
BIT Numerical Mathematics           (2024) 64:22 
https://doi.org/10.1007/s10543-024-01020-1

On a quality measure for interval inclusions

Siegfried M. Rump1,2 · Takeshi Ogita2

Received: 4 October 2023 / Accepted: 11 March 2024
© The Author(s) 2024

Abstract
Verification methods compute intervals which contain the solution of a given problem
with mathematical rigour. In order to compare the quality of intervals some measure
is desirable. We identify some anticipated properties and propose a method avoiding
drawbacks of previous definitions.
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1 Introduction

Verification methods prove that a given a numerical problem is solvable and produce
mathematically rigorous error bounds for the solution of the problem. For an overview
of verification methods cf. [5, 8] and [in Japanese] [6].

When developing a new verification method, it is desirable to have some measure
for the quality of an inclusion. We consider an inclusion interval X as error bounds
for an unknown real quantity x̂ , i.e., x̂ ∈ X . Depending on the situation, we use
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synonymous notations for an inclusion interval, namely

X = [x, x] := {x ∈ R : x ≤ x ≤ x}
= 〈m, r〉 := {x ∈ R : m − r ≤ x ≤ m + r} .

A colloquial notation is 〈m, r〉 = m ± r . Consider

X1 := [−1, 2], X2 := [−1, 1], and X3 := [1, 2] .

It seems that all three intervals do not give much information, only X3 proves at least
that x̂ is positive. Now let A be a symmetric matrix with ‖A‖2 = 1010 and let the Xν

be inclusions of an eigenvalue. Then all three inclusions Xν reveal that the condition
number σmax(A)

σmin(A)
of A is at least 5 · 109.

The quality of an interval inclusion depends on the context. Having said that, it may
nevertheless be desirable to define a measure for the quality of an interval, knowing
the pros and cons of such an attempt. There is some folklore about such measures,
however, to that end we found only one paper in the literature, see below.

In this note we develop some criteria for such a measure. We start with some theo-
retical considerations in the next section, and conclude with some practical remarks.

2 Theoretical considerations

Let � : R × R≥0 → R≥0 be a function for the quality �(m, r) of 〈m, r〉. The letter
� may remind of “relative error”, however, we prefer the wording “quality” because
mathematically � may be interpreted as relative error, but only in a certain sense
(see below). Note that �(m, r) = 0 means best quality. We first list some desirable
properties of such a function:

I) non-negativity �(m, r) ≥ 0
II) zero value �(m, r) = 0 ⇔ r = 0
III) scaling invariance �(X) = �(αX) for 0 
= α ∈ R

IV) monotonicity for fixed m r ′ > r ⇒ �(m, r ′) > �(m, r)
V) monotonicity for fixed r |m′| > |m| ⇒ �(m′, r) < �(m, r)

The rationale is as follows. Properties I) and II) are clear. As for III), the quality of
an inclusion interval X may well depend on the scaling for different settings, see
the above example. However, without knowing any setting, invariance with respect to
scaling seems the only option. For themonotonicity, an interval with constantmidpoint
but increasing radius gives less information, and with constant radius but increasing
absolute value of themidpoint1 the interval contains, in some sense, more information.

Moreover, we may demand � to be continuous in m and r except for m = r = 0
because for r > 0 it follows �(0, 0) < �(0, r) = �(0, 1). As for differentiability note

1 Note that III) implies �(m, r) = �(−m, r).
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that �(m, r) = �(−m, r) would imply d�
dm (0, r) = 0 for all r > 0, but then V) and I)

lead to a contradiction. Therefore we require

VI) continuity �(m, r) is everywhere continuous except for m = r = 0
VII) differentiability �(m, r) is everywhere differentiable except for m = 0

Having listed the desired properties, we look for possible candidates. An obvious
choice is to use the midpoint m of X = 〈m, r〉 as an approximation and define �(X)

to be the largest relative error of x ∈ X with respect to m:

�1(m, r) := max
x∈X

∣
∣
∣
∣

x − m

m

∣
∣
∣
∣

implying �1(X) =
∣
∣
∣
∣

x − x

x + x

∣
∣
∣
∣

. (1)

All properties I) to VII) are satisfied, however, for a small or zero unknown real
quantity x̂ the midpoint may be zero causing an obvious problem. In this case �1(0, r)
is infinite no matter how small the radius r is.

A remedy is to use the maximum over the minimal relative error against some
x̃ ∈ X , i.e.,

�2(X) := min
x̃∈X

max
x∈X

∣
∣
∣
∣

x̃ − x

x̃

∣
∣
∣
∣

. (2)

That is the definition in [4], the only reference we found. It is shown that

�2(m, r) =

⎧

⎪⎨

⎪⎩

r

|m| if |m| − r ≥ 0

2r

max(|m − r |,m + r)
otherwise .

The properties I) to VI) are satisfied for �2, however, differentiability VII) is not met:

�2(1, 1 + e) =
⎧

⎨

⎩

1 + e if e ≤ 0
1 + e

1 + e/2
if e ≥ 0 .

As has been mentioned there is some folklore about quality measures, in particular

�3(X) := x − x

|x | + |x | (3)

with 0/0 := 0.That avoids the zeromidpoint problem, but for all intervals X containing
zero x ≤ 0 ≤ x implies

0 ∈ X : �3(X) = x + |x |
|x | + x

= 1 .
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The properties I) to VI are satisfied, but �3 is not differentiable for one endpoint zero:

�3([0, e]) =
{
1 if e > 0
e

|e| if e < 0 .

In order to find a function � sharing all properties I) to VII) but avoiding the problems
for zero midpoint we use, in view of �(m, r) = �(−m, r), the ansatz

�(m, r) = α|m| + βr

γ |m| + δr

for constants α, β, γ, δ to be determined. Property II) implies α = 0 and γ 
= 0, so
that using III) and some scaling we can restrict our attention to

�(m, r) = ψ
r

ϕ|m| + r

with a scaling factor ψ defining the maximum of �. Rewriting �(m, r) =
ψ

(

ϕ
|m|
r + 1

)−1
it is easy to verify that this definition satisfies all properties I) to

VII) for any ϕ > 0. In order to find a suitable choice for ϕ we look at intervals with
fixed left endpoint x = −1 and right endpoints−1 ≤ x ≤ 1, that is Xr := 〈−1+r , r〉
for 0 ≤ r ≤ 1. Then

�(Xr ) = ψr

ϕ(1 − r) + r
.

A good choice may be ϕ = 1 in which case �(Xr ) grows linearly with r . Hence,

�(m, r) := ψr

|m| + r
.

Now it is a matter of taste to fix ψ . We may feel that �([0, 1]) = 1 should hold. That
implies ψ = 2, so that we define

�4(m, r) := 2r

|m| + r
(4)

implying �4(m, r) ≤ 2 for all m, r . For X = [x, x] it follows

�4(X) = min

(∣
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∣
∣

x − x

x
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∣
∣
∣
,

∣
∣
∣
∣

x − x

x

∣
∣
∣
∣

)

with the convention 0
0 = 0, the minimal relative error of the endpoints against each

other. In verification methods mag(X) := max{|x | : x ∈ X} is called the magnitude

123



BIT Numerical Mathematics            (2024) 64:22 Page 5 of 9    22 

Fig. 1 The functions �ν for fixed midpoint m = 1 (left) and fixed left endpoint −1 (right)

of an interval. Hence �4(X) = diam(X)/mag(X). An advantage over �3 is that no
case distinction is necessary in the computation. An almost identical formulation

�′
4(X) = x − x

max(|x |, |x |, η)

was suggested by Demmel [1]. It is equal to �4 except that it is tailored to binary64
of the IEEE754 [3] arithmetic standard by using the gradual underflow unit, i.e., the
smallest positive floating-point number η = 2−1074. If the endpoints x, x are binary64
floating-point numbers, then �4(X) = �′

4(X).
In Fig. 1 the four definitions �ν are compared for fixed midpoint m = 1 and for

fixed left endpoint x = −1.
The first function �1 [relative error against midpoint, red] shows a linear behaviour

for fixed midpoint and growing radius, and tends to infinity if the midpoint approaches
zero. As discussed the second function �2 [Kreinovich’s definition, black with circles]
it is not differentiable atm = r . The “folklore” function �3 [green] is not differentiable
for zero endpoint and flat equal to themaximal value 1 for intervals containing zero, no
discrimination in terms of small or large radius. Moreover, it is not concave. Finally,
the new definition �4 [blue] is, as �1, linear for fixed midpoint and growing radius,
and everywhere differentiable except for m = 0.

The first three definitions coincide in the left picture for X = 〈1, r〉 with r ∈ [0, 1],
and in the right picture for X = [−1,−1 + d] with d ∈ [0, 1]. In both pictures
Kreinovich’s definition �2 and the proposed �4 coincide for r ≥ 1 and d ≥ 1, respec-
tively. So the proposed measure �4 differs from the other definitions for r ∈ [0, 1]
and d ∈ [0, 1] in the left and right picture, respectively. This ensures differentiability
everywhere except zero midpoint.
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The definition �4(X) = diam(X)
mag(X)

with the interpretation 0
0 = 0 can be used for

complex intervals as well. It replaced the function relerr in the latest Version
13 of INTLAB [7], the Matlab/Octave toolbox for reliable computing. Executable
Matlab/INTLAB code is as follows:

function res = relerr(X)
diamX = diam(X);
res = diamX;
index = find(res); % careful with sparse input
if any(index(:)) % diam(X)./mag(X)

magX = mag(X);
res(index) = res(index)./magX(index);

end
res(isinf(diamX)) = 1;

The code is working for scalar, vector and matrix input X, full or sparse, real or
complex. The “if”-statement takes care of 0

0 , and of sparse input avoiding full output.

3 Practical considerations

Our definition �4(X) seems a good theoretical measure for the relative error of an
interval X . However, from a practical and numerical point of view, there is a drawback.
Mathematically a small �4(Y ) means a small forward error, i.e., a small relative error
with respect to the true result. But numerically we can only hope for a small backward
error, introduced and popularized by Wilkinson [11, 12], see also [2]. The backward
error of an approximation x̃ is small if x̃ is the true solution of the original problem
after a small perturbation of the input data. Without further measurements such as a
residual iteration that is about the best what we can expect.

Now consider, similar to our introductory problem, an approximation x̃ = 1.23456·
10−10 of a singular value of a matrix A with ‖A‖2 = 1 to the true singular value
x̂ = 1.23457 ·10−10. Then �4(x̃∪x̂) = 8.1 ·10−6. If computed in binary64 equivalent
to some 16 decimals precision, the accuracy of x̃ might be considered as not bad,
but far from best possible. With the additional information of the context ‖A‖2 = 1,
however, we know that this is close to the best possible approximation we can hope
for.

Therefore, from a practical and numerical point of view it seems reasonable to pass
information about the context. We therefore propose a relative accuracy defined by

α(X , τ ) := diam(X)

max(mag(X), τ )
, (5)

where τ is the context information. That implies α(X , ‖A‖2) = 10−15, a value we
may expect from a practical, numerical point of view. In Version 13 of INTLAB the
function relacc computes the relative accuracy. A typical call is

alpha = relacc(X,’thresh’,tau);
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Fig. 2 Relative error and relative accuracy of singular value inclusions

The following Fig. 2 illustrates this definition and compares it to the relative error
�4. We compute approximations sk of the singular values of a square matrix with
1000 rows and condition number 1012. The well accepted rule thumb says that the
approximations sk of the smallest singular values may be correct to some 4 decimals.
The dotted green line2 in Fig. 2 displays the values �4(sk∪σk), where σk are the true
singular values of A. As expected the relative error increases from 10−14 for the largest
to about 10−6 for the smallest singular values. The dotted blue line displays the relative
accuracy α(X , ‖A‖2) and reflects what we would expect from a numerical point of
view.

Additionally we use INTLAB’s routine verifysingvalall to compute inclu-
sions Xk of all singular values of A. The solid black line shows the relative error �4(X)

of the inclusions, while the solid line displays the relative accuracy α(X , ‖A‖2). From
the black line wemight conclude that the inclusions are of reasonable, but not too good
quality for the smallest singular values, whereas the red line shows that the inclusions
are of almost best quality for an inclusion method without extra iterative refinement.
For other problems the context may be passed similarly.

We want to stress that neither the function relerr nor relacc is a panacea. As
noted at the beginning of this note the judgement of the quality of an inclusion depends
on the context. As an example let matrices R, A be given. Then ‖I − RA‖ < 1 for any
matrix norm proves that both R and A are nonsingular. Typically, a good choice for
R is an approximate inverse of A. Denote by X the stacked columns of an inclusion
of the residual I − RA. As an example, we display the first and last two elements in
Table 1.

It is well known that one step of iterative refinement in working precision implies
backward stability of the result of Gaussian elimination [9, 10]. A forward stable

2 Relative errors zero are set to 10−25 to avoid gaps.
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Table 1 Inclusion vector X with relative error and relative accuracy

X relerr(X) relacc(X,’thresh’,norm(A))

[−1.45 · 10−11, 2.18 · 10−11] 1.7 3.6 · 10−11

[−9.09 · 10−13, 2.73 · 10−12] 1.3 3.6 · 10−12

... ... ...
[2.93 · 10−11, 8.00 · 10−11] 0.6 5.1 · 10−11

[0, 3.64 · 10−12] 1.0 3.7 · 10−12

result, i.e., an approximation with close to maximum accuracy can be achieved with
residuals computed in twice the working precision.

The computed X may be applied in some iterative refinement. The intervals have
relatively wide diameters but are small in magnitude. If that is true for all entries, the
wide diameters show that a residual of that quality is not suited for iterative refinement,
so that relerr provides that information. However, the small magnitude shows that
the residuals are good enough to prove that A is nonsingular, so that relacc provides
that information.
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