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Abstract
The aim of this work is the numerical homogenization of a parabolic problem with
several time and spatial scales using the heterogeneous multiscale method.We replace
the actual cell problem with an alternate one, using Dirichlet boundary and initial val-
ues instead of periodic boundary and time conditions. Further, we give a detailed a
priori error analysis of the fully discretized, i.e., in space and time for both the macro-
scopic and the cell problem, method. Numerical experiments illustrate the theoretical
convergence rates.
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1 Introduction

Problems with multiple spatial and temporal scales occur in a variety of different
phenomena and materials. Prominent examples are saltwater intrusion, storage of
radioactive waste products or various composite materials [7, 15, 19]. These examples
all have in common that bothmacroscopic andmicroscopic scales occur.Consequently,
they are particularly challenging from a numerical point of view. However, from the
application point of view, it is often sufficient to know a description of the macro-
scopic properties. Therefore, it is quite relevant to develop a method that includes all
small-scale effects without having to calculate them simultaneously. This is the main
component of (numerical) homogenization.

In this work we are interested in the following parabolic problem

∂uε

∂t
− ∇ ·

(
a
(
t, x,

t

ε2
,
x

ε

)
∇uε

)
= f ,

with initial and boundary condtions. The precise setting is given further below.
a
(
t, x, t

ε2
, x

ε

)
is called the time-space multiscale coefficient and represents physi-

cal properties of the considered material. If we use standard finite element and time
stepping methods, we obtain sufficiently good solutions only for small time steps and
fine grids as the following example illustrates.

Example 1.1 Let Ω = (0, 1) and T = 1. Furthermore we consider

a(t, x, s, y) = 3 + cos(2π y) + cos2(2πs).

Let the initial condition be uε(0, x) = 0 for all x ∈ Ω . Figure 1a shows the error in the
L2-normwith respect to the numerical and a reference solution.The reference solutions
were calculated using finite elements with grid width h = 10−6 and the implicit Euler
method time step size τ = 1/100. The theory yields an expected quadratic order of
convergence. However, this occurs here only for small grid sizes.
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Fig. 1 a L2-Error with respect to grid width h and ε at time t = 1. b Illustration of uε
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More precisely, the error converges only when h < ε, see Fig. 1a. Similar obser-
vations can be made for the time step, where one even needs τ < ε2 in general. The
reason is that uε is highly oscillatory in space and time, see Fig. 1b.

To tackle the outlined challenges, various multiscale methods have been proposed.
Focusing on approaches for parabolic space-time multiscale problems, examples
include generalized multiscale finite element methods [12], non-local multicontinua
schemes [18], high-dimensional (sparse) finite element methods [28], an approach
based on an appropriate global coordinate transform [23], a method in the spirit of the
Variational Multiscale Method and the Localized Orthogonal Decomposition [21] as
well as optimal local subspaces [26, 27]. As already mentioned, we consider locally
periodic problems in space and time here. Hence, we employ the Heterogeneous Mul-
tiscale Method (HMM), first induced by E and Enquist [13], see also the reviews [1,
3]. The HMM has been successfully applied to various time-dependent problems such
as (nonlinear) parabolic problems [2, 4–6], time-dependent Maxwell equations [14,
16, 17] or the heat equation for lithium ion batteries [30]. We use the finite element
version of the HMM, but note that other discretization types such as discontinuous
Galerkin schemes are generally possible as well.

The present contribution is inspired by [22], which considers the same parabolic
model problem and analyzes a semi-discrete HMM for it. Precisely, the microscopic
cell problems are solved analytically in [22]. Our main contribution is to propose a
suitable discretization of these cell problems and to show rigorous error estimates for
the resulting fully discrete HMM. A particular challenge for the estimate is to balance
the order of the mesh size and the time step on the one hand and the period ε on the
other hand. Further, we illustrate our theoretical results with numerical experiments
and thereby underline the applicability of the method.

The paper is organized as follows. In Sect. 2, we introduce the setting and present
the main homogenization results. In Sect. 3, we derive the fully discrete finite element
heterogeneous multiscale method. The error of the macroscopic discretization is esti-
mated in Sect. 4 and the error arising from the microscopic modeling is investigated
in Sect. 5. Finally, numerical results are presented in Sect. 6.

2 Setting

In this section, we present our model problem and the associated homogenization
results. Throughout the paper, we use standard notation on function spaces, in par-
ticular the Lebesgue space L2, the Sobolev spaces H1 and H1

0 , as well as Bochner
spaces for time-dependent functions. We denote the L2-scalar product (w.r.t to space)
by 〈·, ·〉0 and the L2-norm by ‖ · ‖0. Furthermore, we mark by # spaces of periodic
functions. Let X#(Ω) be such a space for an arbitrary Ω ⊂ R

d , then the subspace
X#,0(Ω) ⊂ X#(Ω) consist of all functions whose integrals over Ω is 0.
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2.1 Model problem

LetΩ ⊂ R
d , be a boundedLipschitz domain, T > 0 the final time andY := (− 1

2 ,
1
2 )

d .
We consider the following parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

∂uε

∂t
− ∇ · (aε(t, x)∇uε) = f (t, x) x ∈ Ω, t ∈ (0, T )

uε(0, x) = u0(x) x ∈ Ω

uε(t, x) = 0 x ∈ ∂Ω, t ∈ (0, T ),

(2.1)

where f ∈ L2((0, T ), L2(Ω)) and u0 ∈ H1
0 (Ω). These conditions are sufficient for

the well-posedness of (2.1). For the error proofs we will later assume more regularity,
see the discussion after Theorem 4.1. aε is the time-space multiscale coefficient as
introduced in Sect. 1 and is defined by the matrix-valued function a(t, x, s, y) ∈
C([0, T ]× Ω̄ ×[0, 1]× Ȳ ,Rd×d

sym ). The function a is (0, 1)×Y -periodic with respect
to s and y, furthermore it is coercive and uniformly bounded, in particular this means
that there are constants Λ,λ > 0, such that for all ξ, η ∈ R

d :

η · a(t, x, s, y)ξ ≤ Λ |η| |ξ | und ξ · a(t, x, s, y)ξ ≥ λ|ξ |2

for all (t, x, s, y) ∈ [0, T ] × Ω × [0, 1] × Y . Further, we assume that a is Lipschitz
continuous in t and x .

2.2 Homogenized problem

Analytical homogenization results for (2.1) were obtained in [8, 28]. For ease of
presentation, we follow the traditional approach of asymptotic expansions here, but
we emphasize that the same results are obtained with the more recent approach of
time-space multiscale convergence as in [28], which is a generalization of two-scale
convergence. Based on the multiscale asymptotic expansion

uε(t, x) = U0(t, x,
t

ε2
,
x

ε
) + εU1(t, x,

t

ε2
,
x

ε
) + ε2U2(t, x,

t

ε2
,
x

ε
) + . . . , (2.2)

it is shown that U0 solves the homogenized problem

⎧⎪⎪⎨
⎪⎪⎩

∂U0

∂t
− ∇ · (A0∇U0) = f in (0, T ) × Ω

U0 = 0 on (0, T ) × ∂Ω

U0(0, ·) = u0 in Ω.

(2.3)

Here, the homogenized coefficient A0 is defined by

Ai j
0 (t, x) =

ˆ 1

0

ˆ
Y

d∑
k=1

aik(t, x, s, y)
(
δ jk + ∂χ j

∂ yk
(t, x, s, y)

)
dyds, (2.4)
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where δ jk denotes the Kronecker delta. The function χ i ∈ L2((0, T ) × Ω ×
(0, 1), H1

#,0(Y )) ∩ L2((0, T ) × Ω, H1
# ((0, 1), H−1

#,0 (Y ))) solves the cell problem
⎧⎪⎪⎨
⎪⎪⎩

∂χ i

∂s
− ∇y · (a(ei + ∇yχ

i )) = 0 in (0, 1) × Y ,

χ i (t, x, s, ·) Y -periodic for all t, x, s,

χ i (t, x, ·, y) (0, 1)-periodic for all t, x, y.

(2.5)

Using these χ i , U1 in the asymptotic expansion (2.2) can be written as

U1(t, x, s, y) =
d∑

i=1

∂U0

∂xi
(t, x)χ i (t, x, s, y).

[8, Chapter 2, Section 1.7] shows in Theorem 2.1 and Theorem 2.3 that

‖uε −U0 − εU1‖L2((0,T ),H1
0 (Ω)) → 0 for ε → 0.

We call U0 the homogenized solution. U0 describes the macroscopic behavior of uε ,
because U0 only depends on the macroscopic scale x . U1 is called the first-order
corrector.

Remark 2.1 A0 is not symmetric in Rd for d > 1 in general since

Ai j
0 (t, x) =

ˆ 1

0

ˆ
Y

d∑
l=1

d∑
k=1

δilalk(t, x, s, y)(δ jk + ∂χ j

∂ yk
(t, x, s, y))dyds

=
ˆ 1

0

ˆ
Y

d∑
l=1

d∑
k=1

(δil + ∂χ i

∂ yl
(t, x, s, y))alk(t, x, s, y)(δ jk

+∂χ j

∂ yk
(t, x, s, y))dyds +

ˆ 1

0

ˆ
Y

χ i (t, x, s, y)
∂χ j

∂s
(t, x, s, y)dyds.

(2.6)

The last term does not vanish in general, but it is zero for i = j due to integration by
parts and the time-periodicity of χ i .

In the following we reformulate A0 in a way which we use to derive the discretized
problem later. We transform the reference cell (0, 1)×Y to a general cell (t, t + ε2)×
{x0} + Iε with Iε :=εY for t ∈ [0, T ) and x0 ∈ Ω fixed. Application of the chain and
transformation rule allows us to write

A0(t, x) =
ˆ 1

0

ˆ
Y
a(t, x, s, y)(Idd + Dyχ(t, x, s, y))dyds (2.7)

= 1

ε2|Iε |
ˆ t+ε2

t

ˆ
{x0}+Iε

a
(
t, x,

s

ε2
,
y

ε

)(
Idd +Dyχ

(
t, x,

s

ε2
,
y

ε

))
dyds.

(2.8)
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3 The finite-element heterogeneousmultiscale method (FE-HMM)

Based on the results of Sect. 2, we want to compute an approximation of the homog-
enized solution U0 based on the Finite-Element Heterogeneous Multiscale Method
(FE-HMM). In [22], this method was already introduced, but it was assumed that the
cell problems (2.5) could be solved exactly/analytically. The main aim of this section
is to introduce also the (microscopic) discretization of the cell problems, allowing for a
fully discretemethod. Further, we also account for the non-symmetry of A0. This leads
to a slightly different formulation in comparison to [22] where the symmetric part of
A0 was considered throughout. In the following, we will derive the full method step
by step, which is on the one hand hopefully instructive for the readers to understand
the final formulation and on the other makes it easier to follow the error estimates in
the following sections.

We start with the discretized macro problem. For the spatial discretization we use
linear finite elements based on a triangulation TH and for the time discretization
we use the implicit Euler method. Precisely, let VH ⊂ H1

0 (Ω) be the space of all
piecewise linear functions which are zero on ∂Ω and let τ = T /N be the time step
size. For 1 ≤ n ≤ N we set tn = nτ . Further, we define U 0

H := QHu0, where
QH : L2(Ω) → VH is the L2-projection.

Let Un
H then be the solution of the discretized equation

〈∂Un
H

∂t
, ΦH

〉
0
+ B[tn,Un

H , ΦH ] = 〈
f n, ΦH

〉
0 for all ΦH ∈ VH , (3.1)

where f n(x) = f (tn, x) and
∂̄Un

H

∂t
= (Un

H − Un−1
H )/τ . Here, the discrete bilinear

form B[tn, ·, ·] is defined for any ΦH , ΨH ∈ VH via

B[tn, ΦH , ΨH ] :=
ˆ

Ω

∇ΨH (x) · A0(tn, x)∇ΦH (x)dx

=
∑
K∈TH

ˆ
K

∇ΨH (x) · A0(tn, x)∇ΦH (x)dx

≈
∑
K∈TH

|K |∇ΨH (xK ) · A0(tn, xK )∇ΦH (xK ). (3.2)

In the integral with a quadrature formula, where xK denotes the barycenter of K ∈
TH . If we now consider the individual summands, we could calculate A0(tn, xK )

starting from Eq. (2.7). However, this would have several disadvantages. First, we
would have to compute A0(tn, xK ) for all time points tn , which would require a lot of
memory depending on the time step size. Furthermore,wewant to change the boundary
conditions later, which is not possible with this approach. Therefore, the idea is to
compute ∇ΨH (xK ) · A0(tn, xK )∇ΦH (xK ) directly. For this, set Iε,K := {xK } + Iε
and use reformulation (2.7) to give
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∇ΨH (xK ) · A0(tn, xK )∇ΦH (xK )

= 1

ε2|Iε |
ˆ tn+ε2

tn

ˆ
Iε,K

∇ΨH |Iε,K (xK ) ·

:=aε
n,K (t,x)︷ ︸︸ ︷

a(tn, xK ,
t

ε2
,
x

ε
)

∇(ΦH |Iε,K (xK ) + ∇ΦH |Iε,K (xK )εχ(tn, xK
t

ε2
,
x

ε
)

︸ ︷︷ ︸
=:Φ̃

)dxdt

= 1

ε2 | Iε |
ˆ tn+ε2

tn

ˆ
Iε,K

∇ΨH |Iε,K (xK ) · aε
n,K (t, x)∇φε

#(tn, xK ,
t

ε2
,
x

ε
)dxdt,

(3.3)

where

φε
# = ΦH |Iε,K + Φ̃ ∈ VH + X((tn, tn + ε2), Iε,K ), (3.4)

with

X((tn, tn + ε2), Iε,K ) := L2((tn, tn + ε2), H1
#,0(Iε,K ))

∩H1
# ((tn, tn + ε2), H−1

#,0 (Iε,K )).

φε
# solves the equivalent cell problem

⎧⎪⎪⎨
⎪⎪⎩

∂φε
#

∂t
− ∇ · (aε

n,K∇φε
#) = 0 in (tn, tn + ε2) × Iε,K

φε
#(t, x, s, ·) − ΦH |Iε,K periodic on ∂ Iε,K

φε
#(t, x, ·, y) − ΦH |Iε,K periodic on ∂(tn, tn + ε2).

(3.5)

We can thus give the first discretization for the bilinear form in (3.1)

BH ,#[tn, ΦH , ΨH ]

:=
∑
K∈TH

|K |
|Iε |ε2

ˆ tn+ε2

tn

ˆ
Iε,K

∇ΦH |Iε,K (xK ) · aε
n,K (t, y)∇φε

#(t, y)dydt

≈
∑
K∈TH

ˆ
K

1

|Iε |ε2
ˆ tn+ε2

tn

ˆ
Iε,K

∇ΦH |Iε,K (x) · aε
n,K (t, y)∇φε

#(t, y)dydtdx

Note that BH ,# is generally not symmetric.
In practice, the period may be known only approximately. Therefore we consider

the case with cell side length δ > ε and cell time σ > ε2 and where the two terms
σ
ε2
, δ

ε
are not integers. Thus, the periodic boundary conditions no longer hold (see [1,

p.164] for the stationary case). In this case, we need to find alternative boundary and
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initial values. We approximate ∇ΨH · A0(tn)∇ΦH by replacing ε by δ and ε2 by σ in
(3.3), and also X by

L2((tn, tn + σ), H1
0 (Iδ,K )) ∩ H1((tn, tn + σ), H−1

0 (Iδ,K ))

in (3.4). Then we approximate

∇ΨH · A0(tn,xK )∇ΦH

≈ 1

σ |Iδ|
ˆ tn+σ

tn

ˆ
Iδ,K

(∇ΦH (xK ) · aε
n,K (t, x)∇φε(t, x))dxdt

:= 1

σ |Iδ|
ˆ tn+σ

tn

ˆ
Iδ,K

(∇ΦH |Iδ,K (xK ) · aε
n,K (t, x)∇φε(t, x))dxdt,

where φε solves the initial value problem

⎧⎪⎪⎨
⎪⎪⎩

∂φε

∂t
− ∇ · (aε

n,K∇φε) = 0 in (tn, tn + σ) × Iδ,K

φε = ΦH on (tn, tn + σ) × ∂ Iδ,K
φε|t=tn

= ΦH .

(3.6)

This means that we replace periodic boundary conditions by Dirichlet ones and the
time “boundary value problem” by an initial value problem.

In the following, we consider the bilinear form resulting from the above approxi-
mation. We set Qn,K := (tn, tn + σ) × Iδ,K and define

BH [tn, ΦH , ΨH ] :=
∑
K∈TH

|K |∇ΨH (xK ) · AH (tn, xK )∇ΦH (xK ), (3.7)

=
∑
K∈TH

ˆ
K

∇ΨH (x) · AH (tn, xK )∇ΦH (x)dx, (3.8)

where

∇ΨH · AH (tn, xK )∇ΦH := 1

|Qn,K |
ˆ
Qn,K

∇ΨH (xK ) · aε
n,K (t, x)∇φε(t, x)dxdt .

To finally get the fully discrete method we consider a triangulation Th̃ of the unit cell
Y and the resulting triangulation Th(Iδ,K ) of the shifted cell with the finite element
space V p

h ⊂ H1
0 (Iδ,K ), which consist of all piecewise polynomials of order p ≥ 2.We

stress that the mesh size h is meant with respect to the scaled triangulation Th(Iδ,K ).
Let 1 ≤ k ≤ Ncell , θ = σ

Ncell
and sk = kθ . For any ΦH ∈ VH seek φε

h,k ∈ ΦH + V p
h

as the unique solution of the discrete cell problem

ˆ
Iδ,K

∂φε
h,k

∂t
zh + ∇zh · aε

n,K∇φε
h,kdx = 0 for all zh ∈ V p

h
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with φε
h,0 = ΦH .

We consider the following bilinear form, which we get from the approximations
above

BH ,h[tn, ΦH , ΨH ] :=
∑
K∈TH

|K |∇ΨH (xK ) · AH ,h(tn, xK )∇ΦH (xK ) (3.9)

=
∑
K∈TH

ˆ
K

∇ΨH (x) · AH ,h(tn, xK )∇ΦH (x)dx, (3.10)

where

∇ΨH · AH ,h(tn, xK )∇ΦH := 1

σ |Iδ|
(θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn, x)∇φε

h,0dx

+θ

Ncell−1∑
k=1

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sk, x)∇φε

h,kdx

+θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sNcell , x)∇φε

h,ndx
)
.

Remark 3.1 In the above definition of AH ,h weused the trapezoidal rule for the approx-
imation for the time integral, which is consistent with our numerical experiments
below. We emphasize that the choice of other quadrature rules is equally possible. In
practice, also the spatial integral over Iδ,K is approximated by a quadrature rule.

We reformulate the discrete homogeneous equation by substituting BH ,h[tn, ΦH , ΨH ]
into (3.1): Seek Un

H ∈ VH such that

〈 ∂̄Un
H

∂t
, ΦH

〉
0
+ BH ,h[tn,Un

H , ΦH ] = 〈
f n, ΦH

〉
0 for all ΦH ∈ VH , (3.11)

where again U 0
H = QHu0.

Remark 3.2 The restriction to use only piecewise linear functions for the macrodis-
cretization is important for proving the claimed error bounds later. For finite elements
of higher degree, one approach is to consider the linearizationΦH ,lin of finite element
functions ΦH ∈ VH , where

ΦH ,lin :=
∑
K∈TH

ΦH ,lin,K =
∑
K∈TH

ΦH (xK ) + (x − xK ) · ∇ΦH (xK ).

We refer to [1] for details in the stationary case.

In the following, we will show well–posedness as well as error estimates for the
FE-HMM. Note that for the well–posedness, it is sufficient to show stability for the
macrodiscretization since the microproblem is “only” used to calculate the homoge-
nized coefficient AH ,h or the discrete bilinear form BH ,h , respectively.
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4 Error estimation of themacrodiscretization

We start with a stability result which we will use to show coercivity and boundedness
of BH ,h . The statement and the proof are similar to [22, Lemma 2.1]. However, we
consider here the time-discretized case.

Lemma 4.1 Let Ω ⊂ R
d be a bounded domain, T > 0 and Φ a linear function.

Further, let ϕ be a solution to the following problem.

⎧⎪⎪⎨
⎪⎪⎩

∂ϕ

∂t
− ∇ · (a(t, x) · ∇ϕ) = 0 in (0, T ] × Ω

ϕ = Φ on (0, T ] × ∂Ω

ϕ |t=0 = Φ,

(4.1)

where a(t, x) = (ai j (t, x))i, j=1...d fulfills the following conditions

λ Idd ≤ a(t, x) ≤ Λ Idd a.e. on (0, T ] × Ω,

where Idd : Rd → R
d is the d-dimensional unit matrix. Let V p

h ⊂ H1
0 (Ω) be the

space of all piecewise polynomials of degree p onΩ using the simplicial mesh Th. For
1 ≤ n ≤ N we define θ = T /N, tn = nθ and let ϕn

h ∈ Φ + V p
h be the weak solution

of the discrete problem

ˆ
Ω

ϕn
h − ϕn−1

h

θ
zh + ∇zh · a(tn, x)∇ϕn

h (x)dx = 0

for all zh ∈ Vh and ϕ0
h = Φ. Then it holds for all n ∈ {0, . . . , N }:

‖∇Φ‖0 ≤ ‖∇ϕn
h‖0 (4.2)

CT 1/2‖∇Φ‖0 ≥
(
θ

N∑
i=0

‖∇(ϕi
h − Φ)‖20

)1/2
. (4.3)

Proof Let n ∈ {0, . . . , N } be arbitrary. Since ϕn
h = Φ on ∂Ω and ∇Φ is constant, we

get with partial integration

ˆ
Ω

∇(
ϕn
h (x) − Φ(x)

) · ∇Φ(x)dx = −
ˆ

Ω

(
ϕn
h (x) − Φ(x)

)
ΔΦ(x)dx

+
˛

∂Ω

(
ϕn
h (x) − Φ(x)

)∇Φ(x) · νdν

= 0

and, hence,

ˆ
Ω

|∇ϕn
h (x)|2dx =

ˆ
Ω

|∇Φ(x)|2dx +
ˆ

Ω

|∇(
ϕn
h (x) − Φ(x)

)|2dx .
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Since the second term is positive, the first inequality (4.2) is proved. For the other
inequality (4.3), we use that ϕ is the weak solution of (4.1). We choose ϕn

h − Φ as the
test function to obtain

N∑
n=1

[ˆ
Ω

(ϕn
h (x) − ϕn−1

h (x))(ϕn
h (x) − Φ(x))dx

+ θ

ˆ
Ω

∇(ϕn
h (x) − Φ) · a(tn, x)∇(ϕn

h (x) − Φ(x))dx
]

=
N∑

n=1

θ

ˆ
Ω

∇(ϕn
h (x) − Φ(x)) · a(tn, x)∇Φ(x)dx .

From the Cauchy–Schwarz inequality and boundedness of a it follows

N∑
n=1

ˆ
Ω

∇(ϕn
h (x) − Φ(x)) · a(tn, x)∇Φ(x)dx

≤
( N∑
n=1

ˆ
Ω

∇(ϕn
h (x) − Φ(x)) · a(tn, x)∇(ϕn

h (x) − Φ(x))dx
)1/2

( N∑
n=1

ˆ
Ω

∇Φ(x) · a(tn, x)∇Φ(x)dx
)1/2

≤ Λ1/2
√
N‖∇Φ‖0

( N∑
n=1

ˆ
Ω

∇(ϕn
h (x) − Φ(x)) · a(tn, x)∇(ϕn

h (x) − Φ(x))dx
)1/2

.

Inserting this inequality into the equation above and using that

N∑
n=1

ˆ
Ω

(ϕn
h (x) − ϕn−1

h (x))(ϕn
h (x) − Φ(x))dx ≥ 1

2
(‖ϕN

h − Φ‖20 − ‖ϕ0
h − Φ‖20) ≥ 0,

we finally obtain

N∑
n=1

θ

ˆ
Ω

∇(ϕn
h (x) − Φ(x)) · a(tn, x)∇(ϕn

h (x) − Φ(x))dx

≤Cθ1/2‖∇Φ‖0
( N∑
n=1

θ

ˆ
Ω

∇(ϕn
h (x)−Φ(x)) · a(tn, x)∇(ϕn

h (x)−Φ(x))dx
)1/2

Finally dividing by
(∑N

n=1 θ
´
Ω

∇(ϕn
h −Φ)(x) ·a(tn, x)∇(ϕn

h −Φ(x))dx
)1/2 finishes

the proof. ��
Using this lemma, we now show the boundedness and coercivity of the discretized

bilinear form BH ,h .
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Lemma 4.2 For all n ∈ {1, . . . , N }, BH ,h[tn, ·, ·] : VH × VH → R is a coercive and
bounded bilinear form.

Proof Using the definition of φε
h,k , we obtain with Lemma 4.1 and σ = Ncellθ

∇ΨH · AH ,h(tn, xK )∇ΦH

= 1

σ |Iδ|
(θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn, x)∇φε

h,0dx

+θ

Ncell−1∑
k=1

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sk, x)∇φε

h,kdx

+θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sNcell , x)∇φε

h,ndx
)

≤ 1

σ |Iδ|C
(θ

2
‖∇ΨH‖L2(Iδ,K )

(‖∇(φε
h,0 − ΦH )‖L2(Iδ,K ) +‖∇ΦH‖L2(Iδ,K )

)

+θ

Ncell−1∑
k=1

‖∇ΨH‖L2(Iδ,K )

(‖∇(φε
h,k−ΦH )‖L2(Iδ,K )+‖∇ΦH‖L2(Iδ,K )

)

+θ

2
‖∇ΨH‖L2(Iδ,K )

(‖∇(φε
h,n − ΦH )‖L2(Iδ,K ) + ‖∇ΦH‖L2(Iδ,K )

))

≤ 1

σ |Iδ|C
[(

θ

Ncell∑
k=0

‖∇ΨH‖2L2(Iδ,K )

)1/2(
θ

Ncell∑
k=0

‖∇(φε
h,k − ΦH )‖2L2(Iδ,K )

)1/2

+θ

Ncell∑
k=0

‖∇ΨH‖L2(Iδ,K )‖∇ΦH‖L2(Iδ,K )

]

≤ C
1

|Iδ| ‖∇ΨH‖L2(Iδ,K )‖∇ΦH‖L2(Iδ,K ) = C |∇ΨH (xK )||∇ΦH (xK )|,

where we used in the last step that ∇ΦH is constant. Summation over K shows the
boundedness of BH ,h .

It remains to show the coercivity. Since AH ,h(tn ,xK )−AH ,h(tn ,xK )T

2 is skew-symmetric,
it follows that

∇Φ ·
( AH ,h(tn, xK ) − AH ,h(tn, xK )T

2

)
∇Φ = 0.

For the symmetric part, we obtain with (2.6)

A0(t, x) + A0(t, x)T

2
=
ˆ 1

0

ˆ
Y

d∑
l=1

d∑
k=1

(δil + ∂χ i

∂ yl
(t, x, s, y))alk(t, x, s, y)(δ jk

+∂χ j

∂ yk
(t, x, s, y))dyds.
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With the lower bound on aε
n,K and Lemma 4.1, we calculate

∇ΦH · AH ,h(tn, xK )∇ΦH

= ∇ΦH ·
( AH ,h(tn, xK ) + AH ,h(tn, xK )T

2

)
∇ΦH

= 1

σ |Iδ|
(θ

2

ˆ
Iδ,K

∇φε
h,0 · aε

n,K (tn, x)∇φε
h,0dx

+θ

Ncell−1∑
k=1

ˆ
Iδ,K

∇φε
h,k · aε

n,K (tn + sk, x)∇φε
h,kdx

+θ

2

ˆ
Iδ,K

∇φε
h,n · aε

n,K (tn + sNcell , x)∇φε
h,ndx

)

≥ C0|∇ΦH (xK )|2

and the coercivity of BH ,h follows by summation over K and the fact that ΦH is
piecewise linear. ��

The macrodiscretization is thus a usual finite element discretization with implicit
Euler time stepping of a coercive and bounded parabolic (discrete) problem, which
directly implies its stability. We will now present the main error estimate which is of
similar form as in [22]. We define the error arising from the estimation of microscopic
data as

e(HMM) = max
1≤k≤n

ek(HMM),

where

ek(HMM) := max
K∈TH

‖(A0 − AH ,h)(tk, xK )‖

:= max
K∈TH

[
max

ΦH ,ΨH∈VH|∇ΦH |K |,|∇ΨH |K |=1

|∇ΨH · (A0 − AH ,h)(tk, xK )∇ΦH |
]
.

Note that the definition is analogous to [22], but includes themicroscopic discretiza-
tion by comparing A0 with AH ,h and not AH . Using the same perturbation argument
as [22] one directly obtains the main error estimate.

Theorem 4.1 Let U0 and Un
H be solutions of (2.3) and (3.11), respectively. If a and

U0 are sufficiently regular, there exists a constant C independent of ε, δ, σ, H , τ such
that

‖Un
H −U0(x, tn)‖0 + |||Un

H −U0(x, tn)||| ≤ C(τ + H2 + e(HMM)), (4.4)

‖Un
H −U0(x, tn)‖H1(Ω) ≤ C(τ + H + e(HMM)τ− 1

2 ), (4.5)

where |||.||| is defined as
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|||Φ||| :=
( n∑
k=1

τ‖∇Φk‖20
)1/2

for all Φ = {Φk}nk=1 with Φk ∈ H1
0 (Ω).

It should be noted here that the constants in Theorem 4.1 depend on the constants
λ,Λ as well as the Lipschitz constant of a (cf. e.g. [22]). We further assume that
f ∈ C2((0, T ), H2

0 (Ω)) and u0 ∈ H4
0 (Ω) fulfill the compatibility condition [25,

Equation (1.3)] for q = 2. Thus, the required regularity of U0 in time can be deduced
by [25, (1.4)]. Using the same arguments as in the time-independent case [11] we
obtain the required regularity in space.

5 Estimation of e(HMM)

In this section, we prove the error bound for e(HMM). In contrast to [22], we also
consider the error of the microscopic discretization, which requires additional effort.
Further slight differences to [22] arise from the lacking symmetry of A0 and AH ,h .
Instead of estimating e(HMM) directly, we introduce auxiliary matrices Ã and ÃH

and calculate the error with respect to them. Let ΦH , ΨH ∈ VH . Ã is defined via

∇ΨH · Ã(tn, xK )∇ΦH :=
 
Qn,K

∇ΨH (x) · aε
n,K (t, x)∇φε

#(t, x)dxdt,

where φε
# solves (3.5). Note that Ã uses the macroscopic discretization as AH , but

solves the cell problem with periodic boundary conditions in space as well as time.
ÃH is defined via

∇ΨH · ÃH (tn, xK )∇ΦH

:= 1

σ |Iδ|
(θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn, x)∇φε(tn, x)dx

+θ

n−1∑
k=1

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sk, x)∇φε(tn + sk, x)dx

+θ

2

ˆ
Iδ,K

∇ΨH (xK ) · aε
n,K (tn + sNcell , x)∇φε(tn + sNcell , x)dx

)
,

where φε solves (3.6). Note that ÃH includes the approximation of the temporal
integral, but in contrast to AH ,h solves the microscopic cell problems exactly. In the
following, we write Φ,Ψ instead of ΦH , ΨH for simplicity and omit the variables in
the integrals for readability. The central result of this section is

Theorem 5.1 If a sufficient regular, then it holds for any α > 0

e(HMM) ≤ Cα

((ε

δ

)1/2 + ε

σ 1/2 + θ

ε2

√
σ

ε
+ h3−α

ε3
+ h

ε

)
,
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where σ and δ are the time and cell size, respectively, of the cell problem (3.6).

The first two terms arise from the oversampling as well as the change of the temporal
and spatial boundary conditions and are already present in [22]. The other terms come
from the discretization of the cell problems, where the leading terms orders are h/ε

and θ/ε2. Linear convergence in time is expected due to the choice of implicit Euler
for time stepping. Since we are in the non-symmetric case we only get a theoretical
convergence order of h in space. For the case that A0 is symmetric, convergence order
of h2 is expected. In a different setting with non-symmetric homogenized coefficient,
[14] even observed h2 convergence numerically. The term h3−α/ε3 occurs due to the
H−1-norm estimate and the geometry of the cells Iδ,K . Since we consider hypercubes,
we obtain only H3−α-regularity for the solution of the dual elliptic cell problem
with α > 0 arbitrarily small. Details can be found in the appendix. To sum up,
when choosing δ and σ in practice, one has to balance the oversampling and the
microdiscretization error in e(HMM). Further, note that no additional terms δ and σ

appear as it is the case in [22]. The reason is that we fix the macroscopic scales in the
coefficient (so-called macroscopic collocation of the HMM, cf. [3]).

For the proof we use the triangle inequality and our auxiliary matrices Ã and ÃH

via

‖A0−AH ,h‖ ≤ ‖A0− Ã‖+‖ Ã−AH‖+‖AH − ÃH‖+‖ ÃH−AH ,h‖. (5.1)

In the following, these termswill be estimated in four steps. 1.Step: Estimate ‖A0− Ã‖.
This error is caused by the wrong cell time and cell size.
To even consider the difference of A0 and Ã, we still need an alternative representation
of∇Ψ ·A0(tn, xK )∇Φ. Let l = �σ/ε2�, κ = �δ/ε� and Q̃n,K := Iκε,K ×(tn, tn+lε2).
Since χε

n is the solution of problem (2.5), it follows that

 
Q̃n,K

∇Ψ · aε
n,K∇Φ̂ε =

 
Q̃n,K

∇Ψ · aε
n,K∇Φ + ∇Ψ · aε

n,K Dyχ
ε
n · ∇Φ

= ∇Ψ ·
( 

Q̃n

aε
n,K (Idd +Dyχ

ε
n )

)
∇Φ

= ∇Ψ · A0(tn, xK )∇Φ.

With that, we can handle the first step of estimating e(HMM).

Proposition 5.1 There exists a constant C such that

‖( Ã − A0)‖ ≤ C
(ε

δ
+ ε2

σ

)
,

Proof From the calculation above it follows that

|∇Ψ · (A0 − Ã)(tn, xK )∇Φ|
=

∣∣∣ 1

|lε2||Iκε |
ˆ
Iκε,K×(tn ,tn+lε2)

∇Ψ · aε
n,K∇φε

#

123
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− 1

|σ ||Iδ|
ˆ
Iδ,K×(tn ,tn+σ)

∇Ψ · aε
n,K∇φε

#

∣∣∣

=
∣∣∣
( 1

|σ ||Iδ| − 1

|lε2||Iκε |
)ˆ

Iκε,K×(tn ,tn+lε2)
∇Ψ · aε

n,K∇φε
#

+ 1

|σ ||Iδ|
ˆ
Iδ,K \Iκε,K×(tn ,tn+lε2)

∇Ψ · aε
n,K∇φε

#

+ 1

|σ ||Iδ|
ˆ
Iδ,K×(tn ,tn+(σ−lε2))

∇Ψ · aε
n,K∇φε

#

∣∣∣

=
∣∣∣
(
1 − |Iκε | · lε2

σ |Iδ|
)

︸ ︷︷ ︸
=:G1

 
Iκε,K×(tn ,tn+lε2)

∇Ψ · aε
n,K∇φε

#

+
( (|Iδ| − |Iκε |)(lε2)

|σ ||Iδ|
)

︸ ︷︷ ︸
=:G2

 
Iδ,K \Iκε,K×(tn ,tn+lε2)

∇Ψ · aε
n,K∇φε

#

+
( |Iδ|(σ − lε2)

|σ ||Iδ|
)

︸ ︷︷ ︸
=:G3

 
Iδ,K×(tn ,tn+(σ−lε2))

∇Ψ · aε
n,K∇φε

#

∣∣∣.

We now consider the terms one by one. We use that δ − ε ≤ κε ≤ δ and σ − ε2 ≤
κε2 ≤ σ to estimate

G1 =
(
1 − |Iκε | · lε2

σ |Iδ|
)

≤
(
1 − (δd − εd)(σ − ε2)

σ |Iδ|
)

≤
(ε

δ
+ ε2

σ
− εd+2

σδd

)
≤

(ε

δ
+ ε2

σ

)
.

Using the same arguments, the estimate follows for G2 as well

G2 =
( (|Iδ| − |Iκε |)(lε2)

|σ ||Iδ|
)

≤
( lε2

σ
− (δd − εd)(σ − ε2)

σ |Iδ|
)

≤
(ε

δ
+ ε2

σ
− εd+2

σδd

)
≤

(ε

δ
+ ε2

σ

)
.

To estimate G3 we use that l
ε2

σ
≥ 1 − ε2

σ
and obtain

G3 =
( |Iδ|(σ − lε2)

|σ ||Iδ|
)

≤
(
1 − l

ε2

σ

)
≤ ε2

σ
.

Altogether, after substitution and from the boundedness of aε it follows that
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|∇Ψ · ( Ã − A0)(tn, xK )∇Φ| ≤ C
(ε

δ
+ ε2

σ

)
|∇Φ||∇Ψ |.

��
2. Step: Estimate‖ Ã− AH‖ This error can be described as the error of using wrong

boundary values and wrong time conditions.
Define ζ ε := φε − φε

#. Then ζ ε satisfies the following differential equation

⎧⎪⎪⎨
⎪⎪⎩

∂ζ ε

∂t
− ∇ · (aε

n,K∇ζ ε) = 0 in Qn,K

ζ ε = −εχε
n∇Φ on ∂ Iδ,K × (tn, tn + σ)

ζ ε |t=tn = −εχε
n∇Φ.

(5.2)

We derive an estimate for ζ ε in the following. This in turn provides a bound for the
term φε − φε

#, which appears in the final calculation of the error of AH with respect
to Ã.

Lemma 5.1 There exists a constant C independent of ε, δ, σ such that

‖∇ζ ε‖L2(Qn,K ) ≤ C

((ε

δ

)1/2 + ε

σ 1/2

)
‖∇Φ‖L2(Qn,K )

for all Φ ∈ VH .

The proof can be found in [22, Lemma 3.3]. We can now complete the second step
as well.

Proposition 5.2 It holds that

‖( Ã − AH )‖ ≤ C
((ε

δ

)1/2 + ε

σ 1/2

)
.

Proof Using Lemma 5.1 we obtain

 
Qn,K

∇Ψ · aε
n,K∇(φε

# − φε)

≤ Λ

|Qn,K | ‖∇Ψ ‖L2(Qn,K )‖∇φε
# − ∇φε‖L2(Qn,K )

≤ C
((ε

δ

)1/2 + ε

σ 1/2

) 1

|Qn,K | ‖∇Φ‖L2(Qn,K )‖∇Ψ ‖L2(Qn,K )

≤ C
((ε

δ

)1/2 + ε

σ 1/2

)
|∇Ψ (xK )||∇Φ(xK )|,

where we used again that ∇Φ is constant. ��
3.Step: Estimate ‖AH − ÃH‖This error can essentially be described as a quadrature

error.
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Proposition 5.3 For Φ,Ψ ∈ VH we obtain

|∇Ψ · (AH − ÃH )∇Φ| ≤ Cθ2|∇Ψ ||∇Φ|.

The proof follows directly from the quadrature order of the trapezoidal rule. In
general, if use a quadrature rule of order q in the definition of AH ,h (and consequently,
for ÃH ), this error will be bounded by θq .

4.Step: Estimate ‖ ÃH − AH ,h‖ This term describes the error from the microscopic
discretization. A direct calculation shows that

φε(t, x) = ΦH + η(t, x) · ∇ΦH (xK ),

where

η = (η1, . . . , ηd) ∈ (
L2((tn, tn + σ), H1

0 (Iδ,K )) ∩ H1
0 ((tn, tn + σ), H−1

0 (Iδ,K ))
)d

satisfies

ˆ
Iδ,K

∂tη
i (t, x)z(x) + ∇z(x) · aε

n,K

(
ei + ∇ηi (t, x)

)
dx = 0

for all z ∈ H1
0 (Iδ,K ) and η(0, x) = 0.

Analogously,

φε
h,k(x) = ΦH (x) + ηh,k(xK ) · ∇ΦH (x)

where ηh,k = (η1h,k, . . . , η
d
h,k) ∈ (V p

h (Iδ,K ))d satisfies

ˆ
Iδ,K

∂ tη
i
h,k(x)zh(x) + ∇zh(x) · aε

n,K (tk, x)
(
ei + ∇ηih,k(x)

)
dx = 0

for all zh ∈ V p
h (Iδ,K ) and ηih,0 = 0 for all i = 1, . . . d. η and ηh,k obviously depend

on ε, δ and σ . To better investigate this dependence, we re-scale η in the following
lemma.

Lemma 5.2 Define ξ i ∈ L2((0, σ
ε2

), H1
0 (Iδ/ε)) via ξ i (s, y) = 1

ε
ηi (tn+ε2 s, xK +εy).

Then ξ i solves

{´
Iδ/ε

∂sξ
i z̃ + ∇ z̃ · ãε

n,K

(
ei + ∇ξ i

)
dx = 0 ∀z̃ ∈ H1

0 (Iδ/ε)

ξ ε |t=0 = 0,

where ãε
n,K (s, y) = a(tn, xK , tn

ε2
+ s, xK

ε
+ y).
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Proof Define

xε,δ
K : Iδ/ε → Iδ,K : y → xK + εy

tε,σn : (0,
σ

ε2
) → (tn, tn + σ) : t → tn + ε2s

Using the transformation and chain rule, we obtain

ˆ
Iδ,K

∂tη
i (t, x)z(x) + ∇z(x) · aε

n,K

(
ei + ∇ηi (t, x)

)
dx

=
ˆ
Iδ/ε

1

ε
∂sη

i (tε,δn (s), xε,δ
K (y))

1

ε
z̃(xε,δ

K (y))

+ 1

ε
∇ z̃(xε,δ

K (y)) · ãε
n,K (s, y)

(
ei + 1

ε
∇ηi (tε,δn (s), xε,δ

K (y))
)
dy.

��
Based on the rescaling of η, we estimate the error between η and ηh,k , which is the
key ingredient for the bound of ‖ ÃH − AH ,h‖.
Proposition 5.4 Assume that a is sufficiently regular. Then, it holds for any α > 0

‖AH ,h − ÃH‖ ≤ C
( θ

ε2

√
σ

ε
+ h3−α

ε3
+ h

ε

)
.

Proof Let ΦH , ΨH ∈ VH . We obtain with the boundedness of aε
n,K and the fact that

∇ΨH is piece-wise constant

|∇ΨH · AH ,h∇ΦH − ∇ΨH · ÃH∇ΦH |
= 1

|Qn,K |
(θ

2

ˆ
IK ,δ

∇ΨH · aε
n,K (tn, x)∇

(
φε
h,0(x) − φε(tn, x)

)

+θ

Ncell−1∑
k=1

ˆ
IK ,δ

∇ΨH (x) · aε
n,K (tn + sk)∇

(
φε
h,k(x) − φε(tn + sk, x)

)

+θ

2

ˆ
IK ,δ

∇ΨH · aε
n,K (tn + sNcell , x)∇

(
φε
h,n(x) − φε(tn, x)

))

≤ C
1

|Qn,K |
(Ncell∑
k=1

θ‖∇ΨH‖20
)1/2(Ncell∑

k=1

θ‖∇(φε
h,k − φε)(tn, ·)‖20

)1/2

≤ C
1

|Qn,K |
(Ncell∑
k=1

θ‖∇ΨH‖20
)1/2( d

max
i=1

Ncell∑
k=1

θ‖∇(ηih,k − ηi (tk, ·))‖20‖∇ΦH‖20
)1/2

≤ C
1

|Qn,K |
(Ncell∑
k=1

θ‖∇ΨH‖20
)1/2( d

max
i=1

Ncell∑
k=1

θ
[
θ2‖∂t tηi‖2L2((tn ,tn+σ),L2(IK ,δ))
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+h6−2α‖∂tηi (tk)‖2H2(IK ,δ)
+ h2‖ηi (tk)‖2H2(IK ,δ)

]
‖∇ΦH‖20

)1/2

≤ C
1

|Qn,K |
(Ncell∑
k=1

θ‖∇ΨH‖20
)1/2( d

max
i=1

[
σθ2‖∂t tηi‖2L2((tn ,tn+σ),L2(IK ,δ))

+h6−2α‖∂tηi‖2L2((tn ,tn+σ),H2(IK ,δ))

+h2‖ηi‖2L2((tn ,tn+σ),H2(IK ,δ))

]
‖∇ΦH‖20

)1/2

wherewe used TheoremA.1 in the last step.We now employ Lemma 5.2 and regularity
results for parabolic problems [24] to estimate the above terms as follows

‖∂t tηi‖L2((tn ,tn+σ),L2(IK ,δ))
= ε

1

ε4
εd/2ε‖∂ssξ i‖L2((0, σ

ε2
),L2(Iδ/ε))

≤ C2
1

ε3
εd/2

√|Iδ/ε | ε
√

σ

ε2

≤ C2
1

ε3

√|Iδ,K |√σ ,

‖∂tηi‖L2((tn ,tn+σ),H2(IK ,δ))
= ε

1

ε2

1

ε2
εd/2ε‖∂sξ i‖L2((0, σ

ε2
),H2(Iδ/ε))

≤ C3
1

ε3
εd/2

√|Iδ/ε | ε
√

σ

ε2

≤ C3
1

ε3

√|Iδ,K |√σ ,

‖ηi‖L2((tn ,tn+σ),H2(IK ,δ))
= ε

1

ε2
εd/2ε‖ξ i‖L2((0, σ

ε2
),H2(Iδ/ε))

≤ C4
1

ε
εd/2

√|Iδ/ε | ε
√

σ

ε2

≤ C4
1

ε

√|Iδ,K |√σ .

Inserting these inequalities, we get

|∇ΨH · AH ,h∇ΦH − ∇ΨH · ÃH∇ΦH |

≤ C
( θ

ε2

√
σ

ε
+ h3−α

ε3
+ h

ε

)
|∇ΦH (xK )||∇ΨH (xK )|.

��

Summing up, we have proved the estimate for e(HMM).

Proof of Theorem 5.1. Using (5.1) and Propositions 5.1, 5.2, 5.3 and 5.4 we obtain the
desired error bound.
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6 Numerical experiments

In the following, numerical results calculated with the Heterogeneous Multiscale
Method are presented. The convergence rate with respect to the time step and mesh
width is investigated for the macrodiscretization as well as for the microdiscretization.
The implementation was done in Python, building on the Fenics software library [20],
where Version 2019.2.0 was used for this paper.

6.1 Setting

We choose Ω = (0, 1) and T = 1. Let the initial condition be uε(0, x) = 0 for all
x ∈ Ω . As the exact solution of the homogenized equation we choose

U0(t, x) = t2(x − x2)

and accordingly the right side

f = 2t(x − x2) + 2A0t
2

with the homogenized coefficient A0. As in Sect. 4, the error between the numerical
solution UH and the exact solution U0 is investigated. For this purpose, we consider
‖UN

H −U0(tN , x)‖L2(Ω) the error at time tN . As seen in Theorem 5.1, the error bound

of e(HMM) depends on the terms σ , ε
δ
, and ε2

σ
, which we get from the boundary and

initial values. When choosing the parameters δ and σ , it is important that H � δ and
H � σ . Here, as suggested by [22], we choose δ = ε1/3 and σ = ε2/3.

6.2 First example

In the first example, we select the coefficient as

a(t, x, s, y) = 3 + cos(2π y) + cos2(2πs).

According to [28], A0 ≈ 3.352429824667637. For simplicity and more efficient
calculation, in f the coefficient A0 is replaced by this value. Figure2 (left) shows the
error in the L2 norm over the grid width H for different cell grid widths h. Time step
sizes were fixed as τ = 1

15 and θ = σ
15 . It can be clearly seen that for coarser cell grid

widths h = 2−7 and h = 2−8 the error of microdiscretization dominates and therefore
we do not get convergence order H2. However, for fine cell grid widths, the expected
order shows up. Similarly, we obtain linear convergence w.r.t. H in the H1(Ω) norm
(Fig. 2 right). Note that for the H1 norm, convergence in the macro mesh size can
already be observed for relatively large cell grid widths. These results agree nicely
with our findings in Theorems 4.1 and 5.1.
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Fig. 2 L2-error (left) and H1-error (right) with respect to the grid sizes H and h of the macro and micro
discretization, respectively, at the time t = 1 and ε = 10−3
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Fig. 3 L2-error (left) and H1-error (right) with respect to the grid sizes H and h of the macro and micro
discretization, respectively, at the time t = 1 and ε = 10−3

6.2.1 Second example

In the next example we set

a1(y) = 1

2 − cos(2π y)

independent of s. A straight forward calculation shows

A0 = 1

2
.

We again consider the error between the numerical solutionUH and the exact solution
U0. As in the previous example, we choose as time step sizes τ = 1

15 and θ = σ
15 .

We again first consider the L2-error and study its convergence w.r.t. to H , see Fig. 3
left. For h = 2−3 no convergence can be seen. For fine grid widths h = 2−7 and
h = 2−8, quadratic convergence is initially seen, but still the microerror dominates.
Only for very fine cell grid widths quadratic convergence does appear. The fact that
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Fig. 4 L2-error with respect to
time steps τ at t = 1 and
ε = 10−3

10−0.8 10−0.7 10−0.6 10−0.5 10−0.4 10−0.3
10−2.4

10−2.2

10−2

10−1.8

τ
‖U

N H
−

U
(t

N
)‖

L
2

θ/ε2 = σ/4
O(τ)

for h = 2−10 the error flattens out is probably due to rounding errors. Figure3 (right)
shows the convergence in the H1 norm. Here, for sufficiently small cell grid width,
the expected linear convergence is also observed. The results are again in alignment
with the theory and the observations for the first example.

In addition, we investigate the error of the time discretization. For this, we fix
H = 1

10 and h = 1
1000 . Figure4 shows that for fixed cell time step size θ = σ

4 linear
convergence in the macro time step τ can be observed. Again, this underlines our
theoretically predicted results.
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A Finite element error estimates for parabolic problems

In this appendix, we present and prove an a priori error estimate for the finite element
discretization of an (abstract) parabolic problem with time-dependent coefficient. The
statement and its proof are very similar to the well known results in the literature cf.,
e.g., [29].We try to extract as high spatial convergence order as possible for each term.
This is crucial to obtain (almost) balanced orders between h and ε in Proposition 5.4.
In the following, we use ‖ · ‖m to denoted the Hm(Ω)-norm for any m ∈ R

d .
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Theorem A.1 Let Ω ⊂ R
d be a hypercube, T > 0, b : [0, T ] × H1(Ω) × H1(Ω)

be bounded, coercive and Lipschitz-continuous (w.r.t. the time t) and f : [0, T ] →
L2(Ω) be continuously differentiable. Denote by u the solution of the following weak
problem {〈∂u

∂t
, v

〉
0
− b(t, u, v) = ( f , v)0 ∀v ∈ H1

0 (Ω)

〈u(0+), v〉0 = 0 ∀v ∈ L2(Ω).
(A.1)

Let further unh ∈ V p
h be the fully discrete approximation of u at time tn = nτ using

implicit Euler method with time step size τ and finite elements of order p ≥ 2. Then
we have for any α > 0

(
τ

n∑
j=1

‖u j
h−u(t j )‖2H1

0 (Ω)

)1/2

≤ C
( n∑
j=1

τ
[
τ 2‖∂t t u‖2L2((0,T ),L2(Ω))

+ h6−2α‖∂t u(tk)‖2H2(Ω)
+ h2‖u(tk)‖2H2(Ω)

])1/2
. (A.2)

Proof We denote by Rh the Ritz projection onto V p
h with respect to b(t, ·, ·). Note

that Rh depends on the time t , but we will omit this dependence for better readability.
Inserting the Ritz projection of the exact solution into the discrete equation and using
a standard stability estimate, cf., e.g., [29], provides

(
τ

n∑
j=1

‖u j
h − Rhu(t j )‖2H1

0 (Ω)

)1/2 ≤
(
τ

n∑
j=1

‖dn‖2H−1
0 (Ω)

)1/2
,

where

dn = 1

τ

ˆ tn

tn−1

∂t ((I − Rh)u) dt + u(tn) − u(tn−1)

τ
− ∂t u(tn).

The first term can be bounded with the following arguments of [29]: Set e = u− Rhu.
Let w ∈ H1(Ω) be arbitrary and find z ∈ H1

0 (Ω) such that b(·, v, z) = (w, v)0.
From elliptic regularity estimates it follows z ∈ H3−α(Ω) for any α > 0 since Ω is
a hypercube [9]. If we choose v = ∂t e, we obtain

(∂t e, w)0 = b(·, ∂t e, z) = b(·, ∂t e, z − vh) + b′(·, e, z − vh) − b′(·, e, z),

where the second equality follows by differentiating the equation b(·, e, vh) = 0 for
all vh ∈ V p

h with b′(·, ·, ·) the bilinear form obtained from b(·, ·, ·) by differentiating
the coefficients with respect to t . We get

(∂t e, w)0 ≤ (‖∂t e‖1 + ‖e‖1) inf
vh∈V p

h

‖z − vh‖1 + ‖e‖−1‖z‖3−α
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By elliptic regularity and convergence results for (at least) quadratic finite elements
[9, 10]

(∂t e, w) ≤ h2−α(‖∂t e‖1 + ‖e‖1)‖w‖1 + ‖e‖−1‖w‖1.

From [9, 10] it follows for small h

‖∂t e‖−1 ≤ h3−α(‖∂t u‖2 + ‖u‖2) + h3−α‖u‖2 ≤ Ch3−α(‖∂t u‖2 + ‖u‖2).

For the second term in dn we use again projection estimates and Taylor expansion

‖
(u(tn) − u(tn−1)

τ
− ∂t u(tn)

)
‖H−1(Ω) ≤ ‖

(u(tn) − u(tn−1)

τ
− ∂t u(tn)

)
‖L2(Ω)

≤ 1

2
τ
(ˆ tn

tn−1

‖∂t t u(s)‖2L2(Ω)
ds

)1/2
.

Using the triangle inequality and estimates for the Ritz projection error of the exact
solution, cf. [10, 29], we obtain (A.2). ��

Weemphasize that quadratic finite elements are necessary to get the required bounds
for the Ritz projection error in the H−1-norm, cf. [9, 10]. Since our domain of interest
is a hypercube, we only get H3−α-regularity for any α > 0 of a solution to an elliptic
problem with right-hand side in H1.
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