Skip to main content
Log in

A multi-asperity adhesive contact model for catheter and vascular artery contact in endovascular surgery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Contact behaviors of medical devices, such as guidewires and catheters, are critical in endovascular surgeries. In this work, a new method to predict adhesive contact force between catheter and vascular artery is presented. Multi-asperity adhesion on the surface of vascular artery, deformation of asperity and deformation of vascular substrate are all considered. The single asperity behavior is described with Johnson-Kendall-Roberts (JKR) contact model. The multi-asperity behavior is based on Greenwood–Williamson (GW) asperity model. Vascular substrate is considered as elastic bulk substrate and its deformation is determined with Hertzian pressure from asperity on a circular region on the elastic half space. The model shows that the deformation of vascular substrate accounts for the majority of the total contact deformation and significantly affects the predicted contact force. The model is verified with published experimental data. The comparison shows that the model produces very accurate prediction of contact force between catheter and vascular artery when the contact force is compressive. Parametric analysis based on asperity topography is carried out. The analysis shows that the diameter of the circular region of the interface between asperity and vascular substrate has more significant effect on the estimation of contact force than the radius of asperity. Further validation of prediction accuracy of the model under experiment is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgements

We wish to show our appreciation for the sponsor from China Scholarship Council (CSC) on this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Xu or Yong Shi.

Ethics declarations

Conflict of interest

The author declares no potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Mangla, S., Gschneidner, P. et al. A multi-asperity adhesive contact model for catheter and vascular artery contact in endovascular surgery. Biomed Microdevices 25, 7 (2023). https://doi.org/10.1007/s10544-023-00646-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-023-00646-2

Keywords

Navigation