMed  Google Scholar 

  • Ditta GS, Soderberg K, Scheffler IE (1976) The selection of Chinese hamster cells deficient in oxidative energy metabolism. Somat Cell Genet 2:331–344

    Article  CAS  PubMed  Google Scholar 

  • Ditta GS, Soderberg K, Scheffler IE (1977) Chinese hamster cell mutant with defective mitochondrial protein synthesis. Nature 268:64–67

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Waymire KG, Narula N et al (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fassone E, Duncan AJ, Taanman JW et al (2010) FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19(24):4837–4847

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Moreira D, Ugalde C, Smeets R et al (2007) X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol 61:73–83

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi D, Sevrioukova I, Invernizzi F et al (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86:639–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan MX (2011) Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion 11:237–245

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Ann Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Galante YM, Stiggal DL, Ragan CI (1979) Proteins, polypeptides, prosthetic groups and enzymic properties of complexes I, II, III, IV, and V of the mitochondrial oxidative phosphorylation system. Methods Enzymol 56:577–602

    Article  CAS  PubMed  Google Scholar 

  • Heide H, Bleier L, Steger M et al (2012) Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab 16:538–549

    Article  CAS  PubMed  Google Scholar 

  • Hirst J (2009) Towards the molecular mechanism of respiratory complex I. Biochem J 425:327–339

    Article  PubMed  Google Scholar 

  • Hirst J (2011) Why does mitochondrial complex I have so many subunits? Biochem J 437:e1–e3

    Article  CAS  PubMed  Google Scholar 

  • Hoefs SJ, Rodenburg RJ, Smeitink JA, Van den Heuvel LP (2012) Molecular base of biochemical complex I deficiency. Mitochondrion 12(5):520–532, %20

    Article  CAS  PubMed  Google Scholar 

  • Holt IJ, Harding AE, Morgan Hughes JA (1988a) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  CAS  PubMed  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988b) Mitochondrial DNA polymorphism in mitochondrial myopathy. Hum Genet 79:53–57

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ogura A, Hayashi J (2002) Production of mitochondrial DNA transgenic mice using zygotes. Methods 26:358–363

    Article  CAS  PubMed  Google Scholar 

  • Joza N, Pospisilik JA, Hangen E et al (2009) AIF: not just an apoptosis-inducing factor. AnnNYAcadSci 1171:2–11

    Article  CAS  Google Scholar 

  • Kim C, Potluri P, Gout D, Minter LM, Wallace DC, Yadava N (2012) A novel mouse model for nuclear-encoded partial respiratory chain complex I deficiency. Mitochondrion 12:571

    Article  Google Scholar 

  • Kuffner R, Rohr A, Schmiede A et al (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I)cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 283:409–417

    CAS  Google Scholar 

  • Li R, Greinwald JH Jr, Yang L, Choo DI, Wenstrup RJ, Guan MX (2004) Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet 41:615–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700

    Article  CAS  PubMed  Google Scholar 

  • Loeb LA, Wallace DC, Martin GM (2005) The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci U S A 102:18769–18770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsuno-Yagi A, Yagi T (2008) Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson’s disease. PLoSONE 3:e1433

    Article  Google Scholar 

  • Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T (2010) Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoSONE 5(7):e11472

    Article  Google Scholar 

  • Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817:851–862

    Article  CAS  Google Scholar 

  • Moreno-Lastres D, Fontanesi F, Garcaa-Consuegra I et al (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nouws J, Nijtmans L, Houten SM et al (2010) Acyl-CoA dehydrogenase 9is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294

    Article  CAS  PubMed  Google Scholar 

  • Nouws J, Nijtmans LG, Smeitink JA, Vogel RO (2012) Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 135(Pt 1):12–22

    Article  PubMed  Google Scholar 

  • Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oostveen FG, Au HC, Meijer P-J, Scheffler IE (1995) A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem 270:26104–26108

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagniez-Mammeri H, Loublier S, Legrand A, Benit P, Rustin P, Slama A (2012a) Mitochondrial complex I deficiency of nuclear origin I. Structural genes Mol Genet Metab 105:163–172

    Article  CAS  Google Scholar 

  • Pagniez-Mammeri H, Rak M, Legrand A, Benit P, Rustin P, Slama A (2012b) Mitochondrial complex I deficiency of nuclear origin II. Non-structural genes. Mol Genet Metab 105:173–179

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Scacco S, Sardanelli AM et al (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489:259–262

    Article  CAS  PubMed  Google Scholar 

  • Potluri P, Yadava N, Scheffler IE (2004) The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH-ubiquinone oxidoreductase). Eur J Biochem 271:3265–3273

    Article  CAS  PubMed  Google Scholar 

  • Potluri P, Davila A, Ruiz-Pesini E et al (2009) A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 96:189–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saada A, Edvardson S, Rapoport M et al (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanz A, Soikkeli M, Portero-Otin M et al (2010) Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci U S A 107(20):9105–9110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schagger H (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol 260:190–202

    Article  CAS  PubMed  Google Scholar 

  • Scheffler IE (2008) Mitochondria, 2nd edn. Wiley, New York, pp 1–462

    Google Scholar 

  • Scheffler IE, Yadava N, Potluri P (2004) Molecular genetics of complex I-deficient Chinese hamster cell lines. Biochim Biophys Acta 1659:160–171

    Article  CAS  PubMed  Google Scholar 

  • Seo BB, Kitajima-Ihara T, Chan EKL, Scheffler IE, Matsuno-Yagi A, Yagi T (1998) Molecular remedy of complex I defects: rotenone insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci U S A 95:9167–9171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharpley M, Marciniak C, Eckel-Mahan K et al (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151:333–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheftel AD, Stehling O, Pierik AJ et al (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21(5):302–314

    Article  CAS  PubMed  Google Scholar 

  • Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111

    Article  CAS  PubMed  Google Scholar 

  • Shoubridge EA, Wai T (2008) Sidestepping mutational meltdown. Science 319:914–915

    Article  CAS  PubMed  Google Scholar 

  • Sligh JE, Levy SE, Waymire KG et al (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97:14461–14466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smeitink JA (2003) Mitochondrial disorders: clinical presentation and diagnostic dilemmas. J Inherit Metab Dis 26:199–207

    Article  CAS  PubMed  Google Scholar 

  • Smeitink JA, van den Heuvel LW, Koopman WJ, Nijtmans LG, Ugalde C, Willems PH (2004) Cell biological consequences of mitochondrial NADH: ubiquinone oxidoreductase deficiency. Curr Neurovasc Res 1:29–40

    Article  CAS  PubMed  Google Scholar 

  • Soderberg K, Ditta GS, Scheffler IE (1977) Mammalian cells with defective mitochondrial functions: a Chinese hamster mutant cell line lacking succinate dehydrogenase activity. Cell 10:697–702

    Article  CAS  PubMed  Google Scholar 

  • Soderberg K, Mascarello JT, Breen GAM, Scheffler IE (1979) Respiration-deficient Chinese hamster cell mutants: genetic characterization. Somat Cell Genet 5:225–240

    Article  CAS  PubMed  Google Scholar 

  • Sugiana C, Pagliarini DJ, McKenzie M et al (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swalwell H, Kirby DM, Blakely EL et al (2011) Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet 19:769–775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vahsen N, Cande C, Briere JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel RO, Janssen RJ, Ugalde C et al (2005) Human mitochondrial complex I assembly is mediated by NDUFAF1. FEBS J 272:5317–5326

    Article  CAS  PubMed  Google Scholar 

  • Vogel RO, Janssen RJ, van den Brand MA et al (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21:615–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wai T, Teoli D, Shoubridge EA (2010) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    Article  Google Scholar 

  • Wallace DC (1997) Mitochondrial DNA in aging and disease. Sci Am 277:40–47

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2001) A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp 235:247–263

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT et al (1988a) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Zheng X, Lott MT et al (1988b) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55:601–610

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. AnnuRev Pathol 5:297–348

    CAS  Google Scholar 

  • Yadava N, Scheffler IE (2004) Import and orientation of the MWFE protein in mitochondrial NADH-ubiquinone oxidoreductase. Mitochondrion 4:1–12

    Article  CAS  PubMed  Google Scholar 

  • Yadava N, Houchens T, Potluri P, Scheffler IE (2004) Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 279:12406–12413

    Article  CAS  PubMed  Google Scholar 

  • Yadava N, Potluri P, Scheffler IE (2008) Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int J Biochem Cell Biol 40:447–460

    Article  CAS  PubMed  Google Scholar 

  • Yagi T, Seo BB, Nakamaru-Ogiso E et al (2006) Can a single subunit yeast NADH dehydrogenase (Ndi1) remedy diseases caused by respiratory complex I defects? Rejuvenation Res 9:191–197

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Ji Y, Guan MX (2012) Mitochondrial tRNA mutations associated with deafness. Mitochondrion 12:406–413

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immo E. Scheffler.

Additional information

Communicated by: Eva Morava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheffler, I.E. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J Inherit Metab Dis 38, 405–415 (2015). https://doi.org/10.1007/s10545-014-9768-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9768-6

Keywords

Navigation