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Abstract
Gauss–Legendre quadrature, Clenshaw–Curtis quadrature and the trapezoid rule are
powerful tools for numerical integration of analytic functions. For nearly singular
problems, however, these standard methods become unacceptably slow. We discuss
and generalize some existing methods for improving on these schemes when the
location of the nearby singularity is known. We conclude with an application to some
nearly singular surface integrals that arise in three-dimensional viscous fluid flow.

Keywords Numerical quadrature · Nearly singular integral · Stokes flow

Mathematics Subject Classification 45A05 · 76D07 · 65R20 · 65D32

1 Introduction

Standard numerical quadrature methods can usually evaluate real-valued definite
integrals to machine precision accuracy using only a modest number of function eval-
uations when the integrand has some desirable regularity properties. A particularly
well-behaved class of integrands are those which are complex-analytic on a neigh-
borhood of the integration domain—preferably a large neighborhood, and preferably
without rapid growth away from the real line. In this setting, standard procedures
include Gauss–Legendre and Clenshaw–Curtis quadratures for aperiodic problems
and the trapezoid rule for periodic problems. These converge geometrically—that is,
the logarithm of the error decreases linearly with the number of quadrature nodes.
Unhappily, these standard techniques do not work well for the class of problems
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known as nearly singular integrals, wherein the integrand fails to be analytic some-
where near but not on the interval of integration in the complex plane. The trapezoid,
Clenshaw–Curtis, and Gauss–Legendre rules still provide geometric convergence, but
with an unacceptably small slope. Standard theorems relate this slope to the domain of
analyticity of the integrand. In this paper we survey some existing methods of acceler-
ating the convergence of these standard methods and we introduce several new ones,
assuming that the location of the nearby singularity is known, but without using any
additional information on the nature of the singularity.1

While our motivation comes from the quadrature problem in the context of solving
integral equations, some similar issues also arise in the context of interpolation from
samples of a nearly singular function. This is an important component of spectral
methods for differential equationswhen the desired solution has abrupt fronts or peaks.
In fact, some of the same acceleration techniques have been independently discovered
by researchers in the two communities. For example, Johnston and Elliot’s hyperbolic
sine transformation [10] was also discovered by Tee and Trefethen [16], while Jafari’s
transformation [9] is very similar to the repeated sinh method of [6]. One of our aims
is to assemble the results from these two communities in one place.

We focus on two families of acceleration strategies. The first group of methods split
the domain into carefully chosen subintervals and then solve subproblems on each of
them. The other strategy that we consider is to change variables with a complex-
analytic transformation so that the singularity lies farther away.

An early example of a splittingmethod for aperiodic problemswas given byMa and
Kamiya [11], who subdivide at the real part of the singularity, assuming that this lies
within the integration interval and the problem is aperiodic (in fact they subsequently
use an exponential change of variables for each of the new subproblems, thereby
combining both of the principal strategies considered here). Subsequently, Driscoll
and Weideman [5] gave a formula for the optimal splitting location in terms of the
location of the singularity, again for the aperiodic case. Their formula is especially
useful in cases where the singularity is near the endpoint of the interval in the complex
plane or on the real line outside the interval, where simply using the real part of the
singularity is ineffective or impossible. We develop an analogous method for periodic
problems, replacing the trapezoid rule for a full periodwith individualGauss–Legendre
integrations on two subintervals of different sizes.

Splitting methods are extremely simple and, as we demonstrate, can yield dramatic
improvements in the convergence rate. However, we can find even better convergence
rates using methods that avoid dividing the available quadrature nodes among two
or more subproblems. There are a vast array of possibilities for conformal mappings
that distort the neighborhood of a real interval while fixing the endpoints and remain-
ing real-valued and monotone within the interval. The Jacobi elliptic functions are
a powerful tool for designing transformations that use all of the analyticity we have
assumed; we list existing methods for periodic and aperiodic problems and give a new
version for the aperiodic case when the singularity lies on the real line outside the
integration interval. This is a small extension of results by Trefethen, Tee and Hale

1 Our assumption is generally that the singularity takes the form of a branch cut extending to infinity, but
the methods we propose also work for isolated singularities.
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[7, 8, 15, 16]. However, the methods employing elliptic functions are less robust than
some elementary alternatives when the integrand has other challenging features like
additional distant singularities or rapid growth away from the real line. We therefore
list or introduce some good elementary alternatives such as the sinh transformation
for aperiodic problems [10, 16], our iterated sine map for periodic problems, and our
quadratic transformation for aperiodic problems with real singularity.

The organization of the paper is as follows. We state and comment on the standard
theorems describing the convergence of the trapezoid and Gauss–Legendre rules in
Sect. 2 and we briefly introduce the Jacobi elliptic functions in Sect. 3. We consider
periodic problems in Sect. 4. For aperiodic problems we first consider singularities off
the real line in Sect. 5 and then singularities that occur on the real line (but outside the
interval of integration) in Sect. 6. We test all of the methods on a suite of integrands
with various properties in Sect. 7. As an application, we then compute some nearly
singular surface integrals arising in three-dimensional Stokes flow in Sect. 8, followed
by concluding remarks.

2 Discussion of the standard theorems

For a periodic integrand, the convergence rate of the trapezoid rule depends on the
distance from the singularity to the real line.

Theorem 1 (Geometric convergence of trapezoid rule [22]) Suppose that a 2π -
periodic function f is analytic and satisfies | f (z)| < M within the strip |�(z)| < λ.
Then the difference between the integral I = ∫ 2π

0 f (x) dx and its n-point trapezoid
rule approximation In = (2π/n)

∑n
j=1 f (2π j/n) satisfies

|I − In| ≤ 4πM

exp(λn) − 1
. (1)

A similar theorem holds for Gauss–Legendre quadrature, with an ellipse replacing
the infinite strip.

Theorem 2 (Geometric convergence of Gauss–Legendre quadrature [21]) Suppose
that f is analytic with | f (z)| < M on the interior of the Bernstein ellipse Eρ , whose
foci are ±1 and whose semimajor and semiminor axis lengths sum to ρ > 1. Let C
be the constant C = 64ρ2/(15(1 − ρ−2)), let I = ∫ 1

−1 f (x) dx be the exact value of
the integral, and let In be its n-point Gauss–Legendre rule approximation. Then

|I − In| ≤ CM

ρ2n . (2)

To employ this result in practice, we will often need to find the value of the ellipse
parameter ρ so that the ellipse passes through a given point z ∈ C \ [−1, 1]. We quote
af Klinteberg and Barnett’s useful formula [1],

ρ = ρ(z) = |z ±
√
z2 − 1|, with sign chosen so that ρ > 1. (3)
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The performance of the Clenshaw–Curtis method is generally similar to that of
Gauss–Legendre quadrature, a phenomenon discussed in detail by Trefethen [20].
In particular, Trefethen writes that “our conclusion is that the Clenshaw–Curtis and
Gauss formulas have essentially the same accuracy unless [the integrand] is analytic
in a sizable neighborhood of the interval of integration.” In particular, we expect
Clenshaw–Curtis andGauss–Legendre quadratures to behavemore andmore similarly
as the nearby singularity approaches [−1, 1]. This prediction holds for the numerical
experiments thatwe carry out in Sect. 7.We therefore focusmainly onGauss–Legendre
and trapezoid integration (and improvements to them) in the remainder of this paper.

When we apply the preceding theorems, the twin goals of maximizing λ or ρ while
minimizing M are in tension. If f is entire or has only distant singularities and n is
fixed, this leads to an optimization problem for the value of λ or ρ that will produce
the strongest statement from the theorem. Of course, the relative importance of M
decreases as n grows. In the nearly singular case, where λ ≈ 0 or ρ ≈ 1, our priority
is to improve the convergence rate even if this results in a large increase in M . In
this paper we are assuming knowledge about the locations of the singularities of the
integrand, so λ and ρ are known. However, we make no assumptions about the nature
of those singularities or about the growth of | f (z)| away from the integration interval,
so M is unavailable. Therefore we present a range of options instead of searching for
an optimal strategy. The relatively cautious methods we consider do not make use of
all of the analyticity we have assumed for f (z), and are therefore less vulnerable to
the danger of fast growth in | f (z)| away from the integration interval. In contrast, the
more aggressive methods make use of all of the analyticity we have assumed. The
aggressive methods can boast of better theoretical convergence rates, but the errors
may reach machine precision before they actually decrease at the advertised rate. In
contrast, the more cautious methods have (slightly) smaller convergence rates but are
more likely to actually achieve these rates for challenging integrands.

3 Definitions of Jacobi elliptic functions

Here we give the definitions of some special functions that will be useful later, and we
comment on the implementations that we employ in numerical work. For φ ∈ R and
0 < m < 1, the incomplete elliptic integral of the first kind is

F(φ,m) =
∫ φ

0

dθ
√
1 − m sin2 θ

. (4)

The quarter period K (m) is defined by K (m) = F(π/2,m). For fixedm, the mapping
φ �→ F(φ,m) is smooth and strictly increasing on R. Therefore this mapping has
a smooth inverse, which is called the Jacobi amplitude function: am(t,m) satisfies
am(F(φ,m),m) = φ and F(am(t,m),m) = t . Note that F(φ,m) increases by
4K (m) whenever φ increases by 2π , and consequently am(t,m) increases by 2π
whenever t increases by 4K (m). We then define the elliptic sine and cosine and the
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delta amplitude functions:

sn(t,m) = sin(am(t,m))

cn(t,m) = cos(am(t,m))

dn(t,m) = d

dt
am(t,m) =

√
1 − m sin2

(
am(t,m)

)
. (5)

These are all periodic in t with period 4K (m), hence the term ‘quarter period’ for
K (m) (in fact dn is also 2K (m)-periodic). Note that y(t) = am(t,m) satisfies the
differential equation y′ =

√
1 − m sin2(y).

To construct the quadratures considered in this paper, we need to evaluate these
functions for real t only, and we use the ellipfun function from the Python library
mpmath [17] (this gives the three functions defined in (5), and then we obtain am by
taking the two-argument arctangent of sn and cn). To create Figs. 1, 2, and 3below,
which use complex t , we use the Mathematica function JacobiAmplitude, which
has branch cuts onvertical segments connecting the points 2sK (m)+(2t+1)K (1−m)i
for s, t ∈ Z.

4 Methods for periodic problems

We begin with the case where the integrand is 2π -periodic. We suppose that f is
analytic except at the points x = 2πk ± Bi for k ∈ Z, or along branch cuts extending
vertically from these points to infinity. The ordinary trapezoid rule will be an effective
choice if B is large, since Theorem 1 predicts errors of size e−Bn with n function
evaluations. We therefore assume that B is small but nonzero, so the integral is nearly
singular, and we consider several methods to use our knowledge of the domain of
analyticity of f in order to improve on the performance of the trapezoid rule.We begin
with a decomposition method and then continue with several conformal mappings.
Numerical examples demonstrating these techniques appear in Sect. 7.

4.1 Subdivision

One way to integrate over a full period of f is to choose an appropriately small
δ > 0 and then split the integral into subproblems on [−δ, δ] and [δ, 2π − δ]. The
subproblems are not periodic, so we apply Gauss–Legendre integration for each of
them. Rescaling the subintegrals linearly to [−1, 1], we have

∫ π

−π

f (x) dx = δ

∫ 1

−1
f (δt) dt + (π − δ)

∫ 1

−1
f (π + (π − δ)w) dw. (6)

The two subintegrals are singular at t = Bi/δ and at w = Bi±π
π−δ

, respectively. If
we want the overall integration procedure to converge as quickly as possible and
we assume n is large, we should choose δ so that both subproblems have the same
asymptotic convergence rate. Equivalently, both Bi/δ and Bi±π

π−δ
should lie on the same
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Fig. 1 Comparison of three conformal mappings for periodic problems when the integrand has a branch cut
extending vertically from 0+ 0.3i (red lines). The three grids are the conformal images of three rectangles
{x + iy : |x | ≤ π, 0 ≤ y ≤ λ}. The Jacobi amplitude mapping carries a wide strip (λ = 1.5) onto the
full, unbounded domain of analyticity we have assumed for the integrand. The boundary correspondance
map carries a thinner strip (λ = 0.81) into a subset of the region of analyticity, avoiding the sides of the
branch cut but extending to infinity for |x | > π/2. The iterated sine map carries a wide strip (λ = 1.46)
onto a bounded region which slightly overlaps the branch cut, an issue that disappears when the height B
of the singularity is less than 0.03. At bottom right, we compare the improved convergence rates for these
conformal maps as well as the splitting method and the ordinary trapezoid rule for B ∈ [10−4, 1]; larger
values of λ correspond to better convergence rates (color figure online)

ellipse with foci±1 in the complex plane. Lettingm denote the semiminor axis length,
we have the equations

02

1 + m2 + (B/δ)2

m2 = 1,
(π/(π − δ))2

1 + m2 + (B/(π − δ))2

m2 = 1.

After some simplification we arrive at the cubic equation 0 = 2δ3 + 2B2δ − B2π.

This has a unique real solution which we write in terms of hyperbolic sines as follows:

δ = 2B√
3
sinh

(
1

3
arcsinh

(
3π

√
3

4B

))

. (7)
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Fig. 2 Comparison of four conformal mappings designed to avoid a singularity at 2/3 + i/3. We plot the
image of four Bernstein ellipses with different values of ρ. The mapping introduced by Tee, in terms of
the Jacobi elliptic sine, permits a large value of ρ and uses all of the assumed analyticity. The ρ-value for
the map of Jafari-Varzaneh and Hosseini is nearly as large, and the image is bounded. The hyperbolic sine
mapping has the smallest ρ-value of the four, and it uses far less of the assumed domain of analyticity.
The iterated or double sinh transformation achieves a large value of ρ, but the image of the ellipse extends
far from the original interval and, while avoiding the singularity itself, wraps around it and significantly
overlaps any branch cut extending from the singularity, so this value overestimates the convergence rate.
The lower panel gives the ellipse parameter ρ for the four conformal mappings as well as the splitting and
Gauss–Legendre schemes for a singularity at 2/3 + Bi with B ∈ (0, 1)
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Fig. 3 Three conformal mappings that avoid a singularity on the real line, at 4/3. The Jacobi elliptic sine
mapping (top left) carries a large ellipse (ρ = 8.38) onto C\[4/3,∞). The exponential transformation (top
right) carries a smaller ellipse (ρ = 6.61) onto a large but bounded region. The quadratic transformation
(bottom left) carries a still smaller ellipse (ρ = 4.19) into amuch smaller bounded region. All three methods
improve substantially against ordinary Gauss–Legendre integration, which has ρ = 2.21 for A = 4/3. At
lower right we plot the relationship between ρ −1 and A−1 for these methods as well as the decomposition
method of Sect. 6.1

We expect the overall error for the splitting method to decay like ρ−n where ρ =
B/δ + √

1 + B2/δ2. This is an improvement over the trapezoid rule on the original
integral if ρ > eB , which occurs for B < 0.95.

For singularities lying very close to the real line, it is possible to get even faster
convergence via further (recursive) subdivision using the methods of Sect. 5. How-
ever, we found that even the recursive splitting does not lead to quadratures that are
competitive with the conformal mapping strategies that we discuss next, so we do not
consider this idea further.

4.2 Conformal maps for periodic problems

Amore powerful method for periodic problems is to compute the integral using the n-
point trapezoid rule following a transformation x(t) that preserves the interval [−π, π ]:

∫ π

−π

f (x) dx =
∫ π

−π

f (x(t))x ′(t) dt ≈ 2π

n

n∑

j=1

f
(
x

(
t j

))
x ′ (t j

)
(8)
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where t j = −π + 2π j/n. In view of Theorem 1, the error will decay like e−λn as
long as the new integrand f (x(t))x ′(t) is periodic and analytic on the strip Sλ = {t ∈
C : |�(t)| < λ}. We therefore seek a transformation x(t) which carries a wide strip
surrounding the real line in the complex t-plane into the domain of analyticity of f
in the complex x-plane, avoiding the branch cuts; another consideration is that the
derivative x ′(t) should not have any singularities for t ∈ Sλ.

Two recent works have presented transformations with the general properties we
seek: Tee constructed one using the Jacobi elliptic functions [15], while Berrut and
Elefante gave an elementary formula based on a Möbius transformation [3]. After
discussing these two methods, we propose a third, which we call the iterated sine
map. We illustrate the conformal maps in Fig. 1 with B = 0.3 along with the result-
ing predicted convergence rates. We then give numerical examples comparing these
three mappings, as well as the decomposition method from Sect. 4.1 and the ordinary
trapezoid rule, in Fig. 4.

4.2.1 The Jacobi amplitude map (JAM)

Tee created a conformalmap that carries a strip onto the doubly slit region of analyticity
of f [15]. Here we present a new derivation of the same formula using differential
equations rather than complex analysis. Our approach is based on the intuition that the
factor x ′(t) should be small when x is close to the singularity. To respect periodicity,
we wrap the real line onto the unit circle and imagine the singularity as a nearby
point (1, 0, B). We then assume that x ′(t) is linearly proportional to the distance from
(cos(x), sin(x), 0) to the singularity, leading to the boundary value problem

dx

dt
= k

√
(1 − cos(x))2 + sin2(x) + B2, x(−π) = −π, x(π) = π (9)

where the value of k is determined as part of the solution. The exact solution of this
BVP is

x(t) = −π + 2 am

(
π + t

π
K

(
4

4 + B2

)

,
4

4 + B2

)

(10)

where the Jacobi amplitude am and the quarter-period K were defined in Sect. 3.
In practice, we suggest computing the derivative dx/dt using the delta amplitude
dn(t,m) rather than the differential equation (9):

x ′(t) = 2

π
K

(
4

4 + B2

)

dn

(
π + t

π
K

(
4

4 + B2

)

,
4

4 + B2

)

. (11)

This leads to an improved convergence rate of

λ = π
K

(
B2/(4 + B2)

)

K
(
4/(4 + B2)

) ≈ −π/2

log(B/8)
− πB2

32 log(B/8)2
. (12)

The transformation (10) is the sum of the identity map and a 2π -periodic function,
and it carries the rectangle {x + iy : |x | ≤ π, |y| < λ} onto the doubly slit region
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Fig. 4 We test five strategies for integration of periodic, nearly singular integrals on twelve problems of
varying difficulty. The relative numerical errors (glyphs) generally decay with the predicted slopes (lines),
with exceptions in the last two rows due to particular features of the integrands as discussed in the text. The
predicted slopes depend only on the locations of the singularities, ±εi , and are identical within columns
of the figure. The iterated sine mapping (stars) gives the best results, except in the second row where the
Jacobi amplitude transformation (pluses) is better
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{x + iy : |x | ≤ π and |y| < py if x = 0}, thereby using all of the analyticity that we
have assumed for f . This is the most aggressive option for the periodic problem.

4.2.2 The boundary correspondence map (BCM)

Berrut and Elefante recently suggested an alternative mapping that avoids the use of
elliptic functions [3]. Adapting their method slightly, we get the formulas

a = exp(B) − √−1 + exp(2B) (13)

x(t) = −i log

(
exp(i t) + a

1 + a exp(i t)

)

(14)

x ′(t) = 1 − a2

a2 + 2a cos(t) + 1
for t ∈ R (15)

λ = − log(a) ≈ √
2B + B3/2

3
√
2

(16)

The formula (14) is quoted directly from [3], but the value of a that we list in (13) is
new. To derive it, note that x(t) is analytic for |�(t)| < log(a), but has singularities at
t = ±π ∓ i log a. We therefore set B = �(x(0 + i log(a))) = log(2a/(1 + a2)) and
solve for a to obtain (13). We also comment that the logarithm in (14) should be the
usual branch with imaginary part in (−π, π ], unlike in [3], since our integral is posed
on [−π, π ] with singularity near 0.

If B � 1, the resulting quadrature is much better than the ordinary trapezoid rule.
However, it does not perform nearly as well as the Jacobi amplitude map, as one can
see in Fig. 4. The conformal image of the strip (top right in Fig. 1) is unbounded and
does not closely approach the sides of the vertical branch cuts.

4.2.3 The iterated sine map (ISM)

We searched for another conformal mapping with the goal of reproducing the good
convergence rate of the Jacobi amplitude map with a simpler transformation. An
early candidate was the mapping φ(t) = t − a sin(t) for a ∈ [0, 1). This function
increases monotonically, it carries [−π, π ] to itself, and it has a small derivative when
0 = t = x(t) if a ≈ 1. These properties also hold for the compositions φ ◦ φ

and φ ◦ φ ◦ φ. The mapping x(t) = φ(t) is not competitive with the Jacobi amplitude
transformation, but with a suitable choice of parameter a, the mapping x(t) = φ(φ(t))
is.2 We call this the iterated sine map:

x(t) = t − a sin(t) − a sin(t − a sin(t)) (17)

x ′(t) = (1 − a cos t) (1 − a cos(t − a sin t)) . (18)

2 We did not see examples where φ ◦ φ ◦ φ was better than φ ◦ φ, but it is possible that such cases exist,
for example with B � 1 or for particular integrands.
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The optimal value of the parameter a depends on the location of the singularity 0±Bi .
To find it, we study the imaginary part of x(0 + iλ) as a function of λ. This increases
from 0 when λ = 0 to a local maximum when λ = arccosh(1/a). Setting the value of
this local maximum equal to B, we have the equation

−
√
1 − a2 + a sinh

(√
1 − a2 − arcsech(a)

)
+ arcsech(a) = B. (19)

This is difficult or impossible to solve analytically for a. In searching for a good initial
guess for Newton’s iteration, we found that the optimal value of a was very close to
1 + B/5 − B2/5, especially for B ≈ 0. The approximation is good enough that we
forego Newton iteration entirely and use a = 1 + B/5 − B2/5, with the caveat that
for B > 1.5, one should abandon the iterated sine map and use the ordinary trapezoid
rule without any change of variable. Therefore, the improved convergence rate is

λ = arccosh

(
1

1 + B/5 − B2/5

)

≈ √
2B1/5 + 5B3/5

6
√
2

− B4/5

5
√
2

+ 43B

80
√
2
. (20)

This mapping is illustrated at bottom left in Fig. 1; it is a ‘cautious’ method because
it carries the strip into a relatively small bounded region, but its convergence rate is
nearly as good as the Jacobi amplitude map. For B > 0.03 the image of the strip
overlaps the branch cut slightly, possibly impairing the convergence rate, but this
problem disappears for B < 0.03.

5 Methods for aperiodic problems with singularity off the real line

We now consider the problem of integrating an aperiodic function f (x) on [−1, 1],
assuming that f is analytic except for singularities at A ± Bi with B > 0, or along
branch cuts extending vertically from these points to infinity. Our goal is to use this
information about the integrand to improve on standard Gauss–Legendre quadrature.
As before, we describe a decomposition method and also several methods based on
conformal maps. Here we do not propose any novel mappings, but we give some new
results on the convergence properties of those previously described [6, 9, 10, 16].

5.1 Decomposition

A simple strategy for integration on [−1, 1] is to carry out separate Gauss–Legendre
integrations on [−1, δ] and [δ, 1], where δ depends on A ± Bi . Rescaling both
subproblems back to [−1, 1], we obtain

∫ 1

−1
f (x) dx = δ + 1

2

∫ 1

−1
f

(
δ − 1

2
+ δ + 1

2
t

)

dt

+1 − δ

2

∫ 1

−1
f

(
1 + δ

2
+ 1 − δ

2
w

)

dw. (21)
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Now the integrands on the right side of (21) have singularities at the points t∗ =
(2A− δ + 1+ 2Bi)/(1+ δ) and w∗ = (2A − δ − 1 + 2Bi)/(1 − δ), respectively. To
optimize the convergence rate, we must choose δ so that the Bernstein ellipses passing
through t∗ and w∗ coincide. In particular, their semimajor axis lengths must be equal.
Letting a denote this common length, we have the equations

(2A − δ + 1)2

a2(δ + 1)2
+ (2B)2

(a2 − 1)(δ + 1)2
= 1 = (2A − δ − 1)2

a2(δ + 1)2
+ (2B)2

(a2 − 1)(1 − δ)2
.

(22)
By eliminating a we arrive at the quartic polynomial equation

2δ(2A − δ + 1)2(A − δ) + 4δB2(2A − δ) = 2(δ + 1)2(2A − δ)(A − δ). (23)

The real solution with |δ| < 1 is given by

δ = sgn(A)

(

|A| −
√
2

2

√

A2 − 1 − B2 +
√

−4A2 + (
1 + A2 + B2

)2
)

. (24)

This formula agrees with Driscoll and Weideman’s result (equation 2.7 in [5]), and
gives a simple method for evaluating

∫ 1
−1 f (x) dx , given the location of the nearest

singularity x∗ = A + Bi : define δ using (24), then evaluate the right-hand side of
(21) using n/2-point Gauss–Legendre quadrature on each subintegral. Letting ρx∗
and ρt∗ = ρw∗ be the Bernstein ellipse parameters for the original and decomposed

problems,we see that the error decay rates of Theorem2 areρ−2n
x∗ andρn

t∗ , respectively.

Therefore the splitting procedure will be worthwhile if
√

ρt∗ > ρx∗ .

5.2 Conformal maps

We now turn to strategies based on conformal mapping. Writing t j and w j for the
nodes and weights of Gauss–Legendre quadrature on [−1, 1], we have

∫ 1

−1
f (x) dx =

∫ 1

−1
f (x(t))x ′(t) dt ≈

n∑

j=1

f (x(t j ))x
′(t j )w j (25)

The new integrand f (x(t))x ′(t) should be analytic on a large Bernstein ellipse in the
complex t-plane. In particular, the image of the ellipse should lie within the domain
of analyticity of f in the complex x-plane, and the derivative x ′(t) should not itself
be singular, at least for t within the Bernstein ellipse. We also require that x(t) ∈
[−1, 1] for t ∈ [−1, 1], and x(±1) = ±1. See Fig. 2 for illustrations of the four
transformations when A ± Bi = 2/3 ± i/3 as well as a plot of the convergence rates
for other values of B, and Fig. 5for numerical results.
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Fig. 5 Integration of the functions (57)–(60) by the methods of Sect. 5. Here “Tee” refers to the Jacobi
elliptic mapping, “JVH” is the composite mapping introduced by Jafari-Varzaneh and Hosseini, “2Sinh”
and “Sinh” are the iterated and ordinary hyperbolic sine mappings, “Split” is the decomposition strategy,
“GL” is unmodified Gauss–Legendre quadrature, and “CC” is Clenshaw–Curtis quadrature. Among these,
the ordinary sinh method generally gives the best results
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5.2.1 The hyperbolic sine map (Sinh)

We give a new derivation of the sinh transformation [10, 15], using a differential
equation. Motivated by the desire to keep the derivative x ′(t) small when x is near the
singularity A + Bi , we consider the BVP

x ′(t) = k
√

(x − A)2 + B2, x(−1) = −1, x(1) = 1 (26)

where the proportionality constant k is to be found as part of the solution. This can be
solved by hand, yielding the transformation

x(t) = A + B sinh

(
1 − t

2
arcsinh

(−1 − A

B

)

+ 1 + t

2
arcsinh

(
1 − A

B

))

. (27)

The derivative x ′(t) is an entire function, so the convergence rate will be limited by
the analyticity of f (x(t)). The value of t for which x(t) = A + Bi is

t∗ = 1 + iπ − 2 arcsinh((1 − A)/B)

arcsinh((1 − A)/B) + arcsinh((1 + A)/B)
(28)

and we can use this in (3) to obtain the improved value of the ellipse parameter ρ. If
the singularity is on the imaginary axis, we have the formula

A = 0 �⇒ ρ = π + √
π2 + 4 arcsinh(1/B)2

2 arcsinh(1/B)
. (29)

5.2.2 The elliptic sine map (Tee)

By conformally mapping a Bernstein ellipse onto the doubly slit plane, Tee and Hale
[7] obtained the transformation x(t) given by the equations

c = sgn(A)√
2

√

A2 + B2 + 1 −
√

(A2 + B2 + 1)2 − 4A2 (30)

m =
(
−B + √

B2 + 1 − c2
)4

(1 − c2)2
(31)

h(t) = m1/4 sn

(
2K (m)

π
arcsin(t),m

)

(32)

x(t) = c

m1/4 − 1 − m1/2

2m1/4

(
1 − c

h(t) − 1
+ 1 + c

h(t) + 1

)

. (33)

Note that we have condensed their notation. The intermediate conformal map h(t),
carrying an ellipse to the unit circle, is due to Schwarz [13, 14]. The enlarged Bernstein

123



41 Page 16 of 31 BIT Numerical Mathematics (2023) 63 :41

ellipse has parameter given by [7]

ρ = exp

(
πK (1 − m)

4K (m)

)

. (34)

For convenience in computing the derivative x ′(t), we note that

h′(t) = 2m1/4K (m)

π
√
1 − t2

cn

(
2K (m)

π
arcsin(t),m

)

dn

(
2K (m)

π
arcsin(t),m

)

. (35)

This aggressive strategy takes full advantage of the assumed analyticity of the integrand
and has a large convergence rate.

5.2.3 Jafari–Varzaneh and Hosseini’s mapping (JVH)

Jafari-Varzaneh and Hosseini used the composition of the hyperbolic sine mapping
and another similar function to obtain a newmapping [9].Withα = 1

2 arcsinh
( 1−A

B

)+
1
2 arcsinh

( 1+A
B

)
, their formulas can be condensed to

x(t)=A+B sinh

(

arcsinh

(
1 − A

B

)

−α + 2αL+π

2
tan

(

t arctan

(
2α

2αL+π

)))

(36)

where L is a tunable parameter between 0.2 and 0.9. In light of their statement that
“experiments show that different values of this parameter approximately give the same
results,” we choose to take L = 0.5 in all cases.We solved for the value of t∗ satisfying
x(t∗) = A + Bi and obtained

t∗ = arctan

(
2α − 2 arcsinh

( 1−A
B

) + iπ

2αL + π

)

/ arctan

(
2α

2αL + π

)

, (37)

which can be used in (3) to find a prediction of the new convergence rate. If the
singularity is on the imaginary axis, we find the formula

A = 0 �⇒ ρ = arctanh(c1) + √
arctan(c2)2 + arctanh(c1)2

arctan(c2)
(38)

where c1 = π/(π + arcsinh(1/B)) and c2 = 2 arcsinh(1/B)/(π + arcsinh(1/B)).
This strategy is more cautious than Tee’s elliptic sine mapping but more aggressive
than the hyperbolic sine tranformation.

5.2.4 The iterated sinh map (2Sinh)

For some problems, Elliot and Johnston suggested applying the sinh mapping
twice in succession [6]. To construct the mapping, we can use (28) to obtain the

123



BIT Numerical Mathematics (2023) 63 :41 Page 17 of 31 41

singularity location after one sinh transformation and then apply another sinh trans-
formation accordingly. For convenience, we simplify to obtain the formula x(t) =
A + B sinh

(
π
2 sinh (
(t))

)
, where 
(t) is the linear function


(t)= t + 1

2
arcsinh

(
2

π
arcsinh

(
1 − A

B

))

+ t − 1

2
arcsinh

(
2

π
arcsinh

(
A + 1

B

))

.

(39)
The new singularity lies at

t∗ = 1 + iπ − 2 arcsinh
( 2

π
arcsinh((1 − A)/B)

)

arcsinh
( 2

π
arcsinh((1 − A)/B)

) + arcsinh
( 2

π
arcsinh((1 + A)/B)

) (40)

instead of x∗ = A ± Bi . This can be used with (3) to find the ellipse parameter; in
particular, when A = 0 this gives the formula

A = 0 �⇒ ρ = π +
√

π2 + 4 arcsinh
( 2

π
arcsinh(1/B)

)2

2 arcsinh
( 2

π
arcsinh(1/B)

) . (41)

This map tends to wrap the Bernstein ellipse onto a relatively large region surround-
ing the singularity (overlapping the branch cut if there is one). Elliot and Johnston
observed that the iteration gives better results for what they term nearly strongly sin-
gular problems, meaning integrals that become divergent when the singularity reaches
the real line. In contrast, they present experiments showing that a single sinh trans-
formation is better for nearly weakly singular integrals (which become convergent
improper integrals when the singularity reaches the integration interval). This dis-
tinction is outside our scope because it relies on information about the nature of the
singularity in addition to its location.

6 Methods for aperiodic problems with singularity on the real line

We now consider the case where the integrand f (x) is analytic except for an isolated
singularity at some real A with |A| > 1, or possibly with a horizontal branch cut
from A to infinity. This situation is less common than the fully complex case, both for
quadrature problems and for rational barycentric interpolation and Chebyshev spectral
methods, and accordingly has received less attention. We describe several strategies
for using the analyticity of f in order to improve on Gauss–Legendre integration with
n nodes; to our knowledge these are all new.

6.1 Subdivision

One simple way to take advantage of information on the location of the singularity is
to carry out separate Gauss–Legendre integrations, each using n/2 nodes, on [−1, δ]
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and [δ, 1], where δ is given by (24). With B = 0, that formula simplifies to

δ = sgn(A)
(
|A| −

√
A2 − 1

)
. (42)

As above, the improved convergence rate comes from putting the rescaled singularity
(2A − δ + 1)/(1 + δ) into (3).

6.2 Conformal maps

We again follow (25), applying Gauss–Legendre integration following a change of
variable. The mapping x(t) must preserve the interval [−1, 1] and fix its endpoints,
and ideally should carry a large Bernstein ellipse in the t-plane into the domain of
analyticity of f .We introduce three possibilities and illustrate them inFig. 3; numerical
examples appear in Fig. 6.

6.2.1 Quadratic transformation (Quad)

There is a unique second-degree polynomial x(t) which satisfies the boundary con-
ditions x(−1) = −1 and x(1) = 1, satisfies x ′(t) = 0 when x = A, and is strictly
increasing for −1 ≤ t ≤ 1. It is given by

x(t) = −1

2
sgn(A)

(
|A| −

√
A2 − 1

)
(t2 − 1) + t . (43)

The unique value of t satisfying x(t) = A is the semimajor axis length of the enlarged
ellipse; this leads to the improved ellipse parameter

ρ = |A| +
√
A2 − 1 +

√(
|A| +

√
A2 − 1

)2 − 1. (44)

This relatively cautious strategy gave the best results for most of our test problems.

6.2.2 Exponential transformation (Exp)

By solving the BVP

dx

dt
= k|x − A|, x(−1) = −1, x(1) = 1, (45)

where the value of k is determined as part of the problem, we obtain an exponential
change of variable:

x(t) = A + (1 − A) exp

(
1 − t

2
log

(
A + 1

A − 1

))

(46)
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Fig. 6 Integration of the functions (61)–(64) via the exponential, quadratic and Jacobi elliptic sine maps
alongwith the splittingmethod and ordinaryGauss–Legendre andClenshaw–Curtis quadrature as discussed
in Sect. 6. The quadratic transformation is best in the last three rows, while the exponential map is best in
the first row
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There is no value of t satisfying x(t) = A, so the composition f (x(t)) is entire if
f has an isolated singularity. On the other hand, if f has a branch cut from A to
infinity, then the composition is analytic only on the Bernstein ellipse with parameter
ρ = s + √

1 + s2 with s = 2π/|log((A + 1)/(A − 1))|.

6.2.3 Ellipse-to-slit-plane map (JESN)

We have already seen the Schwarz mapping carrying the interior of an ellipse onto the
unit disk. We can compose this map with the transformation z �→ −(1− z)2/(1+ z)2

to obtain a mapping from the ellipse to the slit plane C\[0,∞). Then, by scaling and
translation, we can arrange for x(±1) = ±1. The transformation and its derivative are
given by

c1 = 17 − 80A2 + 64A4 (47)

c2 = (4A2 − 3)|A|
√
A2 − 1 (48)

m = c1 + 16c2 − 4
√
2
√

(A2 − 1)(8 + c1(4A2 − 1)) + c1c2 (49)

h(t) = m1/4 sn

(
2K (m)

π
arcsin(t),m

)

(50)

x(t) = h(t) + 2
√
m

(
1 + h(t) + h(t)2

) + m h(t)

(1 + h(t))2
(
1 + √

m
)
m1/4

(51)

x ′(t) = −h′(t)
(h(t) − 1)

(
1 − √

m
)2

(1 + h(t))3
(
1 + √

m
)
m1/4

(52)

while the new convergence rate is ρ = exp(0.25πK (1−m)/K (m)). This aggressive
strategy was more effective than the splitting method but less effective than the other
conformal maps in our tests.

7 Numerical examples

We now assess the performance of all of the strategies described above on a collection
of nearly singular integrals of varying difficulty. We plot relative errors by comparing
to reference solutions obtained through high-precision computations in Mathematica.
We begin with a careful discussion of the results for periodic problems and then treat
the aperiodic problems more briefly, since the themes are similar.

7.1 Periodic examples

For periodic problems, we consider integrals of the form
∫ π

−π
fi (x; ε) dx for ε ∈

{10−1, 10−2, 10−3} where fi is one of the following:

f1(x; ε) = log(cosh(ε) − cos(x)) + (cosh(ε) − cos(x))3/10 (53)
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f2(x; ε) = 1√
cosh(ε) − cos(x)

(54)

f3(x; ε) = cos2(6x)√
cosh(ε) − cos(x)

(55)

f4(x; ε) =
√
cosh(1) + cos(x)√
cosh(ε) − cos(x)

. (56)

Because cosh(ε) = cos(εi), all of these integrands have branch cuts extending ver-
tically to infinity from x = 2πk ± εi , for k ∈ Z. The first three integrands have no
singularities other than these branch cuts, while f4 has additional branch cuts extend-
ing to infinity from 2πk + π ± 1i . The results, displayed in Fig. 4, suggest that the
iterated sine mapping method usually reaches machine precision with a similar or
smaller number of quadrature nodes n compared to the Jacobi amplitude mapping,
and that these two methods give much better results than the other three methods. We
now make more detailed comments about each row of the figure.

For the first integrand f1, a sum of logarithmic and fractional-power singularities,
all five methods converge with the predicted slopes (top row of Fig. 4). The Jacobi
amplitude mapping has the best slope, but the iterated sine mapping reaches machine
precision at the same time or slightly earlier, with about n = 50 quadrature nodes.

For the second integrand f2, which has an inverse root singularity, the Jacobi ampli-
tude mapping gives remarkably good results. This is something of a lucky accident
particular to this integrand (if one multiplies f2 by cos(x), the result, not pictured,
is similar to the top row of Fig. 4). We also see that the boundary correspondence
mapping converges twice as quickly as predicted when n is odd, but converges at the
expected rate for even n (the precise n sampled in Fig. 4 are the multiples of 7 up to
147). For the smaller values of B (middle and right column of Fig. 4), this is still much
slower than the ISM or JAM results.

The third integrand f3 is the product of f2 and the entire function cos2(6x), which
grows rapidly away from the real line. Therefore we expect the constant M in The-
orem 1 to play a more influential role in the third row of Fig. 4 than in the second.
To be more precise, the rapid growth of | f3| away from the real line means that with
moderate n, the optimal statement of the theorem comes from setting λ somewhat
smaller than the full domain of analyticity would permit. This effect will fade as n
grows and eventually the errors should decrease at the expected rate, although this
will not be observable if the approximation reaches machine precision before n has
grown sufficiently. In fact, for ε = 1/1000, both the iterated sine mapping and the
Jacobi amplitude mapping converge more slowly than predicted, and the iterated sine
mapping significantly outperforms the Jacobi amplitude mapping. We also remark
that the splitting method, while not converging as quickly as the best methods, does
converge at the predicted rate, which is unsurprising given that it uses analyticity only
in two thin ellipses which do not extend far from the real line.

Finally we turn to the fourth integrand, which has a different domain of analyticity.
While both the JAM and BCM methods have extensions to the the case of multiple
singularities [3, 15], we choose to construct the mappings with reference only to the
singularities at 0±εi , ignoring themore distant ones atπ±i . Thismeans that the results
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based on conformal mapping should converge somewhat more slowly than expected,
a prediction confirmed by the last row of Fig. 4. However, for small B the iterated sine
mapping is much less impaired by this failure of analyticity than the Jacobi amplitude
and boundary correspondence mappings. We can explain this difference by examining
the illustrations of the three mappings in Fig. 1. Indeed, on the lines x = ±π + ξ i ,
the iterated sine mapping assumes analyticity only for a bounded range of ξ , while the
other mappings assume analyticity for all ξ . This makes the singularity at ±π ± 1i
more hazardous for the BCM and JAM methods, which rely more completely on the
analyticity we have assumed.

7.2 Aperiodic problems with nonreal singularity

For this setting we modify the test problems slightly so that the integration interval is
[−1, 1] and the singularity lies at 2/3 ± εi . Specifically, we use

g1(x; ε) = − log(cosh(x − 2/3) − cos(ε)) + (cosh(x − 2/3) − cos(ε))0.3 (57)

g2(x; ε) = 1√
cosh(x − 2/3) − cos(ε)

(58)

g3(x; ε) = cos2(6πx)√
cosh(x − 2/3) − cos(ε)

(59)

g4(x; ε) =
√
cosh(x + 2/3) − cos(1)√
cosh(x − 2/3) − cos(ε)

. (60)

Because the integration interval is smaller by a factor of π , we take ε ∈ {1/30, 1/300,
1/3000} to obtain problems of comparable difficulty to the previous subsection.

As above, the third integrand is the product of the second integrand and an entire
function, while the fourth integrand has an additional pair of singularities at x =
−2/3 ± i . The results, given in Fig. 5, are very similar to the periodic examples. In
particular, themapping that uses the Jacobi elliptic functions to carry aBernstein ellipse
onto the full domain of analyticity of the integrand does not give the best results, even
though its predicted convergence rate is the best; instead, the more cautious hyperbolic
sine mapping appears to be the best general choice. For these problems, the iterated
sinh map does not converge at the large rate suggested by (40); its performance is
similar to Tee’s elliptic mapping.

All of these examples have A = 2/3. In other tests, not plotted, we found similar
results for integrands with singularities at 1 + ε + εi for ε = 1/30, ε = 1/300, and
ε = 1/3000. In particular, the sinh map again gave the best results overall.

7.3 Aperiodic problems with real singularity

We now integrate on [−1, 1] with singularity at 1 + ε ∈ R. Specifically, we use

h1(x; ε) = − log(1 + ε − x) + (1 + ε − x)0.3 (61)
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Fig. 7 To demonstrate our integration strategies we consider the problem of evaluating a Stokes single-layer
potential where the target point is near but not on the surface of integration. The surface is a fiber whose
centerline follows a closed path on the surface of a torus (left). We then let the target point range over
a square domain that is punctured in three places by the fiber (right). The integrals become numerically
challenging when the target point approaches the surface. To organize the integration we subdivide the fiber
surface into sixteen panels, as depicted in green and orange at right (color figure online)

h2(x; ε) = 1√
1 + ε − x

(62)

h3(x; ε) = cos2(6πx)√
1 + ε − x

(63)

h4(x; ε) =
√
cosh(x + 2/3) − cos(1)√

1 + ε − x
. (64)

We again take ε ∈ {1/30, 1/300, 1/3000}.
The results, in Fig. 6, indicate that the quadratic transformation gives the best results

for h2, h3, and h4, while the exponential transformation is better for h1.

8 Application: evaluation of single-layer potentials in Stokes flow

As an application of the preceding methods, we will evaluate some nearly singular
surface integrals that arise in the study of viscous fluid flow. Specifically, we will
consider the Stokes single-layer potential defined by

S(x) =
∫

D

(
f ( y)

|x − y| + x − y
|x − y|3 ((x − y) · f ( y))

)

dSy (65)

where D is the surface of the slender fiber depicted in the right panel of Fig. 7 .
The integral has a physical meaning: it is the velocity field that results when point
forces of strength f are distributed over the surface D. The integral is challenging
when the observation point x is near but not on the surface D. Although the surface
has an irregular shape, the integral has a known exact solution when the density f
is equal to the outward pointing surface normal: in this case the resulting velocity
is zero everywhere, and the surface traction f is due solely to hydrostatic pressure.
This arrangement allows us to test various quadrature strategies in a setting where
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the geometry is nontrivial but an exact solution (zero) is known. Note that we have
omitted the usual factor of 1/(8π) in (65).

The problemof computing nearly singular surface integrals arises inmany situations
when a linear PDE is solved via integral equations. For the Stokes PDE, a number of
methods have been developed that take into account the particular form of the Stokes
fundamental solutions. Prominent recent examples include singularity subtraction and
local expansion [18, 19], quadrature by expansion [2], and singularity swapping [1].
Another relevant method is the hedgehog extrapolation procedure [12], which is based
on the observation that the nearly singular integrals in theBIE setting canbe regularized
by moving a target point farther away from a nearby surface. Here we attempt to
address this challenge without using special knowledge about the particular form
of the integrands. This test problem involves a toroidal topology, which we break
into topologically cylindrical patches so that we can demonstrate both the periodic
quadratures of §4 and the aperiodic quadratures of §5. The fact that the fiber has circular
cross sections will allow us to find the singularities of the inner integral analytically,
on paper; this is convenient because it will allow us to avoid a numerical rootfinding
procedure in one of the two directions. For a surface that is instead decomposed into
topologically rectangular patches, we would use an outer product of aperiodic rules
generated in a similar manner, and our ability to find the singularities analytically will
depend on the surface geometry.

To describe the fiber surface, we begin by parameterizing the surface of a torus
whose centerline has unit radius and whose circular cross sections have radius 0.4:

v(θ, φ) = (1 + 0.4 cos(φ))

⎛

⎝
cos θ

sin θ

0

⎞

⎠ + 0.4 sin φ

⎛

⎝
0
0
1

⎞

⎠ . (66)

Thenwe construct a closed curve on this surface by letting θ andφ be periodic functions
of a (non-arclength) parameter s:

w(s) = v
(
s, 2 exp(cos(s + 1)) cos(2s) + 2s

)
. (67)

The path w appears on the surface of the torus in the left panel of Fig. 7. Let T (s)
denote the unit tangent vector for the curve, T (s) = w′(s)/|w′(s)|. To define the fiber
surface we need vectors N(s) and B(s) so that {T , N, B} is an orthonormal frame.
To avoid the derivatives involved in the standard Frenet definition, we plotted T (s) as
a path on the unit sphere and noticed that it always remains far from the line through
± p, where p = 〈10, 3, 6〉. Thus we can complete the frame by putting

N(s) = T (s) × p
|T (s) × p| , B(s) = T (s) × N(s). (68)

Finally we define the fiber surface D via

y(s, t) = w(s) + ε cos(t)N(s) + ε sin(t)B(s) (69)
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Fig. 8 A surface quadrature rule with 242 nodes (blue dots) on one panel, customized for a target point (pink
dot) that is near but not on the surface. We generated this rule with the hyperbolic sine transformation in the
centerline direction, s, and the iterated sine map in the circumferential direction, t (calculated separately
for each value of s) (color figure online)

where s and t both range from0 to 2π , and the radius ε is a constant (we take ε = 0.05).
The surface normal vector for the fiber is

f (s, t) = ν(s, t) = cos(t)N(s) + sin(t)B(s) (70)

while the Jacobian or surface integration weight is

J (s, t) =
∣
∣
∣
∣
∂ y
∂s

× ∂ y
∂t

∣
∣
∣
∣ = ε(|w′(s)| − εκ1 cos(t) − εκ2 sin(t)) (71)

where κ1,2 are defined by κ1 = w′(s) · N(s) and κ2 = w′(s) · B(s).

8.1 Reference solution

Wefirst evaluate the integral using ordinary Gauss–Legendre quadrature and the trape-
zoid rule. We subdivide the fiber surface into 16 panels using a heuristic that considers
the panel lengths and their maximum curvatures; the panel endpoints are at s ∈ {0,
0.58, 1.21, 1.83, 2.35, 2.76, 3.19, 3.86, 4.26, 4.65, 5.04, 5.24, 5.41, 5.57, 5.75, 6.05,
2π}. On each panel, we use the outer product of a Gauss–Legendre grid in s and an
equally spaced grid in t , using the same quadrature rule for every target point. The
target points range over a square domain {(x, y, 0) : 0 < x < 1,−5/8 < y < 3/8}
that is punctured in three locations by the fiber surface. The exact velocity is zero, and
we depict the norm of the computed velocity at each target point as a contour plot in
the first column of Fig. 9. Predictably, we see that this combination of Gauss–Legendre
and trapezoid rules is effective only when the target is far from the fiber surface.

8.2 Finding the singularities

In order to improve on the reference solution using themethods described in this paper,
we need to find the singularities of the inner (periodic) integrand in the complex t-
plane for fixed s, as well as the singularities of the outer integrand in the complex
s-plane. Although the outer integral in s is also 2π -periodic, we chose to integrate
separately on each of the panels, leading to sixteen aperiodic subproblems.

Because the cross sections of the fiber are circles, we can find the singularities for
the periodic, inner problem on paper as follows. We begin by writing (65) as a double
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integral. With r(s, t) = x − y(s, t) we have

S(x) =
∫ 2π

0

∫ 2π

0

(
f ( y(s, t))
|r(s, t)| + r(s, t)

|r(s, t)|3 (r(s, t) · f ( y(s, t)))
)

J (s, t) dt ds.

(72)
For fixed s, the vector r(s, t) traces out a circle at constant speed as t varies. The
denominators can therefore be written as trigonometric functions of t and we can
solve analytically for the complex value of t where they vanish. To do this we write

|r(s, t)|2 = ∣
∣x − w(s) − ε cos(t)N(s) − ε sin(t)B(s)

∣
∣2

= |x − w(s)|2 + ε2 − 2ε

×
(
cos(t)(x − w(s)) · N(s) + sin(t)(x − w(s)) · B(s)

)

= |x − w(s)|2 + ε2

− 2ε
√

((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2 cos(t − ξ)

where the angle ξ is defined by

cos(ξ) = (x − w(s)) · N(s)
√

((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2
,

sin(ξ) = (x − w(s)) · B(s)
√

((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2
.

Therefore, r(s, t) vanishes when

cos(t − ξ) = |x − w(s)|2 + ε2

2ε
√

((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2

and we find that the required value of t is

t∗ = ξ +√−1 arccosh

(
|x − w(s)|2 + ε2

2ε
√

((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2

)

. (73)

This allows us to choose a quadrature for the inner integral using knowledge of the
integrand’s complex singularity, as in Sect. 4.

We will need some numerical rootfinding to locate the singularities of the outer
integral. We note that the inner integral will diverge if the imaginary part of t∗ in (73)
vanishes. Therefore, the complex singularities of the outer integrand are the solutions
of the equation

(
|x − w(s)|2 + ε2

)2 = 4ε2
(
((x − w(s)) · N(s))2 + ((x − w(s)) · B(s))2

)
. (74)
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To obtain these roots we find the eigenvalues of a 49 × 49 Chebyshev colleague
matrix. This size is chosen to balance the cost of the eigenvalue computation and the
accuracy of the computed roots, with inspiration from the Chebfun system [4] wherein
rootfinding problems are recursively subdivided to obtain systems of size about 50.
For each computed root we then find the corresponding Bernstein ellipse parameter
ρ. If all computed ρ-values are greater than 2, we revert to ordinary Gauss–Legendre
quadrature; otherwise we use the root with the smallest ρ-value to accelerate the
quadrature in the outer integral.

8.3 Improvement via decomposition and conformal mapping

Overall, the surface quadrature procedure that we have outlined is laborious: for each
target point and within each panel, we find a customized 1D quadrature rule for the
aperiodic outer integral. Then, for each of the resulting outer quadrature nodes, we
find a customized 1D quadrature rule for the periodic inner integral. An example
of the resulting surface quadrature rule appears in Fig. 8 . Although our goal is to
demonstrate the accuracy of the underlying quadratures rather than to address the
fast generation of rules for many target points, we make one adjustment for the sake
of efficiency: for each panel, we revert to the reference Gauss–Legendre/trapezoid
scheme for all targets whose distance to the panel surface is greater than 7ε.
This allows us to use the same quadrature rule simultaneously for many distant
targets.

The second column of Fig. 9 shows the result of combining the periodic decom-
position method for the inner integral with the aperiodic decomposition method in
the outer integral. This leads to more correct digits than the reference solution when
the target point is near the surface. However, the third column, the result of using
the iterated sine map for the inner integral and the hyperbolic sine map for the outer
integral, is dramatically better. We chose the sinh and ISM methods because of their
simplicity and superior performance on the tests of Sect. 7. However, other combi-
nations of the conformal mapping strategies, including the Jafari-Varzaneh map and
the various options based on Jacobi elliptic functions, yield similar (but not better)
results for this application. Note that we used the Quad map of 6 if the numeri-
cal rootfinding procedure found a real-valued singularity outside [−1, 1], which did
happen occasionally.

Our Fig. 9 should be compared with Figures 2, 3, and 8 of [1], a related work on line
integrals, where the authors make use of additional information about the nature of the
singularities, not merely their location, and accordingly develop a more powerful but
less general method for accelerating the quadrature of the nearly singular integrals.
We note that they developed methods for finding and using multiple root pairs, but
found in practice that this did not give better results than the methods based on a single
root pair.

In addition to the contour plots of Fig. 9, we studied the convergence of the outer
product rules inmore detail for three specially chosen target points, namely x = w(s)+
hεB(s) for s = 5.37 and h ∈ {2, 1.1, 1.01}. Note that with h = 1 we would arrive at
a point on the fiber surface with surface normal B. Therefore the targets lie near but
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n
=

16
Gauss-Legendre Decomposition Sinh / ISM

n
=

24
n
=

32

−14

−12

−10

−8

−6

−4

−2

Fig. 9 Contour plot of errors in the single-layer problem as the target point ranges over a square domain,
punctured in three places by the slender fiber. The error bar reports log10(|u(x)|) where u(x) is the single-
layer velocity induced at the target point x by a surface traction which equals the unit vector (u = 0 if
the integration is done correctly). The columns of the figure show different quadrature strategies, while the
rows of the table show differing densities of quadrature nodes; for example, n = 32 means that we use
32 · 32 nodes on each panel (there are always 16 panels)

not on the surface, at distances of ε, ε/10, and ε/100 respectively. The value s = 5.37
was chosen so that these targets are approximately on the square domain that we used
for the targets of Fig. 9, and the choice of B(s) and not N(s) for the normal direction
is so that the most distant target point does not approach another section of the fiber.
In Fig. 10we display the convergence curves, again by comparison to the known exact
solution (zero). Unsurprisingly, we find that the reference Gauss/Trapezoid method
converges more slowly than the splitting/splitting method, which in turn converges
more slowly than the conformal mapping methods. Among these, we found little
difference between the convergence behavior of a combination of cautious methods
(Sinh/ISM) and a combination of aggressive methods (Tee/JAM). It is encouraging to
see these conformal mapping techniques yield double precision accuracy with about
n = 60 nodes in each direction, even for a target that is very close to the surface
(within 1% of the fiber radius in the third column of Fig 10).
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Fig. 10 Convergence plots for three target points located at varying distances d from the fiber surface.
We plot the size of the computed single-layer potential integral (72) versus n, where n is the quadrature
order in each direction (there are n2 quadrature nodes on each of the 16 panels). The reference quadrature,
namely Gauss–Legendre in s and the trapezoid rule in t , converges slowly compared to the other methods.
The splitting strategy, following Sect. 5.1 in s and Sect. 4.1 in t , is better than the reference quadrature but
slower than the conformal mapping methods. We tested a combination of cautious methods (Sinh/ISM)
and a combination of aggressive methods (Tee/JAM) and found that these had similar convergence rates
for this problem, with the aggressive version being slightly faster to reach machine precision. The values
of n considered here are the multiples of 8 up to 72

9 Conclusion

We surveyed a number of possible strategies for accelerating the quadrature of nearly
singular integrals given knowledge of the location of the nearby singularity. We found
that the splitting methods are less effective than the conformal maps. Among the many
possible conformal maps, we can make suggestions for general use: we recommend
the iterated sine map for periodic problems, the sinh map for aperiodic problems
with complex singularity, and the quadratic map for aperiodic problems with real
singularity. We demonstrated the effectiveness of the resulting quadratures on some
nearly singular integrals from Stokes flow, namely the single-layer potential on the
curved, two-dimensional surface of a slender fiber embedded in R

3. In this integral
equation context, our method was capable of achieving high accuracy with a modest
number of function evaluations even for target points lying very close to the surface
of integration. On the other hand, each target point currently requires a customized
quadrature rule. We have not made a careful attempt to compare the costs of our
computational method to other options in the BIE setting; we view the simplicity of
our approach to be its principal advantage, and we do not expect our approach in its
current form to be competitive with existing ones in terms of computational cost.

A natural priority for future work is to ask what additional improvements are pos-
sible when we have information about the nature of the nearest singularity in addition
to its location. For example, the integrand f (x) = ((x − 0.3)2 + ε2)p has the same
domain of analyticity whether we take p = 2.5 or p = −2.5, and accordingly the
Gauss–Legendre quadrature errors will eventually decay at the same rate in either case.
However, it is also true that Gauss–Legendre integration reaches machine precision
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much more quickly with the positive value of p. This statement can be made more
precise with the aid of the theorems of Sect. 2, but it remains to make use of this
information to optimize the choice of conformal map.

A second issue arises when many integrals over the same surface, but with varying
singularities, need to be computed. The strategy described here would use customized
quadratures for each of the singularities, resulting in a possibly expensive interpolation
operation. It would be valuable to partition the complex plane into regions such that any
singularitywithin a region can be integrated to prescribed accuracywith a precomputed
reference set of quadrature nodes and weights.
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