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Abstract
We derive optimal and asymptotically exact a posteriori error estimates for the approx-
imation of the eigenfunction of the Laplace eigenvalue problem. To do so, we combine
two results from the literature. First, we use the hypercircle techniques developed for
mixed eigenvalue approximations with Raviart-Thomas finite elements. In addition,
we use the post-processings introduced for the eigenvalue and eigenfunction based
on mixed approximations with the Brezzi-Douglas-Marini finite element. To combine
these approaches, we define a novel additional local post-processing for the fluxes
that appropriately modifies the divergence without compromising the approximation
properties. Consequently, the new flux can be used to derive optimal and asymptot-
ically exact upper bounds for the eigenfunction, and optimal upper bounds for the
corresponding eigenvalue. Numerical examples validate the theory and motivate the
use of an adaptive mesh refinement.

Keywords A posteriori error analysis · Mixed Laplace eigenvalue problem ·
Prager-Synge · Brezzi-Douglas-Marini finite element

1 Introduction

In many examples from physics to industrial applications, the solution of eigenvalue
problems plays an essential role. Similar as for standard source problems, the finite
element method seems to be a very promising method to discretize these problems
due to its flexibility and good approximation properties. Numerous works deal with
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the analysis concerning stability, convergence properties and a priori error estimates,
see [3, 9].

Since in general one can not assume high regularity of the eigenfunctions on
arbitrary domains [27], the requirement for an adaptive mesh refinement strategy is
obvious. Central to this approach is the derivation of an efficient and reliable a pos-
teriori error estimator, as already developed for finite element methods in general [1,
35], and for eigenvalue problems in particular in [18].

In this work we consider the Laplace eigenvalue problem and approximate it using
a mixed method. Several examples can be found in the literature using this approach,
see [10, 17, 24, 26, 30], where adaptivity by means of residual error estimators (and
using an H(div) × L2-norm analysis) is discussed. We particularly want to refer to
[14] where a unified framework for (guaranteed) a posteriori bounds (using a proper
discrete H1-energy norm) and a detailed overview of the literature is presented. A
fundamental observation when using a mixed method is that it gives access to the
hypercircle theory, see [28, 32], eventually leading to asymptotically exact upper
bounds and local efficiency. However, unlike for standard source problems, see [13,
19, 23, 25, 36], a more profound approach is needed since the orthogonality of the
corresponding errors is no longer exactly satisfied.

For eigenvalue problems this was first introduced in the work [6], by means of the
Raviart-Thomas finite element. To discuss details, note that we have

‖σh − σ‖20 + ‖∇(u − u∗∗
h )‖20 = ‖σh − ∇u∗∗

h ‖20 − 2(σh − σ,∇(u − u∗∗
h )), (1)

where λ, u, σ are the exact eigenvalue, eigenfunction and its gradient, λh, uh, σh
are the corresponding approximations and u∗∗

h denotes some H1-conforming post-
processed function of uh . The first term on the right-hand side of (1) is computable and
can therefore be used to define an a posteriori estimator η. The astonishing observation
in [6]was that in the case of an approximation using theRaviart-Thomas finite element,
the second term 2(σh − σ,∇(u − u∗∗

h )) converges with higher order. Consequently, η
is an asymptotically exact upper bound for the errors on the left-hand side of (1).

The question was whether the same ideas can be applied when using the Brezzi-
Douglas-Marini (BDM) finite element instead. Surprisingly, as observed in [5] this
is not the case. However, in [4] (using ideas from [21]) the authors were able to
derive optimal upper bounds but with unknown constants (in contrast to the asymptotic
bounds provided by η above).

The goal of this work is to derive asymptotically exact upper bounds (for the eigen-
function) as in [6] when using the BDM finite element method. For this we use the
post-processing techniques for the eigenvalue and the eigenfunction as in [4], and
consider modifications of the approaches from [6]. We introduce an additional (local)
post-processing for the flux variable σh , where we correct its divergence to fit the
additional term in (1), which consequently converges again with higher order. Note,
that the proposed method of this work is defined for all polynomial orders k ≥ 1, but
the convergence results are only improved (compared to the Raviart-Thomas finite
element) for k ≥ 1, see Remark 2.

The rest of the paper is organized as follows. Section3 discusses the problem setting
and its approximation. In Sect. 4 we present the local post-processing technique for
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the eigenfunction and the eigenvalue. The main results are then discussed in Sect. 5.
While we first recapture the standard a posteriori error analysis based on (1) and reveal
its breakdown due to a slow convergence of the additional terms, we then introduce
the novel post-processing of the flux and derive the asymptotically exact upper bound.
In the last Sect. 6 we present two numerical examples to validate our findings. The
appendix, see Sect. 1, considers some additional results needed in the analysis.

2 Notation

Weuse the established notation for Sobolev spaces, i.e. L2(Ω), H1(Ω) and H(div,Ω)

for a given domain Ω . An additional zero subscript (for the latter two) indicates a
vanishing trace. Further H1(Ω,Rd) (and similarly for other spaces) denotes a corre-
sponding vector-valued version with d components. For ω ⊂ Ω we use (·, ·)ω and
‖ · ‖0,ω for the inner product and the norm on L2(ω), respectively, and | · |s,ω as the
standard Sobolev seminorm of order s. If ω = Ω we omit the additional subscript.
We write A � B when there is a positive constant C , that is independent of the mesh
parameter h (see below) such that A ≤ CB. Analogously we define A � B.

3 Problem setting

Let Ω ⊂ R
d be a polygon or polyhedron for d = 2, 3, respectively. We consider the

mixed formulation of the Laplace eigenvalue problem with homogeneous Dirichlet
boundary conditions, i.e. we want to find a λ ∈ R, u ∈ L2(Ω) and σ ∈ H(div,Ω)

such that

(σ, τ )+(div τ, u) = 0 ∀τ ∈ H(div,Ω), (2a)

−(div σ, v) = λ(u, v) ∀v ∈ L2(Ω). (2b)

We approximate (2) by a mixed method using the BDM finite element for the approx-
imation of σ and a piece-wise polynomial approximation of u. To this end let Th be a
regular triangulation ofΩ into triangles and tetrahedrons in two and three dimensions,
respectively. Let k ≥ 1 be a fixed integer (see Remark 2 for a comment regarding the
lowest order case). We introduce the spaces

Uh := {vh ∈ L2(Ω) : vh |K ∈ P
k(K ) ∀K ∈ Th},

Σh := {τh ∈ H(div,Ω) : τh |K ∈ P
k+1(K ,Rd) ∀K ∈ Th},

where Pl(K ) denotes the space of polynomials of order l ≥ 0 on K , and P
l(K ,Rd)

denotes the corresponding vector-valued version. An approximation of (2) then seeks
λh ∈ R, uh ∈ Uh and σh ∈ Σh such that

(σh, τh)+(div τh, uh) = 0 ∀τh ∈ Σh, (3a)

−(div σh, vh) = λh(uh, vh) ∀vh ∈ Uh . (3b)
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Review article [9] (for example) states that problem (3) defines a good approximation
of the continuous eigenvalue problem (2) in the sense that it does not produce any
spurious modes and that eigenfunctions are approximated with the proper multiplicity.
The approximation results are summarized in the following. To this end let s > 1/2
and let (λ, u, σ ) be a solution of the eigenvalue problem (2) with the regularity u ∈
H1+s(Ω) and σ ∈ H(div,Ω) ∩ Hs(Ω,Rd) (for the regularity results see [20, 22]).
Then there exists a discrete solution of (3) such that (see [3, 9])

‖u − uh‖0 � hr |u|r+1, (4a)

‖σ − σh‖0 � hr
′ |u|r ′+1, (4b)

‖ div(σ − σh)‖0 � hr (|u|2r+1 + |u|2r ′+1), (4c)

where r = min{s, k + 1} and r ′ = min{s, k + 2}, and h = max
K∈Th

hK where hK is the

diameter of an element K . If s is big enough we have r ′ = r + 1. Above estimates
follow from the abstract theory from [9], [17] and [30], and the approximation results
of the source problem, see [10]. It is worth mentioning, that the constants in (4) are
non-trivial as they depend, beside the discrete stability constants of (3), particularly on
the spectrum of the associated solution operator of the continuous eigenvalue problem
(2). In addition we have

‖u − uh‖1,h � hr−1|u|r+1, (5)

where

‖u − uh‖21,h :=
∑

K∈Th
‖∇(u − uh)‖20,K +

∑

F∈Fh

1

hF
‖[[uh]]‖20,F .

Here [[·]]denotes the standard jumpoperator,Fh the set of facets of the triangulationTh ,
and hF the diameter of a facet F ∈ Fh . Note that above results demand a careful choice
of the approximated eigenfunction uh and the approximated gradient σh . An example,
well established in the literature, is given by a normalization such that ‖uh‖0 = ‖u‖0 =
1 and by choosing the sign (u, uh) > 0. Note that this also fixes σ and σh by (2a)
and (3a), respectively. For simplicity, we assume for the rest of this work that λ is a
simple eigenvalue and that the above choice of sign and scaling of the continuous and
the discrete eigenfunctions is applied. Further, for simplicity, we will call (λ, u, σ )

the solution of (2), keeping in mind that a different scaling and sign can be chosen.

Remark 1 The case of eigenvalues with a higher multiplicity demands more careful-
ness, particularly if an a posteriori analysis is considered.We particularly want to refer
to [11] where the authors considered eigenvalue clusters using a mixed formulation.
For the convergence of the adaptive scheme they used a residual based error estimator
and provided a detailed analysis. An extension to estimators that are based on identity
(1) is still open and is discussed in future works.
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Remark 2 Although the schemes proposed in this work are computable also for the
lowest order case k = 0, one does not observe any high-order convergence of the
post processed variables defined later in the work. The reason for this is that the
Aubin-Nitsche technique, needed in the analysis, can not be applied for this case.

4 Local post-processing for uh and �h

For a sufficiently smooth solution, estimates (4) and (5) show that there is a gap of two
between the order of convergence of ‖σ −σh‖0 and ‖u−uh‖1,h . In [17] the following
identity is proven

λ − λh = ‖σ − σh‖20 − λh‖u − uh‖20, (6)

which, due to (4), gives the estimate (using r ≤ r ′)

|λ − λh | � h2r |u|2r+1 + h2r
′ |u|2r ′+1 � h2r (|u|2r+1 + |u|2r ′+1). (7)

We see that the order of convergence of |λ − λh | is dominated by the order of the L2-
error of the eigenfunction. The reduced convergence of uh (compared to the L2-error
of σh) is well known for mixed methods and can be improved by means of a local
post-processing, see [2, 34], and particularly for eigenfunctions in [15]. Consequently,
using the ideas from [21], we can then also get an improved eigenvalue.

For a given integer l ≥ 0 let Π l denote the L2-projection onto element-wise
polynomials of order l. Consider the spaces

U∗
h := {vh ∈ L2(Ω) : vh |K ∈ P

k+2(K ) ∀K ∈ Th}, and U∗∗
h := U∗

h ∩ H1
0 (Ω),

then we define u∗
h ∈ U∗

h by

(∇u∗
h,∇v∗

h)K = (σh,∇v∗
h)K ∀v∗

h ∈ (id−Πk)|KPk+2(K ),∀K ∈ Th, (8a)

Πku∗
h = uh . (8b)

For the discretization of the standard source problem (i.e. the Poisson problem), it
is known that the kernel inclusion property divΣh ⊆ Uh (see [10]) and commut-
ing interpolation operators yield a super convergence property of the projected error
‖Πku − uh‖0 given by ρ(h)O(hr

′
). Here ρ(h) is a function that depends on the reg-

ularity of the problem and for which we have ρ(h) → 0 as h → 0. For convex
domains we have ρ(h) = O(h). This super convergence of the projected error is the
fundamental ingredient to derive the enhanced approximation properties of u∗

h .
Unfortunately the same technique, i.e. the one from the standard source problem,

does not work for the eigenvalue problem and an improved convergence estimate of
‖Πku−uh‖0 ismore involved.This has beendiscussed for the lowest order case in [20],
for amore general setting including eigenvalue clusters in [11], forMaxwell eigenvalue
problems in [12] and for the Stokes problem for example in [21]. Unfortunately, these
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results are only presented using the full ‖ · ‖div-norm (or the corresponding mixed
norm) for Σ and Σh . While such an estimate is applicable for an approximation of
(3) using Raviart-Thomas finite elements, the BDM case is not covered since (4c) and
(4b) show different convergence orders which would spoil the estimate. As the author
is not aware of a detailed proof that can be found in the literature, it will be given in
the appendix in Sect. 1. Note however, that these results are already used for example
in [4] (without proof). The resulting super convergence reads as

‖Πku − uh‖0 � ρ(h)(h‖u − uh‖0 + ‖σ − σh‖0), (9)

which in combination with the techniques from [34], then yields the approximation
properties (see also [29])

‖u − u∗
h‖0 � ρ(h)hr

′
(|u|r+1 + |u|r ′+1), (10a)

‖u − u∗
h‖1,h � hr

′
(|u|r+1 + |u|r ′+1). (10b)

Sinceu∗
h is not H

1-conforming thefinal post-processing step consists of the application
of an averaging operator I a : U∗

h → U∗∗
h often also called Oswald operator, see [31]

and [16] for details on the approximation properties. We set u∗∗
h := I a(u∗

h) for which
we have by (10)

‖u − u∗∗
h ‖0 � ρ(h)hr

′
(|u|r+1 + |u|r ′+1), (11a)

‖∇(u − u∗∗
h )‖0 � hr

′
(|u|r+1 + |u|r ′+1). (11b)

We conclude this section by introducing a post-processing of the eigenvalue. As in [4,
21] we define

λ∗
h := −(div σh, u∗

h)

(u∗
h, u

∗
h)

. (12)

The following lemma was given in [21]. Since we need some intermediate steps in the
sequel, we include the proof.

Lemma 1 Let s > 1/2 and let (λ, u, σ ) be the solution of (2) with the regularity
u ∈ H1+s(Ω) and σ ∈ H(div,Ω)∩ Hs(Ω,Rd). Further let ‖u∗

h‖0 �= 0. There holds

|λ − λ∗
h | � (ρ(h)hr

′+r + h2r
′
)(|u|2r+1 + |u|2r ′+1),

where r = min{s, k + 1} and r ′ = min{s, k + 2}.
Proof Since ‖u‖0 = 1 we have using that divΣh ⊆ Uh and (8b)

(σ, σ ) = −(div σ, u) = λ(u, u) = λ,

(σh, σh) = −(div σh, uh) = −(Πk div σh, uh) = −(div σh, u
∗
h) = λ∗

h(u
∗
h, u

∗
h),
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‖σ − σh‖20 = (σ − σh, σ − σh) = (σ, σ ) + (σh, σh) − 2(σ, σh)

= λ + λ∗
h(u

∗
h, u

∗
h) + 2(div σh, u).

Using λ∗
h‖u − u∗

h‖20 = λ∗
h(u, u) + λ∗

h(u
∗
h, u

∗
h) − 2λ∗

h(u, u∗
h) we have in total

λ−λ∗
h

= ‖σ − σh‖20 − λ∗
h(u

∗
h, u

∗
h) − 2(div σh, u) − λ∗

h,

= ‖σ − σh‖20 + λ∗
h(u, u) − 2λ∗

h(u, u∗
h) − λ∗

h‖u − u∗
h‖20 − 2(div σh, u) − λ∗

h,

and thus again with ‖u‖0 = 1 this gives

λ − λ∗
h = ‖σ − σh‖20 − λ∗

h‖u − u∗
h‖20 − 2(div σh + λ∗

hu
∗
h, u). (13)

Since (div σh +λ∗
hu

∗
h, u

∗
h) = 0 (according to the definition of λ∗

h), the last term can be
written as

(div σh + λ∗
hu

∗
h, u)

= (div σh + λ∗
hu

∗
h, u − u∗

h),

= (div(σh − σ), u − u∗
h) + (div σ + λ∗

hu
∗
h, u − u∗

h),

= (div(σh − σ), u − u∗
h) + (−λu + λ∗

hu
∗
h, u − u∗

h)

= (div(σh − σ), u − u∗
h) + λ∗

h(u
∗
h − u, u − u∗

h) − (λ − λ∗
h)(u, u − u∗

h).

By the Cauchy-Schwarz inequality we finally get

|λ − λ∗
h | ≤‖σ − σh‖20 + λ∗

h‖u − u∗
h‖20

+ 2‖ div(σh − σ)‖0‖u − u∗
h‖0 + 2|λ − λ∗

h |‖u − u∗
h‖0

�‖σ − σh‖20 + ‖u − u∗
h‖20 + ‖ div(σh − σ)‖0‖u − u∗

h‖0 + |λ − λ∗
h |2.

Thus, for h small enough, the last term can be moved to the left hand side, and we can
conclude the proof using (10) and (4). ��

5 A posteriori analysis

In this section we provide an a posteriori error analysis and define an appropriate
error estimator. We follow [6] where the authors derived an error estimator using the
variables σh and u∗∗

h . While this works for a mixed approximation of (4) using the
Raviart-Thomas finite element of order k (as was done in [6]), this does not work for
our setting. To discuss the problematic terms and to motivate our modification, we
present more details in the following. Since σ = ∇u we have

‖σh − ∇u∗∗
h ‖20 = ‖σh − σ + σ − ∇u∗∗

h ‖20
= ‖σh − σ‖20 + ‖∇(u − u∗∗

h )‖20 + 2(σh − σ,∇(u − u∗∗
h )).
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Using integration by parts, u∗∗
h ∈ H1

0 (Ω) and − div σh = λhuh , the last term can be
written as

(σh − σ,∇(u − u∗∗
h )) = −(div(σh − σ), u − u∗∗

h )

= −(λhuh − λu, u − u∗∗
h )

= −(λhuh + λuh − λuh − λu, u − u∗∗
h )

= −(λh − λ)(uh, u − u∗∗
h ) − λ(uh − u, u − u∗∗

h ).

In total this gives the guaranteed upper bound

‖σh − σ‖20 + ‖∇(u − u∗∗
h )‖20

≤ ‖σh − ∇u∗∗
h ‖20 + 2|λh − λ|‖u − u∗∗

h ‖0 + 2λ‖uh − u‖0‖u − u∗∗
h ‖0.

In [6] the first term on the right hand side is the (computable) proposed error estimator,
whereas the second and third are high-order terms. Compared to our setting we can
see the problem since

‖σh − ∇u∗∗
h ‖20 � h2k+4,

|λh − λ|‖u − u∗∗
h ‖0 � h3k+4,

‖uh − u‖0‖u − u∗∗
h ‖0 � h2k+4,

where for simplicity, i.e. to allow a simpler comparison,we assumed a smooth solution.
Whereas the second term converges with an increased rate (compared to 2k + 4), the
reduced convergence order of ‖u − uh‖0, see equation (4a), spoils the estimate of
the last term. Note that the error of uh appears in the estimates because we used the
identity − div σh = λhuh in the above proof.

To fix this problem we propose another post-processing. Whereas the first two
post-processing routines were used to increase the convergence rate of the error of the
eigenfunction and eigenvalue i.e. u∗

h (and u
∗∗
h ) andλ∗

h , respectively, we now aim to con-
struct a σ ∗

h with a fixed divergence constraint rather than improving its approximation
properties measured in the L2-norm. To this end we define the space

Σ∗
h := {τh ∈ H(div,Ω) : τh |K ∈ P

k+3(K ,Rd) ∀K ∈ Th,
τh · n|F ∈ P

k+1(F) ∀F ∈ Fh}.

The space Σ∗
h reads as a BDM space of order k + 3 with a reduced polynomial order

of the normal traces. Note that other choices of Σ∗
h are possible, see Remark 3. The

basic idea now is to find a σ ∗
h ∈ Σ∗

h being as "close" as possible to σh (i.e. being
a good approximation) such that the divergence is modified appropriately using the
additional high-order normal-bubbles (i.e. functions with a zero normal component
along the boundary of each element). Since these bubbles are defined locally, this can
be done in an element-wise procedure. Now let ξh ∈ Σ∗

h be arbitrary. Proposition
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2.3.1 in [10] shows that the following degrees of freedom (here applied to ξh)

Facet moments:
∫

F
ξh · nrh ds ∀rh ∈ P

k+1(F) ∀F ∈ Fh, (14a)

Div moments:
∫

K
div ξhqh dx ∀qh ∈ P

k+2(K )/P0(K ) ∀K ∈ Th, (14b)

Vol moments:
∫

K
ξh · lh dx ∀lh ∈ H

k+3(K ) ∀K ∈ Th, (14c)

where Hk+3(K ) := {lh ∈ P
k+3(K ,Rd) : div lh = 0, lh · n|∂K = 0}, are unisolvent.

By that we can define the post processed flux σ ∗
h ∈ Σ∗

h by

∫

F
(σ ∗

h − σh) · nrh ds = 0 ∀rh ∈ P
k+1(F) ∀F ∈ Fh, (15a)

∫

K
(div σ ∗

h + λhu
∗
h)qh dx = 0 ∀qh ∈ P

k+2(K )/P0(K ) ∀K ∈ Th,

(15b)
∫

K
(σ ∗

h − σh) · lh dx = 0 ∀lh ∈ H
k+3(K ) ∀K ∈ Th . (15c)

Note that sinceσh is normal continuous, i.e. the normal trace coincides on a common
facet of two neighboring elements, the boundary constraints (15a) of σ ∗

h can be set
locally on each element (boundary) separately. Further, since σh · n and σ ∗

h · n have
the same polynomial degree k + 1, the moments from (15a) result in σh · n = σ ∗

h · n.
In total this shows that one can solve for σ ∗

h on each element independently, i.e. this
can be done computationally very efficient. In Remark 4 we also make a comment on
the choice of (15b).

Theorem 1 Let σ ∗
h ∈ Σ∗

h be the function defined by (15), then there holds

− div σ ∗
h = λhu

∗
h .

Let s > 1/2 and σ ∈ H(div,Ω) ∩ Hs(Ω,Rd) be the solution of the eigenvalue
problem (2). There holds the a priori error estimate

‖σ − σ ∗
h ‖0 � hr

′
(|u|r+1 + |u|r ′+1),

where r ′ = min{s, k + 2} and r = min{s, k + 1}.
Proof Westartwith the proof of the divergence identity. Let K ∈ Th andqh ∈ P

k+2(K )

be arbitrary, then we have

−
∫

K
div σ ∗

h qh dx = −
∫

K
div σ ∗

h (qh − Π0qh) dx−
∫

K
div σ ∗

h Π0qh dx

=
∫

K
λhu

∗
h(qh − Π0qh) dx−Π0qh

∫

∂K
σ ∗
h · n ds,
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where the second step followed due to (15b) and the Gauss theorem. Using (15a) and
(3b), the last integral can be written as

−Π0qh

∫

∂K
σ ∗
h · n ds = −Π0qh

∫

∂K
σh · n ds = −

∫

K
Π0qh div σh dx (16a)

=
∫

K
Π0qhλhuh dx =

∫

K
Π0qhλhu

∗
h dx, (16b)

where we used (8b) in the last step. All together this gives

−
∫

K
div σ ∗

h qh dx =
∫

K
λhu

∗
hqh dx,

from which we conclude the proof as div σ ∗
h −λhu∗

h ∈ P
k+2(K ) and qh was arbitrary.

Now let I ∗
h be the canonical interpolation operator into Σ∗

h with respect to the
moments (14), and let Ih be the interpolation operator into Σh which is defined using
the samemoments (14) but with qh ∈ P

k(K )/P0(K ) and lh ∈ H
k+1(K ) instead. First,

the triangle inequality gives ‖σ −σ ∗
h ‖0 ≤ ‖σ − I ∗

h σ‖0 +‖I ∗
h σ −σ ∗

h ‖0. Since the first
term can be bounded by the properties of I ∗

h , we continue with the latter which can be
written as

‖I ∗
h σ − σ ∗

h ‖0 = ‖I ∗
h (σ − σ ∗

h )‖0 ≤ ‖(I ∗
h − Ih)(σ − σ ∗

h )‖0 + ‖Ih(σ − σ ∗
h )‖0.

By the definition of the interpolation operators and similar steps as above we have
Ih(σ ∗

h ) = σh , and thus the term most to the right simplifies to

‖Ih(σ − σ ∗
h )‖0 = ‖Ihσ − σh‖0 ≤ ‖Ihσ − σ‖0 + ‖σ − σh‖0.

We continue with the other term. For this let ψdiv
i be the hierarchical dual basis func-

tions of the highest order divergence moments from (14b) given by
∫
K div(·)qi dx

with qi ∈ P
k+2(K )/Pk(K ). Similarly let ψH

i be the hierarchical dual basis func-
tions of the highest order vol moments from (14c) given by

∫
K (·) · li dx with

li ∈ H
k+3(K )/Hk+1(K ). An explicit construction of these basis functions can be

found for example in [8, 37]. Also let Ndiv and NH be the corresponding index sets.
Using (2b), (15b) and (15c), this then gives

(I ∗
h − Ih)(σ − σ ∗

h )

=
∑

i∈Ndiv

∫

K
div(σ − σ ∗

h )qi dxψdiv
i +

∑

i∈NH

∫

K
(σ − σ ∗

h )li dxψH

i

= −
∑

i∈Ndiv

∫

K
(λu − λhu

∗
h)qi dxψdiv

i +
∑

i∈NH

∫

K
(σ − σh)li dxψH

i ,

which implies that (using that the norms of the qi , li and ψdiv
i , ψH

i are bounded)

‖(I ∗
h − Ih)(σ − σ ∗

h )‖0 � ‖λu − λhu
∗
h‖0 + ‖σ − σh‖0
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� |λ|‖u − u∗
h‖0 + |λ − λh |‖u∗

h‖0 + ‖σ − σh‖0.

Since ‖u∗
h‖0 ≤ ‖u∗

h − u‖0 + ‖u‖0, we can conclude the proof by the approximation
properties of Ih and I ∗

h (see Proposition 2.5.1 in [10]), estimates (7) and (10) and by

ρ(h)hr
′ ≤ hr

′
and h2r ≤ hr

′
. ��

Remark 3 Instead of choosingΣ∗
h as above, one can for example also use the standard

Raviart-Thomas space of order k + 2 denoted by RT k+2. Since div RT k+2 = U∗
h it

is again possible to set − div σ ∗
h = λhu∗

h (using the appropriate degrees of freedom).
However, since the normal trace of σ ∗

h is now in P
k+2(F) on each facet F ∈ Fh , one

has to be more careful defining the edge moments. Precisely, we would now set

Πk+1(σ ∗
h · n) = σh · n, and (id−Πk+1)(σ ∗

h · n) = 0.

where the projection has to be understood as the L2-projection on the facets.

Remark 4 Onemight be curious whywe do not use λ∗
h instead of λh in the definition of

div σ ∗
h in (15b). Indeed, as can be seen in the proof this is a crucial choice sincewe used

in (16) that the mean value of the divergence is fixed by the constant normal moments
(first equal sign) and thus coincides with Π0(λhuh) (third equal sign). Choosing λ∗

h
in (15a) would then lead to a mismatch of the low-order and high-order parts of the
divergence.

We are now in the position of defining the local error estimator on each element
K ∈ Th by

η(K ) := ‖∇u∗∗
h − σ ∗

h ‖K ,

and the corresponding global estimator by

η :=
( ∑

K∈Th
η(K )2

)1/2 = ‖∇u∗∗
h − σ ∗

h ‖0.

Theorem 2 Let (λ, u, σ ) be the solution of (2). Let (λh, uh, σh) be the solution of (4)
and let u∗∗

h and σ ∗
h be the post-processed solutions. There holds the reliability estimate

‖∇u − ∇u∗∗
h ‖20 + ‖σ − σ ∗

h ‖20 ≤ η2 + hot(h)

where hot(h) := 2|(σ ∗
h − σ,∇(u − u∗∗

h ))| with

hot(h) � ρ(h)(h2r+r ′ + ρ(h)h2r
′
)(|u|2r+1 + |u|2r ′+1),

is a high-order term compared toO(h2r
′
) as h → 0. Further, there holds the efficiency

η ≤ ‖∇u − ∇u∗∗
h ‖0 + ‖σ − σ ∗

h ‖0.
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Proof Following the same steps as at the beginning of this section we arrive at

‖∇u − ∇u∗∗
h ‖20 + ‖σ − σ ∗

h ‖20 = ‖∇u∗∗
h − σ ∗

h ‖20 + 2(σ ∗
h − σ,∇(u − u∗∗

h )).

For the last term we now have

(σ ∗
h − σ,∇(u − u∗∗

h )) = −(div(σ ∗
h − σ), u − u∗∗

h )

= −(λhu
∗
h − λu, u − u∗∗

h )

= −(λh − λ)(u∗
h, u − u∗∗

h ) − λ(u∗
h − u, u − u∗∗

h ).

Whereas the first term converges of order

|λh − λ||(u∗
h, u − u∗∗

h )| ≤ |λh − λ|‖u∗
h‖0‖u − u∗∗

h ‖0
� ρ(h)h2r+r ′

(|u|2r+1 + |u|2r ′+1),

we have for the second term

|λ||(u∗
h − u, u − u∗∗

h )| ≤ |λ|‖u∗
h − u‖0‖u − u∗∗

h ‖0
� ρ(h)2h2r

′
(|u|2r+1 + |u|2r ′+1).

It remains to show that hot(h) � ρ(h)(h2r+r ′ +ρ(h)h2r
′
) is of higher order compared

to h2r
′
. Due to the additional ρ(h) in the upper bound of hot(h), we only have to show

that 2r ′ ≤ 2r + r ′. For the low regularity case, i.e. s = r = r ′, and the case of full
regularity, i.e. r = k + 1 and r ′ = k + 2, this follows immediately. For the case where
r = k + 1 and r ′ = s with k + 1 < s < k + 2, we also have

2r ′ = 2s < k + 2 + s < 2(k + 1) + s = 2r + r ′,

from which we conclude the proof of the reliability.
The efficiency estimate follows by the triangle inequality and σ = ∇u. ��
Using the estimator from above we are now also able to derive an upper bound for

λ∗
h . To this end let

ηλ := η2 + ‖σh − σ ∗
h ‖20 + |(λ∗

hu
∗
h − λhuh, u

∗∗
h )|.

The last two terms from the estimator ηλ are needed to measure the difference between
the quantities used in η and the functions used in the definition of λ∗

h . Unfortunately
the authors do not see how the definition of λ∗

h can be changed such that only σ ∗
h and

u∗∗
h are used, which would allow a direct estimate by η.

Theorem 3 Let (λ, u, σ ) be the solution of (2). Let (λh, uh, σh) the the solution of (4)
and let u∗∗

h and σ ∗
h be the post-processed solutions. There holds the estimate

|λ − λ∗
h | � ηλ + hot(h) + h̃ot(h),
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where h̃ot(h) := ‖u∗
h − u‖0‖u − u∗∗

h ‖0 + ‖u − u∗∗
h ‖20 with

h̃ot(h) � ρ(h)2h2r
′
(|u|2r+1 + |u|2r ′+1),

and hot(h) are both higher order terms compared to O(ρ(h)hr+r ′ + h2r
′
) as h → 0.

Proof Following (13) we have the equation

λ − λ∗
h = ‖σ − σh‖20 − λ∗

h‖u − u∗
h‖20 − 2(div σh + λ∗

hu
∗
h, u). (17)

Note that the second term on the right side is already of higher order, thus we only
consider the remaining terms. The idea is to modify the terms including σh such that
we can use the results from the previous theorem. By the triangle inequality we have
‖σ − σh‖0 ≤ ‖σ − σ ∗

h ‖0 + ‖σ ∗
h − σh‖0. Since the error ‖σ ∗

h − σh‖0 is computable
and ‖σ − σ ∗

h ‖0 can be bounded by the estimator from the previous theorem, we are
left with an estimate for the last term on the right hand side of (17).

In contrast to the proof of Lemma 1 we now add and subtract u∗∗
h (and not u∗

h)
which gives

(div σh + λ∗
hu

∗
h, u) = (div σh + λ∗

hu
∗
h, u − u∗∗

h ) + (div σh + λ∗
hu

∗
h, u

∗∗
h )

= (div σh + λ∗
hu

∗
h, u − u∗∗

h ) + (λ∗
hu

∗
h − λhuh, u

∗∗
h ).

The last term is computable and will be used in the estimator. For the first one we have
using that u∗∗

h ∈ H1
0 (Ω), ‖u‖0 = 1 and integration by parts

(div σh + λ∗
hu

∗
h, u − u∗∗

h )

= (div(σh − σ), u − u∗∗
h ) + (div σ + λ∗

hu
∗
h, u − u∗∗

h ),

= −(σh − σ,∇(u − u∗∗
h )) + (−λu + λ∗

hu
∗
h, u − u∗∗

h ),

≤ ‖σh − σ‖20 + ‖∇(u − u∗∗
h )‖20

+ λ∗
h‖u∗

h − u‖0‖u − u∗∗
h ‖0 + |λ − λ∗

h |‖u − u∗∗
h ‖0,

≤ ‖σh − σ‖20 + ‖∇(u − u∗∗
h )‖20

+ λ∗
h‖u∗

h − u‖0‖u − u∗∗
h ‖0 + |λ − λ∗

h |2 + ‖u − u∗∗
h ‖20.

The first term can be estimated as before, thus for h small enough we have

|λ − λ∗
h | � ‖σ − σ ∗

h ‖20 + ‖∇(u − u∗∗
h )‖20 + ‖σh − σ ∗

h ‖20
+ |(λ∗

hu
∗
h − λhuh, u

∗∗
h )| + h̃ot(h),

� η2 + ‖σh − σ ∗
h ‖20 + |(λ∗

hu
∗
h − λhuh, u

∗∗
h )| + hot(h) + h̃ot(h).

To show that hot(h) and h̃ot(h) are of higher order compared toO(ρ(h)hr+r ′ + h2r
′
),

one follows the same steps as in the proof of Theorem 2.
��
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6 Numerical examples

In this sectionwe discuss some numerical examples to validate our theoretical findings.
All methods were implemented in the Finite Element library Netgen/NGSolve, see
www.ngsolve.org and [33].

6.1 Convergence on a unit square

The first example considers the unit square domain Ω = (0, 1)2. The eigenfunction
and the smallest eigenvalue of (2) is given by u = 2 sin(2πx) sin(2π y) and λ = 2π2,
respectively. We start with an initial mesh with |Th | = 32 elements and use a uniform
refinement. Note that for simplicity we used a structured mesh for this example, thus
we have h ∼ (0.5|Th |)−1/2. In Tables 1 and 2we present several errors and their
convergence rate (given in brackets) for different polynomial orders k = 1 and k = 2.
Beside the errors we also plot the high-order term fromTheorem 2, and the efficiencies

eff := η2

‖∇u − ∇u∗∗
h ‖20 + ‖σ − σ ∗

h ‖20
, and effλ := ηλ

|λ − λ∗
h |

.

Since Ω is convex we have for this example that ρ(h) ∼ h, thus we expect the
following convergence orders (for simplicity recalled here)

‖u − u∗∗
h ‖0 � hk+3, ‖∇(u − u∗∗

h )‖0 � hk+2,

‖σ − σ ∗
h ‖0 � hk+2, |λ − λ∗

h | � h2(k+2).

In accordance to the theory all errors converge with the optimal orders. Further the
high-order termhot(h) converges faster than the estimatorη as predicted byTheorem2.
Note that this results in an efficiency eff converging to one, i.e. the error estimator
is asymptotically exact. Also the estimator for the error of the eigenvalue converges
appropriately and shows a good efficiency effλ. The same conclusions can be made
for k = 2, however, the error of the eigenvalues λh and λ∗

h converge so fast that they
are too small and rounding errors dominate on the finest meshes. For the same reason
we also do not present any numbers for h̃ot(h) since this term converges even faster
resulting in very small numbers already on coarse meshes.

6.2 Adaptive refinement on the L-shape

For the second example we choose the L-shape domain Ω = (−1, 1)2\([0, 1] ×
[−1, 0]) where the first eigenvalue reads as λ ≈ 9.63972384402, see [7]. In this
example the corresponding eigenfunction is singular, thus we expect a suboptimal
convergence on a uniform refined mesh. To this end we solve the problem using an
adaptive mesh refinement. The refinement loop is defined as usual by

SOLVE → ESTIMATE → MARK → REFINE → SOLVE → . . .
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Table 2 Convergence of several errors for the example on the unit square with k = 1, 2

|Th | ‖u − u∗∗
h ‖0 |λ − λ∗

h | ηλ effλ

k = 1

32 1.48 · 10−3 (−) 4.52 · 10−4 (−) 2.39 · 10−3 (−) 5.29

128 9.91 · 10−5 (3.9) 7.82 · 10−6 (5.9) 4.11 · 10−5 (5.9) 5.26

512 6.33 · 10−6 (4.0) 1.25 · 10−7 (6.0) 6.63 · 10−7 (6.0) 5.28

2048 3.98 · 10−7 (4.0) 1.98 · 10−9 (6.0) 1.05 · 10−8 (6.0) 5.29

8192 2.49 · 10−8 (4.0) 4.50 · 10−11 (5.5) 1.64 · 10−10 (6.0) 3.65

32768 1.56 · 10−9 (4.0) 6.35 · 10−11 (−0.5) 2.60 · 10−12 (6.0) 0.04

k = 2

32 7.95 · 10−5 (−) 4.06 · 10−6 (−) 1.43 · 10−5 (−) 3.52

128 2.49 · 10−6 (5.0) 1.63 · 10−8 (8.0) 5.89 · 10−8 (7.9) 3.62

512 7.77 · 10−8 (5.0) 6.86 · 10−11 (7.9) 2.33 · 10−10 (8.0) 3.39

2048 2.43 · 10−9 (5.0) 1.86 · 10−11 (1.9) 1.10 · 10−12 (7.7) 0.06

8192 7.59 · 10−11 (5.0) 6.88 · 10−11 (−1.9) 1.78 · 10−13 (2.6) 0.00

32768 2.38 · 10−12 (5.0) 2.93 · 10−10 (−2.1) 2.07 · 10−13 (−0.2) 0.00

Fig. 1 Convergence history of the L-shape example using an adaptive refinement for k = 2, 3

and is based on the local contributions η(K ) as element-wise refinement indicators. In
the marking step we mark an element if η(K ) ≥ 1

4 max
K∈Th

η(K ). The refinement routine

then refines all marked elements plus further elements in a closure step to guarantee
a regular triangulation. In Fig. 1we present the error history of the post processed
eigenvalue λ∗

h , its estimator ηλ and the estimator for the eigenfunction error η for
polynomial order k = 2, 3. We can observe an optimal convergence O(N−2(k+2)),
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O(N−2(k+2)) andO(N−(k+2)), for |λ − λ∗
h |, ηλ and η, respectively, where N denotes

the number of degrees of freedom. Further ηλ shows a good efficiency.
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Appendix

In this section we present a proof of the super convergence estimate

‖Πku − uh‖0 � ρ(h)(h‖u − uh‖0 + ‖σ − σh‖0).

For this we will follow very similar steps as in [12] with several changes in order to
get the proper h scaling. We define the auxiliary problem: find ûh ∈ Uh and σ̂h ∈ Σh

such that

−(̂σh, τh) − (div τh, ûh) = 0 ∀τh ∈ Σh, (18a)

−(div σ̂h, vh) = λ(u, vh) ∀vh ∈ Uh . (18b)

Note that above solution provides the property

λh (̂uh, uh) = −(div σh, ûh) = (σh, σ̂h) = −(div σ̂h, uh) = λ(u, uh). (19)

Lemma 2 Let (λ, u, σ ) be the solution of (2), and let (̂uh, σ̂h) be the solution of (18).
There holds the estimate

‖Πku − ûh‖0 � ρ(h)(‖σ − σ̂h‖0 + h‖ div(σ − σ̂h)‖0).
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Proof We solve the continuous problem: Find Θ ∈ H(div,Ω) and Ψ ∈ L2(Ω) such
that

−(Θ, τ) − (div τ, Ψ ) = 0 ∀τ ∈ H(div,Ω), (20a)

−(divΘ, v) = λ(Πku − ûh, v) ∀v ∈ L2(Ω). (20b)

Note, that we have the regularity Θ ∈ Hs(Ω,Rd) and Ψ ∈ H1+s(Ω) with s > 1/2,
and there holds the stability estimate (see for example [20])

‖Θ‖s + ‖Ψ ‖1+s � ‖Πku − ûh‖0. (21)

This then gives

‖Πku − ûh‖20 = −(divΘ,Πku − ûh) = −(Πk divΘ,Πku − ûh),

= −(div IhΘ,Πku − ûh) = −(div IhΘ, u − ûh),

where we used the commuting diagram property of the BDM-interpolation operator
Ih and the L2 projection Πk , see Section 2.5 in [10]. By problems (18) and (20) we
then have

−(div IhΘ, u − ûh) = (IhΘ, σ − σ̂h)

= (IhΘ − Θ, σ − σ̂h) + (Θ, σ − σ̂h)

= (IhΘ − Θ, σ − σ̂h) − (div(σ − σ̂h), Ψ )

= (IhΘ − Θ, σ − σ̂h) + (div(σ − σ̂h),Π
kΨ − Ψ ),

where the last step followed by (div(σ − σ̂h),Π
kΨ ) = 0. By the interpolation

properties of Πk and Ih and the stability (21) we conclude

‖Πku − ûh‖20 � ‖σ − σ̂h‖0hs |Θ|s + ‖ div(σ − σ̂h)‖0h1+s‖Ψ ‖1+s

� hs(‖σ − σ̂h‖0 + h‖ div(σ − σ̂h)‖0)‖Πku − ûh‖0.

��
Lemma 3 Let (λ, u, σ ) be the solution of (2), (λh, uh, σh) be the solution of (3) and
let (̂uh, σ̂h) be the solution of (18). There holds the estimate

‖σ − σ̂h‖0 + h‖ div(σ − σ̂h)‖0
� ‖uh − ûh‖0 + ‖Πku − ûh‖0 + h‖u − uh‖0 + ‖σ − σh‖0.

Proof We start with the estimate of the divergence term. By the triangle inequality we
have

‖ div(σ − σ̂h)‖0 ≤ ‖ div(σ − σh)‖0 + ‖ div(σh − σ̂h)‖0,
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Using divΣh = Uh gives

‖ div(σh − σ̂h)‖0 = sup
vh∈Uh

(div(σh − σ̂h), vh)

‖vh‖0
= sup

vh∈Uh

(λhuh − λu, vh)

‖vh‖0 ≤ ‖λhuh − λu‖0,

thus since also ‖ div(σ −σh)‖0 = ‖λu−λhuh‖0 we have with (6) and a small enough
mesh size h that

‖ div(σh − σ̂h)‖0 � ‖λhuh − λu‖0 � ‖u − uh‖0 + |λ − λh |
� ‖u − uh‖0 + ‖σ − σh‖0.

For the second term we proceed similarly. The triangle inequality gives ‖σ − σ̂h‖0 ≤
‖σ − σh‖0 + ‖σh − σ̂h‖0. For the latter we then have with (19)

‖σh − σ̂h‖20 = (σh, σh) − 2(σh, σ̂h) + (̂σh, σ̂h)

= −(div σh, uh) − λ(u, uh) − λh (̂uh, uh) − (div σ̂h, ûh)

= λh(uh, uh) − λ(u, uh) − λh (̂uh, uh) + λ(u, ûh)

= (λhuh, uh − ûh) + (λu, ûh − uh)

= (λhuh, uh − ûh) − (λΠku, uh − ûh)

= (λhuh − λhûh, uh − ûh) + (λhûh − λΠku, uh − ûh)

� ‖uh − ûh‖20 + ‖λhûh − λΠku‖‖uh − ûh‖0.

We continue to bound the last term. With ‖Πku‖0 � ‖u‖0 we have as above with (6)

‖λhûh − λΠku‖‖uh − ûh‖0
�

(
‖ûh − Πku‖0 + |λ − λh |

)
‖uh − ûh‖0

�
(
‖ûh − Πku‖0 + ‖u − uh‖20 + ‖σ − σh‖20

)
‖uh − ûh‖0.

Since u ∈ H1+s(Ω) we can bound ‖u − uh‖0 � h‖∇u‖0 which gives for h small
enough (i.e. bounding ‖σ − σh‖20 ≤ ‖σ − σh‖0)

‖λhûh − λΠku‖‖uh − ûh‖0
�

(
‖ûh − Πku‖0 + h‖u − uh‖0 + ‖σ − σh‖20

)
‖uh − ûh‖0

� ‖ûh − Πku‖20 + h2‖u − uh‖20 + ‖σ − σh‖20 + ‖uh − ûh‖20,

and thus in total we conclude with

‖σh − σ̂h‖0 � ‖ûh − Πku‖0 + ‖uh − ûh‖0 + ‖σ − σh‖0 + h‖u − uh‖0.
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��
Lemma 4 Let (λ, u, σ ) be the solution of (2), (λh, uh, σh) be the solution of (3) and
let (̂uh, σ̂h) be the solution of (18). There holds the estimate

‖uh − ûh‖0 � ‖Πku − ûh‖0.

Proof Using equation (19) the proof follows with exactly the same steps as in the
proof of Lemma 11 in [12] or Lemma 6.3 in [11]. ��

Combining above results we have the super convergence property.

Corollary 1 Let (λ, u, σ ) be the solution of (2), (λh, uh, σh) be the solution of (3)
and let (̂uh, σ̂h) be the solution of (18). For h small enough there holds the super
convergence property

‖Πku − uh‖0 � ρ(h)(h‖u − uh‖0 + ‖σ − σh‖0).
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