
BIT Numerical Mathematics (2023) 63:31
https://doi.org/10.1007/s10543-023-00975-x

Fast floating-point filters for robust predicates

Tinko Bartels1 · Vissarion Fisikopoulos2 ·Martin Weiser3

Received: 25 August 2022 / Accepted: 25 April 2023 / Published online: 17 May 2023
© The Author(s) 2023

Abstract
Geometric predicates are at the core of many algorithms, such as the construction
of Delaunay triangulations, mesh processing and spatial relation tests. These algo-
rithms have applications in scientific computing, geographic information systems and
computer-aided design.With floating-point arithmetic, these geometric predicates can
incur round-off errors that may lead to incorrect results and inconsistencies, causing
computations to fail. This issue has been addressed using a combination of exact
arithmetic for robustness and floating-point filters to mitigate the computational cost
of exact computations. The implementation of exact computations and floating-point
filters can be a difficult task, and code generation tools have been proposed to address
this. We present a new C++ meta-programming framework for the generation of fast,
robust predicates for arbitrary geometric predicates based on polynomial expressions.
We combine and extend different approaches to filtering, branch reduction, and over-
flow avoidance that have previously been proposed. We show examples of how this
approach produces correct results for data sets that could lead to incorrect predi-
cate results with naive implementations. Our benchmark results demonstrate that our
implementation surpasses state-of-the-art implementations.

Keywords Floating-point arithmetic · Floating-point filter · Roundoff error ·
Computational geometry

Communicated by Elisabeth Larsson.

B Tinko Bartels
t.bartels@tu-berlin.de

Vissarion Fisikopoulos
vfisikop@di.uoa.gr

Martin Weiser
weiser@zib.de

1 Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2 Department of Informatics & Telecommunications, National & Kapodistrian University of
Athens, Athens, Greece

3 Zuse Institute Berlin, Takustr. 9, 14195 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-023-00975-x&domain=pdf
http://orcid.org/0000-0002-0084-7100
http://orcid.org/0000-0002-0780-666X
http://orcid.org/0000-0002-1071-0044

31 Page 2 of 31 BIT Numerical Mathematics (2023) 63 :31

Mathematics Subject Classification 65G50 · 68U05

1 Introduction

Basic geometric predicates, such as computing the orientation of a triangle or testing
if a point is inside a circle, are at the core of many computational geometry algorithms
such as convex hull, Delaunay triangulation and mesh generation [5]. Interestingly,
those predicates also appear in geospatial computations such as topological spatial
relations that determine the relationship among geometries. Those operations are fun-
damental in many Geographic Information System (GIS) applications. If evaluated
with floating-point arithmetic, these computations can incur round-off errors that can,
due to the ill-conditioning of discrete decisions, lead to incorrect results and inconsis-
tencies, causing computations to fail [20].

Among other applications, Delaunay triangulations are important for the construc-
tion of triangular meshes [19, 31] and Triangulated Irregular Networks (TIN) [21].
Predicate failures in the underlying Delaunay triangulation may lead to suboptimal
mesh quality and cause invalid triangulations or termination failure [30].

Robust geometric predicates can also be used in spatial predicates to guarantee
correct results for floating-point geometries. Spatial predicates are used to determine
the relationship between geometries and have applications in spatial databases and
GIS applications. Examples of such predicates include intersects, crosses, touches,
or within. Using non-robust spatial predicates, for example, a point that lies close to
the shared edge of two triangles can be found to be within both or neither of them,
which is not only incorrect but also inconsistent and violates basic assumptions on
partitioned spaces.

Exact computations can guarantee correct results for floating-point input but are
very slow for practical purposes. Since predicates are usually ill-conditioned only on
a set of measure zero and extremely well-conditioned everywhere else, an adaptive
evaluation can improve average performance by using exact arithmetic only if an a
priori error estimate can not guarantee correctness for the faster, approximate com-
putations. In other words, the expensive computations are filtered out by using those
error estimates.

Now, the main question is how difficult it is to compute those error estimates.
There are several approaches that provide a trade-off in efficiency and accuracy of
error estimation. The three main types of filters are static, semi-static and dynamic.

In the first case, the error is pre-computed very efficiently using a priori bounds
on the input and typically attains very low accuracy. In semi-static filters, the error
estimation depends on the input. They are somewhat slower than static filters but
improve on the accuracy and require no a priori bounds on the input. The slowest
and most accurate are dynamic filters using floating-point interval arithmetic to better
control the error and achieve fewer filter failures.

Previous work. Many techniques have been proposed in the past for efficient and
robust arithmetic. In his seminal paper [30], Shewchuk introduced robust, adaptive
implementations for orientation-, incircle- and insphere-predicates that can be used,

123

BIT Numerical Mathematics (2023) 63 :31 Page 3 of 31 31

for example, in the construction of Delaunay triangulations. They use a sequence of
semi-static filters of ever-increasing accuracy. The phases are attempted in order, each
phase building on the result from the previous one until the correct sign is obtained.
On the other hand, efficient dynamic filters are proposed in [6]. For Delaunay tri-
angulations, in [11] they propose a set of efficient static and semi-static filters and
experimentally compare them with several alternatives including [30]. Meyer and
Pion develop FPG [24], a general-purpose code analyzer and generator for static fil-
tered predicates. The generated filters, however, include multiple branch instructions,
which was found in [26] to cause suboptimal performance.

Nanevski et al. extend Shewchuk’s method to arbitrary polynomial expressions
and implement an expression compiler that takes a function and produces a predicate,
consisting of semi-static filters and an exact stage that computes the sign of the source
function at any given floating point arguments [25]. Their filters, however, are not
robust with respect to overflow or underflow.

In [8], Burnikel et al. present EXPCOMP, a C++ wrapper class and an expression
compiler that generates fast semi-static filters for predicates involving the operations
+,−, ·, /,√·, which include arbitrary polynomials and handle all kinds of floating-
point exceptions. In their benchmarks, they found a 25-30% runtime overhead for
their C++wrapper class when compared with their expression compiler and their error
bound constants are comparatively pessimistic (see Subsection 4.3 for an example).

More recently, Ozaki et al. developed an improved static filter as well as a new semi-
static filter for the 2D orientation predicate, where the latter also handles floating-point
exceptions such as overflow and underflow [26]. This approach yields a close-to-
optimal error bound constant, however, it is not designed for arbitrary polynomial
predicates.

Regarding non-linear geometries, there is work on filters for circular arcs [10].
Moreover, robust predicates could be extended to provide robust constructions such
as points of intersection of linestrings [2]. Recently, GPU implementations of robust
predicates have been presented, providing a constant (3 to 4 times) speedup over
standard CPU implementations [9, 27].

In [13], they employ dynamic determinant computations to speed up the compu-
tation of sequences of determinants that appear in high-dimensional (typically more
than 6) geometric algorithms such as convex hull and volume computation.

In [3], the authors present a C++ metaprogramming framework that produces fast,
robust predicates and illustrate how GIS applications can benefit from it.

Our contribution. The contribution of this paper is three-fold. First, we present
an algorithm that generates semi-static or static filters for robust predicates based
on arbitrary polynomials. These filters are shown to be valid for all input numbers,
regardless of range issues such as overflow or underflow. They also require only a
single comparison and can therefore be evaluated encountering only a single, easy-to-
predict branch. To the best of our knowledge, this is the first filter design combining
generality, range robustness, and branch efficiency.

Second, we present a new implementation based on C++ meta-programming tech-
niques that produces fast, robust code at compile-time for predicates. It is extensible,
based on the C++ library Boost.Geometry [14] and publicly available at [4].

123

https://github.com/boostorg/geometry

31 Page 4 of 31 BIT Numerical Mathematics (2023) 63 :31

The main advantage of our implementation is the ability to automatically generate
filters for arbitrary polynomial predicates without relying on external code generation
tools. In addition, it can be complemented seamlessly with manual handcrafted fil-
ters, as illustrated by the use of our axis-aligned filter for the incircle predicate (see
example 8).

Last, we perform an experimental analysis of the generated filters as well as a
comparison with the state of the art. We perform benchmarks for 2D Delaunay tri-
angulation, 3D Polygon Mesh processing and 3D Mesh refinement. The algorithms
tested in the benchmarks make use of four different geometric predicates of different
complexity.We show that our predicates outperform the state of the art libraries [7, 29]
in all benchmark cases, which includes both synthetic and real data. Unlike Burnikel et
al. in [8] we find no performance penalty for our C++ implementation over generated
code.

2 Robust geometric predicates

In this section we review the basic concepts and notation necessary for presenting our
filter design in Sect. 3 and implementation approach in Sect. 4.1.

2.1 Geometric predicates and robustness issues

In the context of this paper, we define geometric predicates to be functions that return
discrete answers to geometric questions based on evaluating the sign of a polynomial.
One example is the planar orientation predicate. Given three points a, b, c ∈ R

2, it
determines the location of c with respect to the straight line going through a and b by
evaluating the sign of

porientation_2 (a, b) :=
∣
∣
∣
∣

ax − cx ay − cy
bx − cx by − cy

∣
∣
∣
∣

(1)

For this definition of the orientation predicate, positive, zero, and negative deter-
minants correspond to the locations left of the line, on the line and right of the line,
respectively. This geometric predicate has applications in the construction ofDelaunay
triangulations, convex hulls, and in spatial predicates such as within for 2D points,
lines or polygons.

While expression (1) always gives the correct answer in real arithmetic, this is not
necessarily the case for floating-point arithmetic.

Definition 1 (Floating-Point Number System) For a given precision p ∈ N≥2 and
minimum and maximum exponents emin, emax ∈ Z we define by

Np,emin,emax := {(−1)σ

⎛

⎝1+
p−1
∑

i=1

bi2
−i

⎞

⎠ 2e | σ, b1, . . . , bp ∈ {0, 1}, emin≤e≤emax}

123

BIT Numerical Mathematics (2023) 63 :31 Page 5 of 31 31

the set of normalised binary floating-point numbers and by

Sp,emin := {(−1)σ

⎛

⎝

p−1
∑

i=1

bi2
−i

⎞

⎠ 2emin | σ, b1, . . . , bp ∈ {0, 1}}

the set of subnormal binary floating-point numbers.
For the remainder we will drop the parameters in the subscript. A binary Floating-

Point Number system (FPN) is defined by F := N∪S∪{−∞,∞,NaN}. For a number
a ∈ F given in the representation

(−1)σ

⎛

⎝1 +
p−1
∑

i=1

bi2
−i

⎞

⎠ 2e or (−1)σ

⎛

⎝

p−1
∑

i=1

bi2
−i

⎞

⎠ 2emin ,

we call the tuple
(

b1, . . . , bp−1
)

significand. It is sometimes called mantissa in liter-
ature. The significand is called even if bp−1 = 0.

Definition 2 (Rounding function) For a given FPN F we define the rounding-function
rd : R → F as follows

rd (a) :=

⎧

⎪⎨

⎪⎩

−∞ a ≤ −2emax
(

2 − 2−p
)

closest number to a in F −2emax
(

2 − 2−p
)

< a < 2emax
(

2 − 2−p
)

∞ a ≥ 2emax
(

2 − 2−p
)

If there are two nearest numbers in F , the one with an even significand is chosen.

Remark 1 The above definition of subnormal numbers includes zero while zero is
neither a normal nor subnormal number in the IEEE standard 754-2008 [18]. This
deviation from the standard does not affect the rounding error analysis in this paper.

Next, we define some special quantities. By ε := 2−p we denote the machine
epsilon, which is half of the difference between 1.0 and the next number in F , by uN :=
2−emin the smallest, positive, normalized number in F and by uS := 2−emin−p+1 =
2 · ε · uN the smallest, positive, subnormal number in F .

Definition 3 (Floating-point operations) For a given FPN F and a, b, c ∈ F ∩ R we
define the floating-point operator � : F × F → F for each ◦ ∈ {+,−, ·} as

a � b := rd (a ◦ b) .

and the Fused Multiply-Add (FMA) operator

FMA (a, b, c) := rd (ab + c)

If a zero is produced in the floating-point multiplication of two non-zero numbers, in
an FMA operation with ab+ c �= 0 or a subnormal number is produced, this is called

123

31 Page 6 of 31 BIT Numerical Mathematics (2023) 63 :31

an underflow. If the result of an operation is∞ or−∞, this is called an overflow. These
definitions are extended to arguments with NaN by setting the result to NaN and to
infinities in the natural way with the following special cases set to NaN: ∞ ⊕ −∞,
−∞ −∞, ∞ ∞, ±∞ � 0.

This definition is consistent with the IEEE standard 754-2008 [18] with the default
rounding mode “roundTiesToEven”. In [28], a number of error estimates for floating-
point operations are given. In the following we use for a, b, c ∈ F ∩R and the unit in
the first place,

ufp (a) :=
{

0 a = 0

2�log2|a|�, otherwise.

It represents the value of the first digit in the significand of a number in floating-point
representation (it can be defined the same way for numbers in R). If no overflow
occurs, it holds that

|a � b − a ◦ b| ≤ 1

2
ε · ufp (a � b) ≤ ε |a � b| . (2)

In the case of underflow, addition and subtraction are exact. For multiplication, assum-
ing no overflow occurs, [28] gives the error bound

|a � b − ab| = ε · ufp (a � b) + η

for some ε, η ∈ R such that ε ≤ ε, η ≤ uS and εη = 0. If no underflow occurs, i.e.
a � b ≥ uN = 1

2ε
−1uS , then this implies

|a � b − ab| ≤ ε |a � b| ,

otherwise (if underflow occurs)

|a � b − ab| ≤ 1

2
uS,

and regardless of underflow

|a � b − ab| ≤ ε (|a � b| ⊕ uN) . (3)

We will use similar error bounds for FMA. Assuming no overflow or underflow it
holds that

|FMA (a, b, c) − ab + c| ≤ ε |FMA (a, b, c)| , (4)

if underflow occurs then

|FMA (a, b, c) − ab + c| ≤ 1

2
uS,

123

BIT Numerical Mathematics (2023) 63 :31 Page 7 of 31 31

Table 1 Relationships of point
c = (0, −0.01) to polygon
t̃1 := {(−1, 0) , ã, b̃} and
t̃2 := {(1, 0) , b̃, ã}, where
a = (−0.01,−0.59),
b = (0.01, 0.57)

Architecture c̃ and t̃1 c and t̃2 c and t̃1 ∪ t̃2

–march=haswell Outside Outside Inside

–march=ivybridge Touches Touches Inside

Exact Inside Outside Inside

and regardless of whether underflow occurs

|FMA (a, b, c) − ab + c| ≤ ε (|FMA (a, b, c)| ⊕ uN) . (5)

Common examples of floating-point number systems include the binary FPN with
p = 24, emin = −126, emax = 127 called single-precision or FP32 and the binary
FPN with p = 53, emin = −1022, emax = 1023 double-precision or FP64.

Remark 2 The requirements of the previous definitions are met by IEEE 754-con-
forming binary floating-point number systems which include the native single- and
double-precision floating-point types of the architectures x86, x86-64, current ARM,
common virtual machines running WebAssembly and current CUDA processors. The
machine epsilon is sometimes defined as the difference between 1.0 and the next
number in F .

We call

p̃orientation_2 (a, b, c) := (ax cx) � (

by cy
)

(

ay cy
) � (bx cx) (6)

a floating-point realisation of (1). Due to rounding errors, this realisation can produce
incorrect results.

As an example, consider the points a = (−0.01,−0.59), b = (0.01, 0.57), c =
(0,−0.01). In real arithmetic, c lies on the straight line through a and b. Their closest
approximations in F53,−1022,1023 (IEEE 754-2008 binary64 [18], or FP64 for short),
ã, b̃, c̃, however, are only very close to collinear, which makes the case sensitive to
rounding errors.

As a second example, let us evaluate the spatial relationship between the point
c and the closed triangles t̃1 := {(−1, 0) , ã, b̃} and t̃2 := {(1, 0) , b̃, ã} using the
winding-number algorithm [32].

Table 1 summarizes the results, all compiled with GCC 11.1 and optimization
level O2. The first row is particularly noteworthy because the results are not only
incorrect but also mutually contradictory. The final row can be obtained using any
implementation of the orientation predicate that guarantees correct results, such as
the implementation of Shewchuk [29] or CGAL’s kernels epick or epeck [7].

Remark 3 The difference between the architectures is due toGCCproducing an assem-
bly code using the FMA instruction for evaluating (1). This instruction causes loss of
anticommutativity for difference, i.e. a � b c � d = −(c � d a � b) holds if

123

31 Page 8 of 31 BIT Numerical Mathematics (2023) 63 :31

no range errors occur, but FMA (a, b,−c � d) = −FMA (c, d,−a � b) is not nec-
essarily true. When inserted into the orientation predicate, this can lead to situations
in which swapping two input points does not reverse the sign of the result.

Inconsistencies can occur without FMA aswell. Consider ã, b̃, d̃ := (rd (0.15) , rd
(8.69)) and ẽ := (rd (0.07) , rd (4.05)). The floating-point realisation (6), compiled
without FMA-optimizations, will determine ã, b̃, ẽ and b̃, d̃, ẽ to be collinear but not
ã, b̃, d̃ , which is a contradiction.

Besides rounding errors, incorrect predicate results can also be caused by overflow
or underflow. It can be easily checked that, in the FP64 number system,

p̃orientation_2
((

2−801, 2−801
)

,
(

2−800, 2−800
)

,
(

2−801, 2−800
))

= 0,

due to underflow, and

p̃orientation_2
((

2800, 2800
)

,
(

2800, 2800
)

, (0, 0)
)

= NaN,

due to overflow.
Different approaches have been developed to obtain consistent results. We briefly

discuss arbitrary precision arithmetic and floating-point filters in the following sec-
tions.

2.2 Exact arithmetic

Anatural idea to solve the precision issues of floating-point arithmetic would be to per-
form the computations at higher precision. There are a number of arbitrary-precision
libraries that implement number types with increased precision in software, such as
GMP [15], the CGAL Number Types package [17] or Boost Multiprecision [23].

In combinationwith filters, such arbitrary-precision number types are used for exact
geometric predicates in the CGAL 2D and 3D kernels, which were documented in [7].
A drawback of software-implemented number types is that basic operations can be
orders of magnitude slower than hardware-implemented operations for native number
types such as single- or double-precision floating-point operations on most modern
processor architectures.

An approach for arbitrary-precision arithmetic that makes use of hardware accel-
eration is expansion arithmetic. A floating-point expansion is a tuple of multiple
floating-point numbers that can represent a single number as an unevaluated sum
with greater precision than a single floating-point number. Because the operations on
floating-point expansions are implemented in terms of hardware-accelerated opera-
tions on the components, they can be faster than more general techniques for arbitrary
precision arithmetic. The use of floating-point expansions for exact geometric predi-
cates has been described in [30].

123

BIT Numerical Mathematics (2023) 63 :31 Page 9 of 31 31

2.3 Floating-point filters

We call an implementation a robust floating-point predicate if it is guaranteed to
produce correct results. With expansion arithmetic, we can produce a robust predicate
from a floating-point realisation by replacing all rounding floating-point operators
⊕, and � with the respective exact algorithms on floating-point expansions. The
sign of the resulting expansion is then equal to the sign of its most significant (i.e.
largest non-zero) component.

The issue with this naive approach is that even simple predicates become compu-
tationally expensive. To mitigate this issue, we resort to expansion arithmetic only in
the rare case that the straightforward floating point implementation is not guaranteed
to produce the correct result. This decision is made by filters.

Definition 4 (Filter) For a predicate sign (p (x1, . . . , xn)) and an FPN system F , we
call f : M ⊆ Fn → {−1, 0, 1, uncertain} a floating-point filter. f is called valid for
p on M if for each (x1, . . . , xn) ∈ M either f (x1, . . . xn) = sign (p (x1, . . . , xn)) or
f (x1, . . . , xn) = uncertain holds. The latter case is referred to as filter failure.

Adopting the terminology used in [11], we call filters dynamic if they require the
computation of an error at every step of the computation, static if they use a global
error bound that does not depend on the inputs for each call of the predicate, and semi-
static if their error bound has a static component and a component that depends on the
input. A variation of static filters, which require a priori restrictions on the inputs to
compute global error bounds, are almost static filters, which start with an error bound
based on initial bounds on the input and update their error bound whenever the inputs
exceed the previous bounds.

Example 1 (Shewchuk’s Stage A orientation predicate) Consider the predicate
sign(p) based on (1) and its floating-point realisation sign(p̃) (6). Then,

f
(

ax , . . . , cy
) :=

{

sign (p̃) , if | p̃| ≥ e
(

ax , . . . , cy
)

uncertain, otherwise

with the error bound

e
(

ax , . . . , cy
) :=

(

3ε + 16ε2
)

� (
∣
∣(ax cx) � (

by cy
)∣
∣ ⊕

∣
∣
(

ay cy
) � (bx cx)

∣
∣),

where p̃ := p̃
(

ax , . . . , cy
)

and ε is the machine-epsilon of the FPN, is a valid filter
for all inputs that do not cause underflow [30].

If underflow occurs, however, validity is not guaranteed. Consider the example

a :=
(

0
0

)

b :=
(

2emin

0

)

123

31 Page 10 of 31 BIT Numerical Mathematics (2023) 63 :31

c :=
(

2emin

2emin

)

.

Clearly the points are not collinear, however, e
(

ax , . . . , cy
)

and p̃ will evaluate as
zero due to underflow, which shows that the filter can certify incorrect signs.

Remark 4 The term “error bound” is used in Example 1 for the quantity e
(

ax , . . . , cy
)

somewhat loosely. It is only proven to be larger than the absolute error of the floating-
point result in cases that might produce incorrect signs (and if no underflow occurs),
which is sufficient for the validity of the filter. The term “error bound” is similarly
used for the bounds in Example 3 and Theorem 1.

This filter can be considered semi-static, with its static component being 3ε+16ε2.
The error bound is obtained mostly by applying standard forward-error analysis to the
floating-point realisation. Shewchuk also described similar filters for the 2D incircle
predicate, as well as the 3D orientation and incircle predicates.

Example 2 (FPG orientation filter [24]) Consider predicate (1) and its floating-point
realisation (6). Let

mx := max {|ax − cx | , |bx − cx |}
my := max

{∣
∣ay − cy

∣
∣ ,

∣
∣by − cy

∣
∣
}

.

If

max {mx ,my} > 2509,

0 �= min {mx ,my} ≤ 2−485

or

| p̃| ≤ 8.88720573725927 × 1016 � mx � my �= 0,

then “uncertain” is returned, otherwise the sign of p̃ is returned. The filter is valid with
FP64 arithmetic for all FP64 inputs. It is also semi-static with the static component of
the error bound being 8.88720573725927 × 1016 (roughly 4ε).

A static version of this filter can be obtained if global bounds for mx and my are
known a priori. The first two conditions are range-checks that guard against overflow
and underflow.Apart from these conditions, the filter is based on an error bound similar
to the previous example. The program FPG can generate such filters for arbitrary
homogeneous polynomials if group annotations for the input variables are provided.
In this context, group annotations are lists of grouped variables that are part of the
input for FPG. The group annotations help the code generator with the choice of the
scaling factors mx and my . In the example above, the group annotations specified that
ax , bx and cx as well as ay, by and cy form a group.

123

BIT Numerical Mathematics (2023) 63 :31 Page 11 of 31 31

Example 3 (2D orientation filter by Ozaki et al. [26]) Consider again predicate (1)
and its floating-point realisation (6). Let

f
(

ax , . . . , cy
) :=

{

sign (p̃) , if | p̃| > e
(

ax , . . . , cy
)

uncertain, otherwise

with the error bound

e
(

ax , . . . , cy
) := θ � (|(ax cx) � (

by cy
) ⊕ (

ay cy
) � (bx cx)| + uN),

where p̃ := p̃
(

ax , . . . , cy
)

, ε is the machine-epsilon of the FPN, uN is the smallest,
positive normalized number in the floating-point system and

θ := 3ε −
(

2

⌊

−1 + √
ε−1 + 45

4

⌋

− 22

)

ε2 ∈ F .

Then f is a valid filter for all inputs.

Unlike Example 1, this filter cannot produce incorrect results for inputs that cause
underflows, and unlike Example 2which evaluatesmultiple inequalities at which it can
branch, this filter only contains a single branch. The static constant θ , which is better
than in the other two filters, has been obtained in [26] by using a model of floating-
point arithmetic that bounds the relative rounding error by the unit in the first place as
introduced in [28], which is smaller than the machine epsilon unless the significand
of the result is exactly 1, and by considering more carefully the accumulated error of
the entire predicate expression, rather than just propagating the maximum possible
error in each subexpression and by considering various cases in which the sign can be
guaranteed to be correct.

A disadvantage of the filter in this example is that, unlike the previous two filters,
it returns “uncertain” for common, simple degeneracies like three points that have the
same x-coordinate or the same y-coordinate or contain duplicate points.

The next example is not strictly an error bound filter.

Example 4 (Shewshuk’s stage B orientation predicate) Consider the predicate (1) and
its floating-point realisation (6). Let dax := ax cx , dbx := bx cx and analogously
for y. If the computations of these values incurred round-off errors, return uncertain.
Otherwise compute dax ·dby −day ·bdx exactly, using expansion arithmetic, and return
the sign. This filter is described as stage B in [30] and is valid for all inputs that do not
produce overflow or underflow. The full version in [30] also includes an error bound
with an error bound on the order of ε2 check that allows preventing a filter failure if
the no-round-off test fails.

Similar filters were presented by Shewchuk for other predicates. This filter is par-
ticularly effective for input points that are closer to each other than to (0, 0) because
differences of floating-point numbers that are within half/double of each other do not
incur round-off errors. In the context of Shewchuk’s multi-staged predicates, this filter

123

31 Page 12 of 31 BIT Numerical Mathematics (2023) 63 :31

also has the advantage that it can reuse computations from stage A and that its interim
results can be reused formore precise stages in case of filter failure. As a final example,
we present a dynamic filter.

Example 5 (Interval arithmetic filter) Consider a predicate and one of its floating-point
realisations. Given the inputs, compute for each floating-point operation ⊕,,� the
lower and the upper bound of the result, including the rounding error, using interval
arithmetic. If the final resulting interval contains numbers of different signs, return
uncertain. Otherwise, return the shared sign of all numbers in the result interval. This
approach is presented in [6].

In [11], [26] and [30] failure probabilities and performance experiments for various
sequences of filters, types of inputs and algorithms are presented. We will present our
own experiments in Sect. 4.2.

3 Semi-static filters

In this section, we will define a set of rules that allow us to derive error bounds for
arbitrary floating-point polynomials. These error bounds will then be used to define
semi-static filters. We start with establishing some properties of floating-point opera-
tions that will be used in the proof of the validity of our error bounds.

Lemma 1 Let a, b ∈ F be floating-point numbers.

1. If either a or b is in {−∞,∞,NaN}, then

a � b ∈ {−∞,∞,NaN}

and

|a � b| ∈ {∞,NaN}

for every � ∈ {⊕,,�}. Consequently, the same holds for all floating-point
expressions using the operators ⊕,,� and |·| that contain a subexpression that
evaluates to −∞,∞ or NaN.

2. If an underflow occurs in the computation of a ⊕ b or a b, then the result is
exact.

The first statement follows directly from 3 and the second statement is given as
Theorem 3.4.1 in [16].

Let p : Rm → R a polynomial in m variables, denoted as p ∈ R [x1, . . . , xm].
Let p̃ : Fm → F be a floating-point realisation of p, i.e. a function on Fm involving
only the floating-point operations ⊕, and � such that it would be equivalent to p
if the floating-point operations were replaced by the corresponding exact operations.
Note, that p̃ is not unique, e.g. (x1 ⊕ x2) ⊕ x3 is different from x1 ⊕ (x2 ⊕ x3) but
both are floating-point realisations of the real polynomial x1 + x2 + x3. We denote

123

BIT Numerical Mathematics (2023) 63 :31 Page 13 of 31 31

by F [x1, . . . , xm] the set of floating-point realisations of polynomials in m variables.
The subexpressions of p̃ will be denoted by p̃1, . . . , p̃k .

Wewill present a recursive scheme that allows the derivation of error bound expres-
sions for semi-static, almost static and static floating-point filters. We will assume that
the final operation of p̃ is a sum or difference, so it holds that p̃ = p̃1 � p̃2 with
� ∈ {⊕,}. If it were a multiplication, the signs of each factor could be determined
independently. These filters will require only one branch like the filters in [26] and
will not certify incorrect values for inputs that cause overflow and optionally for inputs
that cause underflow.

3.1 Error bounds

As a reminder, semi-static error bounds are partially computed at compile-time and
partially computed from the input values at runtime. The static component of our error
bounds is a polynomial in the machine epsilon ε, so an element of R [ε], with integer
coefficients. The runtime component of our semi-static error bounds is an expression
in input values x1, . . . , xm and constants with the operators ⊕,,� and |·|. We will
call the set of such expressions F ′ [x1, . . . , xm]. We will define two error bound maps
E and EUFP for all subexpressions q̃ of p̃ of the form

E, EUFP : F [x1, . . . , xm] → R [ε] × F ′ [x1, . . . , xm] , q̃ �→ (a,m) ,

such that the following invariants hold:
Either

m (x1, . . . , xm) ∈ {∞,NaN} (I1)

or both

|q̃ (x1, . . . , xm)| ≤ m (x1, . . . , xm) , (I2.1)

and

|q̃ (x1, . . . , xm) − q (x1, . . . , xm)| ≤ a (ε) · m (x1, . . . , xm) . (I2.2)

EUFP, whereUFP signifies underflow protection, will be constructed such that these
invariants hold regardless ofwhether underflowoccurs during any of the computations.
For E this will not be guaranteed. The value of the static component a (ε) of an error
bound is in R but not necessarily representable in F . In an implementation, it can be
represented as a list of integer coefficients. Because the polynomial a (·) will only be
evaluated in ε, we will omit the argument and will use the polynomial and its value in
ε interchangeably. The error bound maps are defined through a list of recursive error
bound rules,

Ri(,UFP) : F [x1, . . . , xm] → R [ε] × F ′ [x1, . . . , xm]

123

31 Page 14 of 31 BIT Numerical Mathematics (2023) 63 :31

for 1 ≤ i ≤ 9 as follows:

Definition 5 (Error Bound Rules, Error Bound Map) Let q̃ : Fm → F be a subex-
pression of a floating-point polynomial p̃ : Fm → F . We define the following error
bound rules:

1. For a q̃ of the form q̃ (x1, . . . , xm) = c for some c ∈ F , we set

R1 (q̃) := (0, |c|) .

2. For a q̃ of the form q̃ (x1, . . . , xm) = xi for some 1 ≤ i ≤ m, we set

R2 (q̃) := (0, |xi |) .

3. For a q̃ of the form q̃ (x1, . . . , xm) = xi � x j for some 1 ≤ i, j ≤ m and
� ∈ {⊕,}, we set

R3 (q̃) := (

ε,
∣
∣xi � x j

∣
∣
)

.

4. For a q̃ of the form q̃ (x1, . . . , xm) = xi � x j for some 1 ≤ i, j ≤ m, we set

R4 (q̃) := (

ε,
∣
∣xi � x j

∣
∣
)

.

and

R4,UFP (q̃) := (

ε,
∣
∣xi � x j

∣
∣ ⊕ uN

)

.

5. For a q̃ of the form q̃ (x1, . . . , xm) = (

xi �1 x j
) � (

xh �2 xg
)

for some 1 ≤
g, h, i, j ≤ m and �1,�2 ∈ {⊕,}, we set

R5 (q̃) :=
(

3ε − (φ − 14) ε2,
∣
∣
(

xi �1 x j
) � (

xh �2 xg
)∣
∣

)

and

R5,UFP (q̃) :=
(

3ε − (φ − 14) ε2,
∣
∣
(

xi �1 x j
) � (

xh �2 xg
)∣
∣ ⊕ uN

)

with

φ := 2

⌊

−1 + √
4ε−1 + 45

4

⌋

.

6. For a q̃ of the form q̃ (x1, . . . , xm) = q̃1 (x1, . . . , xm) � q̃2 (x1, . . . , xm) with
� ∈ {⊕,}, we set

R6 (q̃) := ((1 + ε)max (a1, a2) + ε,m1 ⊕ m2)

123

BIT Numerical Mathematics (2023) 63 :31 Page 15 of 31 31

and

R6,UFP (q̃) := ((1 + ε)max (a1, a2) + ε,m1 ⊕ m2)

with (ai ,mi) := E (q̃i) and (ai ,mi) := EUFP (q̃i) respectively for i = 1, 2.
7. For a q̃ of the form q̃ (x1, . . . , xm) = q̃1 (x1, . . . , xm) � q̃2 (x1, . . . , xm), we set

R7 (q̃) := ((1 + ε) (a1 + a2 + a1a2) + ε,m1 � m2)

and

R7,UFP (q̃) := ((1 + ε) (a1 + a2 + a1a2) + ε,m1 � m2 ⊕ uN)

with (ai ,mi) := E (q̃i) and (ai ,mi) := EUFP (q̃i) respectively for i = 1, 2.
8. For a q̃ of the form q̃ (x1, . . . , xm) = FMA

(

xh, xi , x j
)

for some 1 ≤ h, i, j ≤ m
we set

R8 (q̃) := (

ε,
∣
∣FMA

(

xh, xi , x j
)∣
∣
)

and

R8,UFP (q̃) := (

ε,
∣
∣FMA

(

xh, xi , x j
)∣
∣ ⊕ uN

)

9. For a q̃ of the form q̃ (x1, . . . , xm)=FMA (q̃1 (x1, . . . , xm) , . . . , q̃3 (x1, . . . , xm))

we set

R9 (q̃) := (a, |FMA (m1,m2,m3)|)

and

R9,UFP (q̃) := (a, |FMA (m1,m2,m3)| ⊕ uN)

with

a := max ((a1 + a2 + a1a2) (1 + ε) , a3) (1 + ε) + ε

We define E (q̃) to be the first applicable map out of R1, . . . , R9 and analogously
EUFP (q̃) with the respective UFP-variations of the rules.

It is straightforward to see that E and EUFP are well-defined because the rules are
exhaustive in the sense that there is no subexpression in a floating-point polynomial
for which no rule is applicable and any recursion through R6 and R7 or their UFP-
variations terminates at the level of individual variables.

Lemma 2 Let p̃ be an arbitrary floating-point polynomial then the invariants for
E (q̃) hold for every subexpression q̃ of p̃ for every choice of floating-point inputs
x1, . . . , xm ∈ F such that no underflow occurs in the evaluation of any subexpression
of q̃.

123

31 Page 16 of 31 BIT Numerical Mathematics (2023) 63 :31

Following [30], we introduce the following convenient notation that will be used in
the proof. We extend the arithmetic operations ◦ to sets A, B ⊂ R by A◦ B := {a ◦b |
a ∈ A, b ∈ B}, identify a ∈ Rwith {a} for ◦ ∈ {+,−, ·}, and set A±a := A+[−a, a].
Proof For any subexpression q̃ towhich R1 or R2 applies, the statement is obvious. For
subexpressions for which R3, R4 or R8 are the first applicable rules and no overflow
occurs, (I2.1) holds by the definition of m and (I2.2) follows from the error bounds
2–4 respectively. If overflow occurs, m is infinity and (I1) holds. For subexpressions,
to which R5 applies, either (I1) holds if overflow occurs or, if no overflow occurs,
(I2.1) holds by definition and (I2.2) is proven in [26] in Lemma 3.1.

If R6 is the first applicable rule, we assume that the invariant (I1) or the invariants
(I2.1) and (I2.2) hold for (a1,m1) := E (q̃1) and (a2,m2) := E (q̃2) and we consider
the case that q̃ = q̃1 ⊕ q̃2. If q̃1 or q̃2 is either ∞ or NaN, by the assumption so arem1
or m2 and consequently m1 ⊕ m2 and (I1) holds. If no overflow occurs, we see that

|q̃| = |q̃1 ⊕ q̃2|
≤ |q̃1| ⊕ |q̃2|
≤ m1 ⊕ m2

and

q̃ = q̃1 ⊕ q̃2
∈ q̃1 + q̃2 ± ε |q̃1 ⊕ q̃2|
⊆ q̃1 + q̃2 ± ε (m1 ⊕ m2)

⊆ q1 ± a1 (ε)m1 + q2 ± a2 (ε)m2 ± ε (m1 ⊕ m2)

⊆ q ± max (a1 (ε) , a2 (ε)) (m1 + m2) ± ε (m1 ⊕ m2)

⊆ q ± (max (a1 (ε) , a2 (ε)) (1 + ε) + ε) (m1 ⊕ m2) ,

where we used the assumption that the invariant holds for the two subexpressions
and standard floating-point rounding error estimates. The proof for q̃ = q̃1 q̃2 is
analogous.

If R7 is the first applicable rule, we assume that the invariant holds for (a1,m1) :=
E (q̃1) and (a2,m2) := E (q̃2). Analogous to above, the case of overflow is trivial, so
we consider the case that no overflow occurs. Again it holds that

|q̃| = |q̃1 � q̃2|
≤ m1 � m2.

and

q̃ = q̃1 � q̃2
∈ q̃1 · q̃2 ± ε |q̃1 � q̃2|
⊆ q̃1 · q̃2 ± ε (m1 � m2)

123

BIT Numerical Mathematics (2023) 63 :31 Page 17 of 31 31

⊆ (q1 ± a1m1) · (q2 ± a2m2) ± ε (m1 � m2)

⊆ q1q2 ± a2m2q1 ± a1m1q2 ± a1a2m1m2 ± ε (m1 � m2)

⊆ q1q2 ± a2 (1 + ε) (m1 � m2) ± a1 (1 + ε) (m1 � m2)

± a1a2 (1 + ε) (m1 � m2) ± ε (m1 � m2)

⊆ q1q2 ± ((1 + ε) (a1 + a2 + a1a2) + ε) (m1 � m2) .

The proof for R9 combines the steps of the proofs for R6 and R7 and uses that the
multiplication in the FMA can be assumed to be error-free Because the recursion
eventually terminates at a non-recursion case (rules 1–5), the claims for E (q̃1) and
E (q̃2) hold. ��
Lemma 3 Let p̃ be an arbitrary floating-point polynomial and then the invariants for
EUFP (q̃) hold for every subexpression q̃ of p̃ for every choice of inputs x1, . . . , xm ∈
F.

Proof Because it is useful for the parts of the proof that apply to the recursive rules
R6 and R7, we will also prove for each rule applied to a subexpression q̃ that

q = q̃ ∨ m ≥ uN (I3)

holds.
For R1 and R2 there is nothing to prove.
For R3 the reasoning given in the proof for Lemma 2 still applies because the

assumption of no underflow occurring was not used. If underflow occurs then q̃ is
evaluated exactly, i.e. q̃ = q and if no underflow occurs then q̃ is not subnormal and
hence it holds that m ≥ uN .

For R4,UFP and R8,UFP, we first note thatm is always non-zero and not smaller than
either q̃ or uN so invariants (I2.1) and (I3) hold. Invariant (I2.2) then follows directly
from 2εuN = uS and 3 and 5 respectively.

(I2.2) for R5,UFP was proven as Lemma 3.1 in [26]. For (I2.1) and (I3) the same
reasoning as for Rr ,UFP applies.

For the recursive rules R6,UFP and R7,UFP, we assume at all invariants hold for the
respective subexpressions q̃1 and q̃2, this is again justified because all recursions will
be cases of rules R1 to R5,UFP for which the invariants were already proven to hold or
to other cases for rules R6,UFP and R7,UFP.

For R6,UFP, as in Lemma 2, it is obvious that invariant (I2.1) holds. If either m1 or
m2 is equal to or greater than uN , then no underflow can occur in the evaluation of m
and the invariant holds as proven in Lemma 2 and m is greater than or equal to uN .
If both m1 and m2 are smaller than uN then q̃1 and q̃2 are evaluated error-free and
q̃ is error-free if underflow occurs. If no underflow occurs in the evaluation of q̃ , the
invariant also holds as proven in Lemma 2 and in this case m is equal to or greater
than uN .

For R7,UFP, we first note that, as in R4,UFP, m is greater than or equal to both q̃ and
uN , so invariants I2.1 and (I3) hold. To show that (I2.2) holds, we use 3 to obtain

q̃ = q̃1 � q̃2

123

31 Page 18 of 31 BIT Numerical Mathematics (2023) 63 :31

∈ q̃1 · q̃2 ± ε (|q̃1 � q̃2| ⊕ uN)

⊆ (q1 ± a1m1) · (q2 ± a2m2) ± ε (m1 � m2 ⊕ uN)

⊆ q1q2 ± a2m2q1 ± a1m1q2 ± a1a2m1m2 ± ε (m1 � m2 ⊕ uN)

⊆ q1q2 ± a2 (1 + ε) (m1 � m2) ± a1 (1 + ε) (m1 � m2)

± a1a2 (1 + ε) (m1 � m2) ± ε (m1 � m2 ⊕ uN)

⊆ q1q2 ± ((1 + ε) (a1 + a2 + a1a2) + ε) (m1 � m2 ⊕ uN) .

The proof for R9,UFP combines the steps of the proofs for R6 and R7,UFP and uses
that the multiplication in the FMA can be assumed to be error-free. ��

3.2 Floating-point filters

The following result provides two semi-static filters for floating-point predicates that
evaluate the sign of a polynomial. It is only stated for floating-point realisations of
polynomials that are sums or differences. For products, the signs of each factor could
be obtained individually and then multiplied.

Theorem 1 Let p ∈ R [x1, . . . , xm] be a polynomial and p̃ ∈ F [x1, . . . , xm] be some
floating-point realisation of p.

1. Let p̃ be of the form p̃ = p̃1 ⊕ p̃2 or p̃ = p̃1 p̃2, (a1,m1) := E (p̃1) and
(a2,m2) := E (p̃2). Moreover, let constants a3, a4 ∈ F satisfy

a3 >
max (a1, a2)

1 − ε
, a4 ≥ a3 (1 + ε)2 ,

and define

e (x1, . . . , xm) := a4 � (m1 (x1, . . . , xm) ⊕ m2 (x1, . . . , xm)) .

Then, for every choice of x1, . . . , xm ∈ F\ {NaN,∞,−∞} such that no underflow
occurs in the evaluation of p̃ or e,

f (x1, . . . , xm) :=
{

sign (p̃ (x1, . . . , xm)) | p̃| > e ∨ e = 0

uncertain otherwise

is a valid filter.
2. Let p̃ be of the form p̃ = p̃1 ⊕ p̃2 or p̃ = p̃1 p̃2, (a1,m1) := EUFP (p̃1) and

(a2,m2) := EUFP (p̃2). We set a3 and a4 as in 1. and

e (x1, . . . , xm) := a4 � (m1 (x1, . . . , xm) ⊕ m2 (x1, . . . , xm)) ⊕ uS.

Then for every choice of x1, . . . , xm ∈ F\ {NaN,∞,−∞} ,

f (x1, . . . , xm) :=
{

sign (p̃ (x1, . . . , xm)) | p̃| > e

uncertain otherwise

123

BIT Numerical Mathematics (2023) 63 :31 Page 19 of 31 31

is a valid filter.
3. Let p̃ be of the form p̃ = FMA (p̃1, p̃2, p̃3), (a1,m1) := E (p̃1), (a2,m2) :=

E (p̃2) and (a3,m3) := E (p̃3). Moreover, let constants a4, a5 ∈ F satisfy

a4 >
max (a1 + a2 + a1a2, a3)

1 − ε
, a5 ≥ a4 (1 + ε)2 ,

and define

e (x1, . . . , xm) := a5 � FMA (m1 (x1, . . . , xm) , . . . ,m3 (x1, . . . , xm)) .

Then, for every choice of x1, . . . , xm ∈ F\ {NaN,∞,−∞} such that no underflow
occurs in the evaluation of p̃ or e, f as defined in 1. is a valid filter.

4. Let p̃ be of the form p̃ = FMA (p̃1, p̃2, p̃3), (a1,m1) := E (p̃1), (a2,m2) :=
E (p̃2) and (a3,m3) := E (p̃3). We set a4 and a5 as in 3. and

e (x1, . . . , xm) := a5 � FMA (m1 (x1, . . . , xm) , . . . ,m3 (x1, . . . , xm)) ⊕ uS.

Then for every choice of x1, . . . , xm ∈ F\ {NaN,∞,−∞} , f as defined in 2. is
a valid filter.

Note that | p̃| > e always evaluates as false if e is ∞ or NaN.

Proof We first prove 1. and we assume without loss of generality that p̃ = p̃1 ⊕ p̃2.
Using Lemma 1 and Lemma 2, it holds that

p̃ = p̃1 ⊕ p̃2
⊆ (p̃1 + p̃2) ± ε p̃

⊆ p ± ε p̃ ± a1m1 ± a2m2

and equivalently

p ∈ p̃ ± ε p̃ ± a1m1 ± a2m2

⊆ p̃ ± ε p̃ ± max (a1, a2) (m1 + m2) .

From this it follows that the signs of p and p̃ are equal if

(1 − ε) | p̃| > max (a1, a2) (m1 + m2) . (7)

The inequality

| p̃| > a3 (m1 + m2) (8)

is equivalent to

(1 − ε) | p̃| > a3 (1 − ε) (m1 + m2) ,

123

31 Page 20 of 31 BIT Numerical Mathematics (2023) 63 :31

which implies (7), so (8) is also a sufficient condition. Lastly, we see that

a3 (m1 + m2) ≤a3 (1 + ε) (m1 ⊕ m2)

≤a4 � (m1 ⊕ m2) ,

where the second step uses the no-underflow assumption. Hence,

| p̃| > a4 � (m1 ⊕ m2) =: e

is a sufficient condition for the signs of p and p̃ being equal. It remains to consider
the case e = 0. If a1 and a2 are both zero, then p̃ is a simple expression and its sign
is trivially correct, which makes f always valid. If either a1 or a2 is non-zero, then
a4 is easily seen to be non-zero too and e can only be zero if both m1 and m2 are
zero, since we assumed that no underflow occurs. Ifm1 = m2 = 0, then by Lemma 2,
p̃1 = p̃2 = p1 = p2 = 0, and p̃ = p = 0.

The proof for 2. is analogous except for the constant uS being added to e in place
of assuming no underflow occurring, the omittance of the case e = 0, which can not
occur in 2 and the usage of Lemma 3 in place of Lemma 2.

The proofs for 3. and 4. are analogous to the proofs for 1. and 2. ��
Remark 5 Note that the constants a3 and a4 do not depend on the input but only on
the expression of p̃ so in practice they can be computed at compile-time in floating
point or exact arithmetic.

A detailed example for the construction of a filter based on this approach can be found
in a Jupyter notebook using the Cling-Kernel [33] in [4].

This filter differs from the semi-static filters (called stage A) in [30], which do not
guarantee valid results in cases of underflow. It also differs from the semi-static filters
generated by FPG [24] because only a single condition is evaluated, rather than three
conditions, which means that most predicate calls for non-degenerate inputs can be
decided on a code path with a single, well-predictable branch.

With these two properties, having only a single branch on the filter success code path
and validity for inputs that can cause underflow, this procedure to construct semi-static
filters can be seen as a generalisation of the semi-static 2D orientation filter presented
in [26]. For the 2D orientation predicate, in particular, our approach produces a more
pessimistic error bound than [26], which could be considered as the price to pay for
using a more general method.

The semi-static error bound e can be turned into a static error bound by evaluat-
ing m1 ⊕ m2 not in specific input values x1, . . . , xm but in bounds on these values,
[

x1, x1
]

, . . . ,
[

xm, xm
]

using interval arithmetic, or by obtaining its maximum over
some more general domain in Fm . This yields a static or almost static filter.

3.3 Zero-filter

With underflow protection, the right-hand side of our semi-static filter condition will
never be zero, hence the filter will always fail, as in returning “uncertain”, if the true

123

BIT Numerical Mathematics (2023) 63 :31 Page 21 of 31 31

sign of p is 0. For inputs in F that approximate a uniform distribution on an interval
in R, p = 0 is extremely unlikely, but in some practical input data, it might be more
common.

Example 6 Consider the 2D orientation predicate with the floating-point realisation

p̃ = (ax cx) � (

by cy
) (

ay cy
) � (bx cx) .

It is easy to check that if either point a or b coincides with point c or if all points share
the same x or y coordinate and no overflow occurs, then p̃ evaluates to zero. Such
cases can be common degeneracies in real-world data.

It can also be checked that the error bound e from our semi-static filter without
underflow-protection would be zero in either of these cases, so such degeneracies
can be decided quickly by the filter. The error bound of the UFP-variation of our
filter, though, would not zero because non-zero terms would be introduced in the error
bounds of the multiplications and in the definition of e itself.

In this case, a simple filter that can certify common cases for inputs that produce
zeroes, can be useful. Such a filter can be produced using the following rules.

Definition 6 (Zero-Filter) Let p̃ be a floating-point realisation of a polynomial and let
x1, . . . , xm ∈ F a given set of input values. We define the following rules.

1. For a subexpression q̃ of the form q̃ = c for some constant c ∈ F or input value
xi for i ∈ {1, . . . ,m}, we define

Z1 (q̃; x1, . . . , xm) =
{

true, c = 0

false, otherwise.

2. For a subexpression q̃ of the form q̃ = xi � x j for 1 ≤ i, j ≤ m and � ∈ {⊕,},
we define

Z2 (q̃; x1, . . . , xm) =
{

true, q̃ = 0

false, otherwise.

3. For a subexpression q̃ of the form q̃ = q̃1 � q̃ for 1 ≤ i, j ≤ m and � ∈ {⊕,},
we define

Z3 (q̃; x1, . . . , xm) = Z (q̃1; x1, . . . , xm) ∧ Z (q̃2; x1, . . . , xm) .

4. For a subexpression q̃ of the form q̃ = q̃1 � q̃2, we define

Z4 (q̃; x1, . . . , xm) = Z (q̃1; x1, . . . , xm) ∨ Z (q̃2; x1, . . . , xm) .

We define Z (q̃; x1, . . . , xm) to be the result of the first applicable rule out of Z1, Z2,
Z3, and Z4.

123

31 Page 22 of 31 BIT Numerical Mathematics (2023) 63 :31

The zero-filter returns the sign 0 if Z (p̃; x1, . . . , xm) is true and “uncertain” other-
wise. It is easy to verify that this filter is valid for all inputs regardless of range issues
such as overflow or underflow.

Example 7 Consider again the 2D orientation predicate as in Example 6. Applying
Definition 6 to p̃, we first apply Z3 to p̃, which gives us the condition

Z
(

(ax cx) � (

by cy
)) ∧ Z

((

ay cy
) � (bx cx)

)

For each subexpression, we can apply Z4 to obtain

Z (ax cx) ∨ Z
(

by cy
) ∧ Z

(

ay cy
) ∨ Z (bx cx)

and finally, applying Z2 for each difference

(ax cx = 0) ∨ (

by cy = 0
) ∧ (

ay cy = 0
) ∨ (bx cx = 0) ,

which is a sufficient condition of the sign of p being 0 for the given inputs that can be
used as a second filter stage after a filter with underflow-protection that is not able to
decide simple degenerate cases, like all points sharing the same x- or y-coordinate.

4 Numerical results

The exact predicates derived in the previous section are designed to be fast, applicable
to general polynomial expressions, and simple to use. These goals must be reflected in
their implementation, which is briefly covered before benchmark results are presented.

4.1 C++ implementation

Our implementation of exact predicates is based on C++ template and constexpr
metaprogramming, making use of the Boost.Mp11 library [12]. The main design goal
is the avoidance of runtime overhead like the one that was seen in the C++-wrapper
implementation in [8] because geometric predicates can be found on performance-
critical code paths in geometric algorithms and can make up a large proportion of
overall runtime as the benchmarks in Sect. 4.2 show. Further design goals include
flexibility and extensibility with regard to the choice and order of filters as well as
expressivity and simplicity in the definition of predicate expressions.

Exact predicates are implemented as variadic class templates for staged predicates
that hold a tuple of zero or more stages implementing filters or the exact arithmetic
evaluation. If all filters are semi-static, the instantiated class is stateless and can be
constructed without arguments and with no runtime cost. The static parts of semi-
static error bounds are computed at compile-time from the predicate expression and
static type information for the calculation type. If almost static or static filters are
included, input bounds need to be provided at construction for the computation of
error bounds. For almost static filters, an update member function is provided to

123

BIT Numerical Mathematics (2023) 63 :31 Page 23 of 31 31

update error bounds. The exact predicate is called through a variadic function that
takes a variable but compile-time static number of inputs in the calculation type and
returns an integer out of −1, 0 and 1, that represents the result sign.

The individual stages are expected to follow the same basic interface. Each stage
provides at least a member function that is called with input values and returns an
integer that represents either the result sign or a constant that indicates uncertainty. For
stages that require the computation of runtime constants, e.g. static and almost static
filters, constructor and updatemembers need to be implemented aswell. Otherwise, the
stages are default constructed at no runtime cost. This general interface allows users
of the library to extend exact predicates with custom filters beyond those provided
by our implementation to better suit their algorithms and data sets, such as the filter
shown in Example 8.

using ssf = semi_static_filter </∗ . . . ∗/>;
using es = predicate_approximation </∗ . . . ∗/ , CGAL: :Gmpzf>;
/ / This stage is exact because i t uses an exact number type .

staged_predicate<ssf , es> pred ;
/ / default constructed and stateless 2−stage predicate

int sign = pred . apply(ax, ay, bx, . . .) ;
/ / exact value of the predicate p(a ,b , . .)

Example 8 The 2D incircle predicate on four 2D points p1, . . . , p4 decides whether
p4 lies inside, on or outside of the oriented circle passing through p1, p2 and p3,
assuming the points do not lie on a line. A pattern of degenerate inputs are four points
that form a rectangle. For this input, p4 clearly lies on the circle (indicated by a sign of
0) but a forward error bound filter could classify the case as undecidable and forward it
to a computationally expensive exact stage. The following listing illustrates a custom
filter that conforms to the previously described interface and could be used with our
implementation of staged predicates.

struct incircle_rect_fil ter
{

/ / stateless , no constructor or update method required
template <typename CalculationType>
stat ic inline int apply(CalculationType ax, /∗ . . . ∗/)
{

i f ((ax == bx && by == cy && cx == dx && dy == ay) | |
/∗ . . . ∗/)

return 0;
else
return sign_uncertain ;

}
};

123

31 Page 24 of 31 BIT Numerical Mathematics (2023) 63 :31

At the core of the implementation is the compile-time processing of polynomial
expressions for the derivation of error bound expressions. Arithmetic expressions are
represented in the C++ type system using expression templates, a technique described
in [34]. The most basic expressions in our implementation are types representing the
leaves of expression trees. Those leaves are either compile-time constants (indexed
with zero) or input values (indexedwith a positive number).More complex expressions
can be built from these placeholders using the elementary operators +, − and *.

Forward error bound expression types are deduced at compile-time based on a list
of rule class templates. The interface of each rule class template requires a constexpr
function that expects an expression template and returns a bool indicating whether the
rule is applicable to the expression, and a class template for the error bound based on
the rule. Error bounds are implemented in the form of constexpr integer arrays that
represent the coefficients of the polynomial in ε and a magnitude expression template.
The rules can be extended through custom rules that conform to the interface.

constexpr auto orient2d =
(_1 − _5) ∗ (_4 − _6) − (_3 − _5) ∗ (_2 − _6) ;

/ / expression template representing the 2D orientation
/ / predicate expression where _1, _2, _3, . . . are
/ / placeholders for ax, ay, bx, . . .

using ssf = semi_static_filter<
orient2d ,
forward_error_bound_expression<
orient2d ,
double ,
/∗ . . . rules . . . ∗/>

>;
/ / a shorter alias for this construct is provided

Example 9 Consider a 2D orientation problem for points whose coordinates are not
binary floating-point numbers, e.g. because the input is given in a decimal or rational
format. The rules given in Definition 5 are not designed for this problem but with a
custom error bound rule, our implementation can be extended to generate a filter for
inputs that are rounded to the nearest floating-point number. Such a filter could be
used before going into a more computationally expensive stage operating on decimal
or rational numbers.

struct rounded_input
{
template <typename Expression , /∗ . . . ∗/>
stat ic constexpr bool applicable ()
{

i f constexpr (Expression : : is_leaf)
return Expression : : argn > 0;

else
return false ;

123

BIT Numerical Mathematics (2023) 63 :31 Page 25 of 31 31

}

template <typename Expression , /∗ . . . ∗/>
struct error_bound
{
using magnitude = abs<Expression>;
stat ic constexpr std : : array<long , 3> a
{1, 0, 0};

/ / the entries represent coefficients
/ / of the polynomial in eps

};
};

The listing illustrates a custom rule. It is only applicable for expressions that are
input values, i.e. expressions of the form q̃ (x1, . . . , xn) = xi . In the context of our
implementation these expressions are leaves of the expression tree with a positive
index, and the error bound is R (q̃) = (ε, |xi |). Using a rule set consisting of this
custom rule, R6,0 and R7,0 on the 2D orientation predicate, yields the semi-static error
bound

(

5ε ⊕ 32ε2
) (

(|ax | ⊕ |cx |) � (∣
∣by

∣
∣ ⊕ ∣

∣cy
∣
∣
) ⊕ (∣

∣ay
∣
∣ ⊕ ∣

∣cy
∣
∣
) � (|bx | ⊕ |cx |)

)

.

Besides forward error bound based filters discussed in this paper, our implementa-
tion also contains templates for filters and exact stages based on the same principles
as the stages B and D in [30].

4.2 Benchmarks

To test the performance of our approach and implementation, we measured timings
for a number of benchmarks that are provided by the CGAL library. The design
of the 2D and 3D geometry kernels concept in CGAL as documented in [7] pro-
vide a simple way to test our predicates in CGAL algorithms by deriving from the
Simple_cartesian<double> kernel and overriding all predicate objects that may suffer
from rounding errors with predicates generated from our implementation.

The performance with the resulting custom kernel is then compared to the perfor-
mance of CGAL’s Exact_predicates_inexact_constructions_kernel, which follows a
similar paradigm of filtered, exact predicates.

All benchmarkswere run on aGNU/Linuxworkstationwith a IntelCore i7-6700HQ
CPU using the performance scaling governor, no optional mitigations against CPU
vulnerabilities such as Spectre or Meltdown, and disabled turbo for consistency. All
code was compiled with GCC 11.1 and the flags “-O3 -march=native”. The installed
versions of relevant libraries were CGAL 5.4, GMP 6.2.1, MPFR 4.1.0, and Boost
1.79. The code for all benchmarks with instructions on how to replicate them can be
found in [4].

123

31 Page 26 of 31 BIT Numerical Mathematics (2023) 63 :31

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

(a) (b) (c) (d)

our predicates, no ufp
our predicates, ufp

CGAL predicates

Fig. 1 This chart shows the relative runtime for the construction of a Delaunay triangulation of 1,000,000
points with coordinates sampled from a a continuous uniform distribution and b an equidistant grid, as well
as for CGAL mesh c polygon processing and d refinement benchmarks. For each benchmark, our filters
with and without underflow protection are compared to the predicates implemented in CGAL

4.2.1 2D delaunay triangulation

The 2D Delaunay Triangulation algorithm provided by the CGAL library makes use
of the 2D orientation and incircle predicates, which compute the sign of the following
expressions:

porientation_2 =
∣
∣
∣
∣

ax − cx ay − cy
bx − cx by − cy

∣
∣
∣
∣

pincircle_2 =

∣
∣
∣
∣
∣
∣
∣

ax − dx ay − dy
(

ay − dy
)2 + (

ay − dy
)2

bx − dx by − dy
(

by − dy
)2 + (

by − dy
)2

cx − dx cy − dy
(

cy − dy
)2 + (

cy − dy
)2

∣
∣
∣
∣
∣
∣
∣

.

2D Delaunay Triangulations were computed for two data sets of randomly generated
points. The coordinates were sampled either from a continuous uniform distribu-
tion (using CGAL’s Random_points_in_square_2 generator) or from an equidistant
grid (using CGAL’s points_on_square_grid_2 generator) and shuffled with 1,000,000
points in each data set. For the continuous distribution, we found a 4.2% performance
penalty for the use of underflow guards, which can be explained by the slightly more
expensive error expressions. With or without underflow guards, our implementation
performed faster than the CGAL predicates, see (a) in Fig. 1. This is expected because
all calls can be decided on a code path with a single, well-predictable branch.

For the points sampled from the equidistant grid, the triangulations were, in general,
much slower, which is also expected because the input is designed to be degenerate
and trigger edge cases. Our predicates with underflow protection and the predicates

123

BIT Numerical Mathematics (2023) 63 :31 Page 27 of 31 31

Table 2 Number of filter failures for the 2D orientation and 2D incircle predicate with various semi-static
filters when constructing the Delaunay triangulation of 1,000,000 points sampled from an equidistant grid

Filter failures in the first stage No UFP UFP CGAL Total calls

2D orientation 49,375 624,400 49,641 4,121,216

2D incircle 1,112,461 1,490,010 1,641,255 8,455,667

Fig. 2 This figure shows the result of calls to the non-robust 2D orientation predicate and to three 2D
orientation filters respectively for the points (20.1, 20.1), (18.9, 18.9) and a small neighbourhood of the point
(3.5, 3.5), such that neighbouring pixels represent points with neighbouring floating-point coordinates. The
point (3.5, 3.5) is marked with a black circle. The dimensions of the neighbourhood are roughly 6× 10−13

in width and 3 × 10−13 in height. The colours represent left side (red), collinear (green), right side (blue)
and uncertain (yellow). The pattern of green points in (a) shows that the naive predicate produces many
incorrect results. Our filter (b) is more precise than FPG (c) but less precise than the significantly slower
interval filter. Ozaki’s filter produces the exact same image as our filter (colour figure online)

in CGAL show very similar performance (roughly 0.2% difference), while our filter
without underflow protection is significantly faster, see (b) in Fig. 1.

By construction, our semi-static filter with underflow protection fails for all cases
in which the true sign is zero, most of which can be decided by the zero-filter, though.
Table 2 shows the number of filter failures in the first filters for each predicate. For a
graphical comparison of the precision of 2D orientation filters, see Fig. 2.

123

31 Page 28 of 31 BIT Numerical Mathematics (2023) 63 :31

4.2.2 3D polygonmesh processing

The next benchmark was taken from the Polygon Mesh processing benchmark in
CGAL. For this benchmark, first, a 3D mesh is taken, and a polyhedral envelope with
a distance δ is taken around it. The polyhedral envelope is an approximation of the
Minkowski sum of the mesh with a sphere, also known as a buffer. Then, three points
are repeatedly chosen in a loop, and if they form a non-degenerate triangle, it is tested
whether that triangle is contained in the polyhedral envelope or not. As input, we use
the file pig.off, which is provided as a sample in the CGAL tree, and for δ we chose
0.1. This is described in more detail in [22].

The algorithm makes use of the 3D orientation predicate defined as the sign of

porientation_3 =
∣
∣
∣
∣
∣
∣

ax − dx ay − dy az − dz
bx − dx by − dy bz − dz
cx − dx cy − dy cz − dz

∣
∣
∣
∣
∣
∣

.

Nofilter failures were recorded for either implementation, and no performance penalty
was measured for the underflow protection. The predicates provided by CGAL caused
an additional runtime of around 28%compared to our implementation, see (c) in Fig. 1.

4.2.3 3Dmesh refinement

As the last benchmark, we measure the runtime of 3D mesh refinement with CGAL.
The algorithm and its parameters are explained in [1]. The predicates used in this
benchmark are the 3D orientation predicate and the power side of oriented power
sphere predicate, which is defined as the sign of the following expression

p =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ax − ex ay − ey az − ez (ax − ex)2 + (

ay − ey
)2 + (az − ez)2 + (ew − aw)

bx − ex by − ey bz − ez (bx − ex)2 + (

by − ey
)2 + (bz − ez)2 + (ew − bw)

cx − ex cy − ey cz − ez (cx − ex)2 + (

cy − ey
)2 + (cz − ez)2 + (ew − cw)

dx − ex dy − ey dz − ez (dx − ez)2 + (dx − ez)2 + (dx − ez)2 + (ew − dw)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

which has with d = 5 the highest degree of all predicates used in our benchmarks
and is based on a non-homogeneous polynomial. As input file, we used elephant.off,
which is provided as a sample in the CGAL source tree, with a face approximation
error of 0.0068, a max facet sign of 0.003 and a maximum tetrahedron size of 0.006.

The underflow guard came with a slight performance penalty of around 1%, and
the CGAL predicates were about 3.4% slower, see (d) in Fig. 1. There was a non-zero
but negligible number of filter failures of around 0.1% for each of the predicates.

4.3 Error bound comparison

The following table compares error constants and error bounds for various semi-static
filtering approaches for the 2D orientation predicate in the double-precision floating-
point system. Underflow guards are omitted and error constants are rounded to 9 digits
for readability.

123

BIT Numerical Mathematics (2023) 63 :31 Page 29 of 31 31

Filter Static constant Variable component without underflow guards

[30] 3.3306690739 × 10−16
∣
∣(ax cx) � (

by cy
)∣
∣ ⊕ ∣

∣
(

ay cy
) � (bx cx)

∣
∣

[26] 3.3306690622 × 10−16
∣
∣(ax cx) � (

by cy
) ⊕ (

ay cy
) � (bx cx)

∣
∣

Our 3.3306690622 × 10−16
∣
∣(ax cx) � (

by cy
)∣
∣ ⊕ ∣

∣
(

ay cy
) � (bx cx)

∣
∣

[24] 8.8872057373 × 10−16 max (|ax cx | , |bx cx |) · max
(∣
∣ay cy

∣
∣ ,

∣
∣by cy

∣
∣
)

[8] 8.8817841970 × 10−16 (|ax | ⊕ |cx |) � (∣
∣by

∣
∣ ⊕ ∣

∣cy
∣
∣
) ⊕ (∣

∣ay
∣
∣ ⊕ ∣

∣cy
∣
∣
) � (|bx | ⊕ |cx |)

Since the variable component in FPG omits the addition, its error bound should
be halfed for comparison to the first three filters in the table. Still, it can be seen that
the approaches in FPG [24] and by Burnikel et al. [8] produce more pessimistic error
bound constants than the other filters. The approach byOzaki et al. [26] obtains a slight
improvement over the error bound constant by Shewchuk [30], which we directly use
in rule R5 in Definition 5 to obtain a similar constant.

With regard to the input-dependent component, we generally obtain the same
expressions as Shewchuk. In comparison, the expression by Ozaki et al. produces
smaller error bounds when the products have opposite signs but in these case, there is
no cancellation in the determinant computation anyway and the filter would not fail,
so this mainly saves one instruction for the computation of the absolute value. The
expression generated by the approach of Burnikel et al. does not use that the error of
the initial differences, e.g. ax cx , can be bounded just in terms of their result, e.g.
|ax cx |, and will produce much higher values for points that are relatively close to
each other.

The expressions generated by FPG are very different because they are based on
the idea of computing the rounding error for polynomial under the assumption that
all inputs are scaled to 1 and then rescaled, using the maxima for each group of
coordinates. A disadvantage of this expression is that it loses much of the polynomials
original structure and, for example, produces more pessimistic estimates than the first
three expressions when a and c or b and c are equal or very close.

5 Conclusion

We have presented a recursive scheme for the derivation of (semi-)static filters for
geometric predicates. The approach is branch-efficient, sufficiently general to handle
rounding errors, overflow and underflow and can be applied to arbitrary polynomials.

Our C++-metaprogramming-based implementation is user-friendly in so far as it
requires no code generation tools, additional annotations for variables or manual
tuning. This is achieved without the additional runtime overhead of previous C++-
wrapper-based implementations, and our measurements show that our approach is
competitive with and even outperforms the state-of-the-art in some cases.

Future work could include generalisations toward non-polynomial predicates and
robust predicates on implicit points that occur as results or interim results of geometric
constructions and may not be explicitly representable with floating-point coordinates.

123

31 Page 30 of 31 BIT Numerical Mathematics (2023) 63 :31

The implementation may also be extended in the future to include further filtering
stages to improve the performance for common cases of degenerate inputs.

Funding Open Access funding enabled and organized by Projekt DEAL. The work of M. Weiser was
supported byDFGunderGrantWE2937/10-1.No further fundingwas received to assistwith the preparation
of this manuscript.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alliez, P., Jamin, C., Rineau, L., Tayeb, S., Tournois, J., Yvinec, M.: 3D mesh generation. In: CGAL
User and Reference Manual, 5.4 edn. CGAL Editorial Board (2022). https://doc.cgal.org/5.4/Manual/
packages.html#PkgMesh3

2. Attene, M.: Indirect predicates for geometric constructions. Comput. Aided Des. 126, 102,856 (2020).
https://doi.org/10.1016/j.cad.2020.102856

3. Bartels, T., Fisikopoulos, V.: Fast robust arithmetics for geometric algorithms and applications to GIS.
Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. XLVI–4/W2–2021, 1–8 (2021). https://doi.org/
10.5194/isprs-archives-XLVI-4-W2-2021-1-2021

4. Bartels, T., Fisikopoulos, V., Weiser, M.: Fast floating-point filters for robust predicates (2023). https://
doi.org/10.5281/zenodo.7539355

5. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry: Algorithms and
Applications, 3rd edn. Springer-Verlag TELOS, Santa Clara (2008)

6. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dynamic filters for compu-
tational geometry. In: Proc. of the 14th Annual Symposium on Computational Geometry, pp. 165–174.
ACM, USA (1998). https://doi.org/10.1145/276884.276903

7. Brönnimann, H., Fabri, A., Giezeman, G.J., Hert, S., Hoffmann, M., Kettner, L., Pion, S., Schirra, S.:
2D and 3D linear geometry kernel. In: CGAL User and Reference Manual, 5.2.1 edn. CGAL Editorial
Board (2021). https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23

8. Burnikel, C., Funke, S., Seel, M.: Exact geometric computation using cascading. Int. J. Comput. Geom.
Appl. 11(03), 245–266 (2001). https://doi.org/10.1142/S0218195901000493

9. de Matos Menezes, M., Magalhães, S.V.G., de Oliveira, M.A., Franklin, W.R., de Oliveira Bauer Chi-
chorro, R.E.: Fast parallel evaluation of exact geometric predicates on GPUs (2021). Submitted

10. Devillers, O., Fronville, A., Mourrain, B., Teillaud, M.: Algebraic methods and arithmetic filtering for
exact predicates on circle arcs. In: Proc. of the 16th Annual Symposium on Computational Geometry,
pp. 139–147. ACM, USA (2000). https://doi.org/10.1145/336154.336194

11. Devillers, O., Pion, S.: Efficient exact geometric predicates forDelaunay triangulations. In: R.E. Ladner
(ed.) Proceedings of the 5th Workshop on Algorithm Engineering and Experiments, Baltimore, MD,
USA, January 11, 2003, pp. 37–44. SIAM (2003)

12. Dimov, P.: Boost C++ libraries: Mp11, version 1.76 (2021). https://boost.org/libs/mp11
13. Fisikopoulos, V., Peñaranda, L.: Faster geometric algorithms via dynamic determinant computation.

Comput. Geom. 54, 1–16 (2016). https://doi.org/10.1016/j.comgeo.2015.12.001

123

http://creativecommons.org/licenses/by/4.0/
https://doc.cgal.org/5.4/Manual/packages.html#PkgMesh3
https://doc.cgal.org/5.4/Manual/packages.html#PkgMesh3
https://doi.org/10.1016/j.cad.2020.102856
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021
https://doi.org/10.5281/zenodo.7539355
https://doi.org/10.5281/zenodo.7539355
https://doi.org/10.1145/276884.276903
https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23
https://doi.org/10.1142/S0218195901000493
https://doi.org/10.1145/336154.336194
https://boost.org/libs/mp11
https://doi.org/10.1016/j.comgeo.2015.12.001

BIT Numerical Mathematics (2023) 63 :31 Page 31 of 31 31

14. Gehrels, B., Lalande, B., Loskot, M., Wulkiewicz, A., Karavelas, M., Fisikopoulos, V.: Boost C++
libraries: Geometry, version 1.76 (2021). https://boost.org/libs/geometry

15. Granlund, T.: TheGMPdevelopment team:GNUMP:TheGNUMultiple PrecisionArithmeticLibrary,
5.0.5 edn. (2012). http://gmplib.org/

16. Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang.
Syst. 18(2), 139–174 (1996). https://doi.org/10.1145/227699.227701

17. Hemmer, M., Hert, S., Pion, S., Schirra, S.: Number types. In: CGAL User and Reference
Manual, 5.4 edn. CGAL Editorial Board (2022). https://doc.cgal.org/5.4/Manual/packages.html#
PkgNumberTypes

18. 754-2008 – IEEE standard for floating-point arithmetic. IEEE (2008). https://doi.org/10.1109/
IEEESTD.2008.4610935

19. Jamin, C., Alliez, P., Yvinec, M., Boissonnat, J.D.: Cgalmesh: a generic framework for Delaunay mesh
generation. ACM Trans. Math. Softw. (2015). https://doi.org/10.1145/2699463

20. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems
in geometric computations. In: Algorithms – ESA 2004, pp. 702–713. Springer, Berlin (2004). https://
doi.org/10.1007/978-3-540-30140-0_62

21. Li, Z., Zhu, C., Gold, C.: Digital Terrain Modeling: Principles and Methodology. CRC Press (2005).
https://doi.org/10.1201/9780203357132

22. Loriot, S., Rouxel-Labbé, M., Tournois, J., Yaz, I.O.: Polygon mesh processing. In: CGAL User and
Reference Manual, 5.4 edn. CGAL Editorial Board (2022). https://doc.cgal.org/5.4/Manual/packages.
html#PkgPolygonMeshProcessing

23. Maddock, J., Kormanyos, C.: Boost C++ libraries: Geometry, version 1.76 (2021). https://boost.org/
libs/multiprecision

24. Meyer, A., Pion, S.: FPG: a code generator for fast and certified geometric predicates. In: Real Numbers
and Computers, pp. 47–60. Santiago de Compostela, Spain (2008). https://hal.inria.fr/inria-00344297

25. Nanevski, A., Blelloch, G., Harper, R.: Automatic generation of staged geometric predicates. Higher-
Order Symb. Comput. LISP Symb. Comput. 16(4), 379–400 (2003). https://doi.org/10.1023/a:
1025876920522

26. Ozaki, K., Bünger, F., Ogita, T., Oishi, S., Rump, S.M.: Simple floating-point filters for the two-
dimensional orientation problem. BIT Numer. Math. 56(2), 729–749 (2016). https://doi.org/10.1007/
s10543-015-0574-9

27. Qi, M., Yan, K., Zheng, Y.: Gpredicates: Gpu implementation of robust and adaptive floating-point
predicates for computational geometry. IEEE Access 7, 60868–60876 (2019). https://doi.org/10.1109/
ACCESS.2019.2911641

28. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT Numer. Math. 52(1),
201–220 (2011). https://doi.org/10.1007/s10543-011-0342-4

29. Shewchuk, J.: Routines for arbitrary precision floating-point arithmetic and fast robust geometric
predicates (1996). https://cs.cmu.edu/afs/cs/project/quake/public/code/predicates.c

30. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discrete Comput. Geometry 18(3), 305–363 (1997). https://doi.org/10.1007/pl00009321

31. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the
Fourteenth Annual Symposium on Computational Geometry, SCG’98, pp. 86-95. Association for
Computing Machinery, New York (1998). https://doi.org/10.1145/276884.276894

32. Sunday, D.: Practical Geometry Algorithms: with C++ Code. Amazon Digital Services LLC (2021).
ISBN: 9798749449730

33. Vassilev, V., Canal, P., Naumann, A., Moneta, L., Russo, P.: Cling—The New Interactive Interpreter
for ROOT 6. p. 052071. IOP Publishing (2012). https://doi.org/10.1088/1742-6596/396/5/052071

34. Veldhuizen, T.: Expression templates. C++ Rep. 7(5), 26–31 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://boost.org/libs/geometry
http://gmplib.org/
https://doi.org/10.1145/227699.227701
https://doc.cgal.org/5.4/Manual/packages.html#PkgNumberTypes
https://doc.cgal.org/5.4/Manual/packages.html#PkgNumberTypes
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1145/2699463
https://doi.org/10.1007/978-3-540-30140-0_62
https://doi.org/10.1007/978-3-540-30140-0_62
https://doi.org/10.1201/9780203357132
https://doc.cgal.org/5.4/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/5.4/Manual/packages.html#PkgPolygonMeshProcessing
https://boost.org/libs/multiprecision
https://boost.org/libs/multiprecision
https://hal.inria.fr/inria-00344297
https://doi.org/10.1023/a:1025876920522
https://doi.org/10.1023/a:1025876920522
https://doi.org/10.1007/s10543-015-0574-9
https://doi.org/10.1007/s10543-015-0574-9
https://doi.org/10.1109/ACCESS.2019.2911641
https://doi.org/10.1109/ACCESS.2019.2911641
https://doi.org/10.1007/s10543-011-0342-4
https://cs.cmu.edu/afs/cs/project/quake/public/code/predicates.c
https://doi.org/10.1007/pl00009321
https://doi.org/10.1145/276884.276894
https://doi.org/10.1088/1742-6596/396/5/052071

	Fast floating-point filters for robust predicates
	Abstract
	1 Introduction
	2 Robust geometric predicates
	2.1 Geometric predicates and robustness issues
	2.2 Exact arithmetic
	2.3 Floating-point filters

	3 Semi-static filters
	3.1 Error bounds
	3.2 Floating-point filters
	3.3 Zero-filter

	4 Numerical results
	4.1 C++ implementation
	4.2 Benchmarks
	4.2.1 2D delaunay triangulation
	4.2.2 3D polygon mesh processing
	4.2.3 3D mesh refinement

	4.3 Error bound comparison

	5 Conclusion
	References

