
BIT Numerical Mathematics           (2024) 64:18 
https://doi.org/10.1007/s10543-024-01018-9

Learning the flux and diffusion function for degenerate
convection-diffusion equations using different types of
observations

Qing Li1 · Steinar Evje1

Received: 16 July 2023 / Accepted: 7 March 2024
© The Author(s) 2024

Abstract
In recent years, there has been an increasing interest in utilizing deep learning-based
techniques to predict solutions to various partial differential equations. In this study,
we investigate the identification of an unknown flux function and diffusion coefficient
in a one-dimensional convection-diffusion equation. The diffusion function is allowed
to vanish on intervals implying that solutions generally possess low regularity, i.e.,
are discontinuous. Therefore, solutions must be interpreted in the sense of entropy
solutions which combine a weak formulation with an additional constraint (entropy
condition). We explore a methodology that utilizes symbolic neural networks (S-
Nets) in combinationwith an entropy-consistent discrete numerical scheme (ECDNS).
Different types of observation data are explored. Extensive experiments in this paper
demonstrate that the proposed method is a robust tool to identify the unknown flux
and diffusion function. The flux and diffusion functions are restricted to be rational
functions.

Keywords Scalar nonlinear conservation law · Degenerate convection-diffusion ·
Weak entropy solution · Symbolic multi-layer neural network · Entropy consistent
discrete numerical scheme

Mathematics Subject Classification 35M12 · 35R30 · 65N21 · 68T07

Communicated by Nils Henrik Risebr.

B Steinar Evje
steinar.evje@uis.no

Qing Li
qing.li@uis.no

1 Department of Energy and Petroleum, Group of Computational Engineering, University of Stavanger,
Stavanger, Norway

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-024-01018-9&domain=pdf
http://orcid.org/0000-0003-2174-4095


   18 Page 2 of 35 BIT Numerical Mathematics            (2024) 64:18 

1 Introduction

1.1 Background

Conservation laws, which are regarded as fundamental laws of nature, have wide-
ranging applications in various fields such as physics, chemistry, biology, geology, and
engineering. One of the significant branches in computational mathematics involves
solving the differential equations associated with conservation laws, and several effec-
tive methods have been proposed in this regard, including the ones discussed in [31,
36, 37, 51, 52, 59, 81]. However, it is well known that solutions to conservation laws
are prone to developing discontinuities in finite time, even for smooth initial data [19,
36, 49, 52]. Scalar nonlinear convection-diffusion partial differential equations (PDEs)
of the form

ut + f (u)x = αA(u)xx , A(u) =
∫ u

0
a(v)dv, a(v) ≥ 0

u|t=0 = u0(x)

ux |x=0 = ux |x=L = 0 (1.1)

where x ∈ [0, L] arise in different applications such as sedimentation of particles in
liquid and various traffic flow type of problems. Here u = u(x, t) is the main variable
which depends on the position x and time t . The flux function f (u) represents the
convective transport whereas the diffusion function, denoted by A(u) = ∫ u

0 a(v)dv,
is a function of u that describes the diffusive transport. For a typical situation we
have a priori information about the magnitude of the scaling factor α > 0 but not
precise information about the functional form of neither A(u) nor f (u). Our goal is
to determine analytical expressions for both f (u) and A(u) using observational data
of different types.

1.2 Mathematical framework associated with (1.1)

Focusing on the Cauchy problem associated with (1.1), weak solutions must be con-
sidered in the sense of the integral equality

∫ T

0

∫
R

(
uϕt + ( f (u) − A(u)x )ϕx

)
dx dt +

∫
R

u0(x)ϕ(x, 0) dx = 0 (1.2)

for all test functions ϕ ∈ C∞
c (R × [0, T )) where u ∈ C([0, T ]; L1(R)) ∩ L∞(R ×

[0, T )) and A(u)x ∈ L∞(R × [0, T )). Herein, we have set α = 1 without loss of
generality. If A(u) is constant on an interval then weak solutions are not uniquely
determined from the initial data. An additional entropy condition must be imposed to
determine the unique physically relevant solution. More precisely, this unique weak
entropy solution u can be characterized by the following integral inequality when (1.1)

123



BIT Numerical Mathematics            (2024) 64:18 Page 3 of 35    18 

is considered on R [10, 86]

∫ T

0

∫
R

(
|u − k|ϕt + sgn(u − k)

(
f (u) − f (k) − A(u)x

)
ϕx

)
dx dt

+
∫
R

|u0(x) − k|ϕ(x, 0) dx ≥ 0 (1.3)

for all nonnegative ϕ ∈ C∞
c (R × [0, T )) and any constant k ∈ R. It is instructive to

note that from (1.3) the following characterization of a jump (ul , ur ) moving with a
velocity s can be extracted [27]:

(i) The shock speed s is given by the Rankine-Hugoniot type of condition

s =
f (ur ) − f (ul) −

(
A(u)x |r − A(u)x |l

)

ur − ul
(1.4)

where ul and ur are the left and right limits of u(x, t) of a discontinuity moving
in the x − t space, whereas A(u)x |l and A(u)x |r are corresponding left and right
limit values of A(u)x .

(ii) For all v ∈ [min{ul , ur },max{ul , ur }], the following entropy condition holds

f (ur ) − f (v) − A(u)x |ur
ur − ul

≤ s ≤ f (ul) − f (v) − A(u)x |ul
ur − ul

. (1.5)

For scalar conservation laws with a(u) = 0, the entropy framework (usually called
entropy conditions) was introduced by Kruzkov [50] and Volpert [85], while for
degenerate parabolic equations entropy solution were first considered by Volpert and
Hudajev [86]. Uniqueness of entropy solutions was first proved by Carrillo [10]. Finite
difference and finite volume schemes for degenerate equations were analysed by Evje
and Karlsen [26–28] (using upwind difference schemes), Holden et al. [37] (using
operator splitting methods), Kurganov and Tadmor [51] (central difference schemes),
Bouchut et al. [6] (kinetic BGK schemes), Afif and Amaziane [1] and Ohlberger,
Gallouet et al. [29, 70] (finite volume methods), and Cockburn and Shu [16] (discon-
tinuousGalerkinmethods). Rigorous estimates of the convergence rate of finite volume
schemes for degenerate parabolic equations were proved in [45, 46]. More recently,
convection-diffusion equations have also been explored where f (u) and A(u) as well
as initial data are assumed to be known only in a stochastic sense. The problem of
random initial data with a(u) = 0 was considered in [66], and the existence and
uniqueness of a random entropy solution was shown as well as convergence for Monte
Carlo based finite volume discretizations. In [48] the mathematical framework was
extended to include degenerate convection diffusion equationswith randomconvective
and diffusive flux functions with possibly correlated random perturbations.

123



   18 Page 4 of 35 BIT Numerical Mathematics            (2024) 64:18 

1.3 The inverse problem of (1.1) when a(u) = 0

Previous research on inverse problems for nonlinear conservation laws where a(u) =
0 includes a sophisticated methodology introduced by James and Sepúlveda [40,
41]. They formulated the identification of f as an optimization problem with a cost
functional J that measures the distance between the observed solution and the PDE
solution at a fixed time point. Under the assumption of a strictly convex flux f (and
a(u) = 0), Kang and Tanuma [44] show that f can be identified uniquely from initial
data with compact support and observations of a single shock that is formed after a
sufficiently large time.

Over the past decade, the rapid advancement in machine learning, data science,
and computing power has led to the widespread adoption of modern machine learning
techniques, particularly deep neural network models, in various fields of research
and application. These techniques have proven particularly effective in the context of
recovering ordinary differential equations (ODEs) [12, 13, 15, 21, 35, 76] and partial
differential equations (PDEs) [7, 8, 30, 32, 33, 43, 53, 73, 89]. These developments
have opened up new avenues for data-driven modeling and have enabled researchers
to extract meaningful insights from complex, high-dimensional data. Raissi et al. [73]
introduced physics informed neural network (PINN) for solving two main classes
of problems: data-driven solution and data-driven discovery of partial differential
equations. They suggested that if the considered PDE is well-posed and its solution
is unique, then the PINN method is capable of achieving good predictive accuracy
given a sufficiently expressive neural network architecture and a sufficient number of
collocation points. The method was explored for Schrödinger equation, Allen-Cahn
equation, and Korteweg-de Vries (KdV) in one dimension (1D) and Navier–Stokes in
two dimensions (2D). However, the neural network methods are not straightforward
to use in the context of nonlinear hyperbolic PDE that governs two-phase transport in
porous media [30]. The authors experimentally indicate that this shortcoming of PINN
for hyperbolic PDEs is related to the lack of regularity in the solution. For the same
reason it is natural to assume that the fact that solutions of (1.1) cannot be understood
in a classical sense but in the sense of (1.3), hampers use of various modern neural
network-based methods.

1.4 Problem statement and purpose of this work

In this work focus is on learning the functional form of both the flux function f (u)

and the diffusion function A(u) in the degenerate convection-diffusion model (1.1),
where u is the primary variable. Main challenges associated with that problem is:

(i) It is well known that the solutions of (1.1) typically develop discontinuities in
accordance with the formulation (1.3) [10, 27, 86], as expressed by (1.4) and (1.5).
This lack of regularity prevents direct use of various modern learning methods
mentioned above.

(ii) As jumps arise and disappear in the solution over the time period for which obser-
vation data is collected when a(u) vanishes over intervals in u, the data may lack
information about f (u) in these intervals [53]. In the current problem, there is a

123



BIT Numerical Mathematics            (2024) 64:18 Page 5 of 35    18 

Fig. 1 a Nonlinear flux function f (u) = u2

u2+(1−u)2
. b Diffusion function (1.6). c The solution u(x, T )

of (1.1) at time T = 0.25 is shown (red solid curve) together with its initial data u0(x) (red dashed line).
Corresponding solution of (1.1) with a(u) = 0 is also shown (blue dashed line). d Illustration of A(u(x, T ))

with T = 0.25 (color figure online)

blend of effects from f (u) and A(u) present in the observation data that might
further complicate the identification of f and A. An illustration of this situation
is given in Fig. 1. In panel (a) and (b), respectively, we plot the flux function
f (u) = u2/(u2 + (1 − u)2) and the diffusion function

a(u) =
{
0.0, if u ∈ [0, 0.8]
1.0, otherwise.

(1.6)

In panel (c) the entropy solution after a time T = 0.25 is shown (red solid line).
At the time t = 0, the initial data u0(x) involves one jump at x = 1 and another
jump at x = 2. The initial jump at x = 1 is instantly transformed into a solution
that is a combination of a continuous wave solution and a discontinuous wave
(ul , ur ) ≈ (0.4, 0.8). Similarly, the initial jump at x = 2 is transformed into a
solution that is a combination of a continuous wave solution and a discontinuous
wave (ul , ur ) ≈ (0.8, 0). From this example, we see that we have no observation
data that directly can reveal the shape of f (u) and a(u) in the interval u ∈ [0.4, 0.8]
(approximately). In panel (c) we also include the solution with a(u) = 0 (dashed
blue line). In particular, we see that the evolving discontinuities are different as
the discontinuities obeying the entropy condition (1.5) clearly are affected by the
presence of the diffusive flux term A(u), see a plot of it at time T = 0.25 in panel
(d).

(iii) A third issue is the role played by selecting different types of observation data.
Are some observation data better than others to identify the unknown f (u) and
A(u)?

The methodology we rely on represents a generalization from the pure conservation
law case with a(u) = 0 explored in [53, 55] to the degenerate convection-diffusion
case (1.1). The main contribution of this work includes:

(i) We introduce a novel approach for learning the functional forms of both the flux
function f (u) and diffusion function A(u) in the degenerate convection-diffusion
model (1.1), where u is the primary variable. Our approach is based on combining
symbolic multilayer neural network functions to represent f (u) and A(u) with an
entropy consistent discrete numerical scheme (ECDNS) for (1.1) which is known

123



   18 Page 6 of 35 BIT Numerical Mathematics            (2024) 64:18 

to converge to the correct entropy solution [27]. Relying on observation data of the
form u(x j , ti ) at fixed positions (x j , ti ), this allows us to accurately learn both the
unknown flux and diffusion functions using significantly less observational data
compared with, for example, [88].

(ii) Going beyond the reliance on the equation’s solution in terms of u(x j , ti ) as obser-
vational data, we investigate the same physical system from a distinct perspective.
Specifically, we consider a scenario where the system is made up of particles that
follow the flow field as described by u(x, t) governed by (1.1). That is, particle
z j (t) is governed by

ż j (t) = w(u(z j (t), t)), z j (t = 0) = x0j

for a given function w(v). Using particle-based observational data, the proposed
method generates quite remarkable outcomes despite the fact that the number of
observation data points is much lower than in point (i).

(iii) Representation of unknown functions can take many forms, and in this paper, we
employ the neural network S-Net as our chosen method. In addition, we conduct a
comparative experiment using the piecewise affine functions method described in
[24]. The experimental results demonstrate the clear advantage of neural networks
in terms of effective and robust identification of the unknown functions f and A.

(iv) The study provides insight into the relative impact from the flux function f (u)

and diffusion function A(u). In particular, accurate learning of a(u) is difficult as
the impact from a(u) goes through the integrated form A(u) = ∫ u a(s) ds. More
precisely, since the total flux f (u)− A(u)x strongly impacts the evolution of (1.1),
accurate identification of f (u) and A(u) is obtained, whereas the corresponding
A′(u) = a(u) may differ from the ground truth a behind the observation data.

2 Related work

The inverse problem of flux identification, which involves minimizing a suitable cost
function, was formulated by James and Sepúlveda [42]. They demonstrated, through
the use of the viscous approximation, that the perturbed problem converges to the
original hyperbolic problem by allowing the viscous term to vanish. Holden et al [38]
employed the front-tracking algorithm to reconstruct the flux function from observed
solutions with appropriate initial data. More recently, there have been several studies
aimed at reconstructing the flux function for sedimentation problems, where a floc-
culated suspension separates into a concentrated sediment and a clear fluid [9, 23].
In [24], Diehl proposed a direct inversion method that utilizes linear combinations of
finite element hat functions to represent unknown flux and diffusion functions. In our
paper, we use this approach as a comparative method.

The last decade has seen remarkable progress in the field of machine learning
which has enabled several notable efforts aimed at uncovering the governing equations
for nonlinear dynamical systems. Among these, the SINDy (Sparse Identification of
Nonlinear Dynamics)model [8] has emerged as a breakthrough tool for addressing this
challenge. SINDywas developed to recursively identify the sparse solution from a pre-

123



BIT Numerical Mathematics            (2024) 64:18 Page 7 of 35    18 

defined basis function library using a sequential threshold ridge regression algorithm.
SINDy quickly emerged as one of the leading methods in this field of study, igniting
significant interest [11, 14, 20, 69, 79]. However, the success of this sparsity-promoting
approach relies on a well-defined candidate function library, which requires prior
knowledge of the system. It is also limited by the possibility that a linear combination of
candidate functions may be insufficient to capture complex mathematical expressions.
Furthermore, as the library size increases, itmay fail tomaintain the sparsity constraint,
according to empirical observations.

A symbolic regressor offers great flexibility in model selection by allowing the
free combination of mathematical operators and symbols to identify the governing
equations that best describe the underlying physics. This approach to data-driven
nonlinear dynamics discovery was first introduced in [5] and [80] that recast the
problem as a symbolic regression task and used genetic programming (GP) to solve it
[4]. This idea has inspired a series of subsequent endeavors [18, 34, 84].More recently,
DeepSymbolicRegression (DSR) [68, 71]was introduced as a reinforcement learning-
based model that generally outperforms GP-based models. However, this approach is
built upon ad-hoc steps and, to some extent lacks flexible automation in equation
discovery.

Mesh-based simulations have made significant progress recently [33, 39, 72, 89],
offering faster runtimes than principled solvers and greater adaptivity to the simula-
tion domain compared to grid-based convolutional neural networks (CNNs) [83, 87].
However, the efficacy of this method was tested on one-dimensional conservation law
problems by [56], revealing that when the parameters deviate significantly from the
training parameters, the predictions have a large deviation.

Attempts have been made to tackle the nonlinear dynamics discovery problems
by introducing neural networks with activation functions replaced by commonly seen
mathematical operators [47, 62, 63, 65, 78]. Long et al [62, 63] proposed a combination
of numerical approximation of differential operators by convolutions and a symbolic
multi-layer neural network formodel recovery. They used convolutions to approximate
differential operatorswith properly constrainedfilters and to approximate the nonlinear
response by deep neural networks. The intricate formulas are obtained via symbolic
expansion of the well-trained network. This interpretation of physical laws results
in larger candidate pools compared with the library-based representation of physics
employed by SINDy. This type of approach has been demonstrated to be effective in
tackling conservation law problems, as evidenced in previous research [53, 55] as well
as ODEs [54].

Magiera et al. [64] investigated methods for building a reliable surrogate Riemann
solver based on neural networks that incorporate conservation properties, such asmass
ormomentumconservation. In [3],Deniz et al. propose a data-driven physics-informed
finite-volume scheme for the approximationof small-scale dependent shocks.Aconvo-
lutional neural network combines local interpolation polynomialswith a regularization
term to form the adaptive nonlinear numerical flux in this numerical scheme. Rein-
forcement learning was utilized byWang et al. in [88] to identify novel and potentially
better data-driven solvers for conservation laws. A multilayer perceptron (MLP) is
explored in [74]. It is trained offline using a supervised learning strategy and then
employed as a universal troubled-cell indicator that can be used for generic con-

123



   18 Page 8 of 35 BIT Numerical Mathematics            (2024) 64:18 

servation laws. In addition, a few recent studies have exploited machine learning to
auto-discover conservation laws [60, 61, 67].

3 Method

In this section,we introduceour proposedmethod. Firstly,wepresent the two important
components of the model: ECDNS and S-Net. Secondly, we illustrate how to combine
ECDNS with S-Net in our model.

3.1 Entropy consistent discrete numerical scheme (ECDNS)

Wediscretize the spatial domain [0, L] into Nx points {xi }Nx
i=1, where xi = (1/2+i)�x

for i = 1, . . . , Nx , and �x = L/Nx . Additionally, we consider a set of time steps
{tn}Nt

n=0 with Nt�t = T . To discretize (1.1), we use the Rusanov scheme [52], which
can be written as follows:

un+1
j = unj − λ(Fn

j+1/2 − Fn
j−1/2) + λ(D+An

j+1/2 − D+An
j−1/2), λ = �t

�x
un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1 (3.1)

with j = 2, . . . , Nx − 1 and Fn
j+1/2 and D+An

j+1/2 take the forms

Fn
j+1/2 = f (unj ) + f (unj+1)

2
− Mn

j+1/2

2
(unj+1 − unj ), (3.2)

and

D+An
j+1/2 = A(unj+1) − A(unj )

�x
=

∫ unj+1
0 a(z)dz − ∫ unj

0 a(z)dz

�x
. (3.3)

We adopt a local estimation by using Mn
j+1/2 = max{| f ′(unj )|, | f ′(unj+1)|}. The

CFL condition determines the magnitude of �t for a given �x ,

CFL := �t

�x

(
M + 2K

�x

)
≤ 1, M = max

u
| f ′(u)|, K = max

u
a(u).

We apply the CFL condition in Algorithm 1 to ensure numerical stability. To learn
the solution Un = {

u(x j , tn)
}Nx

j=1 of the discrete conservation law (3.1), we employ
Algorithm 2.

3.2 S-Net

To identify the unknown functions, we have opted for machine learning methods,
which offer greater robustness and flexibility. In particular, we are using S-Nets, as
employed in [62, 63, 65, 78]. Figure2 depicts the building of the S-Net with three

123



BIT Numerical Mathematics            (2024) 64:18 Page 9 of 35    18 

Algorithm 1 CFL
Input: L: length of the spatial domain; Nx : the number of x spatial grid cells; f (u): the nonlinear flux

function; a(u): the diffusion function; T : computational time period;
Output: �t : local time interval

�x = L/Nx
K = max

u
a(u)

M = max
u

| f ′(u)|
dt = ( 34�x)/(M + 0.0001 + 2K/�x)
n_time = 	T /dt

�t = T /n_time

Algorithm 2 DataGenerator
Input: T : computational time period; Nx : the number of x spatial grid cells; L: length of the spatial domain;

u0 = {u0(xi , t = t0)}Nx
i=1: initial state of dimension Nx ; f (u): the flux function; a(u): the diffusion

function
Output: U = {un}: the solution based on initial state u0;

�t = CFL(L , Nx , f (u), a(u), T )
�x = L/Nx
U [0] = u0

ũ = u0

for i = 1,...,T /�t do
for j = 1,...,Nx - 1 do

Fj+1/2 = 1
2

(
f (ũ j ) + f (ũ j+1)

) − max{| f ′(ũ j )|,| f ′(ũ j+1)|}
2

(
ũ j+1 − ũ j

)

D+A j+1/2 =
∫ ũ j+1
0 a(z)dz−∫ ũ j

0 a(z)dz
�x

end
for j = 2,...,Nx - 1 do

u j = ũ j − �t
�x

(
Fj+1/2 − Fj−1/2

) + �t
�x

(
D+A j+1/2 − D+A j−1/2

)
end
u1 = u2
uNx = uNx−1
ũ = u
U [i] = u

end

hidden layers. The linear combination map uses parameters w1 and b1 to choose two
elements from u and are denoted by α1 and β1

(α1, β1)
T = w1 · (u) + b1,w1 ∈ R

2×1,b1 ∈ R
2×1. (3.4)

These two elements of α1 and β1 are multiplied which give

f1 = α1β1. (3.5)

Apart from u gotten by the identity map, f1 also is input to the second hidden layer

(α2, β2)
T = w2 · (u, f1)

T + b2,w2 ∈ R
2×2,b2 ∈ R

2×1. (3.6)

123



   18 Page 10 of 35 BIT Numerical Mathematics            (2024) 64:18 

Similarly, with the first hidden layer, we get another combination f2

f2 = α2β2. (3.7)

Then we obtain α3 and β3 by means of w3 and b3 from u, f1 and f2

(α3, β3)
T = w3 · (u, f1, f2)

T + b3,w3 ∈ R
2×3,b3 ∈ R

3×1. (3.8)

f3, which is the product of α3 and β3 is put into the third hidden layer

f3 = α3β3. (3.9)

Finally, we arrive at the analytic expression of the function f

f = w4 · (u, f1, f2, f3)
T + b4,w4 ∈ R

1×4,b4 ∈ R. (3.10)

Theweight andbias parameters of S-Net for this example are θ = {w1,w2,w3,w4,b1,
b2,b3,b4}. The core of themethod is the appropriate choice of θ . If S-Net has n hidden
layers, it is capable of learning a polynomial of order 2n . The complexity of S-Net is
determined by the weights and biases across its structure. Specifically, the weights w
follow a pattern of 1×2+2×2+2×3+· · ·+2×n+ (n+1), while the biases b are
summed up as 1× 2+ 2+ 3+ · · · + n + 1. This structure highlights the exponential
increase in the order of the polynomial it can learn, directly correlating with the depth
of the network through its hidden layers. In theory, increasing the number of hidden
layers enhances themodel’s representational flexibility. Yet, an excess of hidden layers
complicates optimization. Thus, we aim for a minimal number of hidden layers while
maintaining sufficient expressive capability. In this paper, focus is on studying flux
functions that can be approximated well within the class of polynomial functions.
However, to enhance its learning capabilities, we can readily incorporate additional
operators, such as those for sine and cosine. This is among the reasons why we opted
for S-Net in our study.

Besides S-Nets, other classical methods explicitly represent functions, such as the
piecewise affine functions method described in [24]. In the piecewise affine functions
method, divide the u-axis into n equidistant intervals: let umax be the largest value of
the data and set uk = kumax/n for k = −1, ..., n + 1. Assume that

f̂ (u) =
n∑

k=0

fkψk(u) (3.11)

where fk is n + 1 parameters to be determined, and the hat functions are defined by

ψk(u) =

⎧⎪⎨
⎪⎩

u−uk−1
uk−uk−1

, uk−1 < u ≤ uk
uk+1−u
uk+1−uk

, uk < u ≤ uk+1

0, otherwise

(3.12)

123



BIT Numerical Mathematics            (2024) 64:18 Page 11 of 35    18 

Fig. 2 The structure of S-Net with three hidden layers. αi , βi are terms with respect to u, obtained by the
parameters wi , bi , i = 1, 2, 3

where k = 0, ..., n. In this work, we employ the piecewise affine functions method as
a means of comparison.

3.3 Themodel

The model combines two classes of S − Nets, S − Net f and S − Neta , and ECDNS
to learn f (u) and a(u). We employ a single S-Net, denoted as fθ (u), to learn f (u)

across the entire space u ∈ [0, 1]. However, we utilize Na number of S-Nets distributed
across different intervals {[ k

Na
, k+1

Na
)|k = 0, 1, ..., Na − 1}, to learn a(u), designated

as aθ (u),

aθ (u) =
Na−1∑
k=0

aθk (u)Ik(u), (3.13)

where

Ik(u) =
{
1, k

Na
≤ u < k+1

Na

0, otherwise.
(3.14)

In order to identify unknown equations, a commonly used approach is to rely on
observed data in the form of solutions u(x, t) to the equations, as demonstrated in
prior work [24, 53, 55, 62, 63]. In this work, we supplement this standard observational
dataset with another set of observations obtained from particle trajectories.

– Observation Data I (standard). We consider observation data in terms of x-
dependent data at fixed times {t∗i }Nobs

i=1 extracted from the solution U as follows:

Usub =
{
u(x j , t

∗
1 ), u(x j , t

∗
2 ), . . . , u(x j , t

∗
Nobs

)
}
, j = 1, . . . , Nx . (3.15)

123



   18 Page 12 of 35 BIT Numerical Mathematics            (2024) 64:18 

(3.15) is utilized to select synthetic observation data denoted by Usub as well as
predictions based on the learned fθ f (u) and aθa (u) written as Ûsub. We specify
times for collecting the time-dependent data

Tobs = {t∗i = i�tobs : i = 1, . . . , Nobs}. (3.16)

Typically, we set Nx = 200 and Nobs = 9 with �tobs = 0.1.
– Observation Data II (particle trajectories).
In addition to studying the conservation law (1.1) from the standard perspective,we
also investigate the same physical system from a different vantage point. Specif-
ically, we consider a scenario where the system consists of particles that move
with the flow field described by (1.1). Instead of examining the solution u(x, t)
as observation data, we focus on the trajectories of these particles as it has been
suggested in the context of traffic flow for a scalar nonlinear conservation law [17,
58, 75]. The classical traffic flow model takes the following form

ut + (uw(u))x = 0. (3.17)

The flux function in this case is f (u) = uw(u). The work [17] suggests to study
an ODE of the form ż(t) = w(u(z(t), t)) for a suitable known speed function w

and a prescribed initial position to represent the path z(t) of one driver that travels
along the road modelled by (3.17). The authors demonstrate the existence and
stability of particle trajectories in relation to their initial positions. Additionally,
[25] establishes several novel findings regarding the stability of particle trajectories
when subjected to variations in the initial field.
We may apply the same approach based on the model (1.1). Let us suppose

a single particle j begins at time t0 from a location x0j , and let z j (t) denote its
position at time t . The velocity field of the flow is represented by a function w

whose functional form is assumed known. Without loss of generality, we will use
w(u) = u in the following. Then z j (t) satisfies the following equation

ż j (t) = w(u(z j (t), t)), j = 1, . . . , Npar (3.18)

where u(x, t) is the entropy solution of (1.1) as captured by the entropy satisfying
scheme (3.1)–(3.3). Equation (3.18) can be interpreted as an ordinary differential
equation (ODE) for z j (t). If we take the initial position x0j of particle j into account
then we have the following Cauchy initial data to (3.18):

z0j (t = t0) = x0j , j = 1, . . . , Npar. (3.19)

To discretize (3.18), we use the Euler method [2], which can be written as follows:

zn+1
j = znj + w(u(znj , t

n))�tode (3.20)

where �tode refers to the time stepping used to solve the ODE. Our observational
data is the trajectories of Npar particles. Specifically, we will denote the initial

123



BIT Numerical Mathematics            (2024) 64:18 Page 13 of 35    18 

positions of these Npar particles at time t0 by

Z0 =
{
x01 , x

0
2 , ..., x

0
Npar

}
=

{
z01, z

0
2, ..., z

0
Npar

}
. (3.21)

Based on the solution U derived from Algorithm 2, we interpolate position Z0

to obtain the corresponding solution UZ0
at the time t0. According to (3.20), we

obtain the particle positions at the subsequent time point t0 + �tode,

Z1 = Z0 + w(UZ0
)�tode. (3.22)

Additionally, by interpolating position Z1, we derive the corresponding solution
UZ1

at the time t0 + �tode. Hence, we can get the particle positions at the subse-
quent time point t0 + 2�tode

Z2 = Z1 + w(UZ1
)�tode. (3.23)

It should be noted that we set�tode = �t gotten fromAlgorithm 2, i.e., we use the
same time step as for the evolution of the discrete scheme that solves (1.1).We also
set t0 = 0. This iterative process proceeds, enabling us to derive the trajectories
of all particles

Z =
{
Zi = {zi1, zi2, ..., ziNpar

}|i = t0 + î�tode, î = 0, 1, 2, ...
}
. (3.24)

For the evaluation of UZn
associated with time tn = n�t based on the discrete

solution {unj } generated by Algorithm 2, we use linear interpolation. We consider

observation data at fixed times {t∗i }Nobs
i=1 as given by (3.16) extracted from Z as

follows:
Zsub =

{
Zt∗1 , Zt∗2 , . . . , Zt∗Nobs

}
. (3.25)

Equation (3.25) is utilized to select synthetic observation data denoted by Zsub as
well as predictions based on the learned fθ f (u) and aθa (u) written as Ẑsub.

Standard Observation (Data I) and Particle Trajectories (Data II) represent two data
sets that study conservation laws from different perspectives. Furthermore, Particle
Trajectories utilize a significantly smaller amount of data for model training compared
to Standard Observation data. Specifically, while Standard Observation data employs
Nx = 200 grid points when the number of observation time points is the same, Particle
Trajectories only utilize Npar = 10 particle trajectories.

During model training, fθ f (u) and aθa (u), in place of f (u) and a(u), are fed into

Algorithm 2 to obtain the predicted solution Û . Similar to Usub and Zsub, we select
predicted solutions Ûsub and Ẑsub according to (3.15) and (3.25). The difference

123



   18 Page 14 of 35 BIT Numerical Mathematics            (2024) 64:18 

between Usub (Zsub) and Ûsub (Ẑsub), denoted as Ldata , serves as the loss function,

Ldata = 1

Kinit Nx Nobs

Kini∑
k=1

Nx∑
j=1

Nobs∑
i=1

(
Usub,k(x j , t

∗
i ) − Ûsub,k(x j , t

∗
i )

)2
, (3.26)

or

Ldata = 1

Kinit Npar Nobs

Kini∑
k=1

Npar∑
j=1

Nobs∑
i=1

(
Zsub,k(x j , t

∗
i ) − Ẑsub,k(x j , t

∗
i )

)2
. (3.27)

To update the parameter vectors θ f and θa , we employ the second-order quasi-Newton
method, L-BFGS-B [77, 90]. Our implementation leverages the PyTorch machine
learning framework, simplifying the process to merely invoking the LBFGS() func-
tion provided within PyTorch. By inputting our loss function into LBFGS(), we
efficiently optimize the model’s parameters. The training process of this model based
on standard observation data is depicted in Algorithm 3.

Algorithm 3 ConsLaw-Net
Input: T : computational time period; Nx : the number of x spatial grid cells; L: length of the spatial

domain; u0: initial state vector of dimension Nx ; f (u): the true flux function; a(u): the diffusion
function; θ0f : initial parameters of S-Net for fθ (u); θ0aθk

: initial parameters of S-Net for aθk where

k = 0, 1, 2, ..., Na − 1; Tobs : observation time points (3.16); Loss: loss function; epoch: the
number of epoch; DataGenerator :Algorithm 2; Ik (u): as defined in (3.14).

Output: θ∗
f ;θ

∗
a = {θ∗

aθk
|k = 0, 1, ..., Na − 1};

U = DataGenerator(T , Nx , L, u0, f (u), a(u))

Usub = {u ∈ U |t ∈ Tobs }
θ f = θ0f , θa = {θ0aθk

|k = 0, 1, ..., Na − 1}
for i = 1,...,epoch do

aθ (u) = ∑Na−1
k=0 aθk (u)Ik (u)

Û = DataGenerator(T , Nx , L, u0, fθ f (u), aθa (u))

Ûsub = {u ∈ Û |t ∈ T _obs}
loss = Loss(Usub, Ûsub)

Updating θ f , θa and loss by optimizer L-BFGS-B;

end
θ∗

f = θ f , θ
∗
a = {θaθk

|k = 0, 1, ..., Na − 1}

4 Experiment 1

This section explores a group of nonlinear conservation laws that arises naturally from
the vertical displacement of one fluid by another [82]. In this case the the ground truth

123



BIT Numerical Mathematics            (2024) 64:18 Page 15 of 35    18 

Table 1 The initial states

u01 =
{
1.0 if x ∈ [4, 6]
0 otherwise

u02 =
{
0.9 if x ∈ [4, 6]
0 otherwise

u03 =
{
0.8 if x ∈ [3.5, 5]
0 otherwise

u04 =
{
0.7 if x ∈ [4.5, 6.5]
0 otherwise

u05 =
{
0.85 if x ∈ [0, 2]
0 otherwise

u06 =
{
0.75 if x ∈ [0, 2]
0 otherwise

flux function f (u) is given by the following flux function [53]

f (u) = 1

2
u(3 − u2) + 300

12
u2

(
3

4
− 2u + 3

2
u2 − 1

4
u4

)
. (4.1)

Our focus is on examining identification of two distinct diffusion functions, namely
a1(u) given by

a1(u) =
{
0, if u ∈ [0, 0.5]
1.0, otherwise,

(4.2)

and a2(u) given by

a2(u) =
{
0, if u ∈ [0, 0.5]
(u − 0.5)u, otherwise.

(4.3)

with α = 0.5. In [22], R. Diaz-Adame et al. presented a discussion on fast and optimal
WENO schemes for degenerate parabolic conservation laws with similar diffusion
functions.

We examine a one-dimensional spatial domain of length L = 10,where x ∈ [0, 10],
and a time interval [0, T ]with T = 2.We gather observation data in the form of (3.15)
and (3.25), with Nobs = 9, �tobs = 0.1, and a numerical grid consisting of Nx = 200
grid cells. The goal is to identify the unknownflux function f (u) and diffusion function
a(u) for u ∈ [0, 1]. To learn f (u) and a(u), we consider a set of initial states {u0k}Kinit

k=1
such that 0 ≤ u0k(x) ≤ 1. Table 1 displays the initial states utilized in the following
experiments.

To represent unknown functions using S-Nets, we employ an S-Net to learn the
flux function f (u). We evaluate the effectiveness of representing a(u) using either
one or more S-Nets or piecewise affine functions. When using multiple S-Nets, we
partition the u-axis into four equidistant intervals: u ∈ [0, 0.25), u ∈ [0.25, 0.5),
u ∈ [0.5, 0.75), and u ∈ [0.75, 1.0), and train four distinct S-Nets on each interval.
The initial values of the neural networks are randomly generated. In addition, we set
n = 10 in (3.11) for the piecewise affine function approach.

4.1 Identification of f(u) and a1(u) using standard observations (Data I) with a
single S-Net for representing a1(u)

Figure 3a and b depict the learned fθ∗
f
(u) anda1θ∗

a
(u), respectively. Since the derivative

of fθ∗
f
(u) is what matters for f (u), we plot the translated function fθ∗

f
(u)− f (0). The

123



   18 Page 16 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 3 The graphical result of identification of flux function fθ∗
f
(u), diffusion function a1θ∗

a
(u) and

A1θ∗
a
(u). The red line represents the true function, while the blue line illustrates the learned function

(color figure online)

learned A1θ∗
a
(u) based on a1θ∗

a
(u) is presented in Fig. 3c. Notably, the predicted f (u)

deviates significantly from the true value at u ∈ [0.6, 1.0], and there is a significant
difference between the actual and learned functions for both a1(u) and A1(u). There-
fore, the piecewise nature of a1(u) makes it unsuitable for an S-Net representation as
S-Net learns only smooth functions.

4.2 Identification of f(u) and a1(u) using standard observations (Data I) with four
S-Nets for representing a1(u)

To overcome the limitations of using a single S-Net to represent a1(u), we employed
multiple S-Nets to learn a1(u). Specifically, we divided the u-axis into four intervals,
namely u ∈ [0, 0.25), u ∈ [0.25, 0.5), u ∈ [0.5, 0.75), and u ∈ [0.75, 1.0), and
allocated one S-Net with a single hidden layer for each interval. In contrast, the S-Net
used to represent f (u) consisted of six hidden layers.

Figure 4a–c display the learned functions for fθ∗
f
(u), a1θ∗

a
(u) and A1θ∗

a
(u), respec-

tively. The learned fθ∗
f
(u) approximates the true function f (u) closely, but for the

diffusion function a1(u), noticeable discrepancies can be observed between the learned
and the true functions on u ∈ [0.5, 0.75) and u ∈ [0.75, 1.0). However, since the
primitive form A1(u) is employed in the numerical scheme, we examine the learned
function A1θ∗

a
(u) based on a1θ∗

a
(u) in Fig. 4c, which remarkably fits the true function

123



BIT Numerical Mathematics            (2024) 64:18 Page 17 of 35    18 

Fig. 4 The graphical result of identification of flux function fθ∗
f
(u), diffusion function a1θ∗

a
(u) and

A1θ∗
a
(u). The red line represents the true function, while the blue line illustrates the learned function

(color figure online)

Fig. 5 u(x, t) at t = 2.0 based on the initial states of u01 and u05 in Table 1. The left and right subplots are

based on u01 and u05, respectively

A1(u). Clearly, utilizing multiple S-Nets to learn a1(u) can improve overall model
performance. In addition, we utilized the learned functions to solve the solutions of
(1.1), and the comparison of the true and predicted solutions based on the initial states
u01 and u05 in Table 1 is presented in Fig. 5. These results demonstrate the ability of
the proposed method to accurately identify unknown functions based on standard
observation data.

123



   18 Page 18 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 6 The graphical result of identification of flux function fθ∗
f
(u), diffusion function a2θ∗

a
(u) and

A2θ∗
a
(u). The red line represents the true function, while the blue line illustrates the learned function

(color figure online)

4.3 Identification of f(u) and a2(u) using standard observations (Data I) with four
S-Nets for representing a2(u)

We learn f (u) and a2(u) using the same experimental setting as in Sect. 4.2. Figure6a–
c show the learned functions fθ∗

f
(u), a2θ∗

a
(u) and A2θ∗

a
(u). While fθ∗

f
(u) is very

similar to f (u), there are significant differences between a2θ∗
a
(u) and a2(u) for u ∈

(0.75, 1.0). These differences also affects the learning of A2θ∗
a
(u) as compared to

A1θ∗
a
(u) in Sect. 4.2. Even with an increase in observation data, we are unable to

achieve a good result for a2(u). However, the error associated with a2θ∗
a
(u) or A2θ∗

a
(u)

does not appear to impact much the predicted solutions, as demonstrated in Fig. 7. This
explains why there is room for this error in the identification of A2(u). In Sect. 4.6 we
will discuss further why this happens.

4.4 Identification of f(u) and a1(u) using standard observations (Data I) with the
piecewise affine functions for representing f(u) and a1(u)

In this section, we replicate the experimental settings of Sect. 4.1 with the exception
of the representation of unknown functions which is now based on affine functions as
given by (3.11) and (3.12). We set n = 10 in (3.11). We present the learned functions

123



BIT Numerical Mathematics            (2024) 64:18 Page 19 of 35    18 

Fig. 7 u(x, t) at t = 2.0 based on the initial states of u01 and u05 in Table 1. The left and right subplots are

based on u01 and u05, respectively

of f̂ (u), â1(u), and Â1(u) in Fig. 8a–c, respectively. Additionally, Fig. 9 displays the
real and predicted solutions based on the initial states u01 and u05 in Table 1.

While f̂ (u) generally fits f (u) well, there is a significant discrepancy for u ∈
(0.7, 1.0). In addition, since f (u) is learned by piecewise linear functions, f̂ (u)

involve some non-smooth points. These non-smooth points have a large impact on
the solutions, causing the volatility observed in Fig. 9a and b. â1(u) differs signifi-
cantly from a1(u), especially for u ∈ (0.5, 1.0), see Fig. 8b. As A1(u) is an integral
function of a1(u), the difference between A1(u) and Â1(u) is less apparent than that
between a(u) and â(u). When comparing the optimization times between the method
utilizing piecewise affine functions and the S-Net method, the former required 1879s
to complete, whereas the latter took 4901s. This underscores that achieving good
results often necessitates more time.

4.5 Identification of f(u) and a1(u) using particle trajectories (Data II) with four
S-Nets for representing a1(u)

In this experiment, we use a six-layer S-Net to represent f (u), while the S-Nets used
for a(u) have only one hidden layer.We select ten particles and use their trajectories as
observation data. The initial positions of these particles at t = 0 are chosen as follows

Z0 =
{
0.025, 1.025, 2.025, 3.025, 4.025, 5.025, 6.025, 7.025, 8.025, 9.025

}
.

(4.4)
Figure10 shows the trajectories of different particles in the observation period under
different initial states. The three sub-pictures on the left, middle, and right show the
real and predicted trajectories of the particles with initial positions of 7.025, 4.025,
and 2.025 under the conditions of initial states of u01, u

0
2 and u06 respectively.

Figures 11a–c display the learned functions fθ∗
f
(u), a1θ∗

a
(u) and A1θ∗

a
(u). While

there is a slight difference between fθ∗
f
(u) and f (u) for u ∈ [0.8, 1.0], the approxima-

tion is generally close. For a1(u), noticeable discrepancies can be observed between

123



   18 Page 20 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 8 The graphical result of identification of flux function f̂ (u), diffusion function â(u) and Â(u). The
red line represents the true function, while the blue line illustrates the learned function (color figure online)

Fig. 9 u(x, t) at t = 2.0 based on the initial states of u01 and u05 in Table 1. The left and right subplots are

based on u01 and u05, respectively

the learned and true functions for u ∈ [0.5, 0.75) and u ∈ [0.75, 1.0). However,
A1θ∗

a
(u) based on a1θ∗

a
(u) generally fits the true function A1(u) well, except for some

smaller fluctuations in u ∈ (0.7, 0.8) ∪ (0.9, 1.0). The predicted solutions in Fig. 12
demonstrate that these small deviations in fθ∗

f
(u), a1θ∗

a
(u) and A1θ∗

a
(u) have little

effect on the predicted solutions. In this section, we use only 5% of the data used in
the previous section, but we still get the same good results as seen in Sect. 4.2.

123



BIT Numerical Mathematics            (2024) 64:18 Page 21 of 35    18 

Fig. 10 The trajectories of different particles in the observation period under different initial states. In each
subgraph, the red solid line represents the real trajectory, and the blue dashed line represents the learned
trajectory (color figure online)

Fig. 11 The graphical result of identification of flux function fθ∗
f
(u), diffusion function a1θ∗

a
(u) and

A1θ∗
a
(u). The red line represents the true function, while the blue line illustrates the learned function (color

figure online)

4.6 Discussion

4.6.1 Analyzing mean andmaximum errors in f (u), A(u), and u(x, T)

Wediscretize u ∈ [0, 1] into Nu+1 points {ui }Nu
i=0,where ui = i�u for i = 0, . . . , Nu ,

and �u = 1/Nu . Let Nu = 400. We then proceed to quantitatively evaluate the error
between the learned and true functions using two specific metrics:

Mean = 1

Nu

Nu+1∑
i=0

| f (ui ) − fθ∗
f
(ui )| (4.5)

123



   18 Page 22 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 12 u(x, t) at t = 2.0 based on the initial states of u01 and u
0
5 in Table 1. The left and right subplots are

based on u01 and u05, respectively

Max = max{| f (ui ) − fθ∗
f
(ui )|, i = 0, 1, 2, ...} (4.6)

Similarly to f (u), we also compute the mean and maximum values of the error about
the function A(u). Additionally, we compute the mean and maximum values of the
absolute difference between the true and predicted solutions at the final time point T :

Mean = 1

Nx

Nx∑
i=1

|u(xi , T ) − û(xi , T )| (4.7)

Max = max{|u(xi , T ) − û(xi , T )|, i = 0, 1, 2, ...}, (4.8)

where xi refers to the Nx number of grid cells and u and û are true and predicted
solution, respectively. In the Table 3, we analysis Mean andMaximum Errors in f (u),
A(u), and u(x, T ) learned in Sects. 4.1, 4.2, 4.3, 4.4 and 4.5.

4.6.2 Robustness analysis of the model

The flux and diffusion functions are indeed independent of the initial data. In our
study, we consistently apply the same set of initial states (referenced as Table 1)
across various sub-experiments. The reason is the observation that the data derived
from this initial state encompasses a broader spectrum of information pertinent to the
unidentified functions. If an alternative set of initial states and their corresponding
observations equally encapsulate the essence of these unknown functions, they too
could serve as viable starting points for our model training, promising similarly sat-
isfactory outcomes. The distribution of observations is often used to judge whether
the observations reflect enough information about the unknown functions [57]. To
demonstrate this point, we use a set of other initial states as shown in Table 2. The
row labeled “learned functions in Sect. 4.2” in Table 3 (see 2nd row) showcases the
outcomes from models trained using observations derived from Table 1. When com-
paring these results to those obtained from initial states in Table 2 (see 6th row), the

123



BIT Numerical Mathematics            (2024) 64:18 Page 23 of 35    18 

Table 2 The initial states

u01 =
{
0.95 if x ∈ [4, 6]
0 otherwise

u02 =
{
0.7 if x ∈ [4, 6]
0 otherwise

u03 =
{
0.6 if x ∈ [3.5, 5]
0 otherwise

u04 =
{
0.85 if x ∈ [4.5, 6.5]
0 otherwise

u05 =
{
0.55 if x ∈ [0, 2]
0 otherwise

u06 =
{
0.65 if x ∈ [0, 2]
0 otherwise

error margins for both sets in terms of functions f (u), A(u), or solutions u(x, T ) are
comparable and fall within an acceptable range.

We adjust the parameters from L = 10, T = 2.0 to L = 20, T = 5.0, while main-
taining the same settings as described in Sect. 4.2. The outcomes of these adjustments
are detailed in the row marked “Learned functions with changed L and T ” in Table 3
(see 7th row). The performance of f (u) surpasses that achieved in Sect. 4.2, although
it does not excel for A(u). Nevertheless, f (u) demonstrates superior effectiveness in
the solutions compared to A(u). The errors associated with u(x, T ) in both scenarios
are comparable, indicating the algorithm’s resilience to changes in T and L .

We tried to randomly add 3% noise to the observation data generated by initial
states on Table 1, and then train the model with the noisy data. The result is shown in
the row labeled “Learned functions with adding 3% noise to observations” in Table 3.
f (u) and A(u) are slightly affected by the noise, but the effect on u(x, T ) is ultimately
small andwithin acceptable limits of the error perturbation. If the noise is large, it has a
relatively large impact on the results of themodel, as shown in the row labeled “Learned
functions with adding 9% noise to observations”. In this case, we can minimize the
effect of noise on the model by increasing the number of observations [57].

Selecting the optimal number of layers involves a hyperparameter tuning process,
guided by the principle of model simplicity. We incrementally adjust the layer count
from low to high until the loss function’s final value ceases to improve. It’s important to
note that excessively increasing the model’s layers can deteriorate training outcomes
due to the complexities introduced in the optimization direction during parameter
updates. In Sect. 4.2, the S-Net for representing f (u) featured six hidden layers. We
now employ seven hidden layers to learn f (u), keeping all other settings consistent
with Sect. 4.2. The outcomes are detailed in the row labeled “Learned functions with
seven hidden layers”. Further increasing the number of layers is unlikely to benefit
the model significantly.

In Sect. 4.5, the function w(u) = u was utilized. In this instance, we evaluate
w(u) = u2, maintaining all other experimental parameters as described in Sect. 4.5.
The outcomes are presented in the row titled “Learned functions with w(u) = u2.”
The performance of these models is nearly identical to those discussed in Sect. 4.5.

4.6.3 The impact of the diffusion functions on solutions

Through the above experiments, we have observed that the learning effect of f (u) is
better than that of a(u) or A(u). While a poorer learning of a(u) seems to have little
impact on the predicted solution, as seen in the experiment in Sect. 4.3, poor learning
for f (u) can cause significant fluctuations in the solution, as shown in the experiment

123



   18 Page 24 of 35 BIT Numerical Mathematics            (2024) 64:18 

Ta
bl
e
3

A
na
ly
zi
ng

m
ea
n
an
d
m
ax
im

um
er
ro
rs
in

f(
u
),
A
(u

),
an
d
u
(x

,
T

)

L
ea
rn
ed

fu
nc
tio

ns
f(
u
)

A
(u

)
u
(x

,
T

)

M
ea
n

M
ax

M
ea
n

M
ax

M
ea
n

M
ax

L
ea
rn
ed

fu
nc
tio

ns
in

Se
ct
.4

.1
0.
01

89
3

0.
13

54
9

0.
01

93
4

0.
10

79
7

0.
00

47
1

0.
07

19
2

L
ea
rn
ed

fu
nc
tio

ns
in

Se
ct
.4

.2
0.
00

36
6

0.
03

36
7

0.
00

27
9

0.
01

27
0

0.
00

11
2

0.
02

12
7

L
ea
rn
ed

fu
nc
tio

ns
in

Se
ct
.4

.3
0.
00

35
8

0.
00

81
7

0.
00

42
1

0.
00

91
5

0.
00

14
0

0.
05

18
6

L
ea
rn
ed

fu
nc
tio

ns
in

Se
ct
.4

.4
0.
01

25
1

0.
04

90
0

0.
00

89
5

0.
04

05
5

0.
00

62
7

0.
03

91
7

L
ea
rn
ed

fu
nc
tio

ns
in

Se
ct
.4

.5
0.
00

32
1

0.
03

08
9

0.
00

21
3

0.
01

75
5

0.
00

08
4

0.
02

37
2

L
ea
rn
ed

fu
nc
tio

ns
w
ith

in
iti
al
st
at
es

Ta
bl
e
2

0.
00

36
6

0.
01

19
0

0.
00

40
2

0.
01

72
0

0.
00

10
7

0.
01

70
0

L
ea
rn
ed

fu
nc
tio

ns
w
ith

ch
an
ge
d
L
an
d
T

0.
00

35
6

0.
02

39
5

0.
00

32
6

0.
01

84
2

0.
00

13
5

0.
01

66
5

L
ea
rn
ed

fu
nc
tio

ns
w
ith

ad
di
ng

3%
no

is
e
to

ob
se
rv
at
io
ns

0.
00

47
8

0.
02

03
1

0.
00

83
1

0.
02

72
0

0.
00

13
7

0.
02

10
9

L
ea
rn
ed

fu
nc
tio

ns
w
ith

ad
di
ng

9%
no

is
e
to

ob
se
rv
at
io
ns

0.
01

04
6

0.
02

56
3

0.
03

00
1

0.
06

09
0

0.
00

42
3

0.
08

16
5

L
ea
rn
ed

fu
nc
tio

ns
w
ith

se
ve
n
hi
dd

en
la
ye
rs

0.
00

85
0

0.
02

14
1

0.
01

13
3

0.
03

02
5

0.
00

34
9

0.
03

02
5

L
ea
rn
ed

fu
nc
tio

ns
w
ith

w
(u

)
=

u
2

0.
00

30
8

0.
03

47
8

0.
00

20
2

0.
02

72
5

0.
00

07
8

0.
02

45
1

123



BIT Numerical Mathematics            (2024) 64:18 Page 25 of 35    18 

Fig. 13 u(x, t) at t = 2.0 based on the initial states u01 and u05 in Table 1 with different values of α. The

left and right subplots are based on u01 and u05, respectively

in Sect. 4.4. Additionally, the learning effect of a2 (A2) differs significantly from that
of a1 (A1), even under the same experimental settings, as seen in the experiments in
Sects. 4.2 and 4.3. These experimental phenomena have motivated us to investigate
further the relative impact of f (u) and a(u) on the solution of (1.1).

To demonstrate the impact of the diffusion function on the solution, we vary the
value of α in A1(u) = α

∫ u
0 a1(v)dv. Setting α = 0.0 corresponds to omitting the

diffusion function in (1.1). The solution of (1.1) at t = 2.0 based on the initial states u01
and u05 with different α is displayed in Fig. 13. The red line shows the solution when
there is no diffusion function a(u). Increasing α gradually enhances the influence
of A1(u) on the solutions. However, despite increasing α to 1.0, the solutions of
the equation remain largely unaffected. Taking Fig. 13a as an example, the diffusion
function weakly affects the solutions only in the range of x ∈ (7.0, 10.0). This may
indicate why the learning effect of f (u) is superior to that of a(u) or A(u). Even if
the learning effect of a(u) or A(u) is poor, it does not have a substantial influence on
the solutions.

To investigate why the learning effect of a2(u) or A2(u) is inferior to that of a1(u)

or A1(u), we plotted the data for several observation time points (t = 0.3, 0.5, 0.8)
in Fig. 14. In each graph, the red and blue lines denote the inclusion and exclusion
of the diffusion function (a1(u) or a2(u)) in (1.1), respectively, and the shaded area
illustrates the difference between them. The observation data in the top row is utilized
to learn a1(u), whereas the observation data in the bottom row is employed to learn
a2(u). The shaded area reflects that a1(u) has a greater effect (see upper row) than
a2(u) (see lower row) on the solutions.

123



   18 Page 26 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 14 Visualization of observed data at different time points. The upper and lower rows represent the
observations generated by a1(u) and a2(u), respectively

5 Experiment 2

In this section, we explore (1.1) and identification of the flux function f (u) given by

f (u) = u2

u2 + 0.5(1 − u)4

(
1 − 5(1 − u)4

)
(5.1)

and the diffusion function a(u)

a(u) =
{
0, if u ∈ [0, 0.5]
(u − 0.5)u, otherwise

(5.2)

with α = 1.
We investigate a one-dimensional spatial domain with x ∈ [0, 10] and a time

interval [0, T ] with T = 2. Observations are collected in the form of (3.15) and
(3.25), with a numerical grid of Nx = 200 grid cells, Nobs = 9, and �tobs = 0.1. Our
objective is to identify the unknown flux function f (u) and diffusion function a(u)

for u ∈ [0, 1]. We use a set of initial states {u0k}Kinit
k=1 such that 0 ≤ u0k(x) ≤ 1 to learn

f (u) and a(u). Table 4 shows the initial states used in the experiments that follow.
As in Sect. 4, we employ one S-Net to learn f (u), and four separate S-Nets cor-

responding to u ∈ [0, 0.25), u ∈ [0.25, 0.5), u ∈ [0.5, 0.75), and u ∈ [0.75, 1.0) to
learn a(u). The initial values of the neural networks are randomly generated. Addi-
tionally, for the piecewise affine functions method that represents unknown functions,
we set n = 10 in (3.11).

123



BIT Numerical Mathematics            (2024) 64:18 Page 27 of 35    18 

Table 4 The initial states

u01 =
{
0.8 if x ∈ [4, 6]
0 otherwise

u02 =
{
1.0 if x ∈ [4, 6]
0 otherwise

u03 =
{
0.9 if x ∈ [3, 5]
0 otherwise

u04 =

⎧⎪⎨
⎪⎩
0.95 if x ∈ [2.5, 4.5]
0.3 if x ∈ [0, 2.5)
0.3 if x ∈ (4.5, 10]

u05 =

⎧⎪⎨
⎪⎩
0.85 if x ∈ [2.5, 4.5]
0.3 if x ∈ [0, 2.5)
0.3 if x ∈ (4.5, 10]

u06 =

⎧⎪⎨
⎪⎩
1.0 if x ∈ [2.5, 4.5]
0.05 if x ∈ [0, 2.5)
0.05 if x ∈ (4.5, 10]

u07 =

⎧⎪⎨
⎪⎩
1.0 if x ∈ [2.5, 4.5]
0.1 if x ∈ [0, 2.5)
0.1 if x ∈ (4.5, 10]

Fig. 15 The graphical result of identification of flux function fθ∗
f
(u), diffusion function aθ∗

a
(u) and Aθ∗

a
(u).

The red line represents the true function, while the blue line illustrates the learned function (color figure
online)

5.1 Identification of f(u) and a(u) using standard observations (Data I) with four
S-Nets for representing a(u)

The S-Net used to represent f (u) consists of six hidden layers, while the S-Nets
used to represent a(u) have only one hidden layer. The learned functions of fθ∗

f
(u),

aθ∗
a
(u) and Aθ∗

a
(u) are shown in Fig. 15a–c, respectively. The learned function fθ∗

f
(u)

accurately approximates the true function f (u), but for the diffusion function a(u),
noticeable discrepancies are observed for u ∈ [0.8, 1.0). Consequently, some error
exists between Aθ∗

a
(u) and A(u).

123



   18 Page 28 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 16 Learned f̂ (u) based on the piecewise affine functions with n = 10 and n = 20, respectively

5.2 Identification of f(u) and a(u) using standard observations (Data I) with the
piecewise affine functions for representing a(u)

In this section, the experimental settings mirror those in Sect. 5.1, except for the
representation of the unknown function. The learned functions of f̂ (u), â(u), and
Â(u) are presented in Fig. 16a, 17a, and 17b, respectively. Aside from the interval
u ∈ (0.2, 0.35), f̂ (u) is generally close to f (u). However, due to the numerous piece-
wise affine functions used in learning f̂ (u), it contains multiple non-smooth points.
This non-smoothness results in considerable fluctuations in the predicted solutions,
as depicted in Fig. 18. The learning performance of â(u) is suboptimal, especially
for u ∈ [0.75, 1.0]. However, Â(u) can capture the overall trend of A(u). Figure18
demonstrates that regardless of the chosen method for representing f (u), maintaining
its smoothness is essential.

Is it so that the lack of accuracy in the predicted solutions comes essentially from
a lack of precision in f (u), and not a(u)? To prove it, we use the predicted f̂ (u) and
true a(u) to solve the solutions. Figure18b illustrates that the accuracy of solutions
comes from f (u). Increasing the number of piecewise affine functions improves the
model’s performance to a certain extent. Figure16b demonstrates the learning effect
of f̂ (u) based on n = 20, which is double the value used in Fig. 16a. However, due to
computing resource limitations, n cannot be increased indefinitely. The non-smooth
nature of piecewise affine functions leads to fluctuations in the predicted solution, as
illustrated in Fig. 18c.

5.3 Identification of f(u) and a(u) using particle trajectories (Data II) with four
S-Nets for representing a(u)

In this experiment, we use a six-layer S-Net to represent f (u), while the S-Nets used
for a(u) have only one hidden layer. We select ten particles and use their trajectories
as observation data. The initial positions of these particles at t = 0 are denoted by
(5.3)

123



BIT Numerical Mathematics            (2024) 64:18 Page 29 of 35    18 

Fig. 17 The graphical result of identification of diffusion function â(u) and Â(u). The red line represents
the true function, while the blue line illustrates the learned function (color figure online)

Fig. 18 u(x, t) at t = 2.0 based on the initial states of u01 in Table 4. The left subplot displays the solution

generated by f̂ (u) and â(u), both with n = 10. The middle subplot presents the solution derived from f̂ (u)

with n = 10 and the true a(u). The right subplot features the solution obtained from f̂ (u) with n = 20 and
â(u) with n = 10

X0 =
{
0.025, 1.025, 2.025, 3.025, 4.025, 5.025, 6.025, 7.025, 8.025, 9.025

}
.

(5.3)
The learned functions fθ∗

f
(u), a1θ∗

a
(u), and A1θa∗ (u) are displayed in Fig. 19a–c,

respectively. There is a slight difference between fθ∗
f
(u) to f (u). However, given the

small amount of data, such an error seems acceptable.

5.4 Discussion

5.4.1 Analyzing mean andmaximum errors in f (u), A(u), and u(x, T)

WeanalyzeMean andMaximumErrors in f (u), A(u), and u(x, T ) learned in different
situations. The results are shown in Table 5. The main observation is that the findings
from Experiment 1 largely carry over to the case studied in Experiment 2 with the
rational flux function (5.1) and diffusion function (5.2) as the unknown functions.

6 Conclusion

In this paper we have explored how to learn both the flux function f (u) and the diffu-
sive flux A(u) for a degenerate convection-diffusion model (1.1). Since a(u) = A′(u)

123



   18 Page 30 of 35 BIT Numerical Mathematics            (2024) 64:18 

Fig. 19 The graphical result of identification of flux function fθ∗
f
(u), diffusion function aθ∗

a
(u) and Aθ∗

a
(u).

The red line represents the true function, while the blue line illustrates the learned function (color figure
online)

Table 5 Analyzing mean and maximum errors in f (u), A(u), and u(x, T )

Model f (u) A(u) u(x, T )

Mean Max Mean Max Mean Max

Learned functions in Sect. 5.1 0.00481 0.01135 0.00399 0.00935 0.00392 0.09399

Learned functions in Sect. 5.2 0.00862 0.03343 0.00446 0.01049 0.01065 0.15263

Learned functions in Sect. 5.3 0.00438 0.01047 0.00401 0.00957 0.00382 0.08179

may vanish on intervals, solutions evolve into discontinuous solutions which must be
interpreted in the sense of entropy solutions (1.3). Building on experience with how to
learn f (u) for the case when a(u) = 0 is not present [53], we here extend the method-
ology to also account for the unknown a(u). The essential ingredients for successful
identification of f (u) and a(u) is a proper combination of acquiring observation data
based on several randomly selected initial data and a certain regularity imposed on the
candidate functions for f and a by using the symbolic neural network structure. We
conducted experiments to evaluate the effectiveness of the proposed approach, which
showed promising results. To provide a comprehensive assessment, we explored both
standard observational datasets and particle trajectory-based observational datasets.
Main findings are:

123



BIT Numerical Mathematics            (2024) 64:18 Page 31 of 35    18 

– Themethod shows a strong ability to learn the correct flux function f (u) and A(u),
however, there is more uncertainty related to the identification of the correct a(u)

as the impact from this term is typically much weaker.
– Theuse of trajectory data z j (t)generated by solving theODE (3.18)whichdepends
on the solution u(x, t) of (1.1), gives the interesting finding that the quality of the
identification of f and A is as good as the one achieved by using observations
directly of u(x, t). However, in the first case we only need a small fraction of the
number of data points used in the latter case. This suggests that there is room for
improved learning by using clever choices of observation data.

– The symbolic neural network based functions impose regularity when we search
for candidate functions f (u) and A(u)which appears to be a robust and convenient
approach when we work with hidden PDEs where solutions are discontinuous.

In conclusion, the proposed method offers a reliable and robust method to recover
hidden degenerate convection-diffusion equations of the form (1.1) from observation
data that have been collected, for instance, from an experimental setup.

Funding Open access funding provided by University of Stavanger & Stavanger University Hospital.

Declarations

Conflict of interest The authors declare no Conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Afif, M., Amaziane, B.: Convergence of finite volume schemes for a degenerate convection-diffusion
equation arising in flow in porous media. Comput Methods Appl Mech Engrg 191(46), 5265–5285
(2002)

2. Atkinson, K.: An Introduction to Numerical Analysis. Wiley, New York (1991)
3. Bezgin, D.A., Schmidt, S.J., Adams, N.A.: A data-driven physics-informed finite-volume scheme for

nonclassical undercompressive shocks. J. Comput. Phys. 437, 110324 (2021)
4. Billard, L., Diday, E.: From the statistics of data to the statistics of knowledge: symbolic data analysis.

J. Am. Stat. Assoc. 98(462), 470–487 (2003)
5. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl.

Acad. Sci. 104(24), 9943–9948 (2007)
6. Bouchut, F., Guarguaglini, F.R., Natalini, R.: Diffusive bgk approximations for nonlinear multidimen-

sional parabolic equations. Indiana Univ. Math. J. 49(2), 749–282 (2000)
7. Brandstetter, J., Worrall, D., Welling, M.: Message passing neural PDE solvers. In: The Tenth Inter-

national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net (2022)

8. Brunton, S.: Discovering governing equations from data by sparse identification of nonlinear dynamics.
In: APS March Meeting Abstracts, volume 2017, pages X49–004 (2017)

123

http://creativecommons.org/licenses/by/4.0/


   18 Page 32 of 35 BIT Numerical Mathematics            (2024) 64:18 

9. Bustos, M.C., Concha, F., Bürger, R., Tory, E.M.: Sedimentation and Thickening - Phenomenological
Foundation and Mathematical Theory. Kluwer Academic Publishers, Cambridge (1999)

10. Carillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147(4),
269–361 (1999)

11. Champion,K., Lusch,B.,Kutz, J.N.,Brunton, S.L.:Data-driven discovery of coordinates andgoverning
equations. Proc. Natl. Acad. Sci. 116(45), 22445–22451 (2019)

12. Chang, B., Chen, M., Haber, E., Chi, E.H.: Antisymmetricrnn: A dynamical system view on recurrent
neural networks. In: International Conference on Learning Representations (2018)

13. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations.
Adv. Neural Inf. Process. Systems, 31, (2018)

14. Chen, Z., Liu, Y., Sun, H.: Physics-informed learning of governing equations from scarce data. Nat.
Commun. 12(1), 6136 (2021)

15. Chen, Z., Zhang, J., Arjovsky, M., Bottou, L.: Symplectic recurrent neural networks. In: International
Conference on Learning Representations (2019)

16. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time dependent convection-
diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

17. Colombo, R.M., Marson, A.: A hölder continuous ode related to traffic flow. Proc. R. Soc. Edinb. Sect.
A Math. 133(4), 759–772 (2003)

18. Cornforth, T., Lipson, H.: Symbolic regression of multiple-time-scale dynamical systems. In: Pro-
ceedings of the 14th annual conference on Genetic and evolutionary computation, pages 735–742
(2012)

19. Dafermos, C.M., Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, vol. 3.
Springer, Berlin (2005)

20. Dam,M., Brøns,M., Juul Rasmussen, J., Naulin, V., Hesthaven, J.S.: Sparse identification of a predator-
prey system from simulation data of a convection model. Phys. Plasmas 24(2), 022310 (2017)

21. DeBrouwer, E., Simm, J., Arany,A.,Moreau,Y.:Gru-ode-bayes: Continuousmodeling of sporadically-
observed time series. Adv. Neural Inf. Process. Syst. 32, (2019)

22. Díaz-Adame, R., Jerez, S., Carrillo, H.: Fast and optimal weno schemes for degenerate parabolic
conservation laws. J. Sci. Comput. 90(1), 22 (2022)

23. Diehl, S.: Estimation of the batch-settling flux function for an ideal suspension from only two experi-
ments. Chem. Eng. Sci. 62, 4589–4601 (2007)

24. Diehl, S.: Numerical identification of constitutive functions in scalar nonlinear convection-diffusion
equations with application to batch sedimentation. Appl. Numer. Math. 95, 154–172 (2015)

25. Duong, D.L.: Inverse problems for hyperbolic conservation laws: a Bayesian approach. PhD thesis,
University of Sussex (2021)

26. Evje, S., Karlsen, K.H.: Viscous splitting approximation of mixed hyperbolic-parabolic convection-
diffusion equations. Numer. Math. 83(1), 107–137 (1999)

27. Evje, S.,Karlsen,K.H.:Monotonedifference approximations ofBVsolutions to degenerate convection-
diffusion equations. SIAM J. Numer. Anal. 37(6), 1838–1860 (2000)

28. Evje, S., Karlsen, K.H.: An error estimate for viscous approximate solutions of degenerate parabolic
equations. J. Nonlinear Math. Phys. 9(3), 262–281 (2002)

29. Eymard, R., Gallouet, T., Herbin, R.: Convergence of a finite volume scheme for nonlinear degenerate
parabolic equations. Numer. Math. 92, 41–82 (2002)

30. Fuks, O., Tchelepi, H.A.: Limitations of physics informed machine learning for nonlinear two-phase
transport in porous media. J. Mach. Learn. Model. Comput., 1(1) (2020)

31. Galiano, S.J., Zapata, M.U.: A new tvd flux-limiter method for solving nonlinear hyperbolic equations.
J. Comput. Appl. Math. 234(5), 1395–1403 (2010)

32. Gao, H., Sun, L., Wang, J.X.: Phygeonet: Physics-informed geometry-adaptive convolutional neural
networks for solving parameterized steady-state pdes on irregular domain. J. Comput. Phys. 428,
110079 (2021)

33. Gao, H., Zahr, M.J., Wang, J.X.: Physics-informed graph neural galerkin networks: A unified frame-
work for solving pde-governed forward and inverse problems. Comput. Methods Appl. Mech. Eng.
390, 114502 (2022)

34. Gaucel, S., Keijzer, M., Lutton, E., Tonda, A.: Learning dynamical systems using standard symbolic
regression. In: Genetic Programming: 17th EuropeanConference, EuroGP 2014, Granada, Spain, April
23-25, 2014, Revised Selected Papers 17, pp. 25–36. Springer (2014)

123



BIT Numerical Mathematics            (2024) 64:18 Page 33 of 35    18 

35. Herrera, C., Krach, F., Teichmann, J.: Neural jump ordinary differential equations: Consistent
continuous-time prediction and filtering. In: International Conference on Learning Representations
(2020)

36. Hesthaven, J.S.: Numerical methods for conservation laws: From analysis to algorithms. SIAM. Com-
put. Sci. Eng. (2017)

37. Holden, H., Karlsen, K.H., Lie, K.A., Risebro, N.H.: Splittingmethods for partial differential equations
with rough solutions. Eur. Math. Soc. (2010)

38. Holden, H., Priuli, F.S., Risebro, N.H.: On an inverse problem for scalar conservation laws. Inverse
Prob. 30, 035015 (2014)

39. Iakovlev, V., Heinonen, M., Lähdesmäki, H.: Learning continuous-time pdes from sparse data with
graph neural networks. In: 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net (2021)

40. James, F., Sepúlveda, M.: Parameter identification for a model of chromatographic column. Inverse
Prob. 10(6), 1299 (1994)

41. James, F., Sepúlveda, M.: Convergence results for the flux identification in a scalar conservation law.
SIAM J. Control. Optim. 37(3), 869–891 (1999)

42. James, F., Sepúlveda, M.: Convergence results for the flux identification in a scalar conservation law.
SIAM J. Control. Optim. 37(3), 869–891 (1999)

43. Kaheman, K., Kutz, J.N., Brunton, S.L.: Sindy-pi: a robust algorithm for parallel implicit sparse
identification of nonlinear dynamics. Proc. R. Soc. A 476(2242), 20200279 (2020)

44. Kang, H., Tanuma, K.: Inverse problems for scalar conservation laws. Inverse Prob. 21(3), 1047 (2005)
45. Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: L1 error estimates for difference approximations of

degenerate convection-diffusion equations. Math. Comp. 83(290), 2717–2762 (2014)
46. Karlsen, K.H., Risebro, N.H., Storrøsten, E.B.: On the convergence rate of finite difference methods

for degenerate convection-diffusion equations in several space dimensions. ESAIM Math. Modell.
Numer. Anal. 50(2), 499–539 (2016)

47. Kim, S., Lu, P.Y., Mukherjee, S., Gilbert, M., Jing, L., Čeperić, V., Soljačić, M.: Integration of neural
network-based symbolic regression in deep learning for scientific discovery. IEEE Trans. Neural Netw.
Learn. Syst. 32(9), 4166–4177 (2020)

48. Koley, U., Risebro, N.H., Schwab, C., Weber, F.: Amultilevel Monte Carlo finite difference method for
random scalar degenerate convection diffusion equations. J. Hyperbolic Differ. Equ. 14(3), 415–445
(2017)

49. Kröener, D.: Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical
Mathematics (1997)

50. Kruzkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.)
81(123), 228–255 (1970)

51. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and
convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

52. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathe-
matics (2007)

53. Li, Q., Evje, S.: Learning the nonlinear flux function of a hidden scalar conservation law from data.
Network Heterogeneous Media, 18, (2023)

54. Li, Q., Evje, S., Geng, J.: Learning parameterized odes from data. IEEE Access 11, 54897–54909
(2023)

55. Li, Q., Geng, J., Evje, S.: Identification of the flux function of nonlinear conservation lawswith variable
parameters. Physica D 451, 133773 (2023)

56. Li, Q., Geng, J., Evje, S., Rong, C.: Solving nonlinear conservation laws of partial differential equations
using graph neural networks. Proc. Northern Lights Deep Learn. Workshop 2023, 4 (2023)

57. Li, Q., Evje, S.: Learning the nonlinear flux function of a hidden scalar conservation law from data.
Netw. Heterogen. Media 18(1), 48–79 (2023)

58. Lighthill, M.J., Whitham, G.B.: On kinematic waves ii. a theory of traffic flow on long crowded roads.
Proc. R. Soc. Lond. A 229(1178), 317–345 (1955)

59. Liu, X.D., Oshery, S., Chanz, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys.
115(1), 200–212 (1994)

60. Liu, Z., Madhavan, V., Tegmark, M.: Machine learning conservation laws from differential equations.
Phys. Rev. E 106(4), 045307 (2022)

123



   18 Page 34 of 35 BIT Numerical Mathematics            (2024) 64:18 

61. Liu, Z., Tegmark, M.: Machine learning conservation laws from trajectories. Phys. Rev. Lett. 126(18),
180604 (2021)

62. Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid
deep network. J. Comput. Phys. 399, 108925 (2019)

63. Long, Z., Lu, Y., Ma, X., Dong, B.: Pde-net: Learning PDEs from data. In: International Conference
on Machine Learning, pages 3208–3216. PMLR (2018)

64. Magiera, J., Ray, D., Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks for riemann prob-
lems. J. Comput. Phys. 409, 109345 (2020)

65. Martius, G., Lampert, C.H.: Extrapolation and learning equations. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceed-
ings. OpenReview.net (2017)

66. Mishra, S., Schwab, C.: Sparse tensor multi-level monte carlo finite volume methods for hyperbolic
conservation laws with random initial data. Math. Comput. 81(280), 1979–2018 (2012)

67. Mototake, Y.I.: Interpretable conservation law estimation by deriving the symmetries of dynamics from
trained deep neural networks. Phys. Rev. E 103(3), 033303 (2021)

68. Mundhenk, T.N., Landajuela, M., Glatt, R., Santiago, C.P., Faissol, D.M., Petersen, B.K.:
Symbolic regression via neural-guided genetic programming population seeding. arXiv preprint
arXiv:2111.00053 (2021)

69. Narasingam, A., Kwon, J.S.I.: Data-driven identification of interpretable reduced-order models using
sparse regression. Comput. Chem. Eng. 119, 101–111 (2018)

70. Ohlberger, M.: A posteriori error estimates for vertex centered finite volume approximations of
convection-diffusion-reaction equations. M2AN Math. Model Numer. Anal. 35(2), 355–387 (2002)

71. Petersen, B.K., Landajuela, M., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim, J.T.: Deep symbolic
regression: Recovering mathematical expressions from data via risk-seeking policy gradients. arXiv
preprint arXiv:1912.04871 (2019)

72. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., Battaglia, P.W.: Learning mesh-based simulation with
graph networks. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net (2021)

73. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
J. Comput. Phys. 378, 686–707 (2019)

74. Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys.
367, 166–191 (2018)

75. Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)
76. Rubanova, Y., Chen, R.T., Duvenaud, D.K.: Latent ordinary differential equations for irregularly-

sampled time series. Adv. Neural Inf. Process. Syst. 32, (2019)
77. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

(2016)
78. Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and control. In: International

Conference on Machine Learning, pp. 4442–4450. PMLR (2018)
79. Schaeffer, H.: Learning partial differential equations via data discovery and sparse optimization. Proc.

R. Soc. A Math. Phys. Eng. Sci. 473(2197), 20160446 (2017)
80. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923),

81–85 (2009)
81. Shu, C.W.: Essentially non-oscillatory andweighted essentially non-oscillatory schemes for hyperbolic

conservation laws. Adv. Numerical Approximation of Nonlinear Hyperbolic Equ., pp. 325–432 (1998)
82. Skadsem, H.J., Kragset, S.: A numerical study of density-unstable reverse circulation displacement for

primary cementing. J. Energy Res. Technol. 144, 123008 (2022)
83. Thuerey, N., Weißenow, K., Prantl, L., Hu, X.: Deep learning methods for reynolds-averaged navier-

stokes simulations of airfoil flows. AIAA J. 58(1), 25–36 (2020)
84. Vaddireddy, H., Rasheed, A., Staples, A.E., San, O.: Feature engineering and symbolic regression

methods for detecting hidden physics from sparse sensor observation data. Phys. Fluids 32(1), 015113
(2020)

85. Volpert, A.I.: Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equa-
tions. Adv. Differ. Equ. 5(10–12), 1493–1518 (2000)

86. Volpert, A.I., Hudjaev, S.I.: The cauchy problem for second order quasilinear degenerate parabolic
equations. Mat. Sb. (N.S.) 78(120), 374–396 (1969)

123

http://arxiv.org/abs/2111.00053
http://arxiv.org/abs/1912.04871
http://arxiv.org/abs/1609.04747


BIT Numerical Mathematics            (2024) 64:18 Page 35 of 35    18 

87. Wandel, N., Weinmann, M., Klein, R.: Learning incompressible fluid dynamics from scratch - towards
fast, differentiable fluid models that generalize. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net (2021)

88. Wang, Y., Shen, Z., Long, Z., Dong, B.: Learning to discretize: solving 1d scalar conservation laws
via deep reinforcement learning. arXiv preprint arXiv:1905.11079 (2019)

89. Zhao, Q., Lindell, D.B., Wetzstein, G.: Learning to solve pde-constrained inverse problems with graph
networks. In: Kamalika, C., Stefanie, J., Le, S., Csaba, S., Gang, N., Sivan, S. (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pp. 26895–26910. PMLR (2022)

90. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1905.11079

	Learning the flux and diffusion function for degenerate convection-diffusion equations using different types of observations
	Abstract
	1 Introduction
	1.1 Background
	1.2 Mathematical framework associated with (1.1)
	1.3 The inverse problem of (1.1) when a(u)=0
	1.4 Problem statement and purpose of this work

	2 Related work
	3 Method
	3.1 Entropy consistent discrete numerical scheme (ECDNS)
	3.2 S-Net
	3.3 The model

	4 Experiment 1
	4.1 Identification of f(u) and a1(u) using standard observations (Data I) with a single S-Net for representing a1(u)
	4.2 Identification of f(u) and a1(u) using standard observations (Data I) with four S-Nets for representing a1(u)
	4.3 Identification of f(u) and a2(u) using standard observations (Data I) with four S-Nets for representing a2(u)
	4.4 Identification of f(u) and a1(u) using standard observations (Data I) with the piecewise affine functions for representing f(u) and a1(u)
	4.5 Identification of f(u) and a1(u) using particle trajectories (Data II) with four S-Nets for representing a1(u)
	4.6 Discussion
	4.6.1 Analyzing mean and maximum errors in f(u), A(u), and u(x, T)
	4.6.2 Robustness analysis of the model
	4.6.3 The impact of the diffusion functions on solutions


	5 Experiment 2
	5.1 Identification of f(u) and a(u) using standard observations (Data I) with four S-Nets for representing a(u)
	5.2 Identification of f(u) and a(u) using standard observations (Data I) with the piecewise affine functions for representing a(u)
	5.3 Identification of f(u) and a(u) using particle trajectories (Data II) with four S-Nets for representing a(u)
	5.4 Discussion
	5.4.1 Analyzing mean and maximum errors in f(u), A(u), and u(x, T)


	6 Conclusion
	References


