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Abstract
The two-step backward difference formula (BDF) method on variable grids for
parabolic equations with self-adjoint elliptic part is considered. Standard stability
estimates for adjacent time-step ratios r j := k j/k j−1 ≤ 1.8685 and 1.9104, respec-
tively, have been proved by Becker (BIT 38:644–662, 1998) and Emmrich (J Appl
Math Comput 19:33–55, 2005) by the energy technique with a single multiplier. Even
slightly improving the ratio is cumbersome. In this paper, we present a novel technique
to examine the positive definiteness of banded matrices that are neither Toeplitz nor
weakly diagonally dominant; this result can be viewed as a variant of the Grenander–
Szegő theorem. Then, utilizing the energy technique with twomultipliers, we establish
stability for adjacent time-step ratios up to 1.9398.

Keywords Two-step BDF method · Variable step-size · Stability estimate · Parabolic
equations

Mathematics Subject Classification 65L06 · 65M12

1 Introduction

Let T > 0, u0 ∈ H , and consider the initial value problem of seeking u ∈
C((0, T ];D(A)) ∩ C([0, T ]; H) satisfying
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{
u′(t) + Au(t) = f (t), 0 < t < T ,

u(0) = u0,
(1.1)

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H , (·, ·))
with domain D(A) dense in H and f : [0, T ] → H a given forcing term.

The backward difference formula (BDF) methods are popular for stiff differential
equations, in particular, for parabolic equations. They are frequently implemented on
nonuniform partitions for numerical efficiency.

For an integer N ≥ 2, consider a partition 0 = t0 < t1 < · · · < tN = T of the time
interval [0, T ], with time steps kn := tn − tn−1, n = 1, . . . , N . We recursively define
a sequence of approximations un to the nodal values u(tn) of the exact solution by the
variable two-step BDF method,

D2u
n + Aun = f n, n = 2, . . . , N , (1.2)

with f n := f (tn), assuming that arbitrary starting approximations u0 and u1 are
given. Here,

D2υ
n :=

(
1 + kn

kn−1

)
υn − υn−1

kn
− kn

kn−1

υn − υn−2

kn + kn−1
.

Let | · | denote the norm on H induced by the inner product (·, ·), and introduce on
V , V := D(A1/2), the norm ‖ · ‖ by ‖υ‖ := |A1/2υ|. We identify H with its dual,
and denote by V ′ the dual of V , and by ‖ · ‖� the dual norm on V ′, ‖υ‖� = |A−1/2υ|.
We shall use the notation (·, ·) also for the antiduality pairing between V ′ and V . For
simplicity, we denote by 〈·, ·〉 the inner product on V , 〈υ,w〉 := (A1/2υ, A1/2w).

1.1 Main result

We establish the following stability result.

Theorem 1.1 (Stability estimate) Let un satisfy (1.2), with u0, u1 ∈ V , and assume
that

rn := kn
kn−1

≤ r� ≈ 1.9398, n = 2, . . . , N ; (1.3)

the bound r� is expressed in terms of the multipliers δ = 0.9672 and η = −0.1793
in (3.1); see also (4.17) for more precise values of the bound r� as well as of the
multipliers. Then, the variable two-step BDF method (1.2) is stable in the sense that

|un|2 +
n∑
j=2

k j‖u j‖2

≤ CecΓn

(
|u0|2 + |u1|2 + k2‖u0‖2 + k2‖u1‖2 +

n∑
j=2

k j‖ f j‖2�
)

, (1.4)
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n = 2, . . . , N . Here, Γn is a mesh-dependent quantity,

Γn :=
n−2∑
j=2

[r j − r j+2]+ with [x]+ := max(x, 0), (1.5)

and C, c denote generic constants, independent of T and the operator A as well as of
f and of the partition of the time interval.

Let us recall some partitions for which Γn is finite; see [12, p. 175]. If the sequence
of the ratios (rn) is monotone (and bounded), then Γn is bounded; more precisely,
Γn = 0 if (rn) is nondecreasing, and Γn = r2 + r3 − rn−1 − rn if (rn) is decreasing.
More generally, Γn is bounded in the practically reasonable case that the number of
changes in monotonicity of the sequence (rn) is bounded, uniformly with respect to
the number N of time steps. For partitions of the form ti = (i/N )α, with α > 1, the
time steps ki increase and the ratios ri decrease to 1, whence, in particular, ri ≤ r�

except for a finite number of i .

1.2 Main ingredients of the proof

We shall use the energy technique. Let rn = kn/kn−1, n = 2, . . . , N , be the adjacent
time step ratios. With the notation

δkυ
n := υn − υn−k, ωn := 1

1 + rn
, ψn :=

(
rn

1 + rn

)2

,

the backward difference quotient D2υ
n can be written in the form (cf. [2])

D2υ
n = 1

ωnkn

(
δ1υ

n − ψnδ2υ
n). (1.6)

Testing the BDF method (1.2) by 2ωnkn
(
un − δun−1 − ηun−2

)
, with 0 < δ < 1 and

−1 < η < 0 two multipliers to be suitably chosen below, we obtain

Dn + An = Fn, n = 2, . . . , N , (1.7)

with ⎧⎪⎪⎨
⎪⎪⎩
Dn := 2ωnkn

(
D2u

n, un − δun−1 − ηun−2
)

,

An := 2ωnkn〈un, un − δun−1 − ηun−2〉,
Fn := 2ωnkn

(
f n, un − δun−1 − ηun−2).

(1.8)

The terms Fn on the right-hand side of (1.7), accounting for the forcing term
f , can be easily estimated from above by the generalized Cauchy–Schwarz and the
weighted arithmetic–geometric mean inequalities. We shall estimate Dn from below,
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and subsequently the sum over all Dn, in Sect. 3.1, while in Sect. 3.2 we shall
directly estimate the sum over all An from below rather than each term An sepa-
rately. The key point in the estimate of the sum over allAn is the positive definiteness
of families of certain banded matrices; this property is described and established in
Sect. 2.

1.3 Previous work

Stability of the A-stable two-step BDF method for parabolic equations for equidis-
tant partitions can be easily established by the energy technique. The zero-stability
property, and thus the stability for o.d.e’s satisfying the Lipschitz condition, of the
variable two-step BDF method is also well-understood; a sufficient condition is
r� < 1 + √

2 ≈ 2.414 in (1.3) and the bound is sharp; see [4, 7] as well as [10,
p. 405]. In contrast, the analysis of the variable two-step BDF method for parabolic
equations is cumbersome and still incomplete.

Grigorieff proved stability for linear parabolic equations, with bounds independent
of Γn , for r� ≤ (1 + √

3)/2 ≈ 1.366 in [8, 9]. In [2], Becker established stability
of the form (1.4) and derived error estimates for linear parabolic equations for r� ≤
(2 + √

13)/3 ≈ 1.8685; see also [12, pp. 174–180]. Emmrich [5] further relaxed the
bound to 1.9104 for semilinear parabolic equations. For stability estimates for the
three-step BDF method, with a mesh-dependent quantity similar to Γn, we refer to
[3].

In [2, 12] and [5] the method is tested by linear combinations of two terms, un and
un−1; here, to relax the condition on the ratios, as we mentioned, we test by linear
combinations of all three terms that enter into the method, namely, of un, un−1, and
un−2.Furthermore,we directly estimate the sumof the terms accounting for the elliptic
operator from below; this is in sharp contrast to Becker [2], Thomée [12], Emmrich
[5], where each one of these terms is estimated separately; see Sect. 3.2.

Several stability estimates of a different kind, in which the difference quotient
(u1 − u0)/k1 enters on the right-hand side, have been recently established both for
linear and nonlinear parabolic equations, for bounds r� significantly larger than the
optimal bound 1 + √

2 for zero-stability; see [11] and references therein. Notice that
(u1 − u0)/k1 may enter implicitly, if, for instance, the starting value u1 is computed
by employing one step of the trapezoidal method.

We establish key auxiliary results in Sect. 2 and provide the proof of Theorem 1.1
in Sect. 3. We motivate the choice of the multipliers δ and η in Sect. 4.

2 Auxiliary results

Our main tool in the proof of the stability result in Theorem 1.1 will be the positive
definiteness of families of certain banded matrices. This property will allow us to
suitably estimate from below the sum over all terms An entering into (1.7).
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For given real numbers δ and η ≤ 0, we are interested in properties of families of
banded lower triangular (n − 1) × (n − 1) real matrices of the form

L(r2, . . . , rn) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1+r2

−δ
√
r3

1+r3
1

1+r3

−η
√
r3r4

1+r4
−δ

√
r4

1+r4
1

1+r4
. . .

. . .
. . .

−η
√
rn−1rn
1+rn

−δ
√
rn

1+rn
1

1+rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

with positive r2, . . . , rn ≤ r , with a uniform positive upper bound r , for all n ≥ 4.

Lemma 2.1 (Property of matrices of the form (2.1)) Let (·, ·)2 and ‖ · ‖2 denote the
Euclidean inner product and norm, respectively, onRn−1, and let c be a real constant.
Then,

(L(r2, . . . , rn)x, x)2 ≥ c‖x‖22 ∀x ∈ R
n−1, (2.2)

for all matrices of the form (2.1) and for all n ≥ 4, if and only if

p(y) = 1

1 + r

[
1 + ηr − δ

√
r y − 2ηr y2

] ≥ c ∀y ∈ [−1, 1]. (2.3)

Aswe shall see later on, the necessity of (2.3) is an easy consequence of well-known
properties of the spectrum of symmetric, banded Toeplitz matrices.

Proof First, we shall prove that condition (2.3) implies the estimate (2.2). With

J :=

⎛
⎜⎜⎜⎜⎝

1
1+r2

1
1+r3

. . .
1

1+rn

⎞
⎟⎟⎟⎟⎠ and G :=

⎛
⎜⎜⎜⎝

0√
r3 0

. . .
. . .√
rn 0

⎞
⎟⎟⎟⎠

the matrix L := L(r2, . . . , rn) in (2.1) can be rewritten as

L = J − δ JG − ηJG2.

It suffices to consider the symmetric part Ls of the matrix L,

Ls = 1

2
(L + L

�) = J − δ

2
(JG + G� J ) − η

2

(
JG2 + (G�)2 J

)
,

since (Lx, x)2 = (Ls x, x)2. With K := J 1/2, we have

2K−1
Ls K

−1 = 2I − δ
(
KGK−1 + K−1G�K

) − η
(
KG2K−1 + K−1(G�)2K

)
.
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Letting

P := KGK−1 =

⎛
⎜⎜⎜⎜⎜⎝

0√
1+r2
1+r3

r3 0

. . .
. . .√

1+rn−1
1+rn

rn 0

⎞
⎟⎟⎟⎟⎟⎠ ,

we can rewrite 2K−1
Ls K−1 in the form

2K−1
Ls K

−1 = 2I − δ(P + P�) − η
(
P2 + (P�)2

)
,

i.e.,

2K−1
Ls K

−1 = 2I − δ
√
r
P + P�

√
r

− ηr
P2 + (P�)2

r
.

Therefore, with

Z := P√
r

=

⎛
⎜⎜⎜⎝
0
z3 0

. . .
. . .

zn 0

⎞
⎟⎟⎟⎠ ,

we have

2K−1
Ls K

−1 = 2I − δ
√
r(Z + Z�) − ηr

(
Z2 + (Z�)2

)
.

Using here the identity Z2 + (Z�)2 = (Z + Z�)2 − Z Z� − Z�Z , we see that

2K−1
Ls K

−1 = 2M − ηr(2I − Z Z� − Z�Z) (2.4)

with the symmetric matrix M,

M := (1 + ηr)I − δ
√
r Zs − 2ηr Z2

s , (2.5)

where Zs := (Z + Z�)/2 is the symmetric part of the matrix Z .

Since ri
1+ri

≤ r
1+r and 1 + ri−1 ≤ 1 + r , we have zi =

√
ri

1+ri
1+ri−1

r ≤ 1,

0 < zi ≤ 1, i = 3, . . . , n. (2.6)

To prove (2.2), we shall proceed in two steps: first we shall show that (2.6) implies
that the diagonal matrix 2I − Z Z� − Z�Z is positive semidefinite, and subsequently,
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using the Rayleigh quotient criterion, that the eigenvalues of thematrixM are bounded
from below by c(1 + r).

Now,

Z Z� =

⎛
⎜⎜⎜⎝
0
z23

. . .

z2n

⎞
⎟⎟⎟⎠ and Z�Z =

⎛
⎜⎜⎜⎝
z23

. . .

z2n
0

⎞
⎟⎟⎟⎠ ,

and, thus, thematrix 2I−Z Z�−Z�Z is diagonal. In view of (2.6), its diagonal entries
are nonnegative; consequently, this matrix is indeed positive semidefinite. Notice also
that η ≤ 0.

To complete the proof of (2.2), it remains to show that the eigenvalues of the
symmetric matrix M are bounded from below by c(1 + r). Now, the eigenvalues μi

and λi of the symmetric matrices M and Zs , respectively, are related by

μi = 1 + ηr − δ
√
rλi − 2ηrλ2i = (1 + r)p(λi ); (2.7)

see (2.5) and (2.3).
Let us first show that λi ∈ [−1, 1] via the Rayleigh quotient criterion. Indeed, for

y = (y2, y3, . . . , yn)� ∈ R
n−1, we have

(Zs y, y)2 =
n∑

i=3

zi yi yi−1,

whence, in view of (2.6),

|(Zs y, y)2| ≤ 1

2

n∑
i=3

(
(yi−1)

2 + (yi )
2) = ‖y‖22 − 1

2

[
(y2)

2 + (yn)
2].

Therefore,

|λi | ≤ sup
y∈Rn−1

y �=0

|(Zs y, y)2|
‖y‖22

≤ 1.

Now, it follows immediately from (2.3) and (2.7) that the eigenvalues μi of the sym-
metric matrix M are bounded from below by c(1 + r). Thus, for x ∈ R

n−1,

(
K−1

Ls K
−1x, x)2 ≥ (Mx, x)2 ≥ c(1 + r)‖x‖22,

which, in combination with ‖K−1x‖22 ≤ (1 + r)‖x‖22, yields the asserted estimate
(2.2).

Next, we prove that condition (2.3) is necessary for (2.2).
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It suffices to show that condition (2.3) is necessary for (2.2) for all matrices of
the form (2.1) with r2 = · · · = rn = r . The symmetric part Ls(r , . . . , r) :=(
L(r , . . . , r) + L(r , . . . , r)�

)
/2 of the (n − 1) × (n − 1) matrix L(r , . . . , r) is a

symmetric pentadiagonal Toeplitz matrix with generating function g (see [1, 6]),

g(x) := 1

1 + r

[
1 − δ

√
r cos x − ηr cos(2x)

]
, x ∈ R.

Now, with p the polynomial of (2.3) and the change of variables y = cos x, we have

gmin := min
x∈R g(x) = min−1≤y≤1

p(y).

Assume that (2.3) is not satisfied; then, we would have gmin < c. From Theo-
rem 2.1, a simplified version of more general results for symmetric banded Toeplitz
matrices, we would then infer that the matrices Ls(r , . . . , r) possess, for sufficiently
large dimension, eigenvalues less than c, a contradiction to (2.2). ��
Theorem 2.1 (Grenander–Szegő theorem, and asymptotic behavior of extreme eigen-
values of symmetric, banded Toeplitz matrices; cf. [6, Theorems 6.1 and 6.6]) Let
g be a nonconstant, real and even, 2π -periodic, trigonometric polynomial. Then, the
eigenvalues of all symmetric, banded, n × n Toeplitz matrices Tn, with generating
function g, belong to the open interval (gmin, gmax) with gmin and gmax the minimum
and maximum of g, respectively.

Let λ1(Tn) ≥ λ2(Tn) ≥ · · · ≥ λn(Tn) be the eigenvalues of Tn sorted in nonin-
creasing order. Then, for each fixed integer j ≥ 1, we have

lim
n→∞ λ j (Tn) = gmax and lim

n→∞ λn− j+1(Tn) = gmin.

Remark 2.1 The Grenander–Szegő theorem applies to Toeplitz matrices; see the first
part of Theorem 2.1. Here, Lemma 2.1 can be viewed as a variant of the Grenander–
Szegő theorem, applicable to a class of non-Toeplitz matrices.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.
Let us first recall a discrete version of Gronwall’s lemma that we will need in the

sequel.

Lemma 3.1 (Discrete Gronwall inequality; Emmrich, [5]) Let αn, βn, ξn, ϕn be non-
negative numbers, with a monotonically increasing sequence (ξn)n≥2, satisfying the
inequalities

αn + βn ≤
n−1∑
i=2

ϕiαi + ξn, n = 2, 3, . . . .
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Then, the following estimate is valid

αn + βn ≤ ξn exp

( n−1∑
i=2

ϕi

)
, n = 2, 3, . . . .

3.1 Estimation of the terms accounting for the difference quotient

Let us first focus on the first term on the left-hand side of (1.7).

Lemma 3.2 (Estimation ofDn)Assume that 0 < δ < 1,−1 < η < 0with 2−δ+2η ≥
0, 1 + δ + 3η ≥ 0, and r j ≤ r , j = 2, . . . , N , with r such that

r ≤
√
1 + δ + 3η

2
√
1 + η − √

1 + δ + 3η
=: r�(δ, η).1 (3.1)

Then,

n∑
j=2

D j ≥ (1 − δ − η)

(
(1 − ψn)|un |2 − ψn−1|un−1|2 − |u1|2 −

n−2∑
j=2

[ψ j − ψ j+2]+|u j |2
)

− [ − η + (2 − δ + 2η)ψ2
]|δ1u1|2, (3.2)

n = 3, . . . , N . For n = 2, (3.2) is also valid without the second and fourth terms on
the right-hand side, i.e.,

D2 ≥ (1 − δ − η)
(
(1 − ψ2)|u2|2 − |u1|2

)
− [ − η + (2 − δ + 2η)ψ2

]|δ1u1|2.
Proof We shall estimate each term D j from below separately and subsequently sum
over j to obtain (3.2).

Using (1.6) and expanding Dn in (1.8), we have

Dn = I n1 + I n2 + I n3 + I n4 + I n5 + I n6 (3.3)

with{
I n1 = 2(δ1u

n, un), I n2 = −2ψn(δ2u
n, un), I n3 = −2δ(δ1u

n, un−1),

I n4 = 2δψn(δ2u
n, un−1), I n5 = −2η(δ1u

n, un−2), I n6 = 2ηψn(δ2u
n, un−2).

(3.4)

Using the identities

2(δku
n, un) = δk |un|2 + |δkun|2, 2(δku

n, un−k) = δk |un|2 − |δkun|2,
1 Note that sup{r�(δ, η)} = 1 + √

2 = r�(1, 0), which agrees with the optimal bound for o.d.e’s.

123



14 Page 10 of 21 BIT Numerical Mathematics (2024) 64 :14

we see that

I n1 = δ1|un|2 + |δ1un|2, I n2 = −ψn
(
δ2|un|2 + |δ2un|2

)
,

I n3 = −δ
(
δ1|un|2 − |δ1un|2

)
, I n6 = ηψn

(
δ2|un|2 − |δ2un|2

)
.

Furthermore, since δ2un = δ1un + δ1un−1, we have

I n4 = 2δψn(δ1u
n + δ1u

n−1, un−1)

= δψn
(
δ2|un|2 − |δ1un|2 + |δ1un−1|2),

I n5 = −2η(δ1u
n, un−2) = −2η(δ2u

n, un−2) + 2η(δ1u
n−1, un−2)

= −η
(
δ1|un|2 − |δ2un|2 + |δ1un−1|2).

Collecting terms, we therefore obtain from (3.3) and (3.4)

Dn = Jn1 + (1 + δ − δψn)|δ1un|2 + (δψn − η)|δ1un−1|2
+ (η − ηψn − ψn)|δ2un|2 ≥ Jn1 + Jn2 (3.5)

with

Jn1 = (1 − δ − η)
(
δ1|un|2 − ψnδ2|un|2

)
, Jn2 = An|δ1un|2 − Bn|δ1un−1|2,

where

An := 1 + δ + 2η − (2 + δ + 2η)ψn, Bn := −η + (2 − δ + 2η)ψn;

in the derivation of the inequality in (3.5), we used the obvious estimate |δ2un|2 ≤
2|δ1un|2 + 2|δ1un−1|2.

Now,
n∑
j=2

J j
1 = (1 − δ − η)

(
(1 − ψn) |un |2 − ψn−1|un−1|2 − |u1|2 −

n−2∑
j=2

(
ψ j − ψ j+2

) |u j |2
)

+ (1 − δ − η)
(
ψ2|u0|2 + ψ3|u1|2

)
.

Hence, noting that δ + η < 1, we have

n∑
j=2

J j
1 ≥ (1 − δ − η)

(
(1 − ψn)|un |2 − ψn−1|un−1|2 − |u1|2 −

n−2∑
j=2

[ψ j − ψ j+2]+|u j |2
)

.

(3.6)

Moreover,

n∑
j=2

J j
2 =

n∑
j=2

(
A j |δ1u j |2 − Bj |δ1u j−1|2)

=
n−1∑
j=2

(A j − Bj+1)|δ1u j |2 + An|δ1un|2 − B2|δ1u1|2. (3.7)
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We shall now show that if r j ≤ r�(δ, η) for all j , then A j − Bj+1 ≥ 0. Assume that
r j ≤ r for all j . Since 2+ δ + 2η > 0 and 2− δ + 2η ≥ 0, A j and Bj are decreasing
and increasing functions of r j , respectively; thus,

A j − Bj+1 ≥ 1 + δ + 2η − (2 + δ + 2η)
( r

1 + r

)2 + η − (2 − δ + 2η)
( r

1 + r

)2
= 1 + δ + 3η − 4 (1 + η)

( r

1 + r

)2
.

In view of (3.1), there holds A j − Bj+1 ≥ 0, and (3.7) yields

n∑
j=2

J j
2 ≥ −B2|δ1u1|2. (3.8)

The asserted estimate (3.2) is an immediate consequence of (3.5), (3.6), and
(3.8). ��

3.2 Estimation of the termsAAA n accounting for the elliptic operator

Here, we shall estimate the sum of the terms An from below. Lemma 2.1 plays a key
role in the proof.

Lemma 3.3 (Estimation of An) Let δ = 0.9672 and η = −0.1793, and assume that
r j ≤ r�(0.9672,−0.1793) ≈ 1.9398, j = 2, . . . , N ; see (3.1). Then,
1

2

n∑
j=2

A j ≥ c1

n∑
j=2

k j‖u j‖2 − δω2k2〈u2, u1〉 − ηω2k2〈u2, u0〉 − ηω3k3〈u3, u1〉,

(3.9)

n = 3, . . . , N , with c1 = 10−6; for n = 2, (3.9) is also valid without the last term on
the right-hand side.

Proof We rewrite the sum on the left-hand side of (3.9) in the form

1

2

n∑
j=2

A j =
n−1∑
i, j=1

Li j 〈ui+1, u j+1〉 − δω2k2〈u2, u1〉 − ηω2k2〈u2, u0〉 − ηω3k3〈u3, u1〉,

(3.10)

with Li j the entries of the matrix L ∈ R
n−1,n−1,

L :=

⎛
⎜⎜⎜⎜⎜⎝

ω2k2
−δω3k3 ω3k3
−ηω4k4 −δω4k4 ω4k4

. . .
. . .

. . .

−ηωnkn −δωnkn ωnkn

⎞
⎟⎟⎟⎟⎟⎠ . (3.11)
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With L(r2, . . . , rn) the matrix in (2.1) and Λ the diagonal matrix

Λ := diag
( 1

k2
,
1

k3
, . . . ,

1

kn

)
,

it is easily seen that L(r2, . . . , rn) = Λ1/2LΛ1/2.

It suffices to show that

(L(r2, . . . , rn)x, x)2 ≥ c1‖x‖22 ∀x ∈ R
n−1. (3.12)

Indeed, then, the first term on the right-hand side of (3.10) is larger than or equal to
c1

(
k2‖u2‖2 + · · · + kn‖un‖2

)
and thus (3.12) leads to the asserted estimate (3.9).

To see that (3.12) is valid for n ≥ 4,we note that the quadratic polynomial p in (2.3)

with r replaced by r�, attains its minimum in [−1, 1] at y� = −δ
√
r�

4ηr� . For δ = 0.9672
and η = −0.1793, we have r ≤ r�(0.9672,−0.1793) ≈ 1.9398 by inequality (3.1);
then, indeed, 0 < y� < 1. Furthermore,

p(y�) ≈ 7.3592 · 10−6 > c1.

Notice that (3.12) is valid also for n = 2 and n = 3. Indeed, for n =
2, (L(r2)x, x)2 = 1

1+r2
‖x‖22 ≥ 1

1+r� ‖x‖22 ≥ c1‖x‖22, and for n = 3, (L(r2, r3)x, x)2

= 1
1+r2

x22−δ
√
r3

1+r3
x2x3+ 1

1+r3
x23 ≥ ( 1

1+r� − δ
2

√
r3

1+r3
)‖x‖22 ≥ ( 1

1+r� − δ
4 )‖x‖22 ≥ c1‖x‖22.

Now, in view of (3.12), (3.10) and (2.2) lead to the asserted estimate (3.9).
For the motivation of the specific choice of the multipliers δ and η, see

Sect. 4. ��

3.3 Proof of Theorem 1.1

Here, we use Lemmata 3.2 and 3.3, the discrete Gronwall inequality in Lemma 3.1,
and elementary inequalities, to prove Theorem 1.1.

Replacing n by j in (1.7), summing from j = 2 to j = n, and using (3.2) and
(3.9), we obtain

(1 − δ − η) (1 − ψn) |un |2 + 2c1

n∑
j=2

k j‖u j‖2

≤ (1 − δ − η)ψn−1|un−1|2 + C
(|u0|2 + |u1|2) + (1 − δ − η)

n−2∑
j=2

[ψ j − ψ j+2]+|u j |2

+
n∑
j=2

F j + 2δω2k2〈u2, u1〉 + 2ηω2k2〈u2, u0〉 + 2ηω3k3〈u3, u1〉.

123



BIT Numerical Mathematics (2024) 64 :14 Page 13 of 21 14

Now, the terms involving the forcing term or the starting approximations can be esti-
mated by the Cauchy–Schwarz inequality and the elementary inequality

2ab ≤ εa2 + ε−1b2, a, b ∈ R,

with ε > 0 small enough. We obtain

F j ≤ ω j k jε
−1
1 (1 + δ − η)‖ f j‖2� + ω j k jε1

(
‖u j‖2 + δ‖u j−1‖2 − η‖u j−2‖2

)
and

2|〈ui , u j 〉| ≤ ε2‖ui‖2 + ε−1
2 ‖u j‖2, i = 2, 3, j = 0, 1,

with sufficiently small ε1 and ε2, and we are lead to the inequality

|un|2 + c1

n∑
j=2

k j‖u j‖2 ≤ ψn−1

1 − ψn

∣∣un−1
∣∣2 + C

(|u0|2 + |u1|2 + k2‖u0‖2 + k2‖u1‖2
)

+ C
n−2∑
j=2

[ψ j − ψ j+2]+|u j |2 + C
n∑
j=2

k j‖ f j‖2�, n ≥ 2.

Since ψn−1
1−ψn

≤ c̄ < 1, and [ψ j −ψ j+2]+ ≤ C[r j −r j+2]+ (see [12, p. 179]), we have

|un|2 + c1

n∑
j=2

k j‖u j‖2 ≤ c̄|un−1|2 + C
(
|u0|2 + |u1|2 + k2‖u0‖2 + k2‖u1‖2

)

+C
n−2∑
j=2

[r j − r j+2]+|u j |2 + C
n∑
j=2

k j‖ f j‖2�, n ≥ 2.

(3.13)

Hence, we have

|un|2 ≤ c̄|un−1|2 + Kn, n ≥ 2,

where

Kn = C

(
|u0|2 + |u1|2 + k2‖u0‖2 + k2‖u1‖2 +

n−2∑
j=2

[r j − r j+2]+|u j |2 +
n∑
j=2

k j‖ f j‖2�
)

.

Let 2 ≤ n� ≤ n, be such that |un� | = max1≤�≤n |u�|. Setting n := n� in the above
inequality and using the fact that Kn� ≤ Kn , we get

|un� |2 ≤ c̄|un�−1|2 + Kn� ≤ c̄|un� |2 + Kn,
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which leads to

|un−1|2 ≤ |un� |2 ≤ 1

1 − c̄
Kn .

Thus, (3.13) yields

|un|2 + c1

n∑
j=2

k j‖u j‖2 ≤ c̄|un−1|2 + Kn ≤ 1

1 − c̄
Kn .

Applying here the discrete Gronwall Lemma 3.1, we obtain the asserted stability
estimate (1.4). ��
Remark 3.1 Proceeding as in the proof of Theorem 1.1, we can see that Emmrich’s
bound (r∗ ≈ 1.9104) is optimal for a singlemultiplier as far as the positive definiteness
of suitable matrices is concerned, with δ = 0.72349, η = 0.

4 On the choice of themultipliers ı and �

Here, we comment on the choice δ = 0.9672 and η = −0.1793 of the multipliers; we
also give more precise values of the multipliers and of the bound r�; see (4.17).

We recall that in our stability analysis we used two conditions on the bound r of
the ratios, namely,

0 < r ≤ r�(δ, η) =
√
1 + δ + 3η

2
√
1 + η − √

1 + δ + 3η
(4.1)

and the positivity condition

P(y) = (1 + r)p(y) = 1 + ηr − δ
√
r y − 2ηr y2 > 0 ∀y ∈ [−1, 1] (P)

to estimate the terms accounting for the difference quotient and for the elliptic operator,
respectively; see (3.1) and (2.3). Our goal here is to choose the multipliers δ and η in
such a way that both conditions, (4.1) and (P), are satisfied for values of r as large as
possible.

Let us focus on the condition (P) and introduce the domain

D := {
(δ, η) : 0 < δ < 2,−1 < η < 0, 1 + δ + 3η ≥ 0

} = D1 ∪ D2 (4.2)

with

D1 := {
(δ, η) ∈ D : 3

16
δ2 ≤ −η

}
, D2 := {

(δ, η) ∈ D : 3

16
δ2 > −η};

see Fig. 1. Notice that instead of trying to determine optimal multipliers in the set of
admissible multipliers, i.e., multipliers satisfying all conditions needed in our stability
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Fig. 1 The domains D (colored region), D1, and D2, as well as the segments Lt ; see (4.2) and (4.7)

analysis, we find it more convenient to determine optimal multipliers in the larger
domain D, in which only some of the conditions of our stability analysis are automat-
ically satisfied, and, a posteriori, check that these multipliers are indeed admissible.

Claim. For (δ, η) ∈ D, the positivity condition (P) is satisfied if and only if

r < h(δ, η) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

η
− δ2

8η2
, (δ, η) ∈ D1,(

2

δ + √
δ2 + 4η

)2

, (δ, η) ∈ D2.

(4.3)

To see this, we consider the cases that (δ, η) belongs to D1 or to D2 separately.
We write P in the form

P(y) = −2ηr
(
y + δ

4η
√
r

)2 + 1 + ηr + δ2

8η
, y ∈ [−1, 1]. (4.4)

Since the first term on the right-hand side is nonnegative, P is positive in [−1, 1]
provided that 1 + ηr + δ2

8η is positive, i.e.,

r < −1

η
− δ2

8η2
. (4.5)

Notice that (4.5) is also necessary if − δ

4η
√
r

≤ 1.

For (δ, η) ∈ D1, in case − δ

4η
√
r

> 1, i.e., for r < δ2

16η2
, a seemingly milder

condition for the positivity of P in [−1, 1] suffices, namely, P(1) > 0. However, we
have

δ2

16η2
≤ −1

η
− δ2

8η2
⇐⇒ 3

16
δ2 ≤ −η,
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which is the motivation for the definition of D1.
Summarizing, for (δ, η) ∈ D1, P is positive in [−1, 1] if and only if (4.5) holds;

this proves (4.3) for (δ, η) ∈ D1.

Next, we consider the case (δ, η) ∈ D2. For 0 < − δ

4η
√
r

≤ 1, i.e., for r ≥ δ2

16η2
,

we have

1 + ηr + δ2

8η
≤ 1 + 3δ2

16η
< 0 since

3

16
δ2 > −η for (δ, η) ∈ D2,

and we easily infer from (4.4) that (P) is not satisfied.

For − δ

4η
√
r

> 1, i.e., for 0 <
√
r < − δ

4η
, P is positive in [−1, 1] if and only if

P(1) = −η

(√
r + δ

2η

)2

+ 1 + δ2

4η
> 0.

The discriminant δ2 + 4η is positive for (δ, η) ∈ D2, whence P(1) has two real roots
√
r = δ ± √

δ2 + 4η

−2η
. In this case, we have

0 <
√
r <

δ − √
δ2 + 4η

−2η
< − δ

4η
since

3

16
δ2 > −η for (δ, η) ∈ D2.

Summarizing, for (δ, η) ∈ D2, P is positive in [−1, 1] if and only if

r <

(
2

δ + √
δ2 + 4η

)2

, (δ, η) ∈ D2;

this proves (4.3) for (δ, η) ∈ D2.

Obviously, the mildest condition on r such that (4.1) and (4.3) are satisfied is

r < max
(δ,η)∈Dmin{r�(δ, η), h(δ, η)}. (4.6)

It will be convenient to rewrite the expression on the right-hand side of (4.6). Since
1+η
2−δ

∈ [1/3,∞) for (δ, η) ∈ D, we let

t := 1 + η

2 − δ
with t ∈ [1/3,∞) ,

and, for fixed t, consider the secant segments Lt ⊂ D,

Lt : η = t(2 − δ) − 1 for η ∈ (−1, 0). (4.7)
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Notice that the secant segment L1/3 is 1 + δ + 3η = 0, and, as t increases from 1/3
to ∞, the secant segment Lt rotates clockwise and approaches the right boundary of
the domain D, whence Lt sweeps the whole domain D; see the colored part in Fig. 1.
Consequently, (4.6) can be equivalently written in the form

r < max
t∈[1/3,∞)

max
(δ,t(2−δ)−1)∈Lt

min{r�(δ, t(2 − δ) − 1), h(δ, t(2 − δ) − 1)}. (4.8)

From (4.7) and (4.1), we get

H(t) := r�(δ, t(2 − δ) − 1) =
√

(3t − 1)(2 − δ)

2
√
t(2 − δ) − √

(3t − 1)(2 − δ)

=
√
3t − 1

2
√
t − √

3t − 1
. (4.9)

Analogously, in view of (4.3) and (4.7), we let

G(t) := max{δ:(δ,t(2−δ)−1)∈Lt }
h(δ, t(2 − δ) − 1) for t ∈ [1/3,∞) (4.10)

with

h(δ, t(2 − δ) − 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

t(2 − δ) − 1
− δ2

8 (t(2 − δ) − 1)2
, (δ, t(2 − δ) − 1) ∈ D1,(

2

δ + √
δ2 + 4 (t(2 − δ) − 1)

)2

, (δ, t(2 − δ) − 1) ∈ D2.

(4.11)

According to (4.9) and (4.10), inequality (4.8) can be written as

r < max
t∈[1/3,∞)

min{H(t),G(t)}.

Next, we consider themaximum of h(δ, t(2−δ)−1) in (4.11) for (δ, t(2−δ)−1) ∈
D.

For the points (δ, t(2 − δ) − 1) ∈ Lt ∩ D2, according to (4.11), we have

∂h(δ, t(2 − δ) − 1)

∂δ
=

−8
(√

δ2 + 4 (t(2 − δ) − 1) + δ − 2t
)

(
δ + √

δ2 + 4 (t(2 − δ) − 1)
)3 √

δ2 + 4 (t(2 − δ) − 1)

=
4

(√
δ2+4 (t(2 − δ) − 1)+δ − 2

)2
(2 − δ)

(
δ + √

δ2 + 4 (t(2 − δ) − 1)
)3 √

δ2+4 (t(2 − δ) − 1)
≥ 0.

Notice that t(2− δ) − 1 = η ∈ (−1, 0) and δ2 + 4η is positive. Therefore, h(δ, t(2−
δ) − 1) is increasing with respect to δ in the secant line Lt ∩ D2, which implies that
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the maximum of h(δ, t(2 − δ) − 1) is attained at the point on the curve
3

16
δ2 = −η.

Notice also that this curve lies in D1. Hence, we only need to consider the points
(δ, t(2 − δ) − 1) ∈ D1.

For points (δ, t(2 − δ) − 1) ∈ Lt ∩ D1, in view of (4.11), we see that

∂h(δ, t(2 − δ) − 1)

∂δ
= − 1

4 (t(2 − δ) − 1)3
[
δ (t(2 − δ) − 1) + (

δ2 + 4 (t(2 − δ) − 1)
)
t
]

= − 1

4 (t(2 − δ) − 1)3
ρ(δ)

with

t(2 − δ) − 1 = η ∈ (−1, 0), ρ(δ) := −
(
4t2 − 2t + 1

)
δ + 8t2 − 4t .

Notice that ρ is a decreasing function of δ since it is linear and 4t2 − 2t + 1 =
4(t − 1

4 )
2 + 3

4 > 0.
If t ∈ [1/3, 1/2), then ρ(δ) < ρ(0) = 8t2 − 4t < 0. Therefore, h(δ, t(2− δ) − 1)

is decreasing with respect to δ and attains its maximum on the secant segment Lt at
δ = 0. From (4.7), we infer that η = 2t − 1. According to (4.3), we have

r < h(δ, η) = −1

η
= 1

1 − 2t
. (4.12)

If t ∈ (1/2,∞), then 8t2 − 4t > 0. The root δ� of ρ is

δ� = 4t(2t − 1)

4t2 − 2t + 1
. (4.13)

If δ ∈ (0, δ�), then ρ(δ) > 0 and h(δ, t(2 − δ) − 1) is increasing with respect to δ.
If δ ∈ (δ�, 2), then ρ(δ) < 0 and h(δ, t(2 − δ) − 1) is decreasing with respect to δ.
Therefore, h(δ, t(2 − δ) − 1) attains its maximum on the secant segment Lt at δ�.
From (4.7), we have

η� = t
(
2 − δ�

) − 1 = − (2t − 1)2

4t2 − 2t + 1
. (4.14)

Therefore, from (4.3), we obtain

r < h(δ�, η�) = − 1

η�
− (δ�)2

8 (η�)2
= 1

2
+ 1

2(2t − 1)2
. (4.15)
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Fig. 2 The graphs of H and G; see (4.9) and (4.16)

Combining (4.10), (4.12) and (4.15), we have

G(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 − 2t
, t ∈ [1/3, 1/2) ,

+∞, t = 1/2,
1

2
+ 1

2(2t − 1)2
, t ∈ (1/2,+∞).

(4.16)

It is easily seen from (4.9) that H is increasing with respect to t ∈ [1/3,∞).

Furthermore, in viewof (4.16),G is increasing in the interval [1/3, 1/2) and decreasing
in the interval (1/2,∞); see Fig. 2. Since H(t) < H(1/2)=1 < 3=G(1/3)< G(t)
for t ∈ [1/3, 1/2), the graphs of H and G do not intersect for t ∈ [1/3, 1/2).

On the other hand, there exists a unique optimal point of H(t) = G(t) if t ∈
(1/2,∞). Indeed, from (4.9) and (4.16) for t ∈ (1/2,∞), we have

√
3t − 1

2
√
t − √

3t − 1
= 1

2
+ 1

2(2t − 1)2
, t ∈ (1/2,∞),

that is

23t5 − 55t4 + 55t3 − 29t2 + 8t − 1 = 0, t ∈ (1/2,∞).

Notice that the above polynomial has only one real root, namely t ≈
0.794645365827. Substituting this value of t in (4.13), (4.14), and (4.15), respec-
tively, we obtain the optimal values

δ� ≈ 0.967237837020572, η� ≈ −0.179320334471962,

r� ≈ 1.9398285699451. (4.17)
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Let us mention that the multipliers δ� and η� are admissible, i.e., they satisfy all
conditions in our stability analysis; in particular, 2 − δ� + 2η� ≥ 0, which is used in
Lemma 3.2 but does not enter into the definition of the domain D.
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