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Abstract

It has been known that the traditional scaling argument cannot be directly applied to
the error analysis of immersed finite elements (IFE) because, in general, the spaces
on the reference element associated with the IFE spaces on different interface ele-
ments via the standard affine mapping are not the same. By analyzing a mapping from
the involved Sobolev space to the IFE space, this article is able to extend the scal-
ing argument framework to the error estimation for the approximation capability of
a class of IFE spaces in one spatial dimension. As demonstrations of the versatility
of this unified error analysis framework, the manuscript applies the proposed scaling
argument to obtain optimal IFE error estimates for a typical first-order linear hyper-
bolic interface problem, a second-order elliptic interface problem, and the fourth-order
Euler-Bernoulli beam interface problem, respectively.
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1 Introduction

Partial differential equations with discontinuous coefficients arise in many areas of
sciences and engineering such as heat transfer, acoustics, structural mechanics, and
electromagnetism. The discontinuity of the coefficients results in multiple challenges
in the design and the analysis of numerical methods and it is an active area of research
in the communities of finite element, finite volume, as well as finite difference method.

The immersed finite element (IFE) methods can use an interface independent mesh
to solve an interface problem. Many publications were about IFE methods using either
linear [22-24], bilinear [19, 26], or trilinear polynomials [18, 34]. IFE methods have
been applied to a variety of problems, such as parabolic interface problems [20, 28, 30],
hyperbolic interface problems [7], the acoustic interface problem [8, 33] and Stokes
and Navier—Stokes interface problems [3, 14, 21, 35]. IFE methods with higher degree
polynomials have also been explored [2, 4, 5, 14, 17, 29]. In particular, Adjerid and
Lin [5] constructed IFE spaces of arbitrary degree and analyzed their approximation
capabilities.

In [8, 33], Adjerid and Moon discussed IFE methods for the following acoustic
interface problem

pi(x, 1) = p(X)cx)ve(x, 1), x € (a,a) U (a,b),
pPX)vr(x, 1) = px(x, 1), x € (a,a)U (a,b), (1.1)
[Vlx=a = [Plyx=a = 0.

where p, ¢ are equal to p4, ¢4+ on interval (o, b) and to p—, c_ on (a, «). Assuming
that the exact solution (v, p) has sufficient regularity in (a, «) and (o, b), respectively,
we can follow the idea in [32] to show that the exact solution satisfies the following
so-called extended jump conditions:

kL p o kL o
- v -
w!’(ﬂf ) =r; ﬁp(a 1), —v(a ,t)=rkﬁv(a .0, k=0,1,...,

dxk
(1.2)

for certain positive constants r,f and r,g. In [8, 33], IFE spaces based on polynomials
of degree up to 4 were developed with these extended jump conditions, and these
IFE spaces were used with a discontinuous Galerkin (DG) method to solve the above
acoustic interface problem with pertinent initial and boundary conditions. Numerical
examples presented in [8, 33] demonstrated the optimal convergence of this DG IFE
method, but we have not seen any error analysis about it in the related literature.

Extended jump conditions have also been used in the development of higher degree
IFE spaces for solving other interface problems [2, 4, 5, 14, 17, 29]. This motivates
us to look for a unified framework for the error analysis for methods based on IFE
spaces constructed with the extended jump conditions such as those in (1.2). As an
initial effort, our focus here is on one-dimensional interface problems.

One challenge in error estimation for IFE methods is that the scaling argument com-
monly used in error estimation for traditional finite element methods cannot be directly
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Fig. 1 The relative position of the interface (on the right) changes as the we refine the mesh (on the left)

applied. In the standard scaling argument, local finite element spaces on elements in
a sequence of meshes are mapped to the same finite element space on the reference
element via an affine transformation. However, the same affine transformation will
map the local IFE spaces on interface elements in a sequence of meshes to different
IFE spaces on the reference element because of the variation of interface location in
the reference element, see the illustration in Fig. 1. A straightforward application of the
scaling argument to the analysis of the approximation capability of an IFE space will
result in error bounds of a form C(&)A", i.e., the constant factor C(¢) in the derived
error bounds depend on the location of the interface in the reference element, and
this kind of error bounds cannot be used to show the convergence of the related IFE
method unless one can show that the constant factor C(¢) is bounded for all & in the
reference element, which, to our best knowledge, is difficult to establish. Alternative
analysis techniques such as multi-point Taylor expansions are used [5] which becomes
awkward for higher degree IFE spaces, particularly so for higher degree IFE spaces in
higher dimension. To circumvent this predicament of the classical scaling argument,
we introduce a mapping between the related Sobolev space and the IFE space by using
weighted averages of the derivatives in terms of the coefficients in the jump conditions.
We show that the Sobolev norm of the error of this mapping can be bounded by the
related Sobolev semi-norm. This essential property enables us to establish a Bramble—
Hilbert type lemma for the IFE spaces, and, to our best knowledge, this is the first
result that makes the scaling argument applicable in the error analysis of a class of IFE
methods. For demonstrating the versatility of this unified error analysis framework,
we apply it to establish, for the first time, the optimal approximation capability of
the IFE space designed for the acoustic interface problem (1.1). Similarly, we apply
this immersed scaling argument to the IFE space designed for an elliptic interface
problem considered in [5] as well as the IFE space for the Euler-Bernoulli Beam inter-
face problem considered in [25, 27, 36] leading to much simpler and elegant proofs.
Moreover, a novel approach was recently introduced in [6] for constructing immersed
finite element functions to address two-dimensional interface problems. This method
constructs IFE functions in Frenet coordinates, where the interface is a line segment
along the vertical axis, transformed from the interface curve using the Frenet appa-
ratus based on the differential geometry of the interface. The IFE functions in Frenet
coordinates satisfy jump conditions along this simplified interface with respect to just
one variable in the horizontal axis. Consequently, we envision that our research might
serve as a precursor for the analysis of this new class of IFE functions.

The paper is organized as follows. In Sect. 2, we introduce the notation and spaces
used in the rest of the paper. In Sect. 3, we restrict ourselves to study of the IFE functions
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on the interval [0, 1], we show that they have similar properties to polynomials, for
example, they both have the same maximum number of roots, they both admit a
Lagrange basis and they both satisfy an inverse and a trace inequality. In Sect.4, we
define the notion of uniformly bounded reference IFE (RIFE) operators and how the
scaling argument is applicable using an immersed Bramble—Hilbert lemma. In Sect. 5,
we study the convergence of the DG-IFE method for the acoustic interface problem
(1.1). In Sect. 6, we give shorter and simpler proofs for the optimal convergence of
IFE methods for the second-order elliptic interface problem as well as the fourth-order
Euler-Bernoulli beam interface problem.

2 Preliminaries

Throughout the article, we will consider a bounded open interval I = (a, b) with
lal, |b| < oo, and let @ € I be the interface point dividing / into two open intervals
I~ = (a,a), IT = (a, b). This convention extends to any other open interval B C R
with B~ = BN (=00, a) and BT = B N (a, 00). For every bounded open interval
B not containing «, let W7 (B) be the usual Sobolev space on B equipped with the
norm |[-|l,,,, ,, g and the seminorm | - |, , p. We are particularly interested in the case
of p = 2 corresponding to the Hilbert space H" (B) = W™-2(B), and we will use
Il 5 and | - |;n, B to denote ||-l,,, 2, p and | - |1.,2, B, respectively, for convenience. We
will use (-, -) g and (-, )y, B to denote the classical and the weighted L? inner product
defined as

(f. &)= /]; fxgx)ydx,  (f,&ws = [B w(x) f(x)gx) dx,  w(x) >0, VxeB.

Given a positive finite sequence r = (r,-);ﬁ:O, m > 0and an open interval B containing
a, we introduce the following piecewise Sobolev space:

A B) = fuuppe € BB 1 @) = na® @),

Vk=0,1,...,m}, 0<m <m. 2.1)

The norms, semi-norms and the inner product that we will use on %’jx”’f“l (B) are

2 2 2 2
lsts = 112y 5+ 112y pee Vs = V2 e + 12 e

and (f, g)w,B = (f, g)w,B* + (f, g)w,BJr .

We note, by the Sobolev embedding theory, that %‘j{’”ﬁl (B) is a subspace of

%' (B) = {M |ujpz € C"(BE), u® (@h) = nu® (@), Yk =0, 1, m} L 0<m<

(SR
N 3
R
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By dividing / into N sub-intervals, we obtain the following partition of /:

N
Iy = (=1, x0), Th=1{L}_, a=x0<x1<---<xy=Db,

h = max (xk — xk_1).
1<k<N

We will assume that there is kg € {1, 2, ..., N} such that x;,—1 < a < xi,, which

o
is equivalent to « € Iy,. We define the discontinuous immersed finite element space
W', on the interval [ as

We  (Th) = {(p o, € P"Uy) fork € {1,..., N}\{ko} and i, € ’Y/OT,(I;{O)} ,(2.3)

where 9™ (I is the space of polynomials of degree at most m on I and 7", (Ix,) is
the local immersed finite element (LIFE) space defined as:

(o) = {0 € 60 Ukg) Loy € 27 (1) s =+, =}, 0 sm = 24)

In discussions from now on, given a function v in %@’f’ﬁ] (or 6", or Y1), its
derivative is understood in the piecewise sense unless specified otherwise. By defi-
nition, we can readily verify that “f{,jf’r_l (Iry) C 7" (Ix,) for a given finite sequence
r= (ri)l’.;lzo, m > 1.In order to study the LIFE space 7, (Ix,), we will investigate the
properties of the corresponding reference IFE (RIFE) space 7" (I) on the reference
interval I = [0, 1] with an interface pointa € (0, 1). Our goal is to extend the scaling
argument to such IFE spaces and use the IFE scaling argument to show IFE spaces
such as 7@',7;(11(0) have the optimal approximation capability, i.e., every function in
%””}Ll (Ixy) can be approximated by functions from the IFE space 7", (Ix,) at the
optimal convergence rate.

Following the convention in the error analysis literature for finite element methods,
we will often use a generic constant C in estimates whose value varies depending on
the context, but this generic constant is independent of 4 and the interface o € Iy, or

a € I unless otherwise declared.

3 Properties of the RIFE space ”1/;;" 1)
N

For a given function ¢ € “//&’"r(lv ), we will write ¢ = (¢_, ¢3) where ¢ =
(])l js € P[5 for s = +,—. Additionally, we will use (ﬁs(k)(&) to denote
lim, _, gs ¢§k) (x), s = =+ for a given integer k > 0. For clarity, we will use s’ to

denote the dual of s, i.e., if s = &, then s’ = .

Lemma3.1 Letm > m > 0, {rk},’f’zo CRy,& € (0,1)ands € {+, —}. Thefollowing
statements hold
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1. Foreveryg; € P (%) there is aunique gy € P™(I°) suchthat§ = (G—, p4) €
Al/ﬁtmr(l)'

2. The dimension of V3", (I)ism+ 1.

3. The set {,/l{ikr}fzo, where

x—a)k, xel,

N (x) = v
&.r() nx —a)k, xelt,

3.1

forms a basis of V3", (I) and will be referred to as the canonical basis.

Proof We will prove the statements in order:

1. Let g € 2" (I%), then (¢, ¢1) € #" (I) if and only if
v (k) v v(k) v
oV @ =T oL@, k=0.1,....m,

which uniquely defines a polynomial ¢ € &™ (IF):

m ¥l v(k) v
(Z’q:(x) _ Z )™ oy (o) (x — &)k.

k!
k=0

2. We have shown that the maps ¢_ +— ¢ is well defined and injective which implies

that the map ¢ — ¢_ is surjective since every ¢_ € & (I ™) can be extended to

@ € ¥." (I). Hence, 7" (I) is isomorphic to & (I™) implying that the dimen-
sion of 7{;:"r(lv) ism—+1.

3. We only need to show that {Jlg[kr}fzo is linearly independent: Assume that ¢ =

ZZ;O ck,/igfr = 0, then ¢ = 0 which implies thatc; = Oforallk =0, 1,...,m.

O

The results in Lemma 3.1 allows us to introduce an extension operator that maps
s 10 Py
Definition 3.1 Letm > m > 0, {rk}k’;’:0 CR4,@ € (0,1)and s € {+, —}. We define
the extension operator (gg’jf/ c 2 ([5) — 2™ (] that maps every ¢; € 2" (I%)
t0 87" (%5) = Gy such that (¢—. ¢4) € 72" (I).

By Lemma 3.1, the extension operator é’g”;‘gl is well-defined and is linear. Further-
more, by Lemma 3.1 again, this extension operator is also invertible. Consequently, the
dimension of the RIFE space is the same as the dimension of the traditional polynomial
space of the same degree.

Next, we will estimate the operator norm of &%"" . Let h_o =&, hy =1—abe

the lengths of the sub-intervals I+ formed by «. First, let us consider the following
example ¢ = (¢—, ¢4) = A" defined by (3.1), we have
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v m v
h h .
6. = Vol = (5) 516l

v

where i = &, hey=1-a.
Hence, if h— > hy, we get | ¢4 ||0j+ < Irml | ¢- ”0,1" In the following lemma,

we will show that a similar result holds for all ¢ € ”f/&mr(lv ). Consequently, for every

interface position & € I, one of the two extension operators éag"f , s = —, +willbe
bounded independently of ¢.

Lemma 3.2 There exists a constant C > 0 that depends on m such that for every
(¢—, ¢+) € V" (I), we have

> v m
‘ 5 L, = ||¢b 5 < C hv— max I’ max 1, ]/\l,_ ||(p_§‘ || )
0.0 0. iy \ozi<m hy 0.
s =+, —, (3.2)

where s’ = F for s = +. In particular, if}vzs > ivzs/, we have

|65 llo,7v <€ (09553/ >H¢s||o,ix~ (3.3)

Proof First, we note that (3.3) is a straightforward consequence of (3.2). Here, we
only need to prove (3.2) for s = — since the case s = + can be proven similarly. For
every (¢_, ¢y) € "f/gf’r(i), we first define ¢_ € 2"([0, 1]) as ¢_ (&) = ¢_(h_&)
which yields

g?)g)(l) — ];i_(pg)(&), i=0,1,...,m. (3.4)

Now, let us write ¢ as a finite Taylor sum around & and use <p(’) (@) = rigbg)(&) to
obtain:

b =3 0@ =Y —Z 0@ )(x_“)l

i=0
Using (3.4), we can replace ¢ﬁ)(5¢) by ﬁ:"@@(l):

Gy (x) = Zr,-@@(nﬁ:iw. (3.5)

i=0
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We square and integrate (3.5), then we apply the change of variables z = x — & to get

. N2
1 /m hy [ 22 "1
lo435: = | (Zw%h—’l,"”) ar= [ (wa”w(h ) ) dz.

i=0 i=0

We can bound r; and |<p(') (1)| by their maximum values for 0 < i < m and we can

bound <h—> by

We also have Z;-":O ll—, < e. Using these bounds, we get

.2 2 A (i) ? Ay ? i 2
@+ Mo+ = <0r§nl,afxmri> (oﬁi’fnl‘p— (1)|> max (1, (h—_) ) /0 e dz
2 2 v\ m\ 2
= (max ri> (m_ax |¢§)(1)|> max (1, ({i) ) l;+ez. (3.6)
0<i<m 0<i<m h_

Since 2™ ([0, 1]) is a finite dimensional space, all norms are equivalent. In particular,
there is a constant C (m) such that

( max Ip(’)(1)|> = Cm) lpllojo.1y- VP € 270, 1),

0<i<m

which leads to

A 2
(Omax |¢“)<1)|> < Cm) oo, 0.1)- S
By using a change of variables, we can show that

(3.8)

.2 _
“‘/’— ||o,[o,1] i

Finally, we combine (3.6), (3.7) and (3.8) to get

2 o 2 2 ii.i,. il-‘,— "\? v 2
= 1l = com (s ) (55 )man (1:(55) ) Il

which is (3.2) fors = —. O
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Next, we will use the bounds on the extension operator é%:”;s to establish inverse
inequalities which are independent of & for the RIFE space.

Lemma3.3 Letm >m > 0, {rk}Z’:O C R4, & € (0, 1). Then there exists C(m, r) > 0
independent of & such that for every ¢ € V" (I) we have

61, < Cm,r) | @]lg 7, O<i<m+1. 3.9)

Proof The estimate given in (3.9) obviously holds fori = 0 and i = m + 1. Without

loss of generality, assume that h_ > h+, this implies that he > l . Then, using the

classical inverse inequality [12] we have
1600 7= = ChZM 9-llg 1 = 2C |6 - - (3.10)

By the Taylor expansion of ¢/, (x) at x = &, we have

d
v/ m—1,+ v
=80 (aw—) ; (3.11)

where © : (ro,r1,...,"rm) > (r1,...,ry) is the shift operator. By (3.3) and the
inverse inequality given in (3.10), we have

19 - = Com ((max v} 16Ny - < Comn) ol 12
Therefore, we have

(@117 = 1¢'lo.7 = Cm. ) [6-]g ;- = Clm. ) 6] ;

which proves (3.9) for i = 1. Applying similar arguments, we can prove (3.9) for
other values of i. O

Since ¢4 = éa . ( ) the formula in (3.11) leads to the following identity about
the permutation of the classical differential operator and the extension operator:

S L fd .
=& (9-) =gl =T <a<p—) , Vm > 1. (3.13)

As a piecewise function ¢ = (¢_, ¢4) € 7/&””r(1v ), the value of ¢ at & is not
defined in general since the two sided limits ¢_ (&) and ¢ (&) could be different if
ro # 1. However, if ¢;(@) = O then ¢y (&) = O for s = +, —. Furthermore, the
multiplicity of @ as a root of ¢_ is the same as its multiplicity as a root of ¢. This
observation motivates to define & as a root of ¢ of multiplicity d if & is a root of ¢_ of
multiplicity d. The following theorem shows that the number of roots of a non-zero
function ¢ € “//amr () counting multiplicities cannot exceed m (similar to a polynomial
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of degree m), this theorem will be crucial to establish the existence of a Lagrange-type
basis in 7" (I ) and constructing an immersed Radau projection later in Sect. 5.

In the dlscussmns below, we will omit the phrase “counting multiplicities" for the
sake of conciseness. For example, we say that (x — 2)? has two roots in R.

Theorem 3.1 Form > m > 0, {rk}fzo C Ry, and a € (0, 1), every non-zero ¢ €

v (I) has at most m roots.

Proof We start from the base case m = 0 and then proceed by induction. Let @ €
7/&0r (I).if ¢ £ 0 then ¢ = cf/igor for some ¢ # 0. In this case, ¢ has no roots since

’/’{}(,)r has no roots. Now, assume that for every positive sequence ¢, the number of roots
of any non-zero ¢ € “I/&’f‘q_l (I) is at most m — 1. Next, we will show that for a given
positive sequence r, every function ¢ € “I/(er (1) has at most m roots by contradiction:

Assume that ¢ = (¢, ¢1) € 7/0(”; (I) is a non-zero function that has j disctinct

roots {Si}{zl of multiplicities {d; }lj:] suchthat D = dy+d+- - -+d; > m.Therefore,
&; > aand & < & because ¢+ € 2" (I%). let &, be the largest root that is not larger
than @, i.e.,

0<éi<bh<--<§y<a<&p<---<§& <1,

By the definition of ¢ = (¢—, ¢4), ¢_ has D1 = dj +dy + --- + dj, roots in
[£1, &1 and @4 has Dy = djy41 + dig42 + - - - +d; roots in [&; 41, &;]. Therefore, ¢
has D| — 1 roots in [£1, &;,] and (ZJLF has Dy — 1roots in [&;,41, &;]. It remains to show
that ¢’ has an additional root in (iy- &ip+1)- To show that,we consider two cases:

— &, = a: In this case, ¢ is continuous and ¢4 (&) = ¢+(&ig+1) = 0. By the mean
value theorem, we conclude that ¢, has a root in (&, & +1)-
— &, < a: Assume that ¢'(x) > O for all x € (&g, &ip+1)\{c}, then ¢_(a) > 0.
Since rp > 0, we have ¢, (&) > 0. By integrating ¢, from & to &;,,1, we get
0 = ¢4 (&y+1) > 0, a contradiction. A similar conclusion follows if we assume
that ¢’(x) < O for all x € (&, &y+1)\{&}. Therefore, ¢’ changes sign at some
xo € (&, &ip+1)- Since, ¢’ does not change sign at ¢, then xo # & and ¢'(xg) = 0
(because ¢’ is continuous at xg).

In either case above, ¢’ has (D — 1) + (D) — 1) +1=D—1>m—1rootsin I
which contradicts the induction hypothesis since ¢’ € ”f/m (r)(l ). Therefore, ¢ has at
most m roots. O

The previous theorem allows us to establish the existence of a Lagrange basis on
v (I ) for every choice of nodes and for every degree m which was proved by Moon
in [33] for a few specific cases m = 1,2, 3, 4.

Theorem3.2 Letm > m > 0, {"k}k o CRy, anda € (0, 1). Assume &y, &1, ..., &n

are m + 1 distinct points in I, then there is a Lagrange basis {L;}"_, of ”//m (I) that
satisfies

Li(&) =i, 0<i,j<m. (3.14)
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Proof For each 0 < i < m, we construct L; € v (f ) such that L; (¢ ) = 0 for all
Jj # i by writing L; as

L _Zal otr’

for some {a;}/_, chosen such that
mn .
Li¢j) = Zai%”r(éj) =0, Vje{0o,1,...,i—1,i+1,...,m}. (3.15)

The Egq. (3.15) form a homogeneous system of m equations with m + 1 unknowns.
Therefore, it has a non-zero solution. From Theorem 3.1, we know that L;(§;) # 0;
otherwise, L; would have m + 1 roots. This allows us to define L; as

1
Li(x)= —L (x).
Li(&)
By (3.14), L;, 0 < i < m are linearly independent. Consequently, {L;}" , is a basis
for “//&mr (f ) since its dimension is m + 1 from Lemma 3.1. O

In addition to having a Lagrange basis, the RIFE space has an orthogonal basis
with respect to (-, -),, ; as stated in the following theorem in which we also show that

if a function ¢ € ”// m (I ) is orthogonal to "// m= 1(I ) with respect to (-, ) j» then )
has exactly m dlstmct interior roots similar t0 the classical orthogonal polynomlals
Although the theorem holds for a general weight w, we will restrict our attention to a
piecewise constant function w:

w_, xel™
wx) = ’ . 3.16
(x) :er, ceit (3.16)

where w4 are positive constants. The result of this theorem can also be considered as
a generalization for the theorem about the orthogonal IFE basis described in [13] for
elliptic interface problems.

Theorem3.3 Letm > m > 1, {rk}k’;‘zo C Ry, & € (0,1), and let w : I — Ry be
defined as in (3.16), then there is a non-zero ¢ € v (f ) such that

(@), = /l WGP (x) dx =0, Vi e ") (3.17)

Furthermore, ¢ has exactly m distinct roots in the interior of I

@ Springer



13 Page 12 0f40 BIT Numerical Mathematics (2024) 64:13

Proof Existence is a classical result of linear algebra. The proof of the second claim
follows the same steps used for orthogonal polynomials: Note that ¢ has at least one

root of odd multiplicity in the interior of I since (o, JKO i =0

Assume that ¢ has j < m distinct roots {5,}/ | of odd multiplicity in the interior
of 1. Following the ideas in the proof of Theorem 3.2, we can show that there is
Yo € %&{r(i) such that Yo (&) =0 for 1 <i < j.

Furthermore, all roots of /o are simple according to Theorem 3.1 since the sum of
multiplicities cannot exceed j, and 1//0 changes sign at these roots. This means that
wgmﬂo does not change sign on I.Asa consequence, (¢, lﬂo) ; 7 0 which contradicts

the assumption (@, ’ﬂ”)w,i =0forally € “I/amr (1) since ”f/&”r(lv) C ”1/&””r_1(lv). O

For every integer m with m > m > 1, we use Q(’:‘w r(i), m > 1 to denote the

orthogonal complement of “//&’fl;l (f ) in ”//&’f;(lv ) with respect to the weight w, that is
2r, (h=|pern (1@, ;=0 vier D]

According to Theorem 3.3, one can see that ¢ > +/@(0)2 + ¢(1)? defines a norm
on Q&’"w (D) which is one-dimensional. Thus, it is is equivalent to the L? norm

/& 245 2
and the quantity % depends only on &, w and r (and not on the choice
0.
of ¢ € 27, (I )). Furthermore, The following lemma shows that the equivalence
constant is mdependent of the interface location. This result will be crucial later in the
analysis of Radau projections.

Lemma3.4 Letm >m > 1, {rk}ZLO C Ry, & € (0, 1) and w be defined as in (3.16)

then, there exist C(m, w, r) and Cm,w,r)>0 independent of & such that for every
¢ e 28 (1), we have

Vo2 + @12 = Comow.r) @]y ;= Cmr) 3], ;. (B18)

Proof The inequality on the right follows from the inverse inequality (3.9) for the IFE
funcdtions. For a proof of the inequality on the left, see “Appendix A”. O

4 An immersed Bramble-Hilbert lemma and the approximation
capabilities of the LIFE space

In this section, we will develop a new version of Bramble-Hilbert lemma that applies to
functions in %ﬁ m+1 (I ) and its IFE counterpart. This lemma will serve as a fundamental
tool for 1nvest1gatmg the approximation capability of IFE spaces. In the discussions
below, we will use 1 p for the indicator function of aset B C R, i.e.,
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1, if B,
gy =] "€ Vx € R,
0, ifx ¢ B,
and we define w; :r,'ILIv, +Ili+ fori =0,1,...,m.

Theorem 4.1 Letsiv > m > 0, {re}i_y C Ry, & € (0, 1), and v € " (I). Assume

(w;, v(i))i =0fori =0,1,...,m. Then, there exists C(i,r) > 0 independent of &
such that

loll, 7 < CG.Plvl, jo i =0, 1,.c.om+ 1. @1

Proof Let v € Jﬁé";’l(lv) and assume (w;, v(i))i =0fori =0,1,..., m. Because
wo is such that wov is continuous and since Vjx € Hl(Ivi), we have wov € Hl(i).

Therefore, for any given x, y € I , we have

wo(x)v(x) — wo(y)u(y) :/ wo(2)v'(2) dz

y

We integrate this identity on / with respect to x and use (wo, v¥); = 0 to get

1 X
—wo(v(y) = f / wo(2)v'(z) dz dx, Vyel.
0 Jy

Taking the absolute value and applying the Cauchy—Schwarz inequality, we get

max(1, ro)

-1
ol 7 = max (ro, g ) 1,

1
[V £ ———Iwo(Mv(M)| =
min(1, rg)

min(1, rg)

. . . —1 . N .
which implies ||v||0j < max (ro, o ) |v|1’1v. Since v’ € %’f’f(r)(l), where 7 is the
shift operator described in (3.11), we can use the same reasoning to show that

—1
|v|1’1v < max (r1, r ) |v|2’1v.
Repeating the same arguments, we can obtain
-1 .
|v|i,i§max<ri,ri >|v|i+lj, i=0,1,....m (4.2)

which leads to (4.1) with

i i
Cli,ry= |1+ ] max (rj?, rjfz).

k=0 j=k

O
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Lemma4.1 Let it > m > 0, {n}j_y C Ry, & € (0, 1) and v € H"(I). Then,

there is a unique %™ v € V" (I) that satisfies
o,r a,r

di . .
/iwi(x)ﬁ (v(x) — ngfrv(x)) dx =0, Vi=01,....m  (43)

Proof For v € %"fl(l ), to see that ﬁg{"rv exists and is unique, we consider the

problem of finding ¢ € 7/5l"”r(lv ) such that

(wi, )y = (wi, vD);,  fori=0,1,...,m. (4.4)

By Lemma 3.1, we can express ¢ in terms of the canonical basis
m .
o . ]
¢ = Z €j %,r ’
Jj=0

Then, by (4.4), the coefficients ¢ of ¢ are determined by the 1@near system Ac = b,
where A = (A; ;) is a triangular matrix with A; ; = (w;, ('/Kj/r)(i))i’ 0<i,j<m
and diagonal entries

Aii = (wi, (N D)D)y = ilho +1ihy) #0, 0 <i <m.
Therefore, A is invertible and ﬁg‘rv = ¢ is uniquely determined by (4.3). O

We note that the mapping 72" : v € AN > 7" v e ¥ (I) s linear
. . . o,r, ao,r a,r a,r
because of the linearity of integration.

We now present an immersed version of the Bramble—Hilbert lemma [11] which
can be considered a generalization of the one-dimensional Bramble—Hilbert lemma
in the sense that if r = 1, then, this immersed Bramble—Hilbert lemma recovers the
classical Bramble—Hilbert lemma.

Lemmad.2 Letin > m > i > 0,{n}i, C Ry, & € (0,1). Assume PI'
%"ﬁ“ () — ”f/&mr(lv ) is a linear map that satisfies the following two conditions

1. P" isa projection on V" (f ) in the sense that
o,r o,r

v
m

=9, Ve ). (4.5)

2. There exists an integer j, 0 < j < m + 1 such that IBOZ”r is bounded with respect
to the norm ||- IIj j as follows:

pm
P&’rv

G =Cll g Yoe AN, (4.6)
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Then, there exists C(m, r) > 0 independent of &, such that

Hv - ﬁgfruHi S=Conn) < B, i) oy o v EAND @)

where

v

P

a,r

_ 5 m+1,7 L
- sup{H P&!rvHi’i v e A (D) and o] ;= 1}.

~m

Proof Since P’" is a projection in the sense of (4.5), we have Pm rvu LU= TL v,
Using the trlangle inequality and (4.6), we obtain
pm m ~ m
Hv—P&’rv i,i< Hv—nv’rv‘i’i 5r (v—n&’rv) P
(el Y oszal, = (ol ) sl
- ( " i,j,I) @orolyr T ©rlli g1 O lm41,1

Yu e "D,
a,r

Then, applying Lemma4.1 and Theorem 4.1 to the right hand side of the above estimate
leads to (4.7). O

Next, we extend the results of Lemma 4.2 to the physical interface element [, =
[Xky—1, Xky—1+h]. Following the tradition in finite element analysis, for every function
¢ defined on the interface element I;,, we can map it to a function .# ¢ = ¢ defined
on the reference interval [ by the standard affine transformation:

MpE) = ) = plxry—1 +h&), £el=]0,1]. (4.8)

Furthermore, given a mapping P, %”’”rl (Ixy) = V3" (Ik,), we can use this affine
transformation to introduce a mapplng Pg{”r : Jf‘{"rﬂ (i ) — “I/&mr (i ) such that

(P! 9)(§) = (P'v) (kg1 + h&) = (P, v)(x) with & € [ or x = xjy_1 + h € Iy,.
4.9)

It can be verified that the mappings .#, P,", and ﬁ;”r satisfy the following commu-
tative diagram: ’

-
9y a,r
H (Iny) ————— Vi (ko)

]M ‘M
o

a,r

HE () ————— V() (4.10)

@ Springer



13 Page 16 of 40 BIT Numerical Mathematics (2024) 64:13

We now use the immersed Bramble—Hilbert lemma in the scaling argument to obtain
estimates for the projection error v — Py, v.

Theorem4.2 Let i > m > i > 0,{rn}iy C Ry, & € (0,1). Assume P, :
AL (i) — V" (Iy) is a linear operator such that fv’;"r defined by (4.9) satisfies
the assumption of Lemma 4.2 for an integer j with 0 < j < m + 1. Then, there exists
C(m,r) > 0 independent of a such that

lv— Plvlig, < cpmrii (1 +

a,r

pmn
P& r

L) ey ve A . D)
Proof The proof follows the same argument as for the classical case ry = 1, k =
0, 1,...,m [15]. We start by applying the change of variables x + 7~'(x — x,—1)
to we obtain

“1y—m—1,~ —1p—i~ DI~
Olnt1g, =k R v = P vlig, =h"h 0 — PV, g

m+1,1 a,r
(4.12)
Next, we combine Lemma 4.2 and (4.12) to obtain
v — Pyl =h™"'0 = P 5|, ; < COm, 1) <1 + ‘ Py, i’j!i> V1 7
=hCm, r) (1 + ‘ fv’;”r i,j,i> h"“r2|v|,,1+1,1kO
= C(m, r)h™ 1= <1 + ‘ ﬁg’fr i,]_’i) |v|m+1,1k0.
O

Nevertheless, the estimate (4.11) does not directly lead to the convergence of Py, v

to v as i — 0 unless we can show that H Fv’gfr

oy is uniformly bounded with respect
i,

to & € I, and this can be addressed by the uniform boundedness of P, defined as
follows.

Definition 4.1 Let m > m > 0, {rk}fzo C Ry, a € I, and let {Iv’gfr}0<&<1 be a
collection of projections in the sense of (4.5) such that Pg{”r : %mfl ) — V&mr(l ).
We call {I;g‘r }o<g <1 @uniformly bounded collection of RIFE projections provided that

there exists a constant C > 0 independent of & and an integer j with0 < j <m + 1
such that

and the associated collection of maps { P’} ; defined in (4.9) is called a uniformly
Y ae ko

v
m

&,rv

‘Oi <Clvl; ;. Yoe ™ (d).  Yae 1), (4.13)

bounded collection of LIFE projections.
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Lemmad4.3 Let m > m > 0, {rk};f’zo C Ry, & € I. Assume {ﬁ£1,}0<&<1 is a
uniformly bounded collection of RIFE projections. Then, there exists a constant C
independent of a such that

Hﬁggv”,igcnvn Yo e D), 0<i<m+ 1. (4.14)

m+l,i ’

Proof Assume that {ﬁénr}0<&<l is a uniformly bounded collection of RIFE projec-
tions, then, '
‘ a.r?

for an integer j with O < j < m + 1. By Lemma 3.3, we further have

< N
[ =Cl,;

|2zo] e [P < el < connC ol g
O0<i<m+1
which implies the uniform boundedness stated in (4.14). O

Now, we can derive an error bound for a collection of uniformly bounded LIFE pro-
jections that implies convergence.

Theorem4.3 Letm > m > 0, {rk}k';’:0 CRy, ace I. Assume that {P. : isa
T ae ko
uniformly bounded collection of LIFE projections. Then, there exists a constant C > 0

independent of o and h such that

lv = Pvli gy, < Chm+1_’|v|m+1’1k0, Vo e A (L), Vi=0.1,....m
(4.15)

Proof By Lemma 4.3, we know that { P} 7 satisfies (4.6) fori =0,1,2,...,m
TS ko

with j = m + 1. Consequently, we have

v

m

)

:1}50

Then, applying these to (4.11) established in Theorem 4.2 yields (4.15). O

The 51mplest example ofa un1f0rm1y bounded collection of LIFE projections is the
L? projection P %”m'H (I) — ”V’” (I) defined by

(q,Prg,,rv)i —(@.v);. Yger )
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. ¥ m Y m
Choosing g = Pry v, we get HPr&,rv ’0i = ||v||0’1v < ”v”m+1,i' By Lemma 4.3,

{lsrgl ) ; is a uniformly bounded collection of projections. Consequently, by The-
T ae ko
orem 4.3, we can obtain the following optimal approximation capability of the LIFE

space.

Corollary 4.1 Letm > m > 0, {rk}f‘zo C Ry, @ € (0, 1). Then, there exists a constant
C > 0 independent of « and h such that

min |g = vlo.p, < CH" olngrg,. Yve A (). (4.16)
g€V (Ixy)

5 Analysis of an IFE-DG method for a class of hyperbolic systems with
discontinuous coefficients

In this section, we employ the results of Sects. 3 and 4 to analyse an IFE-DG method for
the acoustic interface problem (1.1). To our knowledge, the analysis of such method
for hyperbolic systems has so far not been considered in the literature unlike the
IFE methods for elliptic problems. The main challenge that time-dependent problems
present is the plethora of possible jump coefficients. For instance, the jump coefficients

r,‘: , 1 described in (1.2) for the acoustic interface problem are given by:

2% 2% 2%k+2
P (&= P _ P+ (O v P -
er_er_(C+) T4t = P— (C+) e P+ (C+> =0
(5.1
The nature of the jump coefficients in (5.1) makes the study of this particular IFE space

extremely tedious as observed in [33]. Fortunately, the theory developed in Sects. 3
and 4 is general and applies to any choice of positive jump coefficients.

5.1 Problem statement and preliminary results

Let I = (a, b) be abounded interval containing «, and let p+, c+ be positive constants
describing the density and the sound speed in I, respectively. Now, we consider the
acoustic interface problem on /

w(x, 1)+ Ax)u,(x, 1) =0, x € I\{a}, t >0, (5.2a)

where u = (p, u)” is the pressure-velocity couple and

0 pick
A=Ay = . 5.2b
& + (Ioil 0 (5.2b)
The matrices A+ can be decomposed as Ay = PiALP, 1, where A4 =

diag(—c4+, c+). Using this eigen-decomposition, we define Ai = P1diag(0, c+) P ! R
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Ay = Pidiag(—cy, O)Pgl, and |[A4+| = Pidiag(cs, ch)Pj;1 to be the positive
part,the negative part, and the absolute value of A, respectively. The acoustic inter-
face problem that we are considering here is subject to the following homogeneous
inflow boundary conditions

Atu(a, 1) = Ajub,t) =0, >0, (5.2¢)
initial conditions
u(x,0) =up(x),x €1, (5.2d)
and interface condition
ule ) =u@h, ), +>0. (5.2¢)

In the remainder of this section, let S = diag(,o;lc;z, p+)and S(x) = Sy ifx € 1=,
then

SiAy = (? (1)) =A. (5.3)

Now, we can multiply (5.2a) by S and write the acoustic interface problem as
SXw(x, 1)+ Aug(x, 1) =0, xel\{a}, >0. (5.4)

Lombard [31], and Moon [33] have shown that by successively differentiating
[u(-, t)]o = 0, where [-] is the jump, we obtain

ok ok B
[AO - D]e =0 = mu(oﬁ, 0= Regu@, 0, Re= AZkak,
k=0,1,...,m.

Since Ry is diagonal (see part (a) of Lemma 5.1), the condition uP @t =
Riu® (@, 1) is equivalent to

o o ot o
+ N % - I P
mp(a 7t)_rk axkp(“ ’t)7 3Xku(a ’t)_rk 8xku((x 7t)’ (55)
where r,f and r,’: are defined in (5.1). These decoupled interface conditions make the
results obtained previously about the approximation capabilities of the LIFE space
directly applicable to vector functions in the product spaces

HZH (Iky) = HE75 (Ing) x A (Tg)s V() = Vap (Tkg) X Vo (L),

r o,rpP a,rt

W2 (i) = W2 o (i) x W (TR,

@ Springer



13 Page 20 0f40 BIT Numerical Mathematics (2024) 64:13

where r = (r?, r"). Now, we define the following bilinear forms

N
M(w,v) =Y (Sv.w), (5.6a)
k=1
N _ N
Bw.v) =) (v/, Aw)lk + 3 VD7 S Ca) W), (5.6b)
k=1 k=0

where the numerical flux w(x;) = A(xk)er(x,:) + A(xk)’w(x,:“) at the interior
nodes. At the boundary, we have w(xy) = A(xy)Tw(xy), W(xg) = A(xo)_w(xa'),
[wly = w(xy) and [w],, = _w(xar),

Now we define the immersed DG formulation as: Findw;, € C' ([0, T], W2 (7))
such that

Wp(,0), vi)r = (o, V)1, Yvi € W5 (Th), (5.7a)
M(Uh’t(',t),Vh) = B(Uh(',t),Vh), VVh € W:xn,r(t%l)a (57b)

We note that the discrete weak form (5.7) and the discrete space W{;r(%) are
identical to the ones described in the IDPGFE formulation in [33].

Next, we will go through some basic properties of the matrices S+ and Ay. These
properties will be used later in the proof the L? stability in Lemma 5.2, in the analysis
of the immersed Radau projection and in the convergence estimate.

Lemma5.1 Let A be the matrices defined in (5.2b) and let S+ = diag(p% ¢, p+),
then

(a) For any integer k > 0, the matrix Aj_kAk_ is diagonal with positive entries.

(b) Let s € {4, —}, then there is an invertible matrix Ps; such that Ay =
Pydiag(—csy, cs)PS_l and Sy = PS_TPS_l.

(c) Lets € {+, —}, thenthe matrices SyA}, S;A; and S| As| are symmetric. Further-
more, SyAY is positive semi-definite, S;A; is negative semi-definite and Sg|As|
is positive definite.

(d) Lets,§ € {+, =}, and let w € R?, then

2 L
<”A§WH +]wTSSA§w)=0>=>w:o. (5.8)

where §' is dual of § defined at the beginning of Sect. 3, and ||-|| is Euclidean norm.
(e) Lets € {+, —}. Then, there is a constant C(py, cs) > 0 such that

w S Afw — WIS, ATwW > Clps.co) Wl Yw e R (5.9)
Proof (a) Wehave A% = cildz, where Id; is the the 2 x 2 identity matrix. Therefore,
A% =cFid,, AT =cFAL, k=0,1,... (5.10)
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2%
Using (5.10), we immediately obtain AJ_erAz,k = (f—;) Id; and Afrz}‘ -1 Az,k'H =

N2k
(‘—‘) AfrlA_. Finally, by direct computation, we have AjrlA_ = diag (ﬁ—f,

C+
2
2+ii>' Hence, Aj_kAk_ = diag(r,f, r¢), where r,f and r;fare defined in (5.1).
(b) Let
1 —CyPs Cs P,
Py = S 5.11
= (97 e
then, by a simple computation, we can show that S; = PS’TPS’1 and Ay =

Pydiag(—c;, c5) P

(c) We have SSA;L = PS_Tdiag(O, cS)PS_l, where P is defined in (5.11). Therefore,
SsAf is a symmetric semi-positive definite matrix. The other two claims can be
proven similarly.

(d) We will only consider the case § = + here, the other case can be proven similarly.
Consider a vector w € R? that satisfies

[aw]? + W' s,A7w] =o0. (5.12)
Now, let w = Pyw where Py is defined in (5.11), then (5.12) can be written as
| Pydiag(0, c,)W|1* + [|diag(—c;., 0O)W|* = 0,

Since  both norms are non-negative, we have diag(—cs, 0)
w = 0 and Pydiag(0, c;)W = 0. P, being invertible, we get w = 0. Consequently,

w=P lw=0.

(e) We have by direct computation

-1_.—1

_ c 0 . 1
w S (Af —AD)w=w" (ps 0 ) w > min(pscs, oy le; ) [Iwll -
PsCs

O
Lemma5.2 Let u be a solution to (5.2), and let (t) = 5 (u(-, 1), S()u(-, 1)j ;. then

@) <0, t>0.

Proof By multiplying (5.4) by u” and integrating on /=, we obtain

/u(x, O Su(x, 1) +ulx, )T Auy(x, 1) dx = 0.
1

The matrices S and A are symmetric. Therefore, we rewrite the previous equation as
1 0 T x
€+ > | ——utx. ) Au(x, ))dx =0.
P IS 0x
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Since u is continuous at « (from (5.2¢)), we have
@) +ub, )T Aub, 1) —u(a, 1)" Au(a, 1) = 0. (5.13)
Now, we can rewrite the term u(b, 1)7 Au(b, 1) as

ub, )T Au(b, 1) =ub, )T S, A ub, 1)
=u(b, ) Sy ATub, 1) +ub, )" S ATub, 1) = ub, )’ S ATub, 1),
where the last equality follows from the boundary condition (5.2¢). Since SA™ is

symmetric semi-positive definite (see part (c) of Lemma 5.1), we conclude that
u(b, )T Au(b, t) > 0. Similarly, we have u(a, r)” Au(a, ) < 0. Therefore,

€'(t) <0.

]

The previous lemma shows that €(¢), interpreted as the energy of the system, is
decreasing. This is to be expected since the boundary conditions in (5.2c) are dissipa-
tive (see [10]). Furthermore, if we let €;,(¢) = %M(uh(-, t),uy(-, 1)) be the discrete
energy, then

-1 N
(0 = By, w) = — > [u] SColA@ol[uly <0. (5.14)
k=0

The proof of (5.14) follows the same steps as the scalar case described in [16].

5.2 The immersed Radau projection and the convergence analysis

In the remainder of this paper, we use Zu to denote the global Gauss-Radau projection
of u defined as

Fu € Wy (F) suchthat B(u—Zu,v,) =0, Vv, € Wy ().
(5.15)
Although Zu is a global projection, it can be constructed on each element indepen-
dently, the construction of (Zu)|;, where k # ko can be found in [1, 37] for the scalar
case and can be generalized easily to systems. On the interface element, we define

the local immersed Radau projection (IRP) operator IT/ . : H&",fl(lko) — V5 (Ixy)
using 4.10 as

m —1 Sy m
NGy =AM ollff oM,

where ﬁg’r : Hg’t] (i ) — Vglr(i ) is called the reference IRP operator and it is
defined as the solution to the following system:
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AZITY (0) = AZu(0), (5.16a)
Ailx[g”’rﬁ(l) = ATu(l), (5.16b)
(Av.fig ). = (Av.a) . wevyd). (5.16¢)

Next, we will go through some basic properties of the IRP to prove that the IRP is
well defined and is uniformly bounded on the RIFE space V’" (I ). From there, we
can show that the IRP error on the LIFE space Vi, (Ix,) decays at an optimal rate of
O (W"t1) under mesh refinement.

Lemma 5.3 Let A be the matrix function defined in (5.2b) and let p € V’g[’r(lv ), then
Ap' € Vg{”;l (. Furthermore the map

: i i
G V2D — Vi)
p— Ap'

is surjective.

Proof Letp € Vgr(lv) and let p = Ap/, then for a fixed k € {0, 1,...,m — 1}, we
have ’

pP @) =Aap*tV@Eh Using p = Ap’
= A+Ajrk_1A]i+lp(k+1)(5F) By construction of Vg”r(lv)
= A AT AR AT O @) Usingp' = A~ 'p

= AF AR p® @). (5.17)

Since (4.10) holds for every k =0, 1, — 1, we conclude that p € V”‘ 1(I ).

Now, we show that G is surjective, by the rank -nullity theorem, it suffices to prove
that dim ker(G) is 2 since dlmvzr(l) - dlmVZ‘rl(I) = 2. Let p € ker(G), then

Ap’ = 0, since A is invertible, we get p’ = 0 which implies that p € Vg r(Iv ). This
shows that dim ker(G) = dim Vg r(IV) =2. O

Following the definition of G, we can re-write (5.16c) as

(SG(v), I ); = (SG(v), w);, Vv e Ve (D).

For convenience, we will write (SG(v), ﬁg’rﬁ)l = (G(v), l:[g’ W j- Now, since G

maps Vg’ r(Iv) onto Vg’:l (i), we can express the condition (5.16¢) as

. .
VI ) = (v ;. Yve Ve, (5.18)
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Theorem 5.1 The system (5.16) admits exactly one solution.

Proof First, we prove that the system admits at most one solution, for that, we only
need to show that if u = 0, then 1'[’" .U = 0. For simplicity, let q = (g1, g2)T be the

solution to (5.16) with a = 0, and let r =P and r@ = r¥, then by (5.18), we
have

(v, gi),, j =0, Yve “/4’" (I)(I) where w; = S;;, i=1,2, (5.19)

which is equivalent to g; € 27 (I). On the other hand, we have

~ 1
(4d.q), = 5 (a0 S+ 4:q() —q©S_A_q0)) =0.  (5.20)

From (5.16a) and (5.16b), we have AT 1q(l) = AZq(0) = 0, then A q(1) =
A q(l) and A_q(0) = Ai‘ 0). Therefore the Eq. (5.20) becomes

1
5 (475145900 g7 S-A%q0) = 0.

Now, by Lemma 5.1 part (c), the quantities q(1)” S; A7 q(1) and —q(0)” S_A*q(0)
are non-positive, then

q(D7 S+ ATq(1) = q(0)" S_ATq(0) =0,

Furthermore, by (5.16a) and (5.16b), we have

|Ata) | +1a()7 S1AZq()] = |[AZqO)] + 1q(0)7 S_ATq(0)| = 0.

At this point, we use Lemma 5.1 part (d) to conclude that q(1) = q(0) = 0. Therefore,
qi are orthogonal IFE functions (as shown in (5.19)) that vanish on the boundary. By
Theorem 3.3, we conclude that g; = 0 fori = 1, 2. Equivalently, q = 0.

To finalize the proof, we only need to show that (5.16) can be written as a square
system. Let Ay = Pidiag(—c+, c+) Py ! be an eigen-decomposition of Ay. Then,
(5.16) can be written as

(P—_lﬁgf,rﬁ(o))l = (P__lﬁ(O)>1 ,
(Pt cn) = (pram)). .
('/V‘)‘j””a(}w ﬁ)i)s”,i - (‘/’le lv’); ;o I=j=m-1 (5:2)

(A it i) = (At T jEm L,
otr ’1 o,r S22s1

which is a system of 2(rm + 1) equations with 2(m + 1) variables. Since the homo-
geneous system admits at most one solution, we conclude that (5.16) has exactly one
solution. O
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Next, we show that {f[g’ +J0<g<1 is uniformly bounded. First, let p € Vg ;1 (f ) be
the solution to the following symmetric positive definite system

v, pgj=(vu);, vwe Vi D), (5.22)

and letq = IZIZ' rﬁ — p, then by (5.16¢) and (5.18), we have

(Av.q), = (Av.iigi—p). =0, wevy ), (5.23)
which can be written as

V. q;=0, Vve ng;l(i).

Thus, q € Q7 Sr(l) =7 (D) x 20 Syrt (I). Additionally, by (5.16a) and
(5.16b), we have Y Y

AZq(0) = AZ (1(0) — p(0)) ,

5.24
ATq(l) = AT (1) — p(D)). o2

In the next two lemmas, we prove that ||p||0 7 and ||q||0 ; is bounded by some
appropriate norms of u independently of &. Both lemmas will be used later in Theorem
5.2 to prove that {IT} }o-g<1 is a uniformly bounded collection of RIFE projections.

Lemma5.4 Let it € HYT'(I) and p € V%, '(I) defined by (5.22), then there is
C(p, ¢) > O independent of & such that |p|l, ; < C(p, c) ||ft”0 i

Proof Letv = pin(5.22), then HpTSpH0 i = (P, ﬁ)oi < ||p||0 i Hﬁ”oi On the other
hand, by constmctlon of S, we have HpTSpHO > C(p,c) ||p||0 j» where C(p,c) =
m1n(p7 _°, ,oJr c+ , P—, p+). Therefore,

Ipllg.; < Clo. o) ] ;-
O

Lemma5.5 Letu € Hm+1(l) and letp € Vm 1(I) defined by (5.22). Then, there is
C(p,c,m) >0 mdependent of & such that

H i i _pHO,i < C(p,c,m) |af, ;

Proof Letq = (g1, q2) = H u p, then by (5.23), we have (Aq q;=0 which is
equivalent to

q(H7 Aq(1) — q(0)" Aq(0) =0 (5.25)
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By decomposing A+ = AT + AJ and using the definition of A in (5.3), we can split
(5.25) as

q()" Sy ATq(D) + q(1) Sy ATq(1) — q(0)" S_A*q(0) — q(0)" S_A~q(0) =0.
(5.26)

Now, from (5.9), we have

q(0)7S_ATq(0) — q(0)"S_AZq(0) > Ci(p, ) IqO)|I*,  (5.27a)
q(DT S ATq(1) —q(DTS1A7q(1) = Ci(p, o) la()I*.  (5.27b)

Next, we sum (5.26), (5.27a) and (5.27b) to obtain
+ - 1 2 2
q(1)S+ALq(1) —q(0)S-A_q(0) > §C1(,0,C) <||Q(0)|| + llq(Dl ) (5.28)
We substitute (5.24) in (5.28) to obtain

. . 1
a(DS; AT = p(1) — qO)S-AZ @O = pO) = 5Ci(p. ) (IlaO)1” + la(DI?)

(5.29)
Now, we will bound the left hand side from above. First, we have
q()SLAT (1) — p(1)) — q(0)S—AZ(@(0) — p(0)) < Ca(p, ¢)
>l )y —p | + g [@©0) — p0)]) (5.30)

Since —p € (H' (IV))Z, there is C3 > 0 such that

max ( [i(0) — p(0)

i) —p0]) = ¢ (Ja, 7+ el ;) 53D

’

By applying the inverse inequality (3.9) and Lemma 5.4 to [|p||, ;, we obtain

|,

max (|| a(0) — p(0)

u(l) —p(D||) < Cs(p,c,m) (Hﬁ\h,i + ||P||0j),
< Cs(p,c,m) ||al, ; (5.32)

Now, we substitute (5.32) and (5.30) back into (5.29) and use the inequality a’+b* >
%(a + b)? to obtain

(g + g ], ; = Colo. c.m) AlgO 1| + a1

which yields
lgOIl + lla(D 1l < C7(p, ¢, m) [a]), ;. (5.33)
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To finish the proof, we recall that q € 27 Si1rP (i ) x 2% Sy (i ). Therefore, by
Lemma 3.4 and some elementary algebraic manipulations, we have

lall ;= /g1 ; + llg2112 ; (By defintion)

fﬁw&mMm®“wmﬁ+@©meﬂ (Using Lemma 3.4)
< Cs(p. c.m) ()] + (D)
lally 7 < Colp.c.m) ], ;. (using (5.33))

which is the desired result. O

By combining Lemmas 5.4 and 5.5, we can show that the norm of lilgt” (U can be

bounded by a norm of independently of a as described in the following theorem.
We note that l'I’" . maps H’"“ (D) to V”‘ (I ). Nevertheless, we shall call H”‘ aRIFE
projection since the results from Sect. 4 in the scalar case apply directly to the vector
case here.

Theorem 5.2 Letm > 1 and let it € Hg{"’r‘l(lv). Then, there is C(p, c,m) > 0 inde-
pendent of & such that

Ji . = c0.cm lal,

That is, {ﬁgr}0<&<l is a uniformly bounded collection of RIFE projections.

Proof By definition of p and q, we have

|

< v v
[ = 1Pl + lal 7.
Which, using Lemmas 5.4 and 5.5, leads to

[z = cooem ], ;.

where C(p, ¢, m) > 0 is independent of &. |

Corollary 5.1 Letu € H’"Jrl (Iky), then there is C(S+, A+, m) > 0 independent of «
and h such that

m
‘u H&’ru

< C(S+, Ax, m)hm+1_i|u|m+1,1k0, 0<i<m.

i,lj(0

v v T m o~ oxm oy oxm oN\T
Proof Let u = (p,u)' = .#u and let Tyt = (ﬂ&’,pp,ﬂ&’,uu) , Where

g p, 7 & rl‘ are defined in Lemma 4.1. Then by Theorem 4.1, we have

-0l ;< Clooeom)lil, ;. i=0,1,...om+1 (534
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On the other hand, we have

’u — M7 u
a,r

is]k()

<t (Jre, )|

< Ci(p,c,m)h'™

; i) (Using Lemma 3.3)

. ) (Using Theorem 5.2)

< C3(p, c,mh'™! Hﬁ - ﬁ?,rﬁumﬂ,i

< Calp,c,m)h" "0l 7 (From (5.34))

L
= C4(p, c, m)h"™* a1, 1y, -

O

By summing over all elements, we get a similar bound for the global Radau pro-
jection Zu with a function u € Hgl"j.‘l )

lu—2ul; ; < CS+, Ax.m)R" ' " ulpgry,  0<i<m.  (535)
Theorem 5.3 Let u be the solution of problem (5.2) and let up, € Wy, .(I) be the
solution of (5.7). Ifu € C([0, T]; ]ngfj‘z(l)), then there is C > 0 independent of h
and « such that

lu(, T) — up (-, Tllo.; < CA™

<|u0|m+1,l +lu, T)lmt1,r + T max |u(., t)|m+2,1) , T >0.
0<t<T

Proof Our proof follows the usual methodology used for the non-interface problem
(see [16]). We first note that Zu, = %%’u and split the error e = u;, —u as

e=z—g, z=u—%u, g=u,—Zu.
It follows from the definition of % in (5.15) that
B(g g) = B(g—128 = B(w, —u,g = Ble g). (5.36)
By combining (5.36), (5.7) and (5.14), we get

(8z:(-, 1), 8(-, 1))

(ng('9 t)v g(s t))] - (Sel('v t)’ g(9 t))] 9

%% H\/Eg(-, ”Ui,, — B(e(-, 1), (-, 1)),
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_ %% H\/Eg(-, t)HfM — B(g(-, 1), 8, 1),
] O

where o (t) > 0 by (5.14). Let «(¢) = H\/gg(~, 1) ”o . then by Cauchy—Schwarz
inequality, ’

(Sz:(-, 1), 8C, 1)y =< llze (-, D)llo, 7 Kk (2). (5.38)
Following the ideas of the proof of Lemma 5.3, we can show that u,(-,7) =
—Au, (-, 1) € HIEN(T) since u(-, 1) € HZ2(I). Therefore, by (5.35), there is C
independent of & and « such that

Iz (-, Dllo,; < CH" aC, D, (5.39)

Now, we use (5.39), (5.38) and integrate (5.37) on [0, T] to get

T
%x(T)z - %K(O)%o(r) < Chmt! / K(S)UC, $)mias ds,  (5.40)
0

Using a generalized version of Gronwall’s inequality (see [9, p.24]), we get the fol-
lowing bound on « (T')

T
«(T) < k(0) + Ch"™*! /0 G ). ds, (5.41)

<k (0)+ Ch™HIT max (U, Olmi2.r- (5.42)
=<t=<

We also have
€ = |[VS w0 - A = [VS @0 —wo)

+ HJE(uo — Zuy) HO = O ol (5.43)
We substitute (5.43) into (5.42), to obtain
K1) = | Vst 1| < cnmt! (|uo|m+1,1 + T max fuC, t)|m+z,1) :
0,1 0<t<T

To finalize the proof, we use the triangle inequality
les Tllo,s < N1z, Dllo,s + llgC, Dllo,s < CA™ ! (1uolmr1,1 + G, Tlm.1
+T ()IélzagXT [a(-, f)|m+2,1> .
O
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6 Novel proofs for results already established in the literature

In this section, for demonstrating the versatility of the immersed scaling argument
established in Sects. 3 and 4, we redo the error estimation for two IFE methods in the
literature. One of them is the IFE space for an elliptic interface problem [5], and the
other one is the IFE space for an interface problem of the Euler-Bernoulli Beam [25].
We note that the approximation capability for these IFE spaces were already analyzed,
but with complex and lengthy procedures. Our discussions here is to demonstrate that
similar error bounds for the optimal approximation capability of these different types
of IFE spaces can be readily derived by the unified immersed scaling argument.

6.1 The m-th degree IFE space for an elliptic interface problem

In this subsection, we consider the m-th degree IFE space developed in [5] for solving
the following interface problem:

—Bu"(x) = f(x), x € (a,@) U (e, ) B~ >0, x€(aa), )
= a = a = 0.
u(a) = u(b) =0, PO=1 00 o v e, =181
6.1)
Assume that f is in C”~!(I) which implies that the solution u € %’fﬁ‘ (1) with
ro=1, and r<—'3—_fori—12 m 6.2)
(Ve ’ — ﬁ"’_ —_ P} PEEIEIRIRY . .

The discussion in Sect.2 suggests the following IFE space for this elliptic interface
problem:

Z0 (Fh) = Ho (D) N W3 (Th) (6.3)

which coincides with the one developed in [5] based on the extended jump conditions
where it was proved, by an elementary but complicated multi-point Taylor expansion
technique, to have the optimal approximation capability with respect to m-th degree
polynomials employed in this IFE space. We now reanalyze this IFE space by the
immersed scaling argument.

The continuity of functions in the IFE space suggests to consider the following
immersed Lobatto projection .£;", : %’f’r+l(lk0) — Y (Ix,) defined by

Lou(xpg—1) = u(xXgg—1)s

jo?:lru(xko) = M(Xko), LU(X) = 1 I+
m—2 , X € s
(Lu, vh)kaO =, 00w, 1, Y0h € V' Uky)s ko

r, xelk_o,

6.4)
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where 72 = 7 o 7 and 7 is the shift operator defined in (3.11). The related reference

immersed Lobatto projection j&"r : %m;“l (I — v (I) is defined by the diagram
(4.10), that is, j’" =% uwhereit = A v.

For simplicity, let & = .i”’" u for a given u € 7" (I ) and note that the system
(6.4) is a square system of m + 1 equations since the last line can be written as m — 1
equations. Therefore, we only need to show that if # = 0 then & = 0 to prove that
.Zé{’r is well defined.

Lemma 6.1 The reference immersed Lobatto projection .ii:”r is well defined.

Proof Let i = 0, we will show that it = "?anbv‘ = 0. We have

0) =a(l) =0, (i, vn), ;=0 Yve "3 (D),

where w = .# w. Using (3.11), i” € “//f" 2? )(I), then

a

0= /01 w(x)ia(x)i" (x) dx = r1/0 ()" (x) dx +[1 ()i’ (x) dx
= i) [nid' (@) — i @] - /01 w() [ ()] dx
0=-— fo 1 w ([ (x)]* dx,
which implies that i is zero since #(0) = ii(1) = 0. o

Next, we will show that {95/25:”,}05&4 is a uniformly bounded collection of RIFE
projections in the following lemma.

Lemma 6.2 There is a constant C(B+, B~,m) > 0 independent of & such that the
following estimate holds for every u € %”’r"’l ()

liilly ; < CBT B~m) il ;-
Proof We write i as i = ¢ + g2, where ¢ € “I/&lr(lv) such that

q1(0) =1(0), qi1(1) =u(D),

and gy = jo:nr (—q1) € V3", (I). The construction of q1 is straightforward (see [22])
and we have |1l j < C(BT,B87) lull, j. Now, the second term g satisfies

$20) = g2() =0, (2, vn)y, 7 = (it = q1.vh) . - You € V"0 (D),
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where w = .# w. Following the proof of Lemma 6.1, we can choose v, = ¢5 and
integrate by parts to get

- ”wqﬁ “g,i = (’7‘ —4q1, 615/)1/3,1“'

We take the absolute value of each side and apply Cauchy—Schwarz inequality

lasl2 = CB*. B omylli— aully ;a5 o ;-

The inverse inequality in Lemma 3.3 implies that ||qé’||0 ;< C(B*. B~ .m) (A ||0 2
Hence, | '

lazlo; = c@™ pmm i —aily; < CB* pmm [l ;. (©3)
Since ¢2(0) = g2(1) = 0, we can apply Poincaré’s inequality to obtain ||q2||0’ i<
C |45 “0 ;- Finally, we have
lillg 7 < lgilly j + llg2llg ; < COm, B+, 87) |Ji], ;-
]

Then, we can use Theorem 4.3 to derive an error bound for the Lobatto projection

£, u in the following theorem which confirms the optimal approximation capability

of the IFE space established in [5] by a more complex analysis.

Theorem 6.1 There is C(BT, B~, m) > 0 such that the following estimate holds for
everyu € %’fﬁ“([ko)

lu — 23" uli g, < cpt,p, m)hm+1_ilu|m+1,1ko, Vi=0,1,...,m.
Proof This follows immediately from Lemma 6.2 and Theorem 4.3. O

6.2 Euler-Bernoulli beam interface problem

In this subsection, we apply the immersed scaling argument to reanalyze the cubic
IFE space developed in [27, 36] for solving the following interface problem of the
Euler-Bernoulli beam equation:

Bu® (x) = f(x), x € (a,a) U (a, b)
u(a) = ub) =0, Bx) =
u'(a) =u'(b) =0

B~ >0, xe(a,a),
Bt >0, xe€(ab),

(6.6)
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where the solution u satisfies the following jump conditions at «
[ule = [”/]a = [ﬁu”]a = [/314///]0( = 0.

First, letr = (1, 1, ?% %) be fixed throughout this subsection. Then, the usual weak
form of (6.6) suggests to consider the following IFE method:

find u, € Q) (1) suchthat (Buj.,v}), = (f. v, Yop € Q) (Th), (6.7)

where Qg’,(ﬁh) = Hg(l) N Wir(%). We note that the IFE space Qg,r(%) as well
as the method described by (6.7) were discussed in [27, 36], and an error analysis
based on a multipoint Taylor expansion was carried out to establish the optimality of
this IFE method in [25]. As another demonstration of the versatility of the immerse
scaling argument, we now present an alternative analysis for the optimal approximation
capability of this IFE space. This new analysis based on the framework developed in
Sects. 3 and 4 is shorter and cleaner than the one in the literature.

As usual, for the discussion of the approximation capability of the IFE space, we
consider the interpolation on the reference element I and map it to the physical element
I, - To define the interpolation, we let {o; }?: | be the Hermite degrees of freedom, that
is,

o) = v(0), o) =v(l), @) =v(0), o3(v)=v(), VYveH> ).

It is known [27, 36] that there is a basis {Lg r}?=0 of ”I/‘;r(lv) that satisfies

oi(LL ) =61, i.j=0.1,23. (6.8)

These basis functions can then be used to define an immersed Hermite projec-
tion/interpolation operator .7 , : jfgfr 1) — %%r(l ) such that ity = . .1t and

3
iy =Yy oiGi)LL . (6.9)
i=0

Lemma 6.3 Let B+ > 0 and & € (0, 1), then
~1<Li (x)<1, Vxel01], i=0,1,23. (6.10)
Proof See “Appendix B”. O

Now, we are ready to establish that {j&, r}o<g<1 18 a collection of uniformly bounded
of RIFE projections.
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Lemma 6.4 Let B+ > 0, € (0, 1). Then there is a constant C independent of & such
that the following estimate holds for every ui € %”5(4r(1 )

[

L =Clil

Proof We know that o;(21) < C ||LV¢”2 j since i1 € H2(I). Now, we apply the triangle
inequality to (6.9) and Lemma 6.3 to get

3
| Fari], ;= il D 26.], ;) =4c il ;-
1=!

m}

Now, let ., = .4~} 0.7 »o.# where .# is defined in (4.8). By the commutative
diagram in (4.10), ., is the local immersed Hermite interpolation. Then, by Lemma
6.4, {Su.r} ; is a collection of uniformly bounded LIFE projections. Hence, the

[04S]

k
following theor%m follows from Theorem 4.3.
Theorem 6.2 Let ﬁi > 0,7 € {0,1,2,3}, « € Iy, Then, there is a constant C
independent of o such that the following estimate holds for every u € %’jjr(lko)

lu— Furul, , < CH ulay,.

i,IkO
This theorem establishes the optimal approximation capability of the IFE space
Qz’ (1) which was first derived in [25] with a lengthy and complex procedure.

7 Conclusion

In this manuscript we developed a framework for analyzing the approximation prop-
erties of one-dimensional IFE spaces using the scaling argument. We have applied
this IFE scaling argument to establish the optimal convergence of IFE spaces con-
structed for solving the acoustic interface problem, the elliptic interface problem and
the Euler-Bernoulli beam interface problem, respectively. In the future, we intend to
extend the results in this paper to higher-dimensional IFEs constructed by employing
the Frenet transform recently introduced in [6].
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Appendix A Proof of Lemma 3.4
A/ 90)2+¢(1)2

||¢||0,i
c(m,r,w) independent of &. For simplicity, let ¢; € 2™ ([0, 1]) be the monomial
basis ¢; (x) = x' for 0 < i < m. Using the equivalence of norms, one can show that
there is ¢;(m) > 0 such that

Our goal is to show that the ratio is bounded from below by a constant

m—1

min (|p(0)[, [p(D]) + Z [(p.ao.n| = ct@m) Iploon. Vo € 270 1D). (A1)
i=0

Unfortunately, if we extend (A.1) to #;", then the constant on the right might

depend on & and might grow unboundedly as & — 0% or as & — 1~. To circumvent
this issue, we will use a scaling trick similar to the one used in the proof of Lemma
3.2. First, we bound (¢, ¢;) w. s 88 shown in the following lemma

ARl

LemmaA.l Letm > m > 0, {r )}, C Ry anda € (0, 1), thereis C(m,r,w) > 0

such that ifivzs > lvzs/, then

(@5, a)js| = ' /1 Gsx'dx| < Clmr, wihy g5 o o

i=01,....m—1 VYpe2y (.

Proof Since ¢ € 27, r(f), we have

0 = wy(gs., Qi)ix + wy (Py's ggr’z;’s (qt))is’-
Then, by Cauchy—Schwarz inequality and (3.3), we have

@ &0 @) | < Cw) 6]

o7 s lgil i -

js -

3

v Wy’ ’
[(@. 95| = w—v & (qi)H
S

< C(m,r,w)hy
< C(m,r,why ||¢

0,1

O

The previous lemma shows that (¢, g;) j, will approach 0 if 2; approaches 1. This will
allow us to obtain a restricted version of (A.1).

LemmaA.2 ThereisS(m,r, w) € (0, %) and C(m,r) > Osuchthatifmin(h_, hy) <
S(m,r,w), then

GO +Ig(D| = Com,r) [¢] ;- Voe2y, ().
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Proof We will only discuss the case where h_ > h.., the other case can be proved

similarly. We define ¢_ € 22" ([0, 1]) as ¢_ (&) = ¢_(h_&), then by the fact that
h_>1/2,

m—1

GO+

i=0

m—1

h7 . . l .
[ ot ax| =1o-01+ X 0| [ oo ds’
i=0

m—1
> 16—+ Y 27" @ go.n|
i=0
m—1
> C(m) (I@—(O)l + > |-, Qi)[0,1]|> :
i=0

Then, by (A.1), h— < 1, and (3.3), we have

m—1 h_ -
1BO)+ Y /0 G0x’ dx
i=0

= Com='" gl - = Com [¢]o - = Cotm, ) 0]

= Cm) [[6-g 0.1

Now, we use Lemma A.1 to estimate the inner product on the left hand side:
m—1 h_

Z / ¢(x)x' dx
i=o V0

We combine it with the previous inequality to get

GO = @] 7 (Cotm, r) = Ci(m,r, wihy).

<Ci(m,r,w)hy ”‘/v’”o,F :

Co(m,r)

Hence, if 74 < § = min(l, 2C (m,r,w)

), then
1
9O = 5Cotm, ) 6], ;- (A2)

A similar argument can be used to show that if 1, < 5 (where § could be different
than the previous §), then

1~
DI = 3 Colm, 1) |6 - (A3)

O

So far, we have shown that if one of the sub-elements /¥ is small enough, then
Lemma 3.4 holds. It remains to show that the lemma holds for & € [§, 1—3], for which,
we consider the following sequence {7, =}, by the Gram-Schmidt process:

i—1 (JVl ﬁ/ )
0 _ 0 i _ i ar’ Tawriwl s .
ﬁ&,w,r_‘/ﬁi,r’ ﬁ&,w,r_%,r Z(ﬁj ﬁj ) . a,w,r’ ! _1’2""’m'
J=0 ", w,r’ “a,w,r’w, I
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(A.4)

Clearly, we have 0% € o@m (i )- The following lemma shows that when 7'

w,r
is expressed in terms of the canomcal basis {JV i L Jito» the coefficients of the expansion
are rational functions.

LemmaA3 Letm > m > 0, {re}jiL, C Ry and & € (0, 1), the orthogonal RIFE
function 07"~ defined in (A.4) satisfies
m

oy, = RiM@N, (A.5)

a,w,r
i=0

. m
for some rational functions { Ry } of a.
i=0

Proof We will prove Lemma A.3 via strong induction. First, the case m = 0 is obvious.
Now,we assume that For everyi =0, 1, ..., m — 1, there are rational functions Rﬁ,’fr
of & such that

i

Oy =Y Rir@.A . (A.6)
=0
To show that &% satisfies (A.5), we use the fact that (</Vv’ N ), j isapolynomial
a,w,r a,r a,r’w,
in &. Therefore,
i J
(‘/jgr’ ﬁ&}w,r)w,lv (A7)
(ﬁa w,r’ ﬁ&,w,r)w,i

is a rational function of ¢&. Furthermore, by plugging (A.6) into (A.4) and rearranging
the terms, we get

m—1 JVf", J . J
ﬁsz,rwt—zj erCopnl Y2 R,
=0

otwr’ awr w]l 0

m—1 [fm—1 (</Vm ﬁj ) .
_ m o, r’ a,w,r’w,l 1 ] i
- %,r - Z J (Ol) %,r‘

i=0 \ j=i ( otwr’ a,w,r w, I

=Ry (&)

From the strong induction assumption and (A.7), we conclude that Rw » 1s a rational
function. 0
Corollary A.1 Given m, w+ and r, the function /u’?, : (0, 1) > R4 defined in (A.8)

is a rational function.
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Now, we are ready to prove Lemma 3.4. We can rewrite Lemma A.2 as: there is
8 € (0, %) that depends on m, w and r, and a constant C (m, r) such that

otwr otwr

2+ 0y, (2= Cim,r) | o

of & e0,8)U(l—8 1.

For § € [§, 1 — 4], the following function is continuous

0?2+ 0m (1)
m .y 06 w,r a,w,r
Hwr Q> o (A.8)
H a&w.rllg f

because both of its numerator and denominator are rational functions of ¢ and the
denominator is not zero. Therefore, there is Cp(m, w, r) > 0 such that

awr

2+ 67, (12 = Calm, w,r) Hﬁ'f’ . aels1-4l

o,w,r 0.1

By letting C(m, w, r) = min(C(m, r), Co(m, w, r)), we know that 6"’" satisfies
inequality (3.18) stated in Lemma 3.4. Consequently, the estimates in (3. 18) of Lemma
3.4 is true for every function in Q(;”’w’r(l ) because it is a one-dimensional space, and
Lemma 3.4 is proven.

B Proof of Lemma 6.3

Let us start with p = Lg ,» we have

pO) =1, p()=0, p'©)=0 p'(1)=0.

By Theorem 3.1, p’ does not change sign in (0, 1) since p’ € "I/a r(r)(l) and p'(0) =
p’(1) = 0. Therefore, p is monotonically decreasing from p(0) = 1to p(1) = 0. The
same argument applies to L(l;[ .

Next, we show that g = Lé . is bounded between 0 and 1. We have

q(0) =0, g()=0, ¢ O =1 4g'(1)=0.

By Rolle’s theorem, there is ¢ € (0, 1) such that ¢’(¢) = 0. By Theorem 3.1, ¢ the
only root of ¢’ in (0, 1). Now, by the generalized Rolle’s theorem, there is d € (c, 1)
such that ¢”"(d™)q"(d™) < 0.1f d # &, then ¢”(d™) = q”(d") = q”(d) because ¢
is a polynomial on either sides of &. In this case we have ¢”(d) = 0. If d = &, then
q"(d7)q"(d") < 0 and jump condition implies

ﬁ—;(q”(&v)z <0

@ Springer



BIT Numerical Mathematics (2024) 64:13 Page390f40 13

from which we have ¢”(@”) = 0 = q” (&™). Hence, ¢” (d) = 0. Furthermore by
Theorem 3.1, d is the only root of ¢” since ¢” € ”I/ 2<r)(1) Since ¢” is a linear

polynomial on either sides of &, the jump cond1t10n satisfied by g further implies
that ¢” does not change its sign (0, d) and (d, 1). Because ¢’(0) = 1 and ¢’(c) = 0
and 0 < ¢ < d, we know that ¢’ is decreasing on (0, d) but increasing on (d, 1).
These further imply ¢’(x) € [0, 1] for x € [0,¢] and ¢'(x) < O for x € [c,d];
hence, g(x) < q(c) for all x € [0, d]. Furthermore, since ¢'(d) < 0,4'(1) = 0
and ¢’ is monotonic on [d, 1], we know that ¢’(x) < O for all x € [d, 1]. Hence,

=q(l) < g(x) < q(d) < q(c) for all x € [d, 1]. Consequently, g(c) > g(x)
for x € [0, 1]. In addition, since ¢ has no local minimum point on (0, d), we have
q(x) > min{g(0), g(d)} > 0 for all x € [0, d]. Thus, g(x) > 0 Vx € [0, 1]. On the
other hand,

q(x) < q(c) =/ q (x)dx < / ldx =c <1 Vx €0, 1],
0 0

The last two estimates lead us to conclude that 0 < g(x) = Lg . (x) < 1. As for L; o
we note that ’ ’

L} (x)=—L} 4;(1—x), where7={r]'}]

which leads to L] (x) € [-1,0].
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