
BIT Numerical Mathematics (2023) 63:32
https://doi.org/10.1007/s10543-023-00972-0

Monte Carlo integration of Cr functions with adaptive
variance reduction: an asymptotic analysis

Leszek Plaskota1 · Paweł Przybyłowicz2 · Łukasz Stȩpień2

Received: 24 November 2022 / Accepted: 16 April 2023 / Published online: 22 May 2023
© The Author(s) 2023

Abstract
The theme of the present paper is numerical integration of Cr functions using ran-
domized methods. We consider variance reduction methods that consist in two steps.
First the initial interval is partitioned into subintervals and the integrand is approxi-
mated by a piecewise polynomial interpolant that is based on the obtained partition.
Then a randomized approximation is applied on the difference of the integrand and
its interpolant. The final approximation of the integral is the sum of both. The opti-
mal convergence rate is already achieved by uniform (nonadaptive) partition plus the
crude Monte Carlo; however, special adaptive techniques can substantially lower the
asymptotic factor depending on the integrand. The improvement can be huge in com-
parison to the nonadaptive method, especially for functions with rapidly varying r th
derivatives, which has serious implications for practical computations. In addition,
the proposed adaptive methods are easily implementable and can be well used for
automatic integration.

Keywords Monte Carlo · Adaption · Variance reduction · Asymptotic constants

Mathematics Subject Classification 65C05 · 65D30

Communicated by Stefano De Marchi.

B Leszek Plaskota
leszekp@mimuw.edu.pl

Paweł Przybyłowicz
pprzybyl@agh.edu.pl

Łukasz Stȩpień
lstepie@agh.edu.pl

1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. S. Banacha 2,
02-097 Warsaw, Poland

2 Faculty of Applied Mathematics, AGH University of Science and Technology, Al. A. Mickiewicza
30, 30-059 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-023-00972-0&domain=pdf
https://orcid.org/0000-0001-8704-0790
https://orcid.org/0000-0001-7870-8605
https://orcid.org/0000-0002-8038-6091

32 Page 2 of 24 BIT Numerical Mathematics (2023) 63 :32

1 Introduction

Adaption is a useful tool to improve performance of algorithms. The problems of
numerical integration and related to it L1 approximation are not exceptions, see, e.g.,
[9] for a survey of theoretical results on the subject. If an underlying function pos-
sesses some singularities and is otherwise smooth, then using adaption is necessary
to localize the singular points and restore the convergence rate typical for smooth
functions, see, e.g., [6, 12–14]. For functions that are smooth in the whole domain,
adaptive algorithms usually do not offer a better convergence rate than nonadaptive
algorithms; however, they can essentially lower asymptotic constants. This is why
adaptive quadratures are widely used for numerical integration, see, e.g., [1, 3, 7].
Their superiority over nonadaptive quadratures is rather obvious, but precise answers
to the quantitative question of “how much adaption helps” are usually missing. This
gap was partially filled by recent results of [2, 10, 11], where best asymptotic constants
of deterministic algorithms that use piecewise polynomial interpolation were deter-
mined for integration and L1 approximation of r -times continuously differentiable
functions f : [a, b] → R. In this case, adaption relies on adjusting the partition of the
interval [a, b] to the underlying function. While the convergence rate is of order N−r ,

where N is the number of function evaluations used, it turns out that the asymptotic
constant depends on f via the factor of (b − a)r

∥
∥ f (r)

∥
∥
L1 for uniform partition, and

∥
∥ f (r)‖L1/(r+1) for best adaptive partition.

In the current paper, we present the line of thinking similar to that of the aforemen-
tioned papers. The difference is that now we want to carry out the analysis and obtain
asymptotic constants for randomized algorithms.

Our goal is the numerical approximation of the integral

S f =
∫ b

a
f (x) dx . (1.1)

It is well known that for f ∈ L2(a, b) the crude Monte Carlo,

MN f = b − a

N

N
∑

i=1

f (ti), where ti
i id∼ U (a, b), (1.2)

returns an approximation with expectation E(MN f) = S f and error (standard devia-
tion)

√

E
(

S f − MN f
)2 = σ(f)√

N
, where σ(f)2 = (b − a)S(f 2) − (S f)2. (1.3)

Suppose that the function enjoys more smoothness, i.e.,

f ∈ Cr ([a, b]).

123

BIT Numerical Mathematics (2023) 63 :32 Page 3 of 24 32

Then a much higher convergence rate N−(r+1/2) can be achieved using various
techniques of variance reduction, see, e.g., [4]. One way is to apply a randomized
approximation of the form

MN ,r (f) = S(Lm,r f) + Mn(f − Lm,r f), (1.4)

where Lm,r is the piecewise polynomial interpolation of f of degree r − 1 using a
partition of the interval [a, b] intom subintervals, Mn is a Monte Carlo type algorithm
using n random samples of f , and N is the total number of function evaluations
used (for arguments chosen either deterministically or randomly). The optimal rate is
already achieved for uniform (nonadaptive) partition and crude Monte Carlo. Then,
see Theorem 2.1 with β = 0, the error asymptotically equals

c (b − a)r+1/2
∥
∥ f (r)

∥
∥
L2(a,b) N

−(r+1/2),

where c depends only on the choice of the interpolation points within subintervals.
The main result of this paper relies on showing that with the help of adaption the
asymptotic error of the methods (1.4) can be reduced to

c
∥
∥ f (r)

∥
∥
L1/(r+1)(a,b) N

−(r+1/2), (1.5)

see Theorems 3.1 and 4.1. Observe that the gain can be significant, especially when
the derivative f (r) drastically changes. For instance, for r = 4, [a, b] = [0, 1], and
f (x) = 1/(x + d), adaption is asymptotically roughly 5.7 ∗ 1012 times better than
nonadaption if d = 10−4, and 1.8 ∗ 1029 times if d = 10−8.

Weconstruct two randomized algorithms, denotedM
∗
N ,r andM

∗∗
N ,r , that achieve the

error (1.5). Although they use different initial approaches; namely, stratification versus
importance sampling, in the limit they both reach essentially the same partition, such
that the L1 errors of Lagrange interpolation in all subintervals are equalized. However,
numerical tests of Sect. 5 show that the algorithm M

∗
N ,r achieves the error (1.5) with

some delay, which makes M
∗∗
N ,r worth recommending rather than M

∗
N ,r in practical

computations.
Other advantages of M

∗∗
N ,r are that it is easily implementable and, as shown in

Sect. 6, it can be successfully used for automatic Monte Carlo integration.
Our analysis has been so far restricted to one-dimensional integrals only. In a future

work it will be extended and corresponding adaptive Monte Carlo algorithms will be
constructed for multivariate integration, where randomization finds its major applica-
tion. The current paper is the first step in this direction.

In the sequel, we use the following notation. For two functions of N we write
g1(N) � g2(N) iff lim supN→∞ g1(N)/g2(N) ≤ 1, and we write g1(N) ≈ g2(N)

iff limN→∞ g1(N)/g2(N) = 1. Similarly, for functions of ε we write h1(ε) � h2(ε)
iff lim supε→0+ h1(ε)/h2(ε) ≤ 1, and h1(ε) ≈ h2(ε) iff limε→0+ h1(ε)/h2(ε) = 1.

123

32 Page 4 of 24 BIT Numerical Mathematics (2023) 63 :32

2 Variance reduction using Lagrange interpolation

We first derive some general error estimates for the variance reduction algorithms of
the form (1.4), where the standard Monte Carlo is applied for the error of piecewise
Lagrange interpolation. Specifically, we divide the interval [a, b] into m subintervals
using a partition a = x0 < x1 < · · · < xm = b, and on each subinterval [x j−1, x j]
we approximate f using Lagrange interpolation of degree r −1 with the interpolation
points

x j,s = x j−1 + zs(x j − x j−1), 1 ≤ s ≤ r ,

where

0 ≤ z1 < z2 < · · · < zr ≤ 1 (2.1)

are fixed (independent of the partition). Denote such an approximation by Lm,r f .
Then f = Lm,r f + Rm,r f with Rm,r f = f − Lm,r f . The integral S f is finally
approximated by

Mm,n,r f = S(Lm,r f) + Mn(Rm,r f),

where Mn is the crude Monte Carlo (1.2). We obviously have E(Mm,n,r f) = S f .
Since

S f − Mm,n,r f = S f − S(Lm,r f) − Mn(Rm,r f) = S(Rm,r f) − Mn(Rm,r f),

by (1.3) we have

E
(

S f − Mm,n,r f
)2 = 1

n

(

(b − a)S
(

(Rm,r f)
2)− (

S(Rm,r f)
)2
)

.

Note that

S
(

(Rm,r f)
2) =

∫ b

a
(f − Lm,r f)

2(x) dx = ‖ f − Lm,r f ‖2L2(a,b)

is the squared L2-error of the applied (piecewise) polynomial interpolation, while

S(Rm,r f) =
∫ b

a
(f − Lm,r f)(x) dx = S(f) − S(Lm,r f)

is the error of the quadrature Qm,r f = S(Lm,r f).
From now on we assume that f is not a polynomial of degree smaller than or equal

to r − 1, since otherwise Mm,n,r f = S f . Define the polynomial

P(z) = (z − z1)(z − z2) · · · (z − zr). (2.2)

123

BIT Numerical Mathematics (2023) 63 :32 Page 5 of 24 32

We first consider the interpolation error ‖ f − Lm,r f ‖L2(a,b). Let

α = ‖P‖L2(0,1) =
(∫ 1

0
|P(z)|2dz

)1/2

. (2.3)

For each j, the local interpolation error equals

∥
∥ f − Lm,r f

∥
∥
L2(x j−1,x j)

=
(∫ x j

x j−1

∣
∣ (x − x j,1) · · · (x − x j,r) f [x j,1, . . . , x j,r , x]

∣
∣2dx

)1/2

= α hr+1/2
j

| f (r)(ξ j)|
r ! , ξ j ∈ [x j−1, x j].

Hence

‖ f − Lm,r f ‖L2(a,b) = α

r !
(m
∑

j=1

h2r+1
j

∣
∣ f (r)(ξ j)

∣
∣2
)1/2

.

In particular, for the equispaced partition, in which case h j = (b − a)/m, we have

∥
∥ f − Lm,r f

∥
∥
L2(a,b) = α

r !
(
b − a

m

)r(b − a

m

m
∑

j=1

| f (r)(ξ j)|2
)1/2

≈ α

r !
(
b − a

m

)r ∥
∥ f (r)

∥
∥
L2(a,b) as m → +∞.

Now, we consider the quadrature error S f − Qm,r f . Let

β =
∫ 1

0
P(z) dz. (2.4)

The local integration errors equal

∫ x j

x j−1

(f − Lm,r f)(x) dx =
∫ x j

x j−1

(x − x j,1) · · · (x − x j,r) f [x j,1, . . . , x j,r , x] dx

= 1

r !
∫ x j

x j−1

(x − x j,1) · · · (x − x j,r) f
(r)(ξ j (x)) dx, ξ j (x) ∈ [x j−1, x j].

Choose arbitrary ζ j ∈ [x j−1, x j] for 1 ≤ j ≤ m. Then

∣
∣
∣
∣

1

r !
∫ x j

x j−1

(x − x j,1) · · · (x − x j,r) f
(r)(ξ j (x)) dx

− f (r)(ζ j)

r !
∫ x j

x j−1

(x − x j,1) · · · (x − x j,r) dx

∣
∣
∣
∣

123

32 Page 6 of 24 BIT Numerical Mathematics (2023) 63 :32

= 1

r !
∣
∣
∣
∣

∫ x j

x j−1

(x − x j,1) · · · (x − x j,r)
(

f (r)(ξ j (x)) − f (r)(ζ j)
)

dx

∣
∣
∣
∣

≤ ω(h j)
hr+1
j

r ! ‖P‖L1(0,1),

where ω is the modulus of continuity of f (r). We also have

f (r)(ζ j)

r !
∫ x j

x j−1

(x − x j,1) · · · (x − x j,r) dx = β

r ! h
r+1
j f (r)(ζ j).

Hence S f − Qm,r f = Xm + Ym, where

Xm = β

r !
m
∑

j=1

hr+1
j f (r)(ζ j) and |Ym | ≤ ‖P‖L1(0,1)

r !
m
∑

j=1

ω(h j)h
r+1
j .

In particular, for the equispaced partition,

Xm = β

r ! (b − a)r
(m
∑

j=1

b − a

m
f (r)(ζ j)

)

m−r ,

|Ym | ≤ ‖P‖L1(0,1)

r ! ω

(
b − a

m

)

(b − a)r+1m−r .

Suppose that β �= 0 and
∫ b
a f (r)(x) dx �= 0. Then Xm ≈ β

r ! (b − a)r
(∫ b

a f (r)(x)

dx
)

m−r . Since ω(h) goes to zero as h → 0+, the component Xm dominates Ym as

m → +∞. Hence

S f − Qm,r f ≈ β

r !
(
b − a

m

)r (∫ b

a
f (r)(x) dx

)

as m → +∞.

On the other hand, if β = 0 or
∫ b
a f (r)(x) dx = 0 then the quadrature error converges

to zero faster than m−r , i.e.

lim
m→+∞

(

S f − Qm,r f
)

mr = 0.

Note that β = 0 if and only if the quadrature Qm,r has the degree of exactness at
least r , i.e., it is exact for all polynomials of degree r or less. Obviously, the maximal
degree of exactness equals 2r − 1.

We see that for the equidistant partition of the interval [a, b] the error
(

E(S f −
Mm,n,r f)2

)1/2 is asymptotically proportional to

φ(m, n) = n−1/2m−r ,

123

BIT Numerical Mathematics (2023) 63 :32 Page 7 of 24 32

regardless of the choice of points zi in (2.1). Let us minimize φ(m, n) assuming the
total number of points used is at most N . We have two cases depending on whether
both endpoints of each subinterval are used in interpolation. If so, i.e., if z1 = 0 and
zr = 1 (in this case r ≥ 2) then N = (r − 1)m + 1 + n. The optimal values are

m∗ = 2r(N − 1)

(r − 1)(2r + 1)
, n∗ = N − 1

2r + 1
, (2.5)

for which

φ(m∗, n∗) = √
2

(

1 − 1

r

)r(r + 1/2

N

)r+1/2

.

Otherwise we have N = rm + n. The optimal values are

m∗ = 2N

2r + 1
, n∗ = N

2r + 1
, (2.6)

for which

φ(m∗, n∗) = √
2

(
r + 1/2

N

)r+1/2

.

Denote by MN ,r the corresponding algorithm with the equidistant partition, where
for given N the values of n andm equal correspondingly n∗� and m∗�. Our analysis
is summarized in the following theorem.

Theorem 2.1 We have as N → +∞ that

√

E
(

S f − MN ,r f
)2 ≈ cr (b − a)r C(P, f) N−(r+1/2),

where

C(P, f) =
√

α2 (b − a)

(∫ b

a

∣
∣ f (r)(x)

∣
∣2dx

)

− β2

(∫ b

a
f (r)(x) dx

)2

,

α and β are given by (2.3) and (2.4), and

cr =
{√

2
(

1 − 1
r

)r (r+1/2)r+1/2

r ! , if r ≥ 2, z1 = 0, zr = 1,√
2 (r+1/2)r+1/2

r ! , otherwise.
(2.7)

We add that the algorithm MN ,r is fully implementable since we assume that we
have access to function evaluations at points from [a, b].

123

32 Page 8 of 24 BIT Numerical Mathematics (2023) 63 :32

3 First adaptive algorithm

Now we add a stratification strategy to our algorithm of Theorem 2.1 to obtain an
adaptive algorithm with a much better asymptotic constant. That is, we divide the
initial interval [a, b] into k equal length subintervals Ii , 1 ≤ i ≤ k, and on each
subinterval we apply the approximation of Theorem 2.1 with some Ni , where

k
∑

i=1

Ni ≤ N . (3.1)

Denote such an approximation by MN ,k,r . (Note that MN ,r = MN ,1,r .) Then, by
Theorem 2.1, for fixed k we have as all Ni → +∞ that

√

E
(

S f − MN ,k,r f
)2 ≈ cr h

r
(k
∑

i=1

C2
i

N 2r+1
i

)1/2

,

where

Ci = Ci (P, f) =
√

α2 h
∫

Ii

∣
∣ f (r)(x)

∣
∣
2dx − β2

(∫

Ii
f (r)(x) dx

)2

, h = b − a

k
.

Minimization of ψ(N1, . . . , Nk) =
(
∑k

i=1 C
2
i N

−(2r+1)
i

)1/2
with respect to (3.1)

gives

N∗
i = C1/(r+1)

i
∑k

j=1 C
1/(r+1)
j

N , 1 ≤ i ≤ k,

and then

ψ(N∗
1 , . . . , N∗

k) =
(k
∑

i=1

C1/(r+1)
i

)r+1

N−(r+1/2).

Let ξi , ηi ∈ Ii satisfy
∫

Ii

∣
∣ f (r)(x)

∣
∣2dx = h

∣
∣ f (r)(ξi)

∣
∣2 and

∫

Ii
f (r)(x) dx =

h f (r)(ηi). Then

Ci = h
√

α2| f (r)(ξi)|2 − β2| f (r)(ηi)|2

and we have as k → +∞ that

(k
∑

i=1

C1/(r+1)
i

)r+1

= h

(k
∑

i=1

(

α2| f (r)(ξi)|2 − β2| f (r)(ηi)|2
) 1
2(r+1)

)r+1

123

BIT Numerical Mathematics (2023) 63 :32 Page 9 of 24 32

≈ h (α2 − β2)1/2
(k
∑

i=1

∣
∣ f (r)(ξi)

∣
∣1/(r+1)

)r+1

≈ h−r (α2 − β2)1/2
(k
∑

i=1

h
∣
∣ f (r)(ξi)

∣
∣1/(r+1)

)r+1

≈ h−r (α2 − β2)1/2
(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

.

It is clear that we have to take Ni to be an integer and at least r , for instance

Ni =
⌊

N∗
i

(

1 − kr

N

)

+ r

⌋

, 1 ≤ i ≤ k.

Then the corresponding number mi of subintervals and number ni of random points
in Ii can be chosen as

mi = max
(m∗

i �, 1
)

, ni = n∗
i �,

where m∗
i and n∗

i are given by (2.5) and (2.6) with N replaced by Ni .

Denote by M
∗
N ,r the above constructed approximation MN ,kN ,r with kN such that

kN → +∞ and kN/N → 0 as N → +∞. For instance, kN = N κ with 0 < κ < 1.
Our analysis gives the following result.

Theorem 3.1 We have as N → +∞ that

√

E
(

S f − M
∗
N ,r f

)2 ≈ cr

√

α2 − β2

(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

N−(r+1/2).

The asymptotic constant of the approximation M
∗
N ,r of Theorem 3.1 is never worse

than that of MN ,r of Theorem 2.1. Indeed, comparing both constants we have

cr (b − a)r

√

α2 (b − a)

(∫ b

a

∣
∣ f (r)(x)

∣
∣
2dx

)

− β2

(∫ b

a
f (r)(x) dx

)2

≥ cr

√

α2 − β2 (b − a)r+1/2
(∫ b

a

∣
∣ f (r)(x)

∣
∣2
)1/2

dx

≥ cr

√

α2 − β2

(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

,

where the first inequality follows from the Schwarz inequality and the second one
from Hölder’s inequality for integrals. As shown in the introduction, the gain can be
significant, especially when the derivative f (r) drastically changes.

The approximation M
∗
N ,r possesses good asymptotic properties, but is not feasible

since we do not have a direct access to the Ci s. In a feasible implementation one can

123

32 Page 10 of 24 BIT Numerical Mathematics (2023) 63 :32

approximate Ci using divided differences, i.e.,

C̃i = h
√

α2 − β2 |di | r ! where di = f [xi,0, xi,1, . . . , xi,r] (3.2)

and xi, j are arbitrary points from Ii . Then

N∗
i = |di |1/(r+1)

∑kN
j=1 |d j |1/(r+1)

N .

This works well for functions f for which the r th derivative does not nullify at any
point in [a, b]. Indeed, then f (r) does not change its sign and, moreover, it is separated
away from zero. This means that

lim
N→∞ max

1≤i≤kN
Ci/C̃i = 1,

which is enough for the asymptotic equality of Theorem 3.1 to hold true.
If f (r) is not separated away from zero then we may have problems with proper

approximations of Ci in the intervals Ii where | f (r)| assumes extremely small values
or even zeros. A possible and simple remedy is to choose ‘small’ > 0 and modify
C̃i as follows:

C̃i =
{

h
√

α2 − β2 |di | r ! for |di |r ! ≥ ,

h α r ! for |di |r ! < .
(3.3)

Then, letting A1 = {

a ≤ x ≤ b : | f (r)(x)| ≥
}

and A2 = [a, b] \ A1, we have as
k → +∞ that

(k
∑

i=1

C1/(r+1)
i

)r+1

�
(k
∑

i=1

C̃1/(r+1)
i

)r+1

≈ h−r (α2 − β2)1/2
(∫

A1

∣
∣ f (r)(x)

∣
∣

1
r+1 dx + |A2|

(
√

α2

α2−β2
) 1

r+1
)r+1

.

Hence, the approximation ofCi by (3.3) results in an algorithmwhose error is approx-
imately upper bounded by

cr

√

α2 − β2

(∫ b

a

∣
∣ f (r)

 (x)
∣
∣
1/(r+1)dx

)r+1

N−(r+1/2),

where

∣
∣ f (r)

 (x)
∣
∣ = max

(
∣
∣ f (r)(x)

∣
∣,

√

α2

α2−β2

)

. (3.4)

123

BIT Numerical Mathematics (2023) 63 :32 Page 11 of 24 32

We obviously have lim→0+
∫ b
a

∣
∣ f (r)

 (x)
∣
∣
1/(r+1)dx = ∫ b

a

∣
∣ f (r)(x)

∣
∣
1/(r+1)dx .

A closer look at the deterministic part of M
∗
N ,r shows that the final partition of the

interval [a, b] tends to equalize the L1 errors in all of the m subintervals. As shown in
[11], such a partition is optimal in the sense that it minimizes the asymptotic constant in
the error ‖ f − Lm,r f ‖L1(a,b) among all possible piecewise Langrange interpolations
Lm,r . A disadvantage of the optimal partition is that it is not nested. This makes it
necessary to start the computations from scratch when N is updated to a higher value.
Also, a proper choice of the sequence kN = N κ is problematic, especially when N
is still relatively small. On one hand, the larger κ the better the approximation of Ci

by C̃i , but also the more far away the partition from the optimal one. On the other
hand, the smaller κ the closer the partition to the optimal one, but also the worse the
approximation of Ci . This trade–off significantly affects the actual behavior of the
algorithm, which can be seen in numerical experiments of Sect. 5.

In the following section, we propose another adaptive approach leading to an easily
implementable algorithm that produces nested partitions close to optimal and pos-
sesses asymptotic properties similar to that of M

∗
N ,r . As we shall see in Sect. 6, nested

partitions are vital for automatic Monte Carlo integration.

4 Second adaptive algorithm

Consider a ρ-weighted integration problem

Sρ f =
∫ b

a
f (x)ρ(x) dx,

where the function ρ : [a, b] → R is integrable and positive a.e. and
∫ b
a ρ(x) dx = 1.

The corresponding Monte Carlo algorithm is

Mn,ρ f = 1

n

n
∑

i=1

f (ti), ti
i id∼ μρ,

where μρ is the probability distribution on [a, b] with density ρ. Then

E(Sρ f − Mn,ρ f)2 = 1

n

(

Sρ(f 2) − (Sρ f)2
)

.

Now, the non-weighted integral (1.1) can be written as

S(f) =
∫ b

a
h(x)ρ(x) dx = Sρ(h), where h(x) = f (x)

ρ(x)
.

Then

E(S f − Mn,ρh)2 = E(Sρh − Mn,ρh)2 = 1

n

(

Sρ(h2) − (Sρh)2
) = 1

n

(

Sρ(f /ρ)2 − (S f)2
)

.

123

32 Page 12 of 24 BIT Numerical Mathematics (2023) 63 :32

Let’s go further on and apply a variance reduction,

Mn,ρ f = S(L f) + Mn,ρ

(
f − L f

ρ

)

, (4.1)

where L f is an approximation to f . Then

E
(

S f − Mn,ρ f
)2 = 1

n

(
∫ b

a

(f − L f)2(x)

ρ(x)
dx −

(∫ b

a
(f − L f)(x) dx

)2
)

.

The question is how to choose L and ρ to make the quantity

∫ b

a

(f − L f)2(x)

ρ(x)
dx −

(∫ b

a
(f − L f)(x) dx

)2

as small as possible.
Observe that if

ρ(x) = |(f − L f)(x)|
‖ f − L f ‖L1(a,b)

then

E
(

S f − Mn,ρ f
)2 = 1

n

(

‖ f − L f ‖2L1(a,b) −
(∫ b

a
(f − L f)(x)dx

)2
)

and this error is even zero if (f − L f)(x) does not change its sign. This suggests the
following algorithm.

Suppose that L f = Lm,r f is based on a partition of [a, b] such that the L1 errors
in all m subintervals Ii have the same value, i.e.,

‖ f − Lm,r f ‖L1(Ii) = 1

m
‖ f − Lm,r f ‖L1(a,b), 1 ≤ i ≤ m. (4.2)

Then we apply the variance reduction (4.1) with density

ρ(x) = 1

mhi
, x ∈ Ii , 1 ≤ i ≤ m, (4.3)

where hi is the length of Ii . That is, for the corresponding probability measure μρ we
have μρ(Ii) = 1

m and the conditional distribution μρ(·|Ii) is uniform on Ii .
We now derive an error formula for such an approximation. Let γ = ‖P‖L1(a,b) =

∫ 1
0 |P(z)| dz. (Recall that P is given by (2.2).) We have

‖ f − Lm,r f ‖L1(Ii) = γ

r ! h
r+1
i

∣
∣ f (r)(ξi)

∣
∣ and ‖ f − Lm,r f ‖L2(Ii) = α

r ! h
r+1/2
i

∣
∣ f (r)(ζi)

∣
∣

123

BIT Numerical Mathematics (2023) 63 :32 Page 13 of 24 32

for some ξi , ζi ∈ Ii . Denoting

A = hr+1
i

∣
∣ f (r)(ξi)

∣
∣ (4.4)

(which is independent of i) we have as m → +∞ that

(∫ b

a

(f − Lm,r f)2(x)

ρ(x)
dx

)1/2

=
(

m
m
∑

i=1

hi

∫

Ii
(f − Lm,r f)

2(x) dx

)1/2

= α

r !
(

m
m
∑

i=1

h2r+2
i

∣
∣ f (r)(ζi)

∣
∣2
)1/2

≈ α

r !
(

m
m
∑

i=1

h2r+2
i

∣
∣ f (r)(ξi)

∣
∣2
)1/2

= α

r !
(

m
m
∑

i=1

A2
)1/2

= α

r ! mA = α

r !
(

mA1/(r+1))r+1
m−r

= α

r !
(m
∑

i=1

hi
∣
∣ f (r)(ξi)

∣
∣1/(r+1)

)r+1

m−r ≈ α

r !
(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

m−r .

To get an asymptotic formula for
∫ b
a (f − Lm,r f)(x) dx we use the analysis done

in Sect. 2. If β = 0 then the integral decreases faster than m−r . Let β �= 0. Then

∫ b

a
(f − Lm,r f)(x) dx ≈ β

r !
m
∑

i=1

hr+1
i f (r)(ξi) = β

r ! (m+ − m−)A,

where ξi s are as in (4.4), and m+ and m− are the numbers of indexes i for which
f (r)(ξi) ≥ 0 and f (r)(ξi) < 0, respectively. Let

D+ = {x ∈ [a, b] : f (r)(x) ≥ 0}, D− = {x ∈ [a, b] : f (r)(x) < 0}.

Since A ≈ ‖ f (r)‖L1/(r+1)(a,b)m
−(r+1) and m+A1/(r+1) ≈ ∫

D+ | f (r)(x)|1/(r+1)dx, we
have

m+ ≈
∫

D+ | f (r)(x)|1/(r+1)dx
∫

D+∪D− | f (r)(x)|1/(r+1)dx
, m− ≈

∫

D− | f (r)(x)|1/(r+1)dx
∫

D+∪D− | f (r)(x)|1/(r+1)dx
.

Thus

∫ b

a
(f − Lm,r f)(x) dx ≈ β

r !
(∫ b

a | f (r)(x)|1/(r+1)sgn f (r)(x) dx
∫ b
a | f (r)(x)|1/(r+1)dx

)

‖ f (r)‖L1/(r+1)(a,b) m
−r

provided
∫ b
a | f (r)(x)|1/(r+1)sgn f (r)(x) dx �= 0, and otherwise the convergence is

faster than m−r .

123

32 Page 14 of 24 BIT Numerical Mathematics (2023) 63 :32

Our analysis above shows that if m and n are chosen as in (2.5) and (2.6) then the
error of the described algorithm asymptotically equals (as N → +∞)

cr

√
√
√
√α2 − β2

(∫ b
a | f (r)(x)|1/(r+1)sgn f (r)(x) dx

∫ b
a | f (r)(x)|1/(r+1)dx

)2(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

N−(r+1/2).

(4.5)

The factor at β2 in (4.5) can be easily replaced by 1 with the help of stratified
sampling. Indeed, instead of randomly sampling n times with density (4.3) on the
whole interval [a, b], one can apply the same sampling strategy independently on k
groups G j of subintervals. Each group consists of s = m/k subintervals,

G j =
s
⋃

�=1

I(j−1)s+�, 1 ≤ j ≤ k,

and the number of samples for each G j equals n/k. As in the algorithm M
∗
N ,r , we

combine k = kN and N in such a way that kN → +∞ and kN/N → 0 as N → ∞.

Then the total number of points used in each G j is N j = N/k. Denoting

C j =
(∫

G j

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

=
(
1

k

∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

and using the fact that the factor at β2 equals 1 if f (r) does not change its sign, the
error of such an approximation asymptotically equals

cr

√

α2 − β2

(k
∑

j=1

C2
j

N 2r+1
j

)1/2

= cr

√

α2 − β2

(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

N−(r+1/2),

as claimed. (Note that N j = N/k minimize the sum
∑k

j=1 C
2
j N

−(2r+1)
j with respect

to
∑k

j=1 N j = N ; compare with the analysis in Sect. 3.)

Thus we obtained exactly the same error formula as in Theorem 3.1 for M
∗
N ,r .

It remains to show a feasible construction of a nested partition that is close to the
one satisfying (4.2). To that end, we utilize the iterative method presented in [11],
where the L p error of piecewise Lagrange interpolation is examined.

We first consider the case when

f (r) > 0 or f (r) < 0. (4.6)

In the following construction, we use a priority queue S whose elements are subin-
tervals. For each subinterval Ii of length hi , its priority is given as

p f (Ii) = hr+1
i |di |,

123

BIT Numerical Mathematics (2023) 63 :32 Page 15 of 24 32

where di is the divided difference (3.2). In the following pseudocode, insert(S , I) and
I := extract_max(S) implement correspondingly the actions of inserting an interval
toS , and extracting from S an interval with the highest priority.

algorithm PARTITION
S = ∅; insert(S , [a, b]);
for k = 2 : m

[l, r] = extract_max(S);
c = (l + r)/2;
insert(S , [l, c]); insert(S , [c, r]);

endfor

After execution, the elements ofS form a partition intom subintervals Ii .Note that if
the priority queue is implemented through a heap then the running time of PARTITION
is proportional to m logm.

Denote by M
∗∗
N ,r the corresponding algorithm that uses the above nested partition

and density (4.3), and N is related to the number m of subintervals and the number
n of random samples as in (2.5) and (2.6). We want to see how much worse is this
algorithm than that using the (not nested) partition (4.2).

Let A = (A1, A2, . . . , Am) with

Ai = p f (Ii) r ! = hr+1
i

∣
∣ f (r)(ωi)

∣
∣, ωi ∈ Ii ,

and ‖A‖p = (∑m
i=1 A

p
i

)1/p
. For the corresponding piecewise Lagrange approxima-

tion Lm,r f and density ρ given by (4.3) we have

∫ b

a

(f − Lm,r f)2(x)

ρ(x)
dx −

(∫ b

a
(f − Lm,r f)(x) dx

)2

≈ 1

(r !)2
(

α2m
m
∑

i=1

A2
i − β2

(m
∑

i=1

Ai

)2)

= 1

(r !)2
(

α2m‖A‖22 − β2‖A‖21
)

.

We also have

(
∫ b
a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

≈ (∑m
i=1 A

1/(r+1)
i

)r+1 = ‖A‖ 1
r+1

.

Hence

√

E(S f − M
∗∗
N ,r f)

2 ≈
(

α2m‖A‖22 − β2‖A‖21
)1/2

n−1/2m−r

≈ Km,r (A) cr

√

α2 − β2

(∫ b

a

∣
∣ f (r)(x)

∣
∣
1/(r+1)

)r+1

N−(r+1/2),

where

Km,r (A) =
√

κ2
α m ‖A‖22 − κ2

β ‖A‖21
‖A‖ 1

r+1

mr , κα = α
√

α2 − β2
, κβ = β

√

α2 − β2
.

123

32 Page 16 of 24 BIT Numerical Mathematics (2023) 63 :32

Observe that halving an interval results in two subintervals whose priorities are
asymptotically (as m → +∞) 2r+1 times smaller than the priority of the original
interval. This means that Km,r (A) is asymptotically not larger than

K ∗(r) = lim sup
m→∞

max

{

Km,r (A) : A = (A1, . . . , Am), max
1≤i, j≤m

Ai

A j
≤ 2r+1

}

.

(4.7)

Thus we obtained the following result.

Theorem 4.1 If the function f satisfies (4.6) then we have as N → +∞ that

√

E(S f − M
∗∗
N ,r f)

2 � K ∗(r) cr
√

α2 − β2

(∫ b

a

∣
∣ f (r)(x)

∣
∣1/(r+1)dx

)r+1

N−(r+1/2),

where K ∗(r) is given by (4.7).

We numerically calculated K ∗(r) in some special cases. For instance, if the points
zi in (2.1) are equispaced, zi = (i − 1)/(r − 1), 1 ≤ i ≤ r , then for r = 2, 3, 4, 5, 6
we correspondingly have

K ∗(r) = 4.250, 3.587, 7.077, 11.463, 23.130,

while for any zi s satisfying β = ∫ 1
0 (z − z1) · · · (z − zr) dz = 0 we have

K ∗(r) = 2.138, 3.587, 6.323, 11.463, 21.140.

If f does not satisfy (4.6) then the algorithm M
∗∗
N ,r f may fail. Indeed, it may

happen that p f (Ii) = 0 while f (r) �= 0 in Ii . Then this subinterval may never be
further subdivided. In this case, we can repeat the same construction, but with the
modified priority

p f (Ii) = hr+1
i max

(|di |, /r !),

where > 0. Then the error is asymptotically upper bounded by

K ∗(r) cr
√

α2 − β2

(∫ b

a

∣
∣ f (r)

 (x)
∣
∣1/(r+1)dx

)r+1

N−(r+1/2),

where
∣
∣ f (r)

 (x)
∣
∣ is given by (3.4).

5 Numerical experiments

In this section, we present results of two numerical experiments that illustrate the per-
formance of the nonadaptiveMonte Carlo algorithmMN ,r and the adaptive algorithms

123

BIT Numerical Mathematics (2023) 63 :32 Page 17 of 24 32

Fig. 1 Comparison of nonadaptive and adaptive Monte Carlo algorithms together with related asymptotic
constants (AC) for r = 2

M
∗
N ,r and M

∗∗
N ,r . Our test integral is

∫ 1

0

1

x + 10−4 dx .

Since for r ∈ N we have (−1)r f (r) > 0, the parameter is set to zero.
The three algorithms are verified for r = 2 and r = 4. In both cases, the interpolation

nodes are equispaced, i.e., in (2.1) we take

zi = i − 1

r − 1
, 1 ≤ i ≤ r .

In addition, for the first adaptive algorithmM
∗
N ,r we take kN = N κ with κ = 0.8.This

exponent was chosen to ensure a trade–off as per our discussion in Sect. 3, and some
empirical results. Also, for a fixed N we plot a single output instead of the expected
value estimator. Therefore the error fluctuations are visible. For completeness, we also
show the asymptotes corresponding to the theoretical errors from Theorems 2.1 and
3.1, and the upper bound from Theorem 4.1. The scale is logarithmic, − log10(error)
versus log10 N .

The results for r = 2 are presented in Fig. 1.
As it can be observed, both adaptive algorithms significantly outperform the non-

adaptive MC; however, the right asymptotic behaviour of the first adaptive algorithm
is visible only for large N .

Similar conclusions can be inferred from validation performed for r = 4, with all
other parameters unchanged. We add that the results for N larger than 104.8 are not
illustrative anymore, since the process is disturbed by a serious reduction of significant
digits when calculating divided differences in the partition part (Fig. 2).

123

32 Page 18 of 24 BIT Numerical Mathematics (2023) 63 :32

Fig. 2 Comparison of nonadaptive and adaptive Monte Carlo algorithms together with related asymptotic
constants (AC) for r = 4

Notably, both adaptive algorithms attain their asymptotic errors, but this is not the
case for nonadaptive MC for which the output is not stable. Initially, the first adaptive
algorithm does not leverage additional sampling since for all intervals Ii we have
Ni/(2r + 1) < 1. The Monte Carlo adjustments are visible only for N ≥ 103 and the
error tends to the theoretical asymptote.

In conclusion, the numerical experiments confirm our theoretical findings and, in
particular, superiority of the second adaptive algorithm M

∗∗
N ,r .

6 Automatic Monte Carlo integration

We now use the results of Sect. 4 for automatic Monte Carlo integration. The goal is to
construct an algorithm that for given ε > 0 and 0 < δ < 1 returns an ε-approximation
to the integral S f with probability at least 1 − δ, asymptotically as ε → 0+. To
that end, we shall use the approximation M

∗∗
N ,r f with N determined automatically

depending on ε and δ.

Let Xi for 1 ≤ i ≤ n be independent copies of the random variable

X = S(f − Lm,r f) − (f − Lm,r f)(t)

ρ(t)
, t ∼ μρ,

where Lm,r , n and ρ are as in M
∗∗
N ,r f . Then E(X) = 0 and

S f − M
∗∗
N ,r f = X1 + X2 + · · · + Xn

n
.

123

BIT Numerical Mathematics (2023) 63 :32 Page 19 of 24 32

By Hoeffding’s inequality [5] we have

Prob
(∣
∣S f − M

∗∗
N ,r f

∣
∣ > ε

)

≤ 2 exp

(−ε2n

2 B2
m

)

,

where Bm = maxa≤t≤b |X(t)|. Hence we fail with probability at most δ if

ε2n

2B2
m

≥ ln
2

δ
. (6.1)

Now we estimate Bm . Let λ = ‖P‖L∞(0,1) = max0≤t≤1 |P(t)|, and

Lr (f) =
(∫ b

a

∣
∣ f (r)

 (x)
∣
∣
1/(r+1)dx

)r+1

,

where = 0 if f (r) > 0 or f (r) < 0, and > 0 otherwise. Let A =
(A1, A2, . . . , Am) with

Ai = hr+1
i max

x∈Ii
| f (r)(x)|, 1 ≤ i ≤ m,

where, as before, {Ii }mi=1, is the partition used by M
∗∗
N ,r f and hi is the length of Ii .

Since ‖A‖ 1
r+1

= (∑m
i=1 A

1/(r+1)
i

)r+1 � Lr (f), for x ∈ Ii we have

∣
∣ f (x) − Lm,r f (x)

∣
∣

ρ(x)
≤ λ

r ! m Ai � λ

r !
(
m ‖A‖∞
‖A‖ 1

r+1

)

Lr (f) � 2r+1 λ

r ! Lr (f)m
−r .

We have the same upper bound for S(f − Lm,r f) since by mean-value theorem

S(f − Lm,r f) =
∫ b

a

(f − Lm,r f)(x)

ρ(x)
ρ(x) dx = (f − Lm,r f)(ξ)

ρ(ξ)
, ξ ∈ [a, b].

Hence

Bm � 2r+2 λ

r ! Lr (f)m
−r .

Using the above inequality and the fact that
√
n mr ≈ Nr+1/2/(crr !) with cr given

by (2.7), we get

ε2n

2B2
m

�
(

ε Nr+1/2

ĉr Lr (f)

)2

, where ĉr = 2r+5/2λcr .

123

32 Page 20 of 24 BIT Numerical Mathematics (2023) 63 :32

The last inequality and (6.1) imply that we fail to have error ε with probability at most
δ for

N �
(

ĉr Lr (f)

√
ln(2/δ)

ε

) 1
r+1/2

, as ε → 0+. (6.2)

Now the question is how to obtain the random approximation M
∗∗
N ,r f for N satis-

fying (6.2).
One possibility is as follows. We first execute the iteration for in the algorithm

PARTITION of Sect. 4 for k = 2 : m, where m satisfies limε→0+ m ε
1

r+1/2 = 0, e.g.,

m =
⌊(√

ln(2/δ)

ε

) 1
r+1
⌋

.

Let {Ii }mi=1 be the obtained partition. Then we replaceLr (f) in (6.2) by its asymptotic
equivalent

L̃r (f) =
(m
∑

i=1

p f (Ii)
1

r+1

)r+1

, (6.3)

set

Nε =
⎢
⎢
⎢
⎣

(

ĉr L̃r (f)

√
ln(2/δ)

ε

) 1
r+1/2

⎥
⎥
⎥
⎦ , (6.4)

and continue the iteration for k = m+1 : mε,wheremε is the number of subintervals
corresponding to Nε. Finally, we complete the algorithm by nε random samples.

Denote the final randomized approximation by Aε,δ f . Then we have Aε,δ f =
M

∗∗
Nε,r f and

Prob
(∣
∣S f − Aε,δ f | > ε

)

� δ, as ε → 0+.

A disadvantage of the above algorithm is that it uses a priority queue and therefore
its total running time is proportional to N log N . It turns out that by using recursion
the running time can be reduced to N .

A crucial component of the algorithm with the running time proportional to N is
the following recursive procedure, in which S is a set of intervals.

procedure AUTO (f , a, b, e)
if p f ([a, b]) ≤ e
insert(S , [a, b]);

else
c := (a + b)/2;
AUTO(f , a, c, e);

123

BIT Numerical Mathematics (2023) 63 :32 Page 21 of 24 32

AUTO(f , c, b, e);
endif

Similarly toAε,δ, the algorithm consists of two steps. First AUTO is run for e = ε′
satisfying ε′ → 0+ and ε/ε′ → 0+ as ε → 0+, e.g.,

ε′ = εκ, where 0 < κ < 1.

Then Lr (f) in (6.2) is replaced by L̃r (f) given by (6.3), and Nε found from (6.4).
The recursion is resumed with the target value e = ε′′, where

ε′′ = L̃r (f)m
−(r+1)
ε .

The algorithm is complemented by the corresponding nε random samples.
Observe that the number m′′ of subintervals in the final partition is asymptotically

at least mε. Indeed, for any function g ∈ Cr ([a, b]) with g(r)(x) = ∣
∣ f (r)

 (x)
∣
∣ we have

Lr (g) = Lr (f) and

γ

r ! L̃r (f)
(

m′′)−r � ‖g − Lm′′,r g‖L1(a,b) ≈ γ

r !
m′′
∑

i=1

(h′′
i)

r+1g(r)(ξi)

≈ γ

r !
m′′
∑

i=1

p f (I
′′
i) � γ

r ! m
′′ε′′,

where the first inequality above follows from Proposition 2 of [11]. This implies

m′′ �
(
L̃r (f)

ε′′

) 1
r+1 ≈ mε,

as claimed.
Denote the resulting approximation by A ∗

ε,δ f . Observe that its running time is
proportional to Nε since recursion can be implemented in linear time.

Theorem 6.1 We have

Prob
(∣
∣S f − A ∗

ε,δ f | > ε
)

� δ, as ε → 0+.

Now we present outcomes of the second automatic procedure A ∗
ε,δ for the test

integral

∫ 1

0
cos

(
100 x

x + 10−4

)

dx . (6.5)

Although the derivatives fluctuate and nullify many times in this case, we take = 0.
We confront the outcomes for r = 2 and r = 4. In each case, we compute the

123

32 Page 22 of 24 BIT Numerical Mathematics (2023) 63 :32

Table 1 Performance of the
second automatic algorithm for
the integral (6.5)

ε δ K Nε emax

r = 2 10−3 0.05 10,000 3092 4.5 · 10−5

r = 4 10−3 0.05 10,000 811 5.5 · 10−6

number of breaches (i.e. when the absolute error is greater than ε = 10−3) based on
K = 10 000 independent executions of the code (Table 1). We also take ε′ = ε1/2. In
our testing, we expect the empirical probability of the breach to be less than δ = 0.05.
For completeness, we also present the maximum error from all executions together
with obtained Nε.

Note that in both cases we did not identify any exceptions. The magnitude of the
maximumerrors indicate a serious overestimation of Nε, but the results are satisfactory
given the upper bound estimate of Theorem 6.1.

Acknowledgements The work of L. Plaskota and P. Przybyłowicz was partially supported by the National
Science Centre, Poland, under project 2017/25/B/ST1/00945.

Declarations

Conflict of interest All authors declare that they have no conflicts of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Below we present a crucial part of the code in the Python programming language,
where all the algorithmswere implemented. In addition,we provide relevant comments
linked to particular fragments of the code.

Listing 1 Second adaptive algorithm M
∗∗
N ,r - crucial part of the code.

def second_adaptive_MC(a, b, N, main_nodes , f, r, node_type = ’uniform ’): #(1)
partial_quad = Decimal(’0.0’) #(2)

if node_type == ’uniform ’: #(3)
n = int(np.floor ((N -1)/(1 + 2 *r)))
m = int(np.floor ((2 * r * (N -1))/(2 * r ** 2 - r - 1)))

mc_init = MC_samples_nonunif(m, n) #(4)

#(5)
MnR = Decimal(’0.0’)
l = 0

for i in range(len(main_nodes) - 1):
h_i = main_nodes[i+1] - main_nodes[i]

#(6)

123

http://creativecommons.org/licenses/by/4.0/

BIT Numerical Mathematics (2023) 63 :32 Page 23 of 24 32

if node_type == ’uniform ’:
interpol_ix = main_nodes[i] * np.ones(r) + np.multiply(optimalt_equidistant (r),

h_i)

interpol_iy = []
for s in range(1,r+1):

interpol_iy.append(f(interpol_ix[s -1]))

#(7)
if r == 2:

SL_mr = Decimal(’0.5’) * Decimal(h_i) \
* (Decimal(f(main_nodes[i])) + Decimal(f(main_nodes[i+1])))

elif r == 4:
SL_mr = Decimal(’0.125 ’) * Decimal(h_i) * Decimal ((f(main_nodes[i]) \

+ 3 * f(main_nodes[i] + 1/3 * h_i) + 3 * f(main_nodes[i] + 2/3 * h_i) \
+ f(main_nodes[i+1])))

#(8)
while l < n and mc_init[l] < (i+1):

mc_point = math.modf(mc_init[l])[0] * h_i + main_nodes[i] #(9)
MnR = MnR + (Decimal(f(mc_point)) - Decimal(lagrange(interpol_ix , interpol_iy ,

mc_point))) \
* Decimal(h_i) #(10)
l = l + 1

partial_quad = partial_quad + SL_mr #(11)

#(12)
MnR = Decimal(MnR) * Decimal(m) / Decimal(n)
partial_quad = partial_quad + MnR
return partial_quad

(1) The almost optimal partition main_nodes is derived out of this function in
order to save computation time when the trajectories are computed subsequently.
Moreover, node_type argument lets the user insert his own partitions, e.g.
those based on Chebyshev polynomials of the second kind.

(2) In order to minimize errors resulting from (possibly) adding relatively small
adjustments to the estimated quadrature value, we use Decimal library. It
enables us to increase the precision of intermediate computations, which is now
set to 28 digits in decimal system.

(3) In our case, the interpolating polynomial is based on equidistant mesh including
endpoints of a subinterval Ii . By np we understand the references to NumPy
library.

(4) Initializing the variables which control Monte Carlo adjustments for our quadra-
ture. In particular, l stores the number of currently used random points, while
we loop through the subintervals.

(5) The program calculates all interpolation nodes in the interval Ii . For that reason,
the function optimalt_uniform is executed to provide distinct z1, . . . , zr ∈
[0, 1].

(6) Depending on the value of r , different formulas for (nonadaptive, deterministic)
quadrature SLm,r are leveraged.

(7) Below, we calculate the Monte Carlo adjustment on interval Ii .
(8) This code yields random points used for. MC_init function reports them in a

from of a number from 0 to m. The integer part points the index i of subinterval,
while the fractional part - its position within Ii . Both parameters are sourced by
using math.modf function.

(9) For stability reasons, the coefficients of interpolating polynomial in canonical
base are not stored. Therefore, for every point, lagrange function is invoked
separately.

(10) We decided to add SLm,r for each subinterval and then add the cumulative adjust-
ments. Since latter are usually relativelymuch smaller than the quadrature values,

123

32 Page 24 of 24 BIT Numerical Mathematics (2023) 63 :32

this might result in neglecting the actual adjustment values. Please note that
Decimal library was also used to address such constraints.

(11) Ultimately, we add Monte Carlo result to the previous approximation.

As it can be observed, the current solution enables the user to insert own interpola-
tion meshes, increase the precision of computations, as well as extend the method to
arbitrary regularity r ∈ N.

References

1. Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York
(1984)

2. Goćwin, M.: On optimal adaptive quadratures for automatic integration. BIT Numer. Math. 61, 411–
439 (2021)

3. Gonnet, P.: A review of error estimation in adaptive quadrature. ACM Comput. Surv. 44, 1–36 (2012)
4. Heinrich, S.: Randomapproximation in numerical analysis. In: Bierstedt, K.D., et al. (eds.) Proceedings

of the Functional Analysis Conference, Essen 1991, pp. 123–171. Marcel Dekker, New York (1993)
5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58,

13–30 (1963)
6. Kacewicz, B., Przybyłowicz, P.: Complexity of the derivative-free solution of systems of IVPs with

unknown singularity hypersurface. J. Complex. 31, 75–97 (2015)
7. Lyness, J.N.: Guidelines for automatic quadrature routines. In: Freeman, C.V. (ed.) Information Pro-

cessing 71, vol. 2, pp. 1351–1355. North-Holland Publ. (1972)
8. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Vol. 1349 of Lecture

Notes in Math. Springer, Berlin (1988)
9. Novak, E.: On the power of adaption. J. Complex. 12, 199–237 (1996)

10. Plaskota, L.: Automatic integration using asymptotically optimal adaptive Simpson quadrature. Numer.
Math. 131, 173–198 (2015)

11. Plaskota, L., Samoraj, P.: Automatic approximation using asymptotically optimal adaptive interpola-
tion. Numer. Algorithms 89, 277–302 (2022)

12. Plaskota, L., Wasilkowski, G.W.: Adaption allows efficient integration of functions with unknown
singularities. Numer. Math. 102, 123–144 (2005)

13. Plaskota, L., Wasilkowski, G.W., Zhao, Y.: The power of adaption for approximating functions with
singularities. Math. Comput. 77, 2309–2338 (2008)

14. Przybyłowicz, P.: Adaptive Itô-Taylor algorithm can optimally approximate the Itô integrals of singular
functions. J. Comput. Appl. Math. 235, 203–217 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Monte Carlo integration of Cr functions with adaptive variance reduction: an asymptotic analysis
	Abstract
	1 Introduction
	2 Variance reduction using Lagrange interpolation
	3 First adaptive algorithm
	4 Second adaptive algorithm
	5 Numerical experiments
	6 Automatic Monte Carlo integration
	Acknowledgements
	Appendix
	References

