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Abstract
There are simple algorithms to compute the predecessor, successor, unit in the first
place, unit in the last place etc. in binary arithmetic. In this note equally simple
algorithms for computing the unit in the first place and the unit in the last place
in precision-p base-β arithmetic with p � 1 and with β � 2 are presented. The
algorithms work in the underflow range, and numbers close to overflow are treated
by scaling. The algorithms use only the basic operations with directed rounding. If
the successor (or predecessor) of a floating-point number is available, an algorithm in
rounding to nearest is presented as well.

Keywords Unit in the first place · Unit in the last place · Floating-point arithmetic ·
Precision-p · Base-β · Predecessor · Successor · INTLAB

Mathematics Subject Classification 65G99

1 Notation andmain result

Let FN denote the set of normalized precision-p base-β floating-point numbers

FN := {±mβe with β p−1 � m � β p − 1 and Emin � e � Emax}, (1.1)

and denote by
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FD := {±mβEmin with 1 � m < β p−1} (1.2)

the set of denormalized numbers. Then F := FN ∪FD ∪{0} is the set of all precision-
p base-β floating-point numbers.1 Set F∗ := F ∪ {−∞,∞} and let an arithmetic on
F

∗ following the IEEE 754 standard [7, 8] be given. That means in particular that
in RoundToNearest all floating-point operations have minimal error, bounded by the
relative rounding error unit u := 1

2β
1−p. Moreover, different rounding modes are

available, also with best possible result.
In [19] we introduced the “unit in the first place” (ufp) which is defined by

0 �= r ∈ R ⇒ ufp(r) := β�logβ |r |	

and ufp(0) := 0. For all real r ∈ R it is the value of the left-most nonzero digit2 in
the base β-representation.

In contrast, the often used “unit in the last place” (ulp) depends on the precision of
the floating-point format in use. For a nonzero finite base-β string it is the magnitude
of its least significant digit, or in other words, the distance between the floating point
number and the next floating point number of greater magnitude [6].3 There are several
other definitions of the unit in the last place, in particular for real r /∈ F, cf. [2, 12,
13]. We use the definition above, namely ulp(r) = βe for r ∈ FN according to (1.1),
ulp(r) = βEmin for r ∈ FD, and ulp(0) = 0. All definitions have in common that they
depend not only on the basis β but also on the precision of the floating-point format
in use.

We invented the unit in the first place in [19] because it was very helpful if not
mandatory to formulate complicated proofs of the validity of our new floating-point
algorithms for accurate summation and dot products. We developed a small collection
of rules using ufp, so that based on that no further understanding of themany properties
of the IEEE 754 floating-point arithmetic was necessary to follow the proofs.

The main difference in the definition of ulp compared to ufp is to separate the use
of the basis and of the precision. First, ufp is defined for a general real number, only
depending on the basis β, and second precision-related results use ufp and the relative
rounding error unit, i.e., the precision p. That separation was useful to formulate our
proofs in [19] and following papers.

There are simple algorithms to compute the predecessor, successor, unit in the first
place, unit in the last place etc. in binary arithmetic [3, 5, 10, 11, 13, 14], but apparently
no method is known to compute the unit in the first place in a base-β arithmetic. Jean-
Michel Muller [15] proposed a method based on the results in [9], however, it needs
up to log2(β) iterations. We are interested in a flat, loop-free algorithm with few
operations.

Recently we wrote a toolbox for an IEEE 754 precision-p base-β arithmetic with
specifiable exponent range [18] as part of INTLAB [16], the Matlab/Octave toolbox
for reliable computing. As part of this we present in this note a simple algorithm to

1 Note that our definition of Emin and Emax differs by p − 1 from that in [8, 13].
2 Using a finite representation if possible, i.e., avoiding infinitely many trailing β − 1-digits.
3 Harrison notes this in [6], which is different from what is called “Harrison’s-ulp” [2, 13]
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compute the unit in the first place for a precision-p base-β arithmetic with p � 1 and
β � 2. The algorithm works correctly in the underflow range, where numbers close
to overflow are treated by scaling. That algorithm requires a directed rounding, i.e.,
RoundToZero, RoundUp or RoundDown; we could not construct a simple algorithm
in RoundToNearest.

In addition, as a reply to suggestions by the referees, we present some additional
algorithms to compute ufp and ulp. Those require a specific directed rounding mode
and/or access to the predecessor/successor of a floating-point number. Since these
algorithms are pretty obvious and the proofs of correctness are trivial, we banned
them into the appendix.

We formulate our algorithm to compute the unit in the first place in the rounding
mode RoundToZero and call the corresponding mapping fl
 : R → F. It follows that
the result of a floating-point operation with positive real result x is max{ f ∈ F : f �
x}, and that operations cannot cause overflow.

The predecessor and successor of x ∈ R in F∗ is defined by

pred(x) := max{g ∈ F
∗ : g < x}

succ(x) := min{g ∈ F
∗ : x < g},

respectively. In precision-p base-β arithmetic we have

Emin < k � Emax ⇒ pred(βk) = (1 − β−p)βk (1.3)

0 < f ∈ FN and f �= ufp( f ) ⇒ pred( f ) = f − β1−pufp( f ) (1.4)

0 < f ∈ FN ⇒ succ( f ) = f + β1−pufp( f ) (1.5)

Note that (1.5) includes the case p = 1, β = 2 for which F is the set of powers of 2,
i.e., f = ufp( f ) for all f ∈ F, and succ( f ) = f + β1−pufp( f ) = 2 f . Among the
properties of ufp [19] is

0 �= f ∈ F ⇒ ufp( f ) � | f | � β(1 − β−p) · ufp( f ). (1.6)

Next we present in Fig. 1 our algorithm to compute ufp( f ) for f ∈ F in precision-
p base-β arithmetic and RoundToZero or RoundDown. It is obvious how to adapt
the algorithm for RoundUp. We assume that subrealmin, the smallest positive
denormalized floating-point number equal to βEmin , is available. Overflow is easily
avoided by proper scaling, but we omit that technical detail. Note that in a practical
implementation, the constants p1 and phi in lines 2 and 3 of Algorithm ufp would
be stored rather than calculated, and the extra input parameters p and beta would be
omitted.

Theorem 1.1 Let S be the result of Algorithm ufp applied to f ∈ F, where Emin �
−1 < p � Emax. Suppose that all operations are executed in precision-p base-β
floating-point arithmetic following the IEEE 754 standard with p � 1 and β � 2 in
RoundToZero or RoundDown, and that | f | < βEmax−p+1. Then S is equal to ufp( f ).
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Fig. 1 Algorithm ufp in RoundToZero or RoundDown

Remark 1.1 The usual problems in the denormalized range are avoided because q ∈
FN , so that the multiplication in line 5 are in the normalized range. The result of
the final subtraction may be in the denormalized range but is error-free because of
Sterbenz’ lemma [21].

Proof The result is correct for f = 0, so henceforth we assume f �= 0. We first
verify that the used constants p1 and phi are in F. The rounding RoundToZero or
RoundDown implies that p1 in line 2 is the predecessor of 1, and (1.3) and Emin � −1
yield p1 = 1−β−p . Moreover, ϕ ∈ F follows by β p−1 + 1 � β p � βEmax . Note that
this includes the case ϕ = 2 for p = 1.

The input f is used only in line 4, and since ufp( f ) = ufp(| f |) we may henceforth
assume without loss of generality that f > 0. The monotonicity of the rounding, (1.6)
and (1.5) imply

ϕ f � (β p−1 + 1)β(1 − β p) · ufp( f ) = (β p + β − 1 − β1−p) · ufp( f )
< (1 + β1−p)β pufp( f ) = succ(β pufp( f )),

so that the rounding mode implies q = fl
(ϕ f ) � β pufp( f ). Therefore,

β p−1ufp( f ) � ufp(q) � β pufp( f ). (1.7)

Hence q is always in the normalized range FN and f < βEmax−p+1 yields ufp( f ) �
βEmax−p and q � β pufp( f ) � βEmax .

We distinguish two cases. First, assume ufp(q) = β pufp( f ), which implies that
q = β pufp( f ) is a power of β. Then q � β pβEmin > βEmin and (1.3) yield

r := fl
((1 − β−p)q) = pred(q) = (1 − β−p)q

and therefore S = fl
(q − r) = fl
(β−pq) = fl
(ufp( f )) = ufp( f ). According to
(1.7) it remains the second case

ufp(q) = ufp(fl
((β p−1 + 1) f )) = β p−1ufp( f ). (1.8)

Note that p = 1 and β = 2 belongs to the first case ufp(q) = β pufp( f ). Next
β p−1 f ∈ FN and (1.5) give

q = fl
((β p−1 + 1) f ) = fl
((1 + β1−p)β p−1 f )

� fl
(β p−1 f + β1−pufp(β p−1 f )) = succ(β p−1 f )

� succ(β p−1ufp( f )) = succ(ufp(q)).
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Fig. 2 Algorithm ufp in executable INTLAB code

The monotonicity of the rounding, (1.6), q > ufp(q) and (1.4) yield

q = fl
(q) > fl
((1 − β−p)q) =: r
� fl
(q − β1−p(1 − β−p)ufp(q)) � fl
(q − β1−pufp(q))

= pred(q),

and therefore r = pred(q) = q−β1−pufp(q) = q−ufp( f ). Hence S = fl
(q−r) =
fl
(ufp( f )) = ufp( f ). The theorem is proved. � �
Algorithm ufp will part of the flbeta toolbox in INTLAB. Executable INTLAB
code, which is almost identical to the one given in Fig. 1, is shown in Fig. 2,

Hereflbeta is a user-defined data type,where the precision p � 1, the baseβ � 2
as well as the exponent range (Emin, Emax) can be specified through initialization by
flbetainit. As in every operator concept, an operation is executed in flbeta-
arithmetic if at least one of the operands is of type flbeta. The flbeta toolbox
respects the rounding mode; in line 2 it is switched to RoundToZero using the internal
Matlab command feature.

The result of p = flbetainit as in line 3 without input and with one output
argument is the precision p in use. The constructor flbeta(m,e) generates the
flbeta constant mβe. Otherwise the code is self-explaining.

Finally we want to mention that the flbeta toolbox was very useful for testing
in different precisions p, different bases β and exponent ranges Emin, Emax. Frankly
speaking,we foundAlgorithmufp experimentallywhenplaying aroundwith different
possibilities. However, we did not find a simple algorithm in the nearest rounding
RoundTiesToEven.

We close the main part of this note with some open problems. As has been men-
tioned, we did not succeed to find a simple algorithm to compute ufp solely in rounding
to nearest. Here “simple” means few operations without loop.

Problem 1.1 Given a precision-p base-β arithmetic following IEEE 754, find a simple
algorithm to compute the unit in the first place (ufp) in rounding to nearest.

The problem is solved [17] in binary for p � 1.

Problem 1.2 Given a precision-p base-β arithmetic following IEEE 754, find a simple
algorithm to compute the unit in the last place (ulp) in rounding to nearest.

Concerningunits of afloating-point number, there is a third quantity of interest, namely,
the magnitude of the least nonzero digit in a finite base-β representation. Historically
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[15], Shewchuk [20] uses this quantity implicitly for defining his “nonoverlapping
expansion”, with the notation ω( f ) it appears in [4], and in [1] the notation uls( f )
(unit in the least significant place) is used. For example, in a precision-3 decimal
arithmetic and f = 42 we have ufp( f ) = 10, ulp( f ) = 0.1 and uls( f ) = 1.

Problem 1.3 Given a precision-p base-β arithmetic following IEEE 754, find a simple
algorithm to compute the unit in the least significant place (uls) in any rounding mode.
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2 Appendix

We add some more algorithms to compute ufp and ulp requiring specific rounding
modes, namely RoundDown, RoundUp and/or RoundToNearest.

To compute ulp( f ) in RoundUp [or RoundDown] we can just follow the definition
ulp( f ) = succ(| f |) − | f | for nonzero f ∈ F.
The result is correct in precision-p base-β floating-point arithmetic for any nonzero
floating-point number f with | f | < (β p −1)βEmax , i.e., with absolute value not equal
to the largest representable floating-point number realmax. If there is a possibility
to obtain the successor of a floating-point number, then replacing line 3 by s =
succ(f); produces correct code in any rounding mode because the computation in
line 4 is error-free (Fig. 3).

InRoundDownorRoundToZero, a littlemore effort is necessary to compute ulp( f ).
The algorithm in Fig. 4 works for vector or matrix input as well. That is, by the way,
also true for the previous algorithms.

Fig. 3 Algorithm ulp in
RoundUp
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Fig. 4 Algorithm ulp in RoundDown or RoundToZero

Fig. 5 Algorithm ulp in RoundDown or RoundToZero without if-statement

Fig. 6 Algorithm ufp in any
rounding mode if successor is
available

The computed S in line 4 is correct for positive f ∈ F except powers of β in the
normalized range. Otherwise, S is corrected in lines 5-8. The result is correct for
nonzero f ∈ F with | f | < realmax.

Sometimes if-statements may cause quite some computational overhead. The algo-
rithm in Fig. 5, working for nonzero f ∈ Fwith | f | < realmax, closes that gap. If f
is not a power of β, then f + S is the successor of f, so that d = 0 in line 5. Hence
S is not changed in line 6. Otherwise, if f is a power of β, then S = ulp(f)/beta
and f + S is equal to f in floating-point in the chosen rounding modes. Hence d =
-S = -ulp(f)/beta, and the computed S is corrected into ulp( f ) because d is
a power of β and the computation in line 6 is error-free. However, the algorithm in
Fig. 5 is about twice as slow as the previous one in Fig. 4.

Finally, if there is a possibility to obtain the successor of a floating-point number,
then ufp can be calculated in any rounding mode by the algorithm in Fig 6. The
algorithm works, as for Theorem 1.1, correctly for nonzero f ∈ F satisfying | f | <

(β p − 1)βEmax−p+1 except that f must be nonzero.
That means the posed Problem 1.1 to find a simple algorithm to compute the unit

in the first place in RoundToNearest is solved if such an algorithm for the successor
is available. In [17] we presented a simple algorithm for binary arithemtic but only
estimates for precision-p base-β.
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