
BIT Numerical Mathematics (2023) 63:36
https://doi.org/10.1007/s10543-023-00979-7

A fast randomized algorithm for computing an
approximate null space

Taejun Park1 · Yuji Nakatsukasa1

Received: 14 October 2022 / Accepted: 12 May 2023 / Published online: 25 May 2023
© The Author(s) 2023

Abstract
Randomized algorithms in numerical linear algebra can be fast, scalable and robust.
This paper examines the effect of sketching on the right singular vectors corresponding
to the smallest singular values of a tall–skinny matrix. We analyze a fast algorithm by
Gilbert, Park andWakin for finding the trailing right singular vectors using randomiza-
tion by examining the quality of the solution using multiplicative perturbation theory.
For an m × n (m ≥ n) matrix, the algorithm runs with complexity O(mn log n + n3)
which is faster than the standard O(mn2) methods. In applications, numerical experi-
ments show great speedups including a 30× speedup for the AAA algorithm and 10×
speedup for the total least squares problem.

Keywords Multiplicative perturbation theory · Null space · Randomized algorithm ·
Sketching · Singular subspace

Mathematics Subject Classification 65F20 · 65F55 · 15A18 · 15A42

1 Introduction

The right singular vector(s) corresponding to the smallest singular value(s) is used for
finding the null space of a tall–skinny matrix A, solving total least squares problems
[12, 33] and finding a rational approximation via the AAA algorithm [26], among
others. In this work, we study the randomized algorithm from [11] by analyzing the
accuracy of the result using multiplicative perturbation theory developed by Li [19].

Communicated by Lothar Reichel.

B Taejun Park
park@maths.ox.ac.uk

Yuji Nakatsukasa
nakatsukasa@maths.ox.ac.uk

1 Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-023-00979-7&domain=pdf
http://orcid.org/0000-0001-8759-6705

36 Page 2 of 27 BIT Numerical Mathematics (2023) 63 :36

Randomized algorithms in numerical linear algebra have proved to be very useful,
improving speed and scalability of linear algebra problems [15, 21]. In particular, the
sketching techniques have been shown to be a powerful tool in problems such as low-
rank approximation, least squares problems, linear systems and eigenvalue problems
[25, 35]. In particular, for low-rank approximation problems, randomized SVD [4, 15,
24, 31] has been very successful. They give a near-optimal solution to the low-rank
matrix problems at a lower complexity than traditional methods. These algorithms
focus on approximating the top few singular values and their corresponding singu-
lar vectors. On the other hand, relatively little attention has been paid to the bottom
singular values and their corresponding singular vectors. These are often needed in
problems such as total least squares [12, 33]. In particular, the right singular vector(s)
corresponding to the zero singular value span the null space. Also, the singular vec-
tor corresponding to the smallest singular value minimizes the norm of the error or
residual, for example, in total least squares problems [12] and the AAA algorithm for
rational approximation [26].

In this work, we will focus on the smallest (few) singular value(s) and their cor-
responding right singular vector(s). For a tall–skinny matrix A ∈ R

m×n , they are the
solution to the following optimization problem

min
V ∗V=Ik

‖AV ‖F . (1)

The standard method for computing the null space or the last right singular vector
corresponding to the smallest singular value is to use the SVD or rank-revealing
factorizations such as RRQR factorizations [3, 17], which costs O(mn2) flops for an
m × n matrix A with m ≥ n. There are other methods such as the TSQR [8] and
Cholesky QR which has the same complexity O(mn2), but can be improved with
parallelization. In addition, Cholesky QR uses the Gram matrix which squares the
condition number. The sketch-and-solve method in this paper will give us a theoretical
flop count of O(mn log n+n3) and possibly even lower when the matrix is structured,
e.g. sparse. In this method we left-multiply the original matrix A ∈ C

m×n withm ≥ n
by a random sketching matrix S ∈ C

s×m where m ≥ s ≥ n. The integer s is called
the sketch size. Typically we have m � s = cn where c > 1 is a modest constant,
say c = 2 or c = 4. We then work with the matrix SA ∈ C

s×n by taking its SVD, and
finding its trailing singular vectors. Since SA is a smaller-sized matrix, which contains
a compressed information of A (see Sects. 2 and 3), SA can act as a good substitute
for A in some settings, for example, if A is too large to fit in memory or when A
is streamed. This makes the computation more efficient in terms of both speed and
storage. The question of course is to examine the quality of singular vectors obtained
this way.

The sketch-and-solvemethod is usually only useful if the sketchingmatrix preserves
geometry in the sense that the norm of every vector in a span of A is approximately
preserved under sketching [21, 35], i.e., 1 − ε ≤ ‖SAx‖2 / ‖Ax‖2 ≤ 1 + ε for some
0 < ε < 1, for every nonzero x ∈ C

n . A large class of sketching matrices are
known to preserve geometry under mild conditions, including Gaussian matrices [22],
subsampled randomized trignometric transforms (SRTT) [15, 30], CountSketch [5,

123

BIT Numerical Mathematics (2023) 63 :36 Page 3 of 27 36

35] and 1-hashed randomized Hadamard transform (H-RHT) [2]. Different sketching
matrices have different requirements for the size of the sketch s. For example, we
require s = �(n log n) for SRTTs while for Gaussian matrices and H-RHTwe require
the optimal s = �(n) to ensure that geometry is preserved with high probability.
The details about the failure probability and the conditions under which theoretical
guarantees can be achieved can be found in the papers cited above.

For the sketch-and-solve method, the quality of the solution needs to be assessed.
Since subspace embeddings preserve norms from the original space, it is straight-
forward to see (Theorem 2.3) that the residual norm in Equation (1) for the
sketch-and-solve method will be on the same order as the residual norm of the actual
solution. However, this does not immediately imply that the the two solution vectors
are close to each other. In this work, we will assess the quality of the solution by deriv-
ing bounds for the sine of the angle between the sketched solution and the original
solution. Specifically, we will quantify this bound using multiplicative perturbation
theory from [19] by Li. The perturbation is multiplicative because the original matrix
gets multiplied by a sketching matrix rather than undergoing an additive perturbation.
This is different from the classical perturbation theory [7, 34], which is additive. The
classical result scales poorly for small singular values when the perturbation is close
to a unitary matrix, whereas the multiplicative perturbation theory can overcome this
issue.

1.1 Existing work and contribution

Gilbert et al. [11] discuss the same algorithm where they analyze the accuracy of
the singular values and the right singular vectors obtained using the sketch SA. They
use the 2-norm error to quantify the accuracy of the right singular vectors obtained
this way, whereas we use the canonical angles which is arguably more natural in this
setting. Furthermore, we extend the analysis to comparing subspaces of either the
same or different dimensions (Sect. 3). This is particularly useful if we are extracting
a subspace from the sketch SA rather than a single vector, for example, when we
are solving total least squares problems with multiple right-hand sides (Sect. 6). It is
also important to mention that if we want to extract the right singular subspace of
dimension larger than one corresponding to a multiple singular value (for example,
singular values corresponding to zero in the case of computing the null space of a
matrix) then the bound used to quantify the accuracy of a single singular vector in the
right singular subspace is useless as the gap is zero, but whenwe compare the subspace
as a whole, we can get meaningful bound as will be shown in Sect. 3. Moreover, when
the gap between the target singular value and the rest is small, it is well known that
the corresponding target singular vector is ill-conditioned [34], because the condition
number of computing a singular vector is inversely proportional to the gap. In such
cases it is often difficult to obtain nontrivial bounds for the accuracy; however, we
show that useful bounds can be obtained by examining the angle between the target
vector(s) and a computed subspace of different (larger) dimension.

123

36 Page 4 of 27 BIT Numerical Mathematics (2023) 63 :36

1.2 Notation

Throughout, the symbol ∗ is used to denote the (conjugate) transpose of a vector or
a matrix. We use ‖·‖ for a unitarily invariant norm, ‖·‖2 for the spectral norm or the
vector-�2 norm and ‖·‖F for the Frobenius norm. Unless specified otherwise σi (A)

denotes the i th largest singular value of the matrix A. Lastly, we use MATLAB style
notation for matrices and vectors. For example, for the kth to (k + j)th columns of a
matrix A we write A(:, k : k + j).

2 Problem statement and the algorithm

Let us formally define the problem.

Problem 2.1 (Null space problem) Let A ∈ C
m×n where m ≥ n and k ∈ Z

+. Find
W ∈ C

n×k that solves the following optimization problem

min
V ∗V=Ik

‖AV ‖F .

This problem statement does not find the null space of A exactly; indeed the null space
of A is usually the trivial 0, but to consider a broader class of problems we will call
this problem the null space problem. The solution,W in the problem statement, to the
null space problem is the trailing k right singular vectors, that is, the k right singular
vectors corresponding to the smallest k singular values. W is unique up to reordering
of columns when the corresponding singular values are distinct from each other and
also distinct from the other (n − k) singular values. The standard way to calculate
this is by computing the SVD and extracting the trailing k right singular vectors. This
costs O(mn2) flops. For m � n, computing the SVD can become expensive, so we
use sketching matrices to get a near-optimal solution with a lower complexity.

The most widely used class of sketching matrices for analysis is Gaussian random
matrices, whose entries are independent standard normal random variables. However,
Gaussianmatrices are not always themost efficient choice, so other sketchingmatrices
such as the SRFTmatrices [15] are often used in practice.Herewe discuss theGaussian
and the SRFT matrices. For Gaussian matrices we have the following.

Theorem 2.1 (Marčenko and Pastur [22],Davidson and Szarek [6]) Consider an s×n
Gaussian random matrix G with s ≥ n. Then

√
s − √

n ≤ E[σmin(G)] ≤ E[σmax(G)] ≤ √
s + √

n.

Furthermore, for any t > 0,

max
{
P
(
σmax(G) ≥ √

s + √
n + t

)
,P

(
σmin(G) ≤ √

s − √
n − t

)} ≤ exp (−t2/2)

This theorem implies that rectangular Gaussian matrices with aspect ratio s/n > 1,
that is, more rows than columns, are well-conditioned with singular values that lie in

123

BIT Numerical Mathematics (2023) 63 :36 Page 5 of 27 36

[√s − √
n − t,

√
s + √

n + t] with failure probability that decreases exponentially
with t . Theorem 2.1 can be used to see that

σi (GA/
√
s)

σi (A)
= O(1)

holds with high probability [21] where A is an m × n matrix and G is an s × m
Gaussian matrix with m ≥ s ≥ n. In other words, sketching approximately preserves
the singular values of the original matrix.

The cost for applying a Gaussian sketch to an m × n matrix is O(mn2) operations,
which has the same order as most classical numerical linear algebra algorithms. This
makes Gaussian sketches not very useful in practice.

There is an analogous result for SRFT matrices [15, 30] which require a slightly
larger sketch size and come with failure probability that is higher than Gaussian matri-

ces. An SRFT matrix is an m × s matrix with m ≥ s of the form � =
√

m
s DFR∗

where D is a random m × m diagonal matrix whose entries are independent and take
±1 with equal probability, F is the m ×m unitary discrete Fourier transform and R is
a random s ×m matrix that restricts an m-dimensional vector to s coordinates chosen
uniformly at random. The analogous result is from [15].

Theorem 2.2 Let U be an m × n orthonormal matrix and � an m × s SRFT matrix
where the sketch size s satisfies

4[√n + √
8 log(mn)]2 log n ≤ s ≤ m.

Then

0.4 ≤ σn(�
∗U) and σ1(�

∗U) ≤ 1.48

with failure probability at most O(n−1).

Therefore as long as the sketch size is about 4n log n, SRFT matrices will approxi-
mately preserve the singular values of the original matrix with a reasonable failure
probability. Unfortunately, the log n factor cannot be removed in general [15]. One
way to remove the log n factor is to replace the R matrix in SRFT by a random 1-
hashing matrix, giving us H-RHT [2]. Fortunately, with the SRFT sketch, the sketch
size s = 2n for n ≥ 20 does well at preserving the length of the original space
in most applications [15, 25]. The cost for applying the SRFT matrix to an m × n
matrix is O(mn log n) operations using the subsampled FFT algorithm [36], but it is
much easier to get O(mn logm) operations in practical implementations. This is still
lower than the Gaussian matrix as long as m is only polynomially larger than n, so
the SRFT matrix is often used for practical reasons. There are also sparse sketching
matrices which take advantage of the zero entries of the original matrix. An example
is the CountSketch matrix [5, 35]. However, in this paper, we will focus on general
matrices. Now we approach the null space problem using a sketch-and-solve method.

123

36 Page 6 of 27 BIT Numerical Mathematics (2023) 63 :36

Algorithm 1 Solving the null space problem using sketch-and-solve
Require: A ∈ C

m×n with m � n, s (> n) the sketch size (rec. s = 2n), k the number of right singular
vectors desired

Ensure: W ∈ C
n×k the trailing k right singular vectors

1: Draw a random sketch S ∈ C
s×m with sketch size s

2: SA = Sketch (e.g. SRFT) A using S
3: [U , �, V] = SVD(SA)

4: W = V (:, n − k + 1 : n), the trailing k right singular vectors

Algorithm 1 sketches the matrix A and then computes the SVD of a smaller-sized
matrix SA to get the approximate right singular vectors corresponding to the smallest
few singular values. This algorithm is not new and to our knowledge appeared first
in [11]. This algorithm gives us a near-optimal solution with respect to the residual
because the output obtained from Algorithm 1 is at most a modest constant larger
than the optimal solution. This is made precise for the SRFT matrix in the following
theorem; the sketch size s = 2n is not enough for theoretical guarantees, but works
well in practice.

Theorem 2.3 Let A ∈ C
m×n and Ã = �∗A ∈ C

s×n with (m ≥ s ≥ n) where
� ∈ C

m×s is the SRFT matrix with the sketch size s satisfying

4[√n + √
8 log(mn)]2 log n ≤ s ≤ m.

Then
∥∥∥AW̃

∥∥∥
F

< 4 ‖AW‖F

with failure probability at most O(n−1) where W̃ is the output from Algorithm 1 and
W is the exact solution to the null space problem (Problem 2.1).

Proof Let A = UA�AV ∗
A be a thin SVD of A such that UA ∈ C

m×n and �A, VA ∈
C
n×n . Then by Ostrowski’s theorem for singular values [27] we have

σmin(�
∗UA)σi (A) ≤ σi (�

∗A) ≤ σmax(�
∗UA)σi (A)

for i = 1, 2, ..., n and

σmin(�
∗UA)

∥∥∥AW̃
∥∥∥
F

≤
∥∥∥�∗AW̃

∥∥∥
F
.

Therefore, by Theorem 2.2, with failure probability at most O(n−1) we have

∥∥∥AW̃
∥∥∥
F

≤ 1

σmin(�∗UA)

∥∥∥�∗AW̃
∥∥∥
F

= 1

σmin(�∗UA)

√√√√
k∑
j=1

σ 2
n− j+1(�

∗A)

123

BIT Numerical Mathematics (2023) 63 :36 Page 7 of 27 36

≤ σmax(�
∗UA)

σmin(�∗UA)

√√√√
k∑
j=1

σ 2
n− j+1(A)

= 1.48

0.4
‖AW‖F < 4 ‖AW‖F

	

Remark 2.1 A similar result can be obtained for other sketching matrices. In general,
if the sketching matrix S satisfies

(1 − δ)σi (A) ≤ σi (SA) ≤ (1 + δ)σi (A)

for some 0 < δ < 1 with high probability then

‖AWS‖F ≤ 1 + δ

1 − δ
‖AW‖F

with high probability where WS is the output of Algorithm 1 when using S as the
sketching matrix. (e.g. δ = 1√

2
for a Gaussian sketching matrix with the sketch size

s = 4n)

There is also a version of Algorithm 1 with ε tolerance rather than taking k as
input. This version finds all the singular values that are less than ε and set W to be
their corresponding right singular vectors. If we set ε = O(u) where u is the unit
roundoff, then we get the numerical null space.

For a sketch size s = cn for a constant c > 0, the complexity of Algorithm
1 is O(mn log n) for performing the sketch (line 2) and O(n3) for calculating the
trailing right singular vectors of SA (line 3). This gives us an overall complexity of
O(mn log n+n3)which is faster than the traditional methods, O(mn2). Now we look
at the quality of the solution.Wewill examine howmuch the sketched solution (output
W of Algorithm 1) deviates from the original solution (SVD of A).

3 Accuracy of the sketch usingmultiplicative perturbation bounds

The standard way of quantifying the distance between two subspaces is to use the
canonical angles between subspaces.

Definition 3.1 (Canonical angles [28, § I.5]) Let U , V ∈ C
n×k with n ≥ k be two

matrices with orthonormal columns. Then the canonical angles between the subspaces
spanned by U and V are {θi }ki=1 where θi = arccos(σi (U∗V)), that is, the arccosine
of the singular values of U∗V . We let �(U , V) = diag(θ1, ..., θk) and sin�(U , V)

and cos�(U , V) be defined elementwise for the diagonal entries only.

Remark 3.1

1. �(U , V) = �(V ,U) since U∗V and V ∗U have the same singular values.

123

36 Page 8 of 27 BIT Numerical Mathematics (2023) 63 :36

2. By the CS decomposition (Chapter I Section 5, [28]), the elements in the diagonal
of sin�(U , V) are the singular values of U∗⊥V or U∗V⊥ where U⊥ and V⊥ have
columns that give orthonormal bases to the orthogonal complements of range(U)

and range(V) respectively. This implies that sin�(U , V) and sin�(U⊥, V⊥) have
the same nonzero entries on their diagonal.

Now we look at the perturbation of right singular vectors using canonical angles.
There are two different types of perturbations, namely additive and multiplicative
perturbations. The results for additive perturbation was first proved in 1970 by Davis
and Kahan [7] for eigenvectors of symmetric matrices, and two years later Wedin
[34] derived analogous results for singular vectors. In this work, we will focus on
multiplicative perturbations that give multiplicative perturbation bounds by Li [19],
as they arise naturally in our context, and give superior bounds in our setting. This
type of bound in our setting has been studied in [11] for vectors, however there is no
known study in our context for subspaces of dimension larger than 1, which can be
useful when we compute subspaces rather than vectors.

3.1 Computing subspaces of the same dimension

Let A ∈ C
m×n and Ã ∈ C

s×n be matrices withm ≥ s ≥ n and suppose that they have
SVDs of the form

A = U�V ∗ = [U1,U2]
[
�1 0
0 �2

]
[V1, V2]∗ (2)

Ã = Ũ �̃Ṽ ∗ = [Ũ1, Ũ2]
[
�̃1 0
0 �̃2

]
[Ṽ1, Ṽ2]∗ (3)

where U ∈ C
m×n , Ũ ∈ C

s×n , V , Ṽ ∈ C
n×n and the matrices with subscript 1 have

(n − k) columns and subscript 2 have k columns with k < n and

�1 = diag(σ1, ..., σn−k), �2 = diag(σn−k+1, ..., σn),

(4)

�̃1 = diag(σ̃1, ..., σ̃n−k), �̃2 = diag(σ̃n−k+1, ..., σ̃n)

(5)

where the singular values are ordered in non-increasing order.
Next we define a relative gap χ . Let a, b ∈ R and define

χ(a, b) = |a − b|√|ab|

with the convention 0/0 = 0 and 1/0 = ∞. Note that χ is not a metric on R [18, 19].
We also recall a useful matrix norm inequality from [23], which states that for any

123

BIT Numerical Mathematics (2023) 63 :36 Page 9 of 27 36

matrices A, B and C such that the product ABC is defined, we have

‖ABC‖ ≤ ‖A‖2 ‖B‖ ‖C‖2
for any unitarily invariant norm ‖·‖. Lastly, we review a key lemma from Li [19].

Lemma 3.1 Let A ∈ C
s×s and B ∈ C

t×t be two positive semi-definite Hermitian
matrices and let E ∈ C

s×t . Suppose that there exists α > 0 and δ > 0 such that

‖A‖2 ≤ α and
∥∥∥B−1

∥∥∥
−1

2
≥ α + δ

or

‖B‖2 ≤ α and
∥∥∥A−1

∥∥∥
−1

2
≥ α + δ.

Then the Sylvester equation AX−XB = A1/2EB1/2 has a unique solution X ∈ C
s×t ,

and moreover ‖X‖ ≤ ‖E‖ /χ(α, α + δ) for any unitarily invariant norm.

Now we prove a theorem that will be important for assessing the quality of the
solution using the sketch-and-solve method. This is a modification of Theorem 4.8 in
[19]. The modification allows multiplicative perturbation of an m × n matrix A by a
full row rank s×m rectangular matrix X∗ withm ≥ s ≥ n, whereas Li only considers
non-singular square matrices. Our bound also tightens Li’s bound by removing extra
simplifications Li made in his proof. In our context, A ∈ C

m×n corresponds to the
original matrix and X∗A ∈ C

s×n corresponds to the sketched matrix where X is the
sketching matrix.

Theorem 3.1 Let A ∈ C
m×n and Ã = X∗A ∈ C

s×n (m ≥ s ≥ n) with thin SVDs
as in Eqs. (2, 3, 4, 5) where X ∈ C

m×s is a matrix such that X∗U has full rank. Let
X∗U = QR where Q ∈ C

s×n and R ∈ C
n×n be a thin QR factorization of X∗U

where U is the orthonormal matrix from Eq. (2). Suppose that there exists α > 0 and
δ > 0 such that

min
1≤i≤n−k

σi ≥ α + δ and max
1≤ j≤k

σ̃n−k+ j ≤ α,

or

min
1≤i≤n−k

σ̃i ≥ α + δ and max
1≤ j≤k

σn−k+ j ≤ α.

Then for any unitarily invariant norm we have

∥∥∥sin�(V2, Ṽ2)
∥∥∥ ≤

∥∥R − R−∗∥∥
χ

(
α2, (α + δ)2

) (6)

where V2 and Ṽ2 are as in Eqs. (2, 3).

123

36 Page 10 of 27 BIT Numerical Mathematics (2023) 63 :36

Proof We define two matrices B := �V ∗ and B̃ := R�V ∗. Notice that A and B
have the same singular values and the right singular vectors. Also, note that since
X∗A = QR�V ∗, Ã and B̃ have the same singular values and the right singular
vectors, so to prove (6) it suffices to work with B and B̃. Since X is a full rank matrix,
R is invertible. We first note that

B̃∗ B̃ − B∗B = B̃∗RB − B̃∗R−∗B = B̃∗(R − R−∗)B.

This is equivalent to

Ṽ �̃2Ṽ ∗ − V�2V ∗ = Ṽ �̃(Q∗Ũ)∗(R − R−∗)�V ∗,

since B̃ = Q∗ Ã = Q∗Ũ �̃Ṽ ∗. Right-multiplying V and left-multiplying Ṽ ∗ gives

�̃2Ṽ ∗V − Ṽ ∗V�2 = �̃(Q∗Ũ)∗(R − R−∗)�.

Now define M := R − R−∗ for shorthand then the above matrix equation can be
represented as a 2 × 2 block matrix as

[
�̃2

1 Ṽ
∗
1 V1 − Ṽ ∗

1 V1�
2
1 �̃2

1 Ṽ
∗
1 V2 − Ṽ ∗

1 V2�
2
2

�̃2
2 Ṽ

∗
2 V1 − Ṽ ∗

2 V1�
2
1 �̃2

2 Ṽ
∗
2 V2 − Ṽ ∗

2 V2�
2
2

]

=

⎡
⎢⎢⎣

�̃1Ũ∗
1 QM

[
�1

0k×(n−k)

]
�̃1Ũ∗

1 QM

[
0(n−k)×k

�2

]

�̃2Ũ∗
2 QM

[
�1

0k×(n−k)

]
�̃2Ũ∗

2 QM

[
0(n−k)×k

�2

]

⎤
⎥⎥⎦

Taking the (2, 1)-entry of the block matrix we get

�̃2
2 Ṽ

∗
2 V1 − Ṽ ∗

2 V1�
2
1 = �̃2Ũ

∗
2 QM

[
In−k

0k×(n−k)

]
�1.

This is in the form of the Sylvester equation in Lemma 3.1. Thus, using Lemma 3.1
we get for any unitarily invariant norm

∥∥∥Ṽ ∗
2 V1

∥∥∥ ≤

∥∥∥∥Ũ∗
2 QM

[
In−k

0k×(n−k)

]∥∥∥∥
χ

(
α2, (α + δ)2

) .

Therefore
∥∥∥sin�(V2, Ṽ2)

∥∥∥ =
∥∥∥Ṽ ∗

2 V1
∥∥∥

≤

∥∥∥∥Ũ∗
2 QM

[
In−k

0k×(n−k)

]∥∥∥∥
χ

(
α2, (α + δ)2

)

123

BIT Numerical Mathematics (2023) 63 :36 Page 11 of 27 36

≤

∥∥∥Ũ∗
2 Q

∥∥∥
2
‖M‖

∥∥∥∥
[

In−k

0k×(n−k)

]∥∥∥∥
2

χ
(
α2, (α + δ)2

)

≤ ‖M‖
χ

(
α2, (α + δ)2

) =
∥∥R − R−∗∥∥

χ
(
α2, (α + δ)2

)

for any unitarily invariant norm. 	

Corollary 3.1 In the setting of Theorem 3.1, we have

∥∥∥sin�(V2, Ṽ2)
∥∥∥
2

≤ 2.1

χ(α2, (α + δ)2)
(7)

with failure probability at most O(n−1) for an SRFT matrix (X = �) with the sketch
size s satisfying 4[√n +√

8 log(mn)]2 log n ≤ s ≤ m. For the Gaussian case, that is,
X = G/

√
s where G is a standard m × s Gaussian matrix, (7) is satisfied with failure

probability at most exp(−n/50) with the sketch size s = 4n.

Proof The proof follows from the discussion on sketching matrices in Sect. 2 and

∥∥R − R−∗∥∥
2 ≤ max

σ∈[0.4,1.6]|σ − σ−1| = 2.1

for R as in Theorem 3.1. 	

3.1.1 A priori bound

In many cases, we are interested in a priori bounds for the accuracy of the trailing
singular vectors using the sketch-and-solve method. We can obtain a priori bounds by
substituting the singular values in place of α and δ in Corollary 3.1. There are two a
priori bounds, which are given below. If σn−k > 1.6σn−k+1 then

∥∥∥sin�(V2, Ṽ2)
∥∥∥
2

≤ 2.1 · σn−k σ̃n−k+1

σ 2
n−k − σ̃ 2

n−k+1

≤ 3.36 · σn−kσn−k+1

σ 2
n−k − 2.56 · σ 2

n−k+1

, (8)

and if 0.4σn−k > σn−k+1 then

∥∥∥sin�(V2, Ṽ2)
∥∥∥
2

≤ 2.1σ̃n−kσn−k+1

σ̃ 2
n−k − σ 2

n−k+1

≤ 3.36 · σn−kσn−k+1

0.16 · σ 2
n−k − σ 2

n−k+1

, (9)

since in the setting of Corollary 3.1, we have

0.4σi ≤ σ̃i ≤ 1.6σi

for all i .

123

36 Page 12 of 27 BIT Numerical Mathematics (2023) 63 :36

The upper bounds (8) and (9) are informative (
 1) if σn−k � σn−k+1. In this case,
the upper bounds are ≈ σn−k+1

σn−k
, which are both much less than 1. In particular if σ1 ≥

σ2 ≥ · · · ≥ σn−k > σn−k+1 = · · · = σn = 0 then the multiplicative perturbation by
X∗ preserves the null space exactly as the upper bound becomes zero. In the presence
of rounding errors, a backward stable solution would correspond to σn−k+1 = O(u)

where u is the unit roundoff. Assuming σn−k is sufficiently larger than u, the last k
right singular vectors of the sketched matrix give an excellent approximation for the
null space of the original matrix.

To illustrate the results, Fig. 1 shows the accuracy of the bound in Corollary 3.1
for the case when k = 1. We generated a random 1000 × 100 matrix with Haar
distributed right singular vectors. The left singular vectors in the top left plot is also
Haar distributed while the other 3 plots were generated with the left singular vectors
equal to [I100, 0]T ∈ R

1000×100, which is a difficult (coherent) example for subspace
embedding using SRFT [1, 30]. We set the singular values as (σ1, σ2, ..., σn−1, σn) =
(1, 1, ..., 1, 10−1, σn) where σn−1/σn ∈ [10, 1010]. We then sketch the matrix with a
Gaussian matrix and an SRFT matrix. In Fig. 1, we observe that except in the bottom
left plot, the bounds in Corollary 3.1 give us the correct decay rate with a factor that
is not too large. As seen in the bottom left plot, the SRFT sketch can fail, that is, the
SRFT sketch fails to be a subspace embedding if we set the sketch size equal to cn for
a modest constant c, say c = 2, 4 for a difficult example (coherent) [15, 30]. However,
we can overcome this issue if we use the H-RHT sketch [2] or make the SRFT sketch
size �(n log n) as shown in the bottom right plot of Fig. 1. This shows us that when
σn−1 � σn we expect the sketched solution to give a very good approximation to the
actual solution.

Up until now we have examined the canonical angles between two subspaces with
the samedimension.Wenext extendTheorem3.1 to subspaces of different dimensions.
The extension will be useful when the bound in Theorem 3.1 is not useful, O(1), and
we want to search for a bigger subspace that can be shown to contain the subspace
that we are looking for.

3.2 Subspaces of different dimensions

Let A ∈ C
m×n and Ã ∈ C

s×n be matrices withm ≥ s ≥ n and suppose that they have
SVDs of the form

A = U�V ∗ = [U1,U2,U3]
⎡
⎣

�1 0 0
0 �2 0
0 0 �3

⎤
⎦ [V1, V2, V3]∗ (10)

Ã = Ũ �̃Ṽ ∗ = [Ũ1, Ũ2, Ũ3]
⎡
⎣

�̃1 0 0
0 �̃2 0
0 0 �̃3

⎤
⎦ [Ṽ1, Ṽ2, Ṽ3]∗ (11)

where U ∈ C
m×n , Ũ ∈ C

s×n , V , Ṽ ∈ C
n×n and the matrices with subscript 1 have

(n − k) columns, those with subscript 2 have (k − �) columns and subscript 3 have �

columns with � < k < n and

123

BIT Numerical Mathematics (2023) 63 :36 Page 13 of 27 36

102 104 106 108 1010

10-10

10-5

100

102 104 106 108 1010

10-10

10-5

100

102 104 106 108 1010

10-10

10-5

100

102 104 106 108 1010

10-10

10-5

100

Fig. 1 Loglog plot of the bound in Corollary 3.1 against the actual sine values for m = 1000, n = 100
and k = 1. The matrix was generated with singular values diag(1, 1, ..., 1, 10−1, σn) where σn−1/σn ∈
[10, 1010]. The bottom left plot shows a difficult example (coherent) for the SRFT sketch which can fail if
the sketch size is not large enough. However, as seen on the bottom right plot it can be fixed by enlarging
the sketch size to �(n log n)

�1 = diag(σ1, ..., σn−k),�2 = diag(σn−k+1, ..., σn−�),�3 = diag(σn−�+1, ..., σn),

(12)

�̃1 = diag(σ̃1, ..., σ̃n−k), �̃2 = diag(σ̃n−k+1, ..., σ̃n−�), �̃3 = diag(σ̃n−�+1, ..., σ̃n)

(13)

where the singular values are arranged in non-increasing order.

Theorem 3.2 Let A ∈ C
m×n and Ã = X∗A ∈ C

s×n (m ≥ s ≥ n) with thin SVDs as
in Eqs. (10, 11, 12, 13) where X ∈ C

m×s is a matrix such that X∗U has full rank.
Let X∗U = QR where Q ∈ C

s×n and R ∈ C
n×n be a thin QR factorization of X∗U

where U is the orthonormal matrix from Eq. (10). Suppose that there exists α > 0 and
δ > 0 such that

min
1≤i≤n−k

σi ≥ α + δ and max
1≤ j≤�

σ̃n−�+ j ≤ α.

Then for any unitarily invariant norm we have

∥∥∥sin�([V2, V3], Ṽ3)
∥∥∥ ≤

∥∥R − R−∗∥∥
χ

(
α2, (α + δ)2

) .

123

36 Page 14 of 27 BIT Numerical Mathematics (2023) 63 :36

Alternatively, if there exists α > 0 and δ > 0 such that

min
1≤i≤n−k

σ̃i ≥ α + δ and max
1≤ j≤�

σn−�+ j ≤ α,

then for any unitarily invariant norm we have

∥∥∥sin�(V3, [Ṽ2, Ṽ3])
∥∥∥ ≤

∥∥R − R−∗∥∥
χ

(
α2, (α + δ)2

)

where V2, V3, Ṽ2 and Ṽ3 are as in Eqs. (10, 11).

Proof We follow the proof of Theorem 3.1. We consider the case

min
1≤i≤n−k

σi ≥ α + δ and max
1≤ j≤�

σ̃n−�+ j ≤ α.

Theother case follows similarly.As inTheorem3.1,wedefine twomatrices B := �V ∗
and B̃ := R�V ∗. Notice that A and B have the same singular values and the right
singular vectors. Also, note that since X∗A = QR�V ∗, Ã and B̃ have the same
singular values and the right singular vectors, so it suffices to work with B and B̃.
Since X is a full rank matrix, R is invertible. We first note that

B̃∗ B̃ − B∗B = B̃∗RB − B̃∗R−∗B = B̃∗(R − R−∗)B.

This is equivalent to

Ṽ �̃2Ṽ ∗ − V�2V ∗ = Ṽ �̃(Q∗Ũ)∗(R − R−∗)�V ∗,

since B̃ = Q∗ Ã = Q∗Ũ �̃Ṽ ∗. Right-multiplying V and left-multiplying Ṽ ∗ gives

�̃2Ṽ ∗V − Ṽ ∗V�2 = �̃(Q∗Ũ)∗(R − R−∗)�.

Now the above matrix equation can be represented as a 3 × 3 block matrix as in
Theorem 3.1. Taking the (3, 1)-entry of the block matrix we get

�̃2
3 Ṽ

∗
3 V1 − Ṽ ∗

3 V1�
2
1 = �̃3Ũ

∗
3 Q(R − R−∗)

[
In−k

0k×(n−k)

]
�1.

This is again in the form of the Sylvester equation in Lemma 3.1. Thus, using Lemma
3.1 we get for any unitarily invariant norm

∥∥∥Ṽ ∗
3 V1

∥∥∥ ≤

∥∥∥∥Ũ∗
3 Q(R − R−∗)

[
In−k

0k×(n−k)

]∥∥∥∥
χ

(
α2, (α + δ)2

) .

123

BIT Numerical Mathematics (2023) 63 :36 Page 15 of 27 36

Finally we get

∥∥∥sin�([V2, V3], Ṽ3)
∥∥∥

=
∥∥∥Ṽ ∗

3 V1
∥∥∥ ≤

∥∥∥∥Ũ∗
3 Q(R − R−∗)

[
In−k

0k×(n−k)

]∥∥∥∥
χ

(
α2, (α + δ)2

)

≤

∥∥∥Ũ∗
3 Q

∥∥∥
2

∥∥R − R−∗∥∥
∥∥∥∥
[

In−k

0k×(n−k)

]∥∥∥∥
2

χ
(
α2, (α + δ)2

) ≤
∥∥R − R−∗∥∥

χ
(
α2, (α + δ)2

)

for any unitarily invariant norm. 	

Corollary 3.2 In the setting of Theorem 3.2, we have

∥∥∥sin�(V3, [Ṽ2, Ṽ3])
∥∥∥
2

≤ 2.1

χ(α2, (α + δ)2)
(14)

with failure probability at most O(n−1) for an SRFT matrix (X = �) with the sketch
size s satisfying 4[√n + √

8 log(mn)]2 log n ≤ s ≤ m. For the Gaussian case, that
is, X = G/

√
s where G is a standard m × s Gaussian matrix, (14) is satisfied with

failure probability at most exp(−n/50) with the sketch size s = 4n.

3.2.1 A priori bound

Similarly as before, we may be interested in a priori bounds for the accuracy of the
trailing singular vectors using the sketch-and-solve method when the subspaces sizes
are different. We can obtain a priori bounds by substituting the singular values in place
of α and δ in Corollary 3.2. There are two a priori bounds, which are given below. If
0.4σn−k > σn−�+1 then

∥∥∥sin�(V3, [Ṽ2, Ṽ3])
∥∥∥
2

≤ 2.1 · σ̃n−kσn−�+1

σ̃ 2
n−k − σ 2

n−�+1

≤ 3.36 · σn−kσn−�+1

0.16 · σ 2
n−k − σ 2

n−�+1

, (15)

and if σn−k > 1.6σn−�+1 then

∥∥∥sin�([V2, V3], Ṽ3)
∥∥∥
2

≤ 2.1 · σn−k σ̃n−�+1

σ 2
n−k − σ̃ 2

n−�+1

≤ 3.36 · σn−kσn−�+1

σ 2
n−k − 2.56 · σ 2

n−�+1

, (16)

since in the setting of Corollary 3.2, we have

0.4σi ≤ σ̃i ≤ 1.6σi

for all i .
The upper bounds (15) and (16) are informative (
 1) if σn−k � σn−�+1. In this

case, the upper bounds are ≈ σn−�+1
σn−k

, which are both much less than 1.

123

36 Page 16 of 27 BIT Numerical Mathematics (2023) 63 :36

0 20 40 60 80 100
10-12

10-10

10-8

10-6

10-4

10-2

100

102

0 20 40 60 80 100
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Fig. 2 Semilogy plot of the bound in Corollary 3.2 against the actual sine values for m = 1000, n =
100, � = 1 and subspace size k = 2, ..., (n − 1). The matrix was generated with singular values that decay
geometrically from 1 to 10−10 for the left plot and the right plot has singular values equal to 1 for the first
80 singular values and the last 20 singular values are equal to 10−10. The bound in Corollary 3.2 gives us
a good indication as to how much the computed subspace contains the last right singular vector

Now we illustrate the results in Fig. 2. Figure2 shows the accuracy of the bound
in Corollary 3.2 for the SRFT sketch in the case when � = 1 and k = 2, ..., n −
1. We generated a random 1000 × 100 matrix by sampling the left and the right
singular vectors as before for the coherent example, but the singular values now decay
geometrically from 1 to 10−10 for the left plot and the right plot has singular values
equal to 1 for the first 80 singular values and 10−10 for the last 20 singular values.
In both of these cases, we have σn/σn−1 ≈ 1, so the previous bound in Corollary 3.1
is useless. However, the bound in Corollary 3.2 becomes meaningful as we increase
the subspace dimension k. In Fig. 2, we see that the bounds in Corollary 3.2 give
us the correct decay rate with a modest factor for the left plot. For the right plot,
we see that after the subspace becomes large enough (> 20) to contain the right
singular subspace corresponding the the singular value 10−10, we get a good subspace
which approximately contains the last right singular vector of the original matrix.
This illustrates us that even when σn/σn−1 ≈ 1, as long as σn−k � σn we can find
a larger subspace of dimension k that is expected to contain the right singular vector
corresponding to the smallest singular value.

We now turn to the total least squares problem where we apply the ideas from
Sects. 2 and 3.

4 Total least squares

Total least squares (TLS) [12] is a type of least squares problem where errors in both
independent and dependent variables are allowed. TLS is also known as errors-in-

123

BIT Numerical Mathematics (2023) 63 :36 Page 17 of 27 36

variables models in statistics. This is different from the standard least-squares problem
where errors only occur in dependent variables. In a standard least-squares problem,
we are interested in solving the following optimization problem

min
x∈Rn

‖Ax − b‖2

where A ∈ R
m×n and b ∈ R

m with m ≥ n. The errors only occur in the dependent
variables, b, so the problem can be restated as

min
b+r∈range(A)

‖r‖2 .

Now if we also allow errors in the independent variables, represented by A, we get
the optimization problem formulation for the TLS problem, which is

min
b+r∈range(A+E)

‖[E |r]‖F

where [·|·] represents the augmented matrix of size m × (n + 1).
Now, if we allow multiple right-hand sides, say k, we get

min
B+R∈range(A+E)

‖[E |R]‖F (17)

where A, E ∈ R
m×n and B, R ∈ R

m×k . We will also impose m ≥ n + k and
n ≥ k. If [E0|R0] solves the optimization problem (17), then any X ∈ R

n×k satisfying
(A + E0)X = B0 + R0 is called the TLS solution.

In 1980, Golub and Van Loan [12] gave a solution to the TLS problem. The algo-
rithm solves the null space problem

Vk = argmin
V ∗V=Ik

‖[A|B]V ‖F

with Vk =
[
Vk,1
Vk,2

]
where Vk,1 ∈ R

n×k and Vk,2 ∈ R
k×k and sets the solution to

X = −Vk,1V
−1
k,2 ∈ R

n×k . Note that since we are inverting Vk,2, the solution may not
exist. There are known conditions for existence and uniqueness, for example when
σn(A) > σn+1([A|B]). For more information see [12, 33]. The cost of computing the
TLS solution is O(m(n + k)2) flops for computing the SVD of [A|B] ∈ R

m×(n+k).
For the sketched version, we sketch the augmented matrix [A|B] in O(m(n +

k) log(n + k)) flops and solve the TLS problem for a smaller-sized matrix using
O((n+k)3)flops.Overall, the sketched version costs O(m(n+k) log(n+k)+(n+k)3)
flops, which becomes effective when m � (n + k).

For the accuracy of the sketched TLS solution, since the condition number of the
TLSproblemdepends onhow large the gapbetweenσn(A) andσn+1([A|B]) is [12],we
expect the relative error

∥∥∥X−X̃
∥∥∥
2‖X‖2 and

∥∥∥sin�(X , X̃)

∥∥∥
2
to be proportional to the relative

123

36 Page 18 of 27 BIT Numerical Mathematics (2023) 63 :36

10-12 10-10 10-8 10-6 10-4 10-2

Noise level (Gaussian)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fig. 3 A plot demonstrating the similarity between three different error metrics: relative error

∥∥∥X−X̃
∥∥∥
2‖X‖2

and the angles
∥∥∥sin�(X , X̃)

∥∥∥
2
and

∥∥∥sin�(Vk , Ṽk)
∥∥∥
2
. As we increase the relative gap

σn+1([A|B])
σn (A)

, we

observe that all three error metrics behave similarly and have similar magnitudes

gap σn+1([A|B])
σn(A)

(Sect. 3); here X ∈ R
n×k is the TLS solution and X̃ ∈ R

n×k is the

sketchedTLS solution. In addition,we also expect
∥∥∥sin�(Vk, Ṽk)

∥∥∥
2
to be proportional

to the relative gap σn+1([A|B])
σn(A)

, whereVk ∈ R
(n+k)×k is the trailing right singular vectors

of the original TLS problem and Ṽk ∈ R
(n+k)×k is the trailing right singular vectors

of the sketched TLS problem. We demonstrate the relationship between the relative

error

∥∥∥X−X̃
∥∥∥
2‖X‖2 ,

∥∥∥sin�(X , X̃)

∥∥∥
2
and

∥∥∥sin�(Vk, Ṽk)
∥∥∥
2
with an experiment by varying

the relative gap σn+1([A|B])
σn(A)

.

Figure3 was generated using A ∈ R
m×n and B ∈ R

m×k with m = 105, n = 103

and k = 10 where A is as in the previous experiments with the singular values that
decay geometrically from 1 to 10−3 and B is a sum of a matrix in the span of A with
the same norm as A and a Gaussian noise matrix of varying noise level between 10−3

and 10−12. In this experiment, since A and B are real matrices, the FFT matrix in the
SRFT sketch was replaced with the DCTmatrix. The sketch size was s = 2020, which
is 2 times the sum of the number of columns of A and B.

123

BIT Numerical Mathematics (2023) 63 :36 Page 19 of 27 36

Table 1 Total least squares problem with A ∈ R
m×1000 and B ∈ R

m×10 (n = 1000, k = 10). X̃ ∈
R
1000×10 is the sketched TLS solution with the TLS error ‖[Ẽ |R̃]‖F and X ∈ R

1000×10 is the original

TLS solution with the TLS error ‖[E |R]‖F. The associated relative residual is ‖[Ẽ |R̃]‖F‖[E |R]‖F and the associated

relative error is

∥∥∥X−X̃
∥∥∥
2‖X‖2 . Vk and Ṽk are the k trailing right singular vectors of the original TLS problem

and the sketched TLS problem respectively

m Speedup ‖[E |R]‖F ‖[Ẽ |R̃]‖F‖[E |R]‖F

∥∥∥X−X̃
∥∥∥
2‖X‖2

∥∥∥sin�(Vk , Ṽk)
∥∥∥
2

214 3.71× 2.16 · 10−8 1.39 2.65 · 10−6 2.21 · 10−6

215 6.07× 2.21 · 10−8 1.40 2.98 · 10−6 2.46 · 10−6

216 8.55× 2.22 · 10−8 1.40 3.00 · 10−6 2.32 · 10−6

217 14.12× 2.22 · 10−8 1.40 2.89 · 10−6 2.39 · 10−6

218 16.10× 2.22 · 10−8 1.41 2.91 · 10−6 2.24 · 10−6

We observe in Fig. 3 that as we vary the noise level and hence the relative gap

σn+1([A|B])
σn(A)

, the error metrics

∥∥∥X−X̃
∥∥∥
2‖X‖2 ,

∥∥∥sin�(X , X̃)

∥∥∥
2
and

∥∥∥sin�(Vk, Ṽk)
∥∥∥
2
all

behave similarly. All three error metrics are proportional to the relative gap and
they have similar magnitudes. In view of the theory developed in Sect. 3, we use∥∥∥sin�(Vk, Ṽk)

∥∥∥
2
as an error metric for analyzing the accuracy of the sketched TLS

solution. From Sect. 3.1.1, we have an a priori bound

∥∥∥sin�(Vk, Ṽk)
∥∥∥
2

� O

(
σn+1([A|B])

σn(A)

)
.

Now we demonstrate the speedup obtained using sketching (Algorithm 1) with an
experiment.1

Table 1 was generated using the same setup as in Fig. 3 with A ∈ R
m×1000 and

B ∈ R
m×10, but with varying values of m = 214, 215, 216, 217, 218 and a fixed

Gaussian noise level of 10−3 for the matrix B. In Table 1, as we increase the value of
m, we observe up to 16× speedup, demonstrating the benefit of sketching. We also
notice that the relative error and the sine of the angle between the trailing right singular
vectors of the original TLS problem and the sketched TLS problem are small2 and
similar in magnitude, which is consistent with Fig. 3. Lastly, we see that the sketched
solution residual error is only a modest constant larger than the original error; this
is expected since sketching gives a near-optimal solution (Sect. 2). Therefore, the
sketched solution is a good approximate solution for the TLS problem.

1 All experiments were performed inMATLAB version 2021a on a workstation with Intel�Xeon� Silver
4314 CPU@2.40GHz (16 cores) and 512GBmemory. The code for reproducing the experiments in Sects. 4
and 6 are available at https://github.com/tpark4466/FastApproxNullSpace.
2 The accuracy of the sketched solution can be improved by enlarging the sketch size at the cost of increasing
the overall complexity.

123

https://github.com/tpark4466/FastApproxNullSpace

36 Page 20 of 27 BIT Numerical Mathematics (2023) 63 :36

5 Updating and downdating

Wenow look at how row/column updates or downdates of the original matrix influence
the sketch. Let A ∈ C

m×n with m ≥ n. We have been sketching from the left to get
SA ∈ C

s×n where S ∈ C
s×m is a sketching matrix with sketch size s. Sometimes,

in problems such as the AAA algorithm [26] which we discuss in Sect. 6, we want to
update A, either by adding or removing a column and/or adding or removing a row.
The null space of the updated matrix is then sought.

In this section, we devise a strategy in a similar spirit to the ones used for data
streaming [4, 32] to efficiently update the sketch SA rather than sketching A from
scratch whenever a column or a row update/downdate to A is made, so that the solution
for the null space problem can be updated efficiently. These strategies which will be
shown below are possible because a particular realization of a sketching matrix can
be reused for updates/downdates as long as the update/downdate does not depend on
that realization of the sketching matrix. More specifically, if the update/downdate of
the original matrix does not depend on the sketching matrix then the sketching matrix
will only fail to be a subspace embedding for the updated/downdated matrix with
probability that is at most a sum of exponentially small terms using the union bound.
This happens because a single realization of the sketching matrix fails to be a subspace
embedding for any matrix with exponentially small probability (see Sect. 2).

First, adding or removing a column is straightforward. If we add or remove a column
from the original matrix then we can do the same for the sketch.

By contrast, adding or removing a row is not so simple. For simplicity, we focus on
row updates and downdates using the Gaussian sketchingmatrix, that is, S = G/

√
s ∈

R
s×m where G has entries that are independent standard normal random variables.

We first observe that regardless of how many row updates and downdates are being
done to the original matrix, the sketch SA will always be an s × n matrix.3

5.1 Row updating

Let us consider a row update first. Without loss of generality, suppose that a row

am+1 ∈ C
1×n is added to the bottom of A and let Am+1 :=

[
A

am+1

]
∈ C

(m+1)×n .

If we did not have the sketch of A and if we had to sketch from scratch then we
need to draw a Gaussian sketching matrix G̃/

√
s ∈ R

s×(m+1) and left-multiply it
to Am+1. Now we find an equivalent process by reusing the sketch SA ∈ R

s×m .
Since a row is appended to the end of A, we add a column to the end of S giving
us Sm+1 = [G|gm+1]/√s where gm+1 ∈ R

s is a Gaussian vector independent of G
and A. Notice that [G|gm+1] and G̃ are equal in distribution. Therefore, the updated
sketch for Am+1 becomes

Sm+1Am+1 = 1√
s
[G|gm+1]

[
A

am+1

]
= SA + 1√

s
gm+1am+1

3 One caution is that if too many row downdates are done to A so that m ≈ s then sketching becomes
pointless.

123

BIT Numerical Mathematics (2023) 63 :36 Page 21 of 27 36

with the updated sketching matrix Sm+1 = [G|gm+1]/√s. Algorithm 2 shows this.

Algorithm 2 A row update (adding the (m + 1)th row to A ∈ C
m×n)

Require: S ∈ R
s×m Sketching matrix (sketch size s (m � s > n)), am+1 ∈ C

1×n the row being added,
SA ∈ C

s×n the sketch of A
Ensure: Sm+1 ∈ R

s×(m+1) updated sketching matrix, Sm+1Am+1 ∈ C
s×n updated sketch

1: Sample gm+1 ∈ R
s with i.i.d. N (0, 1) random variable, also independent of S

2: Set Sr = [S|gm+1/
√
s]

3: Set Sr Ar = SA + gm+1am+1√
s

5.2 Row downdating

Row downdating is similar to a row update. Let A j ∈ C
(m−1)×n be the matrix with the

j th row removed from A. Using a similar idea as a row update, we let S j ∈ R
s×(m−1)

be the matrix with the j th column removed from S. Then the updated sketch for A j

becomes

S j A j = [S(:, 1 : j − 1), S(:, j + 1 : m)]

[
A(1 : j − 1, :)
A(j + 1 : m, :)

]
= SA − S(:, j)A(j, :)

using MATLAB notation. Thus, the updated sketching matrix becomes S j and the
updated sketch becomes SA − S(:, j)A(j, :). Algorithm 3 shows this.

Algorithm 3 A row downdate (removing the j th row from A ∈ C
m×n)

Require: S ∈ R
s×m Sketching matrix (sketch size s (m � s > n)), SA ∈ C

s×n the sketch of A
Ensure: S j ∈ R

s×(m−1) downdated sketching matrix, S j A j ∈ C
s×n downdated sketch

1: Set S j = [S(:, 1 : j − 1), S(:, j + 1 : m)], S with j th column deleted
2: Set S j A j = SA − S(:, j)A(j, :)

5.3 Non-Gaussian sketch

Wehave considered theGaussian sketchingmatrix for row updates and downdates. For
other sketching matrices such as the SRFT, the analysis is more difficult. However, in
practice many sketching matrices behave similarly to the Gaussian sketching matrix
and often Gaussian analysis reflects the performance in practice [21]. For column
updates and downdates, the strategy is the same for all sketching matrices, but not
necessarily for rows. The strategy for row updates/downdates can be the same for
certain classes of sketching matrices, for example, all the sketching matrices that have
i.i.d. columns. The strategy we suggest for other sketching matrices for row updates
and downdates is the following.

123

36 Page 22 of 27 BIT Numerical Mathematics (2023) 63 :36

For a row update, we append a standard Gaussian column vector to the sketching
matrix at the position where the new row gets appended to A. The updated sketch
will then be SA + gam+1/

√
s where SA ∈ C

s×n is the previous sketch, g ∈ C
s is

a standard Gaussian column vector independent with S and am+1 ∈ C
1×n is the row

appended to A. For a row downdate, we would need to remove the column from the
sketching matrix corresponding to the row that will be removed from A. Removing
this column is essentially the same as zeroing out its corresponding row in A and
keeping the original sketch. Therefore we propose the following. We take the standard
basis vector corresponding to the index of the row that will be removed from A, say e j ,
sketch e j using the original sketching matrix S giving Se j =: ẽ j ∈ C

s and subtract
ẽ j A(j, :) ∈ C

s×n from the original sketch, where A(j, :) is the row that is to be
removed from A. This process removes the contribution from the removed row in the
original sketch.

5.4 Complexity of updating the sketch

Wediscuss the complexity of reusing the sketch.We assume that the sketchingmatrix is
an SRFTmatrixwith the sketch size s = 2n andwe are sketching thematrix A ∈ C

m×n

(m � n). For a column downdate, it is essentially free becausewe only need to remove
a column from the sketch. For a column update, we need to sketch a column which
costs O(m logm) flops. For a row update we need to do a column-row multiplication
followed by an addition of two s × n matrices which cost an overall O(sn) flops. For
a row downdate, we need to sketch a standard basis vector which costs O(m logm)

flops and perform a column-row multiplication followed by a subtraction of two s×n
matriceswhich cost O(sn)flops.Overall, a rowdowndate costs O(m logm+sn)flops.
This is better than resketching, which costs O(mn log n) flops. Therefore, whenever
an update or a downdate is made to the original matrix, updating the sketch is at least
about O(n) times better than resketching the updated/downdated matrix from scratch.

We now use the ideas in this section to speed up the AAA algorithm for rational
approximation by reusing the sketch in the sketch-and-solve method.

6 AAA algorithm for rational approximation

The goal of rational approximation is: given a (possibly complicated) function f :
C → C, find a rational function r : C → C that approximates f ≈ r, in a domain
� ⊆ C. The AAA algorithm [26] is a powerful algorithm for this task, requiring
only a set of distinct sample points, z1, z2, ..., zm ∈ �, and their function values,
f1, f2, ..., fm , that is, fi = f(zi). The flexibility and empirical near-optimality of
AAA have resulted in its use in a large number of applications, including nonlinear
eigenvalue problems [20], conformalmaps [13],model order reduction [14], and signal
processing [9]. Rational approximation can significantly outperform themore standard
polynomial approximation when e.g.� is unbounded or when f has singularities [29].

123

BIT Numerical Mathematics (2023) 63 :36 Page 23 of 27 36

6.1 A brief summary of the AAA algorithm

Let us outline the AAA algorithm, emphasizing how it results in a null space problem.
AAA has two key ingredients. The first is to use the barycentric representation of
rational functions, instead of the standard quotient of polynomials:

r(z) = n(z)/d(z) =
n∑
j=1

fi j w j

z − zi j

/ n∑
j=1

w j

z − zi j

where w1, w2, ..., wn are weights and i1, i2, ..., in ∈ {1, 2, ...,m} are distinct indices,
where usually m � n. The second key ingredient is the greedy selection of the
so-called support points zi j , which are chosen as the points where the current error
|f(zi) − r(zi)| is maximized. The algorithm then finds the minimizer of the linerized
least-squares error ‖fd − n‖, where the norm is the �2 norm on the sample points.
This is equivalent to forming a matrix called the Loewner matrix [26], A(k), whose

(i, j) entry is
f (zi)− f (z j)

zi−z j
, and finding ‖Aw‖2 = ‖fd−n‖ over unit-norm vectors w,

i.e., a null space problem with k = 1. As the algorithm iterates, a column is added
(the degree of r is increased) while a row is removed (a support point is added, hence
removed from the least-squares equation) from the Loewner matrix from the previous
iteration. Therefore at the kth iteration, A(k) ∈ C

(m−k)×k and the iteration is terminated
once the tolerance is met. The precise details are covered in the original paper [26].

To summarize, the main computational task in AAA is that at each iteration, say k,
we solve for the weights w ∈ C

k that solve the following null space problem

min‖w‖2=1

∥∥∥A(k)w

∥∥∥
2
.

The algorithm computes the SVD of an (m − k) × k matrix at iteration k, giving us
the overall complexity of O(mn3) for the AAA algorithm where n is the degree of the
rational approximant r.

6.2 Sketching and updating+downdating for speeding up AAA

Given that the null space problem is the main computational task in AAA, it is natural
to apply the algorithms in this paper to speed it up. The first straightforward idea is
as follows: At the kth iteration, when we solve for the right singular vector corre-
sponding to the smallest singular value of A(k) we can sketch the matrix A(k) and then
take the SVD of a smaller-sized matrix instead. This will reduce the complexity to
O(mn2 log n+ n4) when m � n. However, in our implementation of SRFT using the
standard FFT we achieve a theoretical flop count of O(mk logm + k3) at iteration k.
This limits the speedup we can obtain as n is usually not too large (� 200) in most
applications [26].

Fortunately, we can improve the speed further by noting that at each iteration of the
AAA algorithm a column is added while a row is deleted from the Loewner matrix.

123

36 Page 24 of 27 BIT Numerical Mathematics (2023) 63 :36

Table 2 AAA speedup for four functions that give different values of n with m = 106 points. The points
were sampled uniformly at random from the domain of each function

f (z) n Speedup Domain

log(2 + z4)/(1 − 16z4) 32 10.49× {z : |z| = 1}√
z(1 − z)

√
(z − i)(1 + i − z) 60 14.00× {z = x + iy : x, y ∈ [0, 1]}

tan(128z) 105 19.40× {z : |z| ≤ 1}
tan(256z) 190 32.69× {z : |z| ≤ 1}

Therefore we can use the strategies discussed in Sect. 5.4 For deleting a row, we can
use Algorithm 3 and for adding a column, we can sketch the new column and append
it to the sketch. The overall sketch then becomes

Ã(k) =
[
Ã(k−1) − ẽ j A(k−1)(j, :), Ãk

]
∈ C

s×k

at iteration k where Ã(k−1) is the sketch of A(k−1), ẽ j is the sketch of the j th canonical
vector, A(k−1)(j, :) is the deleted row and Ãk is the sketch of the added column. After
the sketch is made, we take the SVD of the sketch Ã(k) and extract the last trailing
singular vector from the SVD. The overall complexity is O(mn logm + n4) using
the SRFT sketch with the sketch size s = 2n. Thus, when m � n and m is at most
exponentially larger than n, we get a lower complexity than both the original AAA
algorithm with O(mn3) flops, and the version where we resketch the entire Loewner
matrix A(k) at each iteration, requiring O(mn2 log n + n4) flops.

6.2.1 Other approaches for speeding up AAA

In [16], Hochman designs an algorithm to speed up the AAA algorithm based
on Cholesky update/downdate of the Gram matrix of A(k). In the AAA algo-
rithm, the Loewner matrix A(k) can become extremely ill-conditioned so Cholesky
update/downdate can be numerically unstable [10].Also, the complexity ofHochman’s
algorithm is O(mn2) and our algorithm, with complexity O(mn logm + n4), is faster
as long as m is larger than n2.

6.3 Experiment

In Table 2, we conducted experiments with various functions using 106 points ran-
domly sampled5 from the domain of each function. These functions were chosen

4 At each iteration, a column update and a row downdate to the Loewner matrix is the result of choosing
a support point. Since we begin with the original matrix and the sketching matrix being independent, the
failure probability for the column update and the row downdate concerning any independently chosen
support point is exponentially small (Sect. 5) Therefore, regardless of how the sketch influences the choice
of the support point, the sketch would succeed, in the worst case, with all but a sum of exponentially small
probabilities.
5 It is often excessive and unnecessary to take a million sample points in AAA. In many cases, say 103–104

points would suffice. Nonetheless, when the function has singularities on or near the domain of interest,

123

BIT Numerical Mathematics (2023) 63 :36 Page 25 of 27 36

Fig. 4 Plots obtained with f (z) = √
z(1 − z)

√
(z − i)(1 + i − z) with 106 points randomly sampled from

{z = x + iy : x, y ∈ [0, 1]}. r1 and r2 are respectively the rational approximation obtained using the
original AAA algorithm and the AAA algorithm with reused sketch. The bottom two contour plots show
the logarithm (base 10) of the approximation error. We see that the two versions give approximately the
same quality of approximation. The top left plot shows the data points (blue) and the poles (red) for r2 and
the top right plot shows the phase plot of r2

so that the functions give different values of n in the rational approximation. This
will demonstrate how the sketched version of the AAA algorithm performs in the
high-dimensional case when compared with the original AAA algorithm. By reusing
the sketch we already see a great speedup even for small values of n. The function
f (z) = log(2+ z4)/(1−16z4) is estimated by a rational function with n = 32 and we
achievedmore than 10× speedup. For a larger value of n, in the case f (z) = tan(256z)
with n = 190, we get more than 30× speedup.

We conclude with a plot (Fig. 4) showing the qualitative similarity between the
rational approximations of f (z) = √

z(1 − z)
√

(z − i)(1 + i − z) obtained using the
original AAA algorithm and the version where we have reused the sketch. Both the
AAA approximant r1 and the sketched AAA approximant r2 provide good approxi-
mation to the original function f .

Footnote 5 continued
and the precise location of the singularity is unknown, it is sensible to take asmany sample points as possible
to ensure sufficiently many sample points are near the singularity.

123

36 Page 26 of 27 BIT Numerical Mathematics (2023) 63 :36

Acknowledgements TP was supported by the Heilbronn Institute for Mathematical Research. We thank
the anonymous reviewers for their many insightful comments and suggestions.

Declarations

Conflict of interest The authors declare no potential conflict of interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized Hadamard
transform. SIAM J. Matrix Anal. Appl. 34(3), 1301–1340 (2013). https://doi.org/10.1137/120874540

2. Cartis, C., Fiala, J., Shao, Z.: Hashing embeddings of optimal dimension, with applications to linear
least squares. arXiv (2021). https://doi.org/10.48550/ARXIV.2105.11815

3. Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88–89, 67–82 (1987). https://doi.
org/10.1016/0024-3795(87)90103-0

4. Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model. In: Proceedings of
the 41st Annual ACMSymposium on Symposium on Theory of Computing—STOC09 (2009). https://
doi.org/10.1145/1536414.1536445

5. Clarkson, K.L., Woodruff, D.P.: Low rank approximation and regression in input sparsity time. In:
Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing—STOC
’13 (2013). https://doi.org/10.1145/2488608.2488620

6. Davidson, K., Szarek, S.J.: Local Operator Theory, Random Matrices and Banach Spaces. Handbook
of the Geometry of Banach Spaces, vol. I, pp. 317–366. North-Holland, Amsterdam (2001)

7. Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation III. SIAM J. Numer. Anal.
7(1), 1–46 (1970). https://doi.org/10.1137/0707001

8. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential
QR and LU factorizations. SIAM J. Sci. Comput. 34(1), 206–239 (2012). https://doi.org/10.1137/
080731992

9. Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by
iterative rational approximation. IMA J. Numer. Anal. 43(2), 789–827 (2023)

10. Eldén, L., Park, H.: Block downdating of least squares solutions. SIAM J. Matrix Anal. Appl. 15(3),
1018–1034 (1994). https://doi.org/10.1137/S089547989223691X

11. Gilbert, A.C., Park, J.Y., Wakin, M.B.: Sketched SVD: recovering spectral features from compressive
measurements. arXiv (2012). https://doi.org/10.48550/ARXIV.1211.0361

12. Golub, G.H., van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal.
17(6), 883–893 (1980). https://doi.org/10.1137/0717073

13. Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math.
142, 359–382 (2019)

14. Gosea, I.V., Gugercin, S.: The AAA framework for modeling linear dynamical systems with quadratic
output (2020). arXiv preprint arXiv:2005.10316

15. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011). https://doi.
org/10.1137/090771806

16. Hochman, A.: FastAAA: a fast rational-function fitter. In: 2017 IEEE 26th Conference on Electrical
Performance of Electronic Packaging and Systems (EPEPS), pp. 1–3 (2017). IEEE

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/120874540
https://doi.org/10.48550/ARXIV.2105.11815
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1145/2488608.2488620
https://doi.org/10.1137/0707001
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1137/S089547989223691X
https://doi.org/10.48550/ARXIV.1211.0361
https://doi.org/10.1137/0717073
http://arxiv.org/abs/2005.10316
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806

BIT Numerical Mathematics (2023) 63 :36 Page 27 of 27 36

17. Hong, Y.P., Pan, C.-T.: Rank-revealing QR factorizations and the singular value decomposition. Math.
Comput. 58(197), 213–232 (1992)

18. Li, R.-C.: Relative perturbation theory: I. Eigenvalue and singular value variations. SIAM J. Matrix
Anal. Appl. 19(4), 956–982 (1998). https://doi.org/10.1137/S089547989629849X

19. Li, R.-C.: Relative perturbation theory: II. Eigenspace and singular subspace variations. SIAMJ.Matrix
Anal. Appl. 20(2), 471–492 (1998). https://doi.org/10.1137/S0895479896298506

20. Lietaert, P., Meerbergen, K., Pérez, J., Vandereycken, B.: Automatic rational approximation and lin-
earization of nonlinear eigenvalue problems. IMA J. Numer. Anal. 42(2), 1087–1115 (2022)

21. Martinsson, P.-G., Tropp, J.A.: Randomized numerical linear algebra: foundations and algorithms.
Acta Numer. 29, 403–572 (2020). https://doi.org/10.1017/s0962492920000021

22. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math.
USSR Sbornik 1(4), 457–483 (1967). https://doi.org/10.1070/sm1967v001n04abeh001994

23. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11(1), 50–59 (1960).
https://doi.org/10.1093/qmath/11.1.50

24. Nakatsukasa, Y.: Fast and stable randomized low-rank matrix approximation. arXiv (2020). https://
doi.org/10.48550/ARXIV.2009.11392

25. Nakatsukasa, Y., Tropp, J.A.: Fast and accurate randomized algorithms for linear systems and eigen-
value problems. arXiv (2021). https://doi.org/10.48550/ARXIV.2111.00113

26. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J.
Sci. Comput. 40(3), 1494–1522 (2018). https://doi.org/10.1137/16m1106122

27. Ostrowski, A.M.: A quantitative formulation of Sylvester’s law of inertia. Proc. Natl. Acad. Sci. USA
45(5), 740–744 (1959)

28. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, Boston (1990)
29. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)
30. Tropp, J.A.: Improved analysis of the subsampled randomized Hadamard transform. Adv. Adapt. Data

Anal. 03(01–02), 115–126 (2011). https://doi.org/10.1142/s1793536911000787
31. Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Practical sketching algorithms for low-rank matrix

approximation. SIAM J. Matrix Anal. Appl. 38(4), 1454–1485 (2017). https://doi.org/10.1137/
17m1111590

32. Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Streaming low-rank matrix approximation with an
application to scientific simulation. SIAM J. Sci. Comput. 41(4), 2430–2463 (2019). https://doi.org/
10.1137/18M1201068

33. VanHuffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects andAnalysis.
SIAM, Philadelphia (1991)

34. Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. BIT 12(1), 99–111
(1972)

35. Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput. Sci.
10(1–2), 1–157 (2014). https://doi.org/10.1561/0400000060

36. Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of
matrices. Appl. Comput. Harmon. Anal. 25(3), 335–366 (2008). https://doi.org/10.1016/j.acha.2007.
12.002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/S089547989629849X
https://doi.org/10.1137/S0895479896298506
https://doi.org/10.1017/s0962492920000021
https://doi.org/10.1070/sm1967v001n04abeh001994
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.48550/ARXIV.2009.11392
https://doi.org/10.48550/ARXIV.2009.11392
https://doi.org/10.48550/ARXIV.2111.00113
https://doi.org/10.1137/16m1106122
https://doi.org/10.1142/s1793536911000787
https://doi.org/10.1137/17m1111590
https://doi.org/10.1137/17m1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1137/18M1201068
https://doi.org/10.1561/0400000060
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1016/j.acha.2007.12.002

	A fast randomized algorithm for computing an approximate null space
	Abstract
	1 Introduction
	1.1 Existing work and contribution
	1.2 Notation

	2 Problem statement and the algorithm
	3 Accuracy of the sketch using multiplicative perturbation bounds
	3.1 Computing subspaces of the same dimension
	3.1.1 A priori bound

	3.2 Subspaces of different dimensions
	3.2.1 A priori bound

	4 Total least squares
	5 Updating and downdating
	5.1 Row updating
	5.2 Row downdating
	5.3 Non-Gaussian sketch
	5.4 Complexity of updating the sketch

	6 AAA algorithm for rational approximation
	6.1 A brief summary of the AAA algorithm
	6.2 Sketching and updating+downdating for speeding up AAA
	6.2.1 Other approaches for speeding up AAA

	6.3 Experiment

	Acknowledgements
	References

