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Abstract
Discretizationmethods for differential-algebraic equations (DAEs) are considered that
are based on the integration of an associated inherent ordinary differential equation
(ODE). This allows tomake use of any discretization scheme suitable for the numerical
integration of ODEs. For DAEs with symmetries it is shown that the inherent ODE can
be constructed in such a way that it inherits the symmetry properties of the given DAE
and geometric properties of its flow. This in particular allows the use of geometric
integration schemes with a numerical flow that has analogous geometric properties.

Keywords Differential-algebraic equation · Inherent ordinary differential equation ·
Geometric integration · Symplectic flow · Orthogonal flow
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1 Introduction

We consider the numerical solution of general nonlinear systems of differential-
algebraic equations (DAEs)

F(t, x, ẋ) = 0, F ∈ C(I × Dx × Dẋ ,R
n) sufficiently smooth, (1.1)
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where Dx ,Dẋ ⊆ R
n are open domains and I ⊆ R is a compact non-trivial interval,

together with a given initial condition

x(t0) = x0, t0 ∈ I, x0 ∈ Dx . (1.2)

For this task, numerous discretization schemes that work directly on (1.1) or on some
index-reduced reformulation have been given in the literature, see e.g. [7, 10, 13].
In this paper, we consider discretization schemes that work on a so-called inherent
ordinary differential equation (ODE) of the given DAE. The advantage of such an
approach is that we can make use of any discretization scheme suitable for the numer-
ical integration of ODEs. In particular, if we are able to choose the inherent ODE in
such a way that it inherits symmetry properties of the given DAE and thus special
properties of its flow, we may be in the situation to use geometric integration, i.e., to
use special discretization schemes whose numerical flow possesses similar geometric
properties, see [8].

In the context of geometric integration, we concentrate in this paper on linear
problems. The basic principle of geometric integration in this special case is as follows.
Given a linear initial value problem

ẋ = A(t)x + f (t), x(t0) = x0, (1.3)

its solution can be written by means of the variation of constant formula as

x(t; t0; x0) = �(t)x0 +
∫ t

t0
�(t)�(s)−1 f (s) ds,

where � ∈ C1(I,Rn,n) is the solution of the matricial initial value problem

�̇ = A(t)�, �(t0) = In . (1.4)

In particular, we have that d
dx0

x(t; t0, x0) = �(t). If A now lies pointwise in a Lie
algebra then the flow � lies pointwise in the corresponding Lie group. The idea of
geometric integration is then to construct numerical integration methods that inherit
this geometric property. If we write the numerical solution after one step as xh(t0 +
h; t0, x0), we therefore require d

dx0
xh(t0 + h; t0, x0) also to lie in this Lie group.

In the case of a quadratic Lie group

G = {G ∈ GL(n)|GT XG = X}, (1.5)

with some given X ∈ R
n,n and GL(n) denoting the general linear group of invertible

matrices in R
n,n , and its associated Lie algebra

A = {A ∈ R
n,n|AT X + X A = 0}, (1.6)
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the above property that � lies pointwise in G if A lies pointwise in A follows from
�(t0)T X�(t0) = X and

d
dt (�

T X�)=�̇T X� + �T X�̇=�T AT X�+�T X A� = �T (AT X + X A)�=0.

In particular, �T X� is a quadratic invariant of (1.4). It can then be shown that all
Runge–Kutta methods that conserve quadratic invariants constitute geometric inte-
gration methods in the case of quadratic Lie groups and their Lie algebras, see [8]. A
prominent class of Runge–Kutta methods that conserve quadratic invariants are given
by Gauß collocation, see again [8].

Writing linear time-varying DAEs in the form

E(t)ẋ = A(t)x + f (t), E, A ∈ C(I,Rn,n), f ∈ C(I,Rn) sufficiently smooth,

(1.7)

we are interested in this paper in the following symmetry properties.

Definition 1.1 The DAE (1.7) and its associated pair (E, A) of matrix functions are
called self-adjoint if

ET = −E, AT = A + Ė (1.8)

as equality of functions.

Definition 1.2 The DAE (1.7) and its associated pair (E, A) of matrix functions are
called skew-adjoint if

ET = E, AT = −A − Ė (1.9)

as equality of functions.

For these two cases, it has been shown in [15] that the inherent ODE can be chosen
in such away that its flowpossesses certain geometric properties posing the question of
possible geometric integration. In particular, we are here concerned with the quadratic
Lie group Sp(2p) of symplectic matrices related to

X = J , J =
[

0 Ip

−Ip 0

]
(1.10)

and the associated Lie algebra of Hamiltonian matrices in the case of self-adjoint
DAEs and with the quadratic Lie group O(p, q) of generalized orthogonal matrices
related to

X = S, S =
[

Ip 0
0 −Iq

]
(1.11)

in the case of skew-adjoint DAEs.
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2 Preliminaries

In the following, we give a concise overview of the relevant theory on DAEs that we
make use of, see e.g. [13]. The basis are the so-called derivative array equations

F�(t, x, ẋ, . . . , x (�+1)) = 0, (2.1)

see [3], where F� has the form

F�(t, x, ẋ, . . . , x (�+1)) =

⎡
⎢⎢⎢⎣

F(t, x, ẋ)
d
dt F(t, x, ẋ)

...( d
dt

)�
F(t, x, ẋ)

⎤
⎥⎥⎥⎦

with Jacobians (denoting the derivative of F with respect to the variable x by Fx and
accordingly)

M�(t, x, ẋ, . . . , x (�+1)) = F�;ẋ,...,x (�+1) (t, x, ẋ, . . . , x (�+1)),

N�(t, x, ẋ, . . . , x (�+1)) = −[ F�;x (t, x, ẋ, . . . , x (�+1)) 0 . . . 0 ]. (2.2)

The following hypothesis then states sufficient conditions for the given DAE to
describe a regular problem.

Hypothesis 2.1 There exist integers μ, a, and d such that the set

Lμ = {(t, x, ẋ, . . . , x (μ+1)) ∈ R
(μ+2)n+1|Fμ(t, x, ẋ, . . . , x (μ+1)) = 0} (2.3)

associated with F is nonempty and such that for every (t0, x0, ẋ0, . . . , x (μ+1)
0 ) ∈Lμ,

there exists a (sufficiently small) neighborhood in which the following properties hold:

1. We have rank Mμ(t, x, ẋ, . . . , x (μ+1)) = (μ+1)n−a onLμ such that there exists
a smooth matrix function Z2 of size (μ + 1)n × a and pointwise maximal rank,
satisfying Z T

2 Mμ = 0 on Lμ.

2. We have rank Â2(t, x, ẋ, . . . , x (μ+1)) = a, where Â2 = Z T
2 Nμ[In 0 · · · 0]T such

that there exists a smooth matrix function T2 of size n × d, d = n−a, and pointwise
maximal rank, satisfying Â2T2 = 0.

3. We have rank Fẋ (t, x, ẋ)T2(t, x, ẋ, . . . , x (μ+1)) = d such that there exists a
smooth matrix function Z1 of size n × d and pointwise maximal rank, satisfying
rank Ê1T2 = d, where Ê1 = Z T

1 Fẋ .

Note that the local existence of functions Z2, T2, Z1 can be guaranteed by the
application of the implicit function theorem, see [13, Theorem 4.3]. Moreover, we
may assume that they possess (pointwise) orthonormal columns. Note also that due to
the full rank requirement we may choose Z1 to be constant.
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Following the presentation in [11], we use the shorthand notation y = (ẋ, . . . ,

x (μ+1)) and similarly y0 = (ẋ0, . . . , x (μ+1)
0 ). The system of nonlinear equations

H(t, x, y, α) =
[

Fμ(t, x, y) − Z2,0α

T T
1,0(y − y0)

]
, (2.4)

with the columns of T1,0 forming an orthonormal basis of kernel Fμ;y(t0, x0, y0) and
Z2,0 = Z2(t0, x0, y0) according to Hypothesis 2.1, is then locally solvable for y, α

in terms of (t, x) due to the implicit function theorem. In particular, α = F̂2(t, x)

with some function F̂2. One can show that F̂2(t, x) = 0 describes the whole set of
algebraic constraints implied by the original DAE. Setting furthermore F̂1(t, x, ẋ) =
Z T
1 F(t, x, ẋ) yields a so-called reduced DAE

F̂1(t, x, ẋ) = 0, (d differential equations)
F̂2(t, x) = 0, (a algebraic equations)

(2.5)

in the sense that it satisfies Hypothesis 2.1 with μ = 0.
Moreover, one can show that F̂2;x possesses full row rank implying that we can

split x possibly after a renumeration of the components according to x = (x1, x2) such
that F̂2;x2 is nonsingular. The implicit function theorem then yields x2 = R(t, x1)
with some function R. Differentiating this relation to eliminate x2 and ẋ2 in the first
equation of (2.5), we can apply the implicit function theorem once more (requiring the
solvability of the DAE) yielding ẋ1 = L (t, x1), a so-called inherent ODE, with some
function L . Putting both parts together, we end up with a second kind of reduced
DAE

ẋ1 = L (t, x1), (d differential equations)
x2 = R(t, x1). (a algebraic equations)

(2.6)

Note that, oncewe have fixed the splitting of the variables, the constructed functions
L andR are unique. In particular, the setLμ+1 can be locally parameterized according
to

Fμ+1(t, x1,R(t, x1),L (t, x1),Rt (t, x1) + Rx1(t, x1)L (t, x1),W (t, x1, p)) ≡ 0

(2.7)

with a suitable parameter p ∈ R
a and a related function W .

Under some technical assumptions, see [13], the original DAE and the reduced
DAEs (2.5) and (2.6) possess the same solutions. As a consequence, wemay discretize
the reduced DAEs instead of the original DAE utilizing the better properties of the
latter ones. But this requires the possibility to evaluate the implicitly defined functions.
In the case of F̂2 in (2.5) the standard approach, see [13], is to go back to the definition
of F̂2 in such a way that we replace F̂2(t, x) = 0 by Fμ(t, x, y) = 0.

In the special case of linear time-varying DAEs (1.7), the Jacobians Mμ, Nμ used
in Hypothesis 2.1 only depend on t such that the functions Z2, T2, Z1 can be chosen
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to depend also only on t . The corresponding reduced DAE (2.5) then takes the form

Ê1(t)ẋ = Â1(t)x + f̂1(t), (d differential equations)
0 = Â2(t)x + f̂2(t), (a algebraic equations)

(2.8)

where

Ê1 = Z T
1 E, Â1 = Z T

1 A, f̂1 = Z T
1 f ,

Â2 = Z T
2 Nμ[In 0 · · · 0]T , f̂2 = Z T

2 gμ

(2.9)

with

Mμ =

⎡
⎢⎢⎢⎣

E
Ė − A E

Ë − 2 Ȧ 2Ė − A E
...

...
. . .

. . .

⎤
⎥⎥⎥⎦ , Nμ =

⎡
⎢⎢⎢⎣

A 0 · · · 0
Ȧ 0 · · · 0
Ä 0 · · · 0
...

...
...

⎤
⎥⎥⎥⎦ , gμ =

⎡
⎢⎢⎢⎣

f
ḟ
f̈
...

⎤
⎥⎥⎥⎦ .

(2.10)

The splitting of the variables as x = (x1, x2) that leads to the second form of a reduced
DAE corresponds to a splitting of Â2 = [ A21 A22 ] with the requirement that A22
is pointwise nonsingular. It is then obvious that we can solve the second equation of
(2.8) for x2 in terms of x1, differentiate, and eliminate x2 and ẋ2 in the first equation
of (2.8) to obtain a linear version of (2.6).

In order to utilize global canonical forms as they were presented in [15], we observe
that the construction of (2.8) transforms covariantly with global equivalence transfor-
mations as follows. Let (Ẽ, Ã) be globally equivalent to (E, A), i.e., let sufficiently
smooth, pointwise nonsingular matrix functions P ∈ C(I,Rn,n) and Q ∈ C1(I,Rn,n)

be given such that

Ẽ = P E Q, Ã = P AQ − P E Q̇, (2.11)

describing scalings of the DAE (1.7) and the unknown x , respectively. The corre-
sponding Jacobians are then related by

M̃μ = �μMμ�μ, Ñμ = �μNμ�μ − �μMμ�μ (2.12)

with

�μ =

⎡
⎢⎢⎢⎣

P
Ṗ P
P̈ 2 Ṗ P
...

...
. . .

. . .

⎤
⎥⎥⎥⎦ , �μ =

⎡
⎢⎢⎢⎣

Q
2Q̇ Q
3Q̈ 3Q̇ Q
...

...
. . .

. . .

⎤
⎥⎥⎥⎦ , �μ =

⎡
⎢⎢⎢⎣

Q̇ 0 · · · 0
Q̈ 0 · · · 0...
Q 0 · · · 0
...

...
...

⎤
⎥⎥⎥⎦ .

(2.13)
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With given choices Z2, T2, Z1 for (E, A) along Hypothesis 2.1 we may choose
Z̃2, T̃2, Z̃1 for (Ẽ, Ã) as

Z̃ T
2 = Z T

2 �−1
μ , T̃2 = Q−1T2, Z̃ T

1 = Z T
1 P−1. (2.14)

Having summarized the theory for general nonlinear and linear time-varyingDAEs,
the next section deals with the construction of suitable inherent ODEs for a givenDAE.

3 Construction and evaluation of an inherent ODE

To get more flexibility into the choice of an inherent ODE, we introduce a (linear but
in general time-dependent) transformation of the unknown x before we perform the
splitting, i.e., we consider

x = Q(t)

[
x1
x2

]
, (3.1)

where Q ∈ C1(I,Rn,n) is sufficiently smooth and pointwise nonsingular. According
to [13, Lemma 4.6] the so transformed DAE (1.1) satisfies Hypothesis 2.1 as well with
the same characteristic values μ, a, d. As before, the only requirement for Q is that
we can solve the algebraic constraints for x2 in terms of x1. Writing

Q = [ T2 T ′
2 ], (3.2)

the algebraic constraints read

F̂2(t, T2x1 + T ′
2x2) = 0.

Hence, in order to be able to solve for x2 we need F̂2;x T ′
2 to be pointwise nonsingular.

If this is the case, then the chosen Q fixes a reduced DAE of the form (2.6) satisfying

Fμ+1

(
t, Q(t)

[
x1
x2

]
, Q(t)

[
ẋ1
ẋ2

]
+ Q̇(t)

[
x1
x2

]
,W (t, x1, p)

)
≡ 0,

ẋ1 = L (t, x1), x2 = R(t, x1), ẋ2 = Rt (t, x1) + Rx1(t, x1)L (t, x1)
(3.3)

with a suitable parameter p ∈ R
a and a related function W .

For a numerical realization, we are confronted with two problems. First, we must
be able to evaluate the implicitly defined functionsL andR. Second, for a nontrivial
choice of Q we must have access to Q̇.

In the next subsections, we discuss how to overcome these problems.

123



29 Page 8 of 24 BIT Numerical Mathematics (2023) 63 :29

3.1 Numerical evaluation of the inherent ODE

The first problem can be dealt with by solving the system of (nonlinear) equations

Fμ+1(t, x, ẋ, w) = 0, [ Id 0 ]Q(t)−1x = x1 (3.4)

for given (t, x1). Because of the first part in (3.4), at a solution, the resulting (t, x, ẋ, w)

must satisfy

x = Q(t)

[
x1

R(t, x1)

]
, ẋ = Q(t)

[
L (t, x1)

Rt (t, x1) + Rx1(t, x1)L (t, x1)

]

+Q̇(t)

[
x1

R(t, x1)

]
.

Because of the second part in (3.4), we regain the prescribed x1. Furthermore, we
observe that

R(t, x1) = [ 0 Ia ]Q(t)−1x, L (t, x1) = [ Id 0 ]Q(t)−1(ẋ − Q̇(t)Q(t)−1x)

yielding the required evaluations of L and R.
Since (3.4) constitutes an underdetermined system of equations, the method of

choice to solve (3.4) numerically is the Gauß-Newton method. In order to show that
the Gauß-Newtonmethodwill convergence quadratically for sufficiently good starting
values, we need to show that the Jacobian at a solution possesses full row rank, see
e.g. [5].

Theorem 3.1 Let (1.1) satisfy Hypothesis 2.1 both with μ, a, d and with μ + 1, a, d.
Then, the Jacobian of (3.4) possesses full row rank at every solution provided that
F̂2;x T ′

2 is pointwise nonsingular.

Proof Due to (2.4) for μ + 1 replacing μ we have

Fμ+1;x − Z2,0 F̂2;x = 0,

omitting for convenience the arguments here and later. Hence,

F̂2;x = (Z T
2 Z2,0)

−1Z T
2 Fμ+1;x

in a sufficiently small neighborhood. Completing Z2 to a pointwise nonsingular matrix
function [ Z ′

2 Z2 ], elementary row operations of the Jacobian of the first part in (3.4)
yield

[
Fμ+1;x Fμ+1;ẋ,...,x (μ+2)

] →
[

Z ′T
2 Fμ+1;x Z ′T

2 Fμ+1;ẋ,...,x (μ+2)

Z T
2 Fμ+1;x 0

]
.

According to Hypothesis 2.1 the entry Z ′T
2 Fμ+1;ẋ,...,x (μ+2) possesses full row rank

such that we are left with the entry Z T
2 Fμ+1;x together with the Jacobian [ Id 0 ]Q−1
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of the second equation in (3.4). Multiplying the first part with (Z T
2 Z2,0)

−1 from the
left and both parts with Q from the right yields the matrix function

[
F̂2;x T2 F̂2;x T ′

2
Id 0

]

which is pointwise nonsingular provided that F̂2;x T ′
2 is pointwise nonsingular. ��

3.2 Numerical construction of the transformation

It remains the questionhowwecandealwith Q̇ in extracting the evaluationofL (t, x1).
In particular, we are interested in applications where a trivial choice as constant Q or
beforehand given Q with implemented functions to evaluate both Q(t) and Q̇(t) is
not possible but where Q has to be chosen numerically during the integration of the
DAE. The main problem in this context is that we must choose Q in a smooth way,
at least on the current interval [t0, t0 + h] of the numerical integration with h > 0
sufficiently small, and that we must be able to evaluate Q̇.

The approach we will follow here is automatic differentiation, see [6]. This means
that we work not only with the value of a variable but with a pair of numbers that
represent the value and the derivative of a variable. Operations on such pairs are then
defined by means of the known differentiation rules. If we use the notation 〈x, ẋ〉 for
such a pair, the typical operations used in linear algebra then read

(a) 〈x, ẋ〉 + 〈y, ẏ〉 = 〈x + y, ẋ + ẏ〉,
(b) 〈x, ẋ〉 − 〈y, ẏ〉 = 〈x − y, ẋ − ẏ〉,
(c) 〈x, ẋ〉 · 〈y, ẏ〉 = 〈x · y, ẋ · y + x · ẏ〉,
(d) 〈x, ẋ〉/〈y, ẏ〉 = 〈x/y, (ẋ − x · ẏ/y)/y〉,
(e)

√〈x, ẋ〉 = 〈√x, 1
2 ẋ/

√
x〉.

(3.5)

These operations can be obviously extended in a componentwise way to vector and
matrix operations.

Note that in a programming language like C++ this approach can be implemented
by defining a corresponding new class and overloading the above operations to work
with this class. In this way it is possible to perform tasks of linear algebra like Cholesky
decomposition A = L · LT in a smooth way yielding 〈L, L̇〉 for given 〈A, Ȧ〉. This
is valid for all numerical algorithms that do not include if-clauses. If there are if-
clauses, as for example in the QR decomposition A · � = Q · R, then we can at least
locally get a smooth version. To do this for the QR decomposition, we may proceed as
follows. For a reference point, typically t0, we perform a standard QR decomposition
A(t0) · �0 = Q0 · R0. We then freeze all if-clauses and use automatic differentiation
in the evaluation of the QR decomposition A ·�0 = Q · R. In this way, we get 〈Q, Q̇〉
and 〈R, Ṙ〉 for given 〈A, Ȧ〉.

In particular, we can use this approach to perform the construction of reducedDAEs
for linear time-varying systems as described in Sect. 2 with the aim to get not only
values for the involved transformations but also values for their derivatives.
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To start the construction of the reduced system (2.8), we need Ṁμ, Ṅμ, ġμ besides
Mμ, Nμ, gμ. Writing M, N , g for the formally infinite extensions of Mμ, Nμ, gμ and
defining

S =

⎡
⎢⎢⎢⎣

0
In 0

In 0
. . .

. . .

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎣

In

0
0
...

⎤
⎥⎥⎥⎦

we have the relations

Ṁ = ST M − M ST + N , Ṅ = ST N , ġ = ST g,

see [4]. Hence, from the evaluations Mμ+1, Nμ+1, gμ+1 we can actually retrieve the
desired 〈Mμ, Ṁμ〉, 〈Nμ, Ṅμ〉,and 〈gμ, ġμ〉. A first locally smooth QR decomposition
then yields 〈Z2, Ż2〉 and thus 〈 Â2,

d
dt Â2〉. A second locally smooth QR decomposition

then gives 〈T2, Ṫ2〉 and with a third locally smooth QR decomposition for 〈E, Ė〉 ·
〈T2, Ṫ2〉 we finally get 〈Z1, Ż1〉. In the latter case we can also use a standard QR
decomposition once at t0 and use the so obtained Z1,0 to set 〈Z1, Ż1〉 = 〈Z1,0, 0〉 if
it seems more suited. The remaining quantities of the reduced DAE are then given by
automatic differentiation along the lines of (2.9).

With a given choice 〈Q, Q̇〉 for fixing an inherent ODE, transforming the reduced
DAE (2.5) by means of (3.1) yields

Ê11(t)ẋ1 + Ê12(t)ẋ2 = Â11(t)x1 + Â12(t)x2 + f̂1(t),
0 = Â21(t)x1 + Â22(t)x2 + f̂2(t),

where

Ê11 = Ê1T2, Ê12 = Ê1T ′
2,

Â11 = Â1T2 − Ê1Ṫ2, Â12 = Â1T ′
2 − Ê1Ṫ ′

2,

Â21 = Â2T2, Â22 = Â2T ′
2,

andwe are in the same situation as in the special case described in Sect. 2. In particular,
we can solve for x2, differentiate, eliminate, and solve for ẋ1 to get the fixed inherent
ODE.

A special choice of Q can be obtained by a locally smooth QR decomposition of
〈ÊT

1 , d
dt ÊT

1 〉 leading to Ê12 = 0. Hypothesis 2.1 then guarantees that Â22 is pointwise
nonsingular. If we set Q0 = Q(t0) and Q̇0 = Q̇(t0), we may also replace Q by the
constant version Q(t) = Q0 or by the linearized version Q(t) = Q0 + (t − t0)Q̇0.
The latter corresponds to the construction of so-called spin-stabilized integrators intro-
duced in [14]. In the case that μ = 0, the constructions can be simplified by using E
instead of Ê1 since no construction of a reduced system is required.
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4 Symmetries and geometric integration

In this section we treat linear time-varying DAEs that are self-adjoint or skew-adjoint.
The aim is to utilize the symmetry in the construction of a suitable inherent ODE such
that it inherits certain properties of the original DAE. Note that self-adjointness and
skew-adjointness are invariant under so-called congruence, i.e., under global equiva-
lence (2.11) with P = QT , see e.g. [15]. As there, we will write (Ẽ, Ã) ≡ (E, A)

to indicate that the pairs are congruent. Note also that regularity of a pair (E, A) of
sufficiently smooth matrix function E, A ∈ C(I,Rn,n) is necessary and sufficient for
the asscociated DAE (1.7) to satisfy Hypothesis 2.1, see e.g. [13].

4.1 Self-adjoint DAEs

Assuming (1.8) for (1.7), we will make use of the following global canonical form
taken from [15] in a slightly rephrased version.

Theorem 4.1 Let (E, A) with E, A ∈ C(I,Rn,n) be sufficiently smooth and let the
associated DAE (1.7) satisfy Hypothesis 2.1. If (E, A) is self-adjoint, then we have
that

(E, A) ≡
⎛
⎝

⎡
⎣ 0 Ip 0

−Ip 0 0
0 0 E33

⎤
⎦ ,

⎡
⎣ 0 0 0
0 A22 A23
0 A32 A33

⎤
⎦

⎞
⎠ , (4.1)

where

E33(t)ẋ3 = A33(t)x3 + f3(t), (4.2)

is uniquely solvable for every sufficiently smooth f3 without specifying initial condi-
tions. Furthermore,

ET
33 = −E33, AT

22 = A22, AT
32 = A23, AT

33 = A33 + Ė33. (4.3)

In order to construct a suitable reduced DAE (2.8), we follow the lines of Hypoth-
esis 2.1 for the global canonical form, indicated by tildes, and start with

M̃μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ip 0
−Ip 0 0
0 0 E33

0 0 0 0 Ip 0
0 −A22 −A23 −Ip 0 0
0 −A32 Ė33 − A33 0 0 E33

0 0 0 0 0 0 0 Ip 0
0 −2 Ȧ22 −2 Ȧ23 0 −A22 −A23 −Ip 0 0
0 −2 Ȧ32 Ë33 − 2 Ȧ33 0 −A32 2Ė33 − A33 0 0 E33
...

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Due to the identities, the only possible rank-deficiency is related to the part belonging
to the pair (E33, A33). The properties of (4.2) then imply that d = 2p and a = n −2p
in Hypothesis 2.1. Furthermore, the left null space of M̃μ is described by

Z̃ T
2 =

[
∗ 0 Z̃ T

2,0 ∗ 0 Z̃ T
2,1 ∗ 0 Z̃ T

2,2 · · ·
]
.

Observing that

Ñμ[In 0 · · · 0]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 A22 A23
0 A32 A33

0 0 0
0 Ȧ22 Ȧ23

0 Ȧ32 Ȧ33

0 0 0
0 Ä22 Ä23

0 Ä32 Ä33
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we get

Â2 = [
0 Â32 Ia

]

for the second part of Hypothesis 2.1, where the identity comes from a special choice
of Z̃ T

2 . Choosing

T̃2 =
⎡
⎣ Ip 0

0 Ip

0 − Â32

⎤
⎦

and Z̃1 = T̃2 yields

Z̃ T
1 Ẽ T̃2 =

[
Ip 0 0
0 Ip − ÂT

32

] ⎡
⎣ 0 Ip 0

−Ip 0 0
0 0 E33

⎤
⎦

⎡
⎣ Ip 0

0 Ip

0 − Â32

⎤
⎦ =

[
0 Ip

−Ip ÂT
32E33 Â32

]
,

which is indeed pointwise nonsingular, thus satisfying the third part of Hypothesis 2.1.
In particular, the special choice Z̃1 = T̃2 is possible. According to (2.14)with P = QT

we can also choose Z1 = T2 for the original pair such that the reduced DAE inherits
some symmetry properties of the original DAE. Note also that we may assume that
T2 possesses pointwise orthonormal columns.
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By construction, the matrix function T T
2 ET2 is not only pointwise skew-symmetric

but also pointwise nonsingular. We can then proceed similar to [16]. Setting

T T
2 ET2 =

[
Ē c

−cT 0

]
,

there exists a smooth pointwise orthogonal transformationU withU T c = αe1, α = 0,
where e1 denotes the first canonical basis vector of appropriate size, see e.g. [13,
Theorem 3.9]. It follows that

[
U

1

]T [
Ē c

−cT 0

] [
U

1

]
=

[
U T ĒU αe1
−αeT 0

]
=

⎡
⎣

∗ ∗ α

∗ ¯̄E 0
−α 0 0

⎤
⎦ ,

where ¯̄E is again skew-symmetric and pointwise nonsingular. Thus, inductively after p
steps, we arrive at

W T
1 T T

2 ET2W1 =
[

Ẽ11 Ẽ12

−ẼT
12 0

]
,

where W1 collects all the applied transformations. By construction, Ẽ11 is skew-
symmetric and Ẽ12 is anti-triangular and pointwise nonsingular. Finally, setting

W2 =
[

Ip 0
− 1

2 Ẽ−1
12 Ẽ11 Ẽ−1

12

]

yields

W T
2 W T

1 T T
2 ET2W1W2 =

[
0 Ip

−Ip 0

]
= J .

For convenience,wewrite againT2 insteadof the transformedT2W1W2.Completing
T2 to a pointwise nonsingular Q according to (3.2), we get

QT E Q =
[

J Ê12
∗ ∗

]
, QT AQ − QT E Q̇ =

[
C Â12
∗ ∗

]
.

Since self-adjointness is invariant under congruence and J is constant, the matrix
function C is pointwise symmetric. With (3.1) the reduced DAE transforms to

J ẋ1 + Ê12(t)ẋ2 = C(t)x1 + Â12(t)x2 + T2(t)T f (t),
0 = Â22(t)x2 + f̂2(t),

where Â22 = Â2T ′
2 is pointwise nonsingular. Solving the second equation for x2,

differentiating, and eliminating x2 and ẋ2 from the first equation yields the inherent
ODE
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ẋ1 = J−1C(t)x1 + f̃1(t) (4.4)

with some transformed inhomogeneity f̃1.

Theorem 4.2 Let (E, A) with E, A ∈ C(I,Rn,n) be sufficiently smooth and let the
associated DAE (1.7) satisfy Hypothesis 2.1. If (E, A) is self-adjoint, then Q in (3.1)
can be chosen from a restricted class of transformations in such a way that the ODE
(1.4) belonging to the so constructed inherent ODE possesses a symplectic flow.

Proof The above construction shows that it is possible to fix an inherent ODE such that
the associated ODE (1.4) has a symplectic flow. It is special in the sense that it works
with pointwise orthogonal transformations with the exception of W2 which transforms
within one half of the variables and adapts the other half to obtain the matrix J and
thus a set of variables for which the inherent ODE is Hamiltonian. ��

In the special case μ = 0 a slightly simplified construction is possible. Here,
Hypothesis 2.1 says that E has constant rank allowing to choose Q in the form (3.2)
such that

QT E Q =
[

Ê11 0
0 0

]

with Ê11 = T T
2 ET2 pointwise nonsingular. Then, the same modifications of T2 as

before are possible leading to a modified T2 with Ê11 = J . With the corresponding
modified Q, observing ET ′

2 = 0, we get that

QT E Q =
[

J 0
0 0

]
, QT AQ − QT E Q̇ =

[
Â11 Â12

Â21 Â22

]
.

Since congruence conserves self-adjointness, see e.g. [16], we have ÂT
11 = Â11,

ÂT
12 = Â21, and ÂT

22 = Â22. Moreover, Hypothesis 2.1 with μ = 0 requires that
Â22 is pointwise nonsingular. The corresponding reduced DAE, which is here just the
original DAE, transforms to

J ẋ1 = Â11(t)x1 + Â12(t)x2 + T2(t)T f (t),
0 = Â12(t)T x1 + Â22(t)x2 + T ′

2(t)
T f (t).

Solving the second equation for x2 and eliminating it from the first equation, we again
obtain an inherent ODE of the form (4.4), where

C = Â11 − Â12 Â−1
22 ÂT

12

is pointwise symmetric.
Theoretically, all constructions can be performed globally. For a numerical realiza-

tion one typically uses locally smooth variants as described in Sect. 3, which in this
case is straightforward on the basis of locally smooth QR decompositions.
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4.2 Skew-adjoint DAEs

Assuming (1.9) for (1.7), we will make use of the following global canonical form
taken from [15] in a slightly rephrased version.

Theorem 4.3 Let (E, A) with E, A ∈ C(I,Rn,n) be sufficiently smooth and let the
associated DAE (1.7) satisfy Hypothesis 2.1. If (E, A) is skew-adjoint, then we have
that

(E, A) ≡
⎛
⎝

⎡
⎣ Ip 0 0

0 −Iq 0
0 0 E33

⎤
⎦ ,

⎡
⎣ 0 0 0
0 0 0
0 0 A33

⎤
⎦

⎞
⎠ , (4.5)

where

E33(t)ẋ3 = A33(t)x3 + f3(t) (4.6)

is uniquely solvable for every sufficiently smooth f3 without specifying initial condi-
tions. Furthermore,

ET
33 = E33, AT

33 = −A33 − Ė33 (4.7)

In order to construct a suitable reduced DAE (2.8), we proceed as in the self-adjoint
case using the same notation. For the canonical form, we have

M̃μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip 0 0
0 −Iq 0
0 0 E33

0 0 0 Ip 0
0 0 0 0 −Iq 0
0 0 Ė33 − A33 0 0 E33

0 0 0 0 0 0 Ip 0 0
0 0 0 0 0 0 0 Iq 0 0
0 0 Ë33 − 2 Ȧ33 0 0 2Ė33 − A33 0 0 E33
...

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Due to the identities, the only possible rank-deficiency is related to the part belonging
to the pair (E33, A33). The properties of (4.6) then imply that d = p + q and a =
n − (p + q) in Hypothesis 2.1. Furthermore, the left null space of M̃μ is described by

Z̃ T
2 =

[
0 0 Z̃ T

2,0 0 0 Z̃ T
2,1 0 0 Z̃ T

2,2 · · ·
]
.
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Observing that

Ñμ[In 0 · · · 0]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 A33

0 0 0
0 0 0
0 0 Ȧ33

0 0 0
0 0 0
0 0 Ä33
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we get that

Â2 = [
0 0 Ia

]

for the second part of Hypothesis 2.1, where the identity comes from a special choice
of Z̃ T

2 . Choosing

T̃2 =
⎡
⎣ Ip 0

0 Iq

0 0

⎤
⎦

and Z̃1 = T̃2 yields

Z̃ T
1 Ẽ T̃2 =

[
Ip 0 0
0 Ip 0

] ⎡
⎣ Ip 0 0

0 −Iq 0
0 0 E33

⎤
⎦

⎡
⎣ Ip 0

0 Iq

0 0

⎤
⎦ =

[
Ip 0
0 −Iq

]
,

which is indeed pointwise nonsingular, thus satisfying the third part of Hypothesis 2.1.
In particular, the special choice Z̃1 = T̃2 is possible. According to (2.14)with P = QT

we can also choose Z1 = T2 for the original pair such that the reduced DAE inherits
some symmetry properties of the original DAE. Note also that we may assume that
T2 possesses pointwise orthonormal columns.

By construction, the matrix function T T
2 ET2 is not only pointwise symmetric but

also pointwise nonsingular. We can then apply the results of [12], which guarantee the
existence of a smooth matrix function W with

W T T T
2 ET2W =

[
Ip 0
0 −Iq

]
= S.
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For convenience, we write again T2 instead of the transformed T2W . Completing
T2 to a pointwise nonsingular Q according to (3.2), we get

QT E Q =
[

S Ê12
∗ ∗

]
, QT AQ − QT E Q̇ =

[
J Â12
∗ ∗

]
.

Since skew-adjointness is invariant under congruence, see [1, 15], and S is constant,
the matrix function J is pointwise skew-symmetric. With (3.1) the reduced DAE
transforms to

Sẋ1 + Ê12(t)ẋ2 = J (t)x1 + Â12(t)x2 + T2(t)T f (t),
0 = Â22(t)x2 + f̂2(t),

where Â22 = Â2T ′
2 is pointwise nonsingular. Solving the second equation for x2,

differentiating, and eliminating x2 and ẋ2 from the first equation yields the inherent
ODE

ẋ1 = S−1 J (t)x1 + f̃1(t) (4.8)

with a transformed inhomogeneity f̃1.

Theorem 4.4 Let (E, A) with E, A ∈ C(I,Rn,n) be sufficiently smooth and let the
associated DAE (1.7) satisfy Hypothesis (2.1). If (E, A) is skew-adjoint, then Q in
(3.1) can be chosen from a restricted class of transformations in such a way that the
ODE (1.4) belonging to the so constructed inherent ODE possesses a generalized
orthogonal flow.

Proof The above construction shows that it is possible to fix an inherent ODE such
that the associated ODE (1.4) has a generalized orthogonal flow. It is special in the
sense that it works with pointwise orthogonal transformations with the exception of
W . ��

In the special case that μ = 0, a slightly simplified construction is possible. Here,
Hypothesis 2.1 implies that E has constant rank allowing to choose Q in the form
(3.2) such that

QT E Q =
[

Ê11 0
0 0

]

with Ê11 = T T
2 ET2 pointwise nonsingular. Then, the same modifications of T2 as

before are possible leading to a modified T2 with Ê11 = S. With the corresponding
modified Q, observing ET ′

2 = 0, we get

QT E Q =
[

S 0
0 0

]
, QT AQ − QT E Q̇ =

[
Â11 Â12

Â21 Â22

]
.
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Since congruence transformations conserve skew-adjointness, we have ÂT
11 = − Â11,

ÂT
12 = − Â21, and ÂT

22 = − Â22. Moreover, Hypothesis 2.1 with μ = 0 requires that
Â22 is pointwise nonsingular. The corresponding reduced DAE, which is here just the
original DAE, transforms to

Sẋ1 = Â11(t)x1 + Â12(t)x2 + T2(t)T f (t),
0 = Â12(t)T x1 + Â22(t)x2 + T ′

2(t)
T f (t).

Solving the second equation for x2 and eliminating it from the first equation, we again
obtain an inherent ODE of the form (4.4), where

J = Â11 − Â12 Â−1
22 ÂT

12

is pointwise skew-symmetric.
Theoretically, all constructions can be performed globally. For a numerical real-

ization one typically uses locally smooth variants as described in Sect. 3. The only
exception is the construction of a suitable W , where we are still in need of a locally
smooth variant to be used within an integration. One possibility is given in the follow-
ing, cp. [12].

We start with a reference factorization

W T
0 Ê11(t0)W0 = S

which may be obtained by solving the symmetric eigenvalue problem and then scaling
the eigenvalues by congruence to±1 or by a Cholesky-like factorization for indefinite
matrices as given by [2]. We then consider the matrix function

W T
0 Ê11W0 =

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
,

where ẼT
11 = Ẽ11, ẼT

12 = Ẽ21, and ẼT
22 = Ẽ22. In a sufficiently small neighborhood,

the entry Ẽ11 is close to Ip, the entry Ẽ22 is close to −Iq , and the entry Ẽ12 is small
in norm. In particular, the entry Ẽ11 is symmetric positive definite allowing for a
Cholesky factorization

Ẽ11 = L11LT
11,

which is a smooth process. We then get

[
L−1
11 0

−ẼT
12 Ẽ−1

11 Iq

] [
Ẽ11 Ẽ12

ẼT
12 Ẽ22

] [
L−T
11 −Ẽ−1

11 Ẽ12
0 Iq

]
=

[
Ip 0
0 Ẽ22 − ẼT

12 Ẽ−1
11 Ẽ12

]
.
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In a sufficiently small neighborhood, the Schur complement Ẽ22 − ẼT
12 Ẽ−1

11 Ẽ12 is
symmetric negative definite allowing for a Cholesky factorization

−(Ẽ22 − ẼT
12 Ẽ−1

11 Ẽ12) = L22LT
22,

such that

[
Ip 0
0 L−1

22

] [
Ip 0
0 Ẽ22 − ẼT

12 Ẽ−1
11 Ẽ12

] [
Ip 0
0 L−T

22

]
=

[
Ip 0
0 −Iq

]
= S.

Gathering all transformations gives the locally smooth

W = W0

[
L−T
11 −Ẽ−1

11 Ẽ12
0 Iq

] [
Ip 0
0 L−T

22

]

and all steps can be executed numerically in a smooth way using automatic differen-
tiation.

5 Numerical experiments

The presented numerical method has been implemented using automatic differenti-
ation in order to be able to evaluate all needed derivatives and Jacobians. For the
determination of 〈Q, Q̇〉 on the current interval [t0, t0 + h] one can choose between
the following possibilities.

INHERENT Q(t) = Q0

SPIN_STABILIZED Q(t) = Q0 + (t − t0)Q̇0

ROTATED Q = [ T2 T ′
2 ], Ê1T ′

2 = 0
SELF_ADJOINT Q as described in Subsection 4.1
SKEW_ADJOINT Q as described in Subsection 4.2
PRESCRIBED Q by user-provided routine

In all cases except for the last one, one can choose between the general approach,
which includes transformation to a reduced DAE, and the simplified approach assum-
ing that no such transformation is necessary. Schemes based on the direct discretization
of (2.5) are labelled as DIRECT. As numerical integration methods we use the fol-
lowing discretization methods, see e.g. [10, 13].

GAUSS-LOBATTO collocation methods for DAEs based on Gauß nodes for the differential
part and Lobatto nodes for the algebraic part, see [17]

RADAU collocationmethods for DAEs based on Radau nodes the simplest of which
is the implicit Euler method

DORMAND-PRINCE Runge-Kutta-Fehlberg methods for ODEs, see [9]
GAUSS collocation methods for ODEs based on Gauß nodes
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Experiment 5.1 The linear DAE

[
δ − 1 δt
0 0

] [
ẋ1
ẋ2

]
=

[−η(δ − 1) −ηδt
δ − 1 δt − 1

] [
x1
x2

]
+

[
f1(t)
f2(t)

]
,

cp. [18], with real parameters η and δ = 1 is constructed in such a way that direct
discretization by the implicit Euler method corresponds to the discretization of an
inherent ODE by the explicit Euler method. Setting δ = −105, η = 0 yields a
stiff inherent ODE and we expect stability problems when working directly with the
implicit Euler method. For our numerical experiments we have chosen f1, f2 and the
initial condition so that the solution is given by x1(t) = x2(t) = exp(−t). Integration
interval was [0, 1] and tolerance was 10−5. The following table gives the cpu times and
the number of integration steps for the various versions of the implicit Euler method.

version cpu time steps

DIRECT 10.31 97840
INHERENT 0.73 10
SPIN_STABILIZED 0.60 10
ROTATED 0.67 10

The stabilizing effect of discretizing an inherent ODE is obvious. The three different
versions in the choice of the inherent ODE do not differ significantly.

Experiment 5.2 A mathematical model of a pendulum is given by the DAE

ẋ3 = x1,
ẋ4 = x2,

−ẋ1 = 2x3x5,
−ẋ2 = 1 + 2x4x5,

0 = x23 + x24 − 1,

which is known to satisfyHypothesis 2.1withμ = 2, a = 3, and d = 2. The equations
and unknowns are ordered in such a way that

Fẋ (t, x, ẋ) =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0

−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Fx (t, x, ẋ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 2x5 0 2x3
0 0 0 2x5 2x4
0 0 2x3 2x4 0

⎤
⎥⎥⎥⎥⎦ .

Hence, (Fẋ , Fx ) is self-adjoint for all arguments. The constructions of Sect. 4, however,
are only valid for linear DAEs and therefore not applicable. The only valid use of an
inherent ODE as presented here is by the versions INHERENT and PRESCRIBED,
since in the nonlinear case the Jacobians do not only depend on t . The following table
shows the performance of various discretization schemes when integrating over the
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interval [0, 10] with stepsize control starting with x(0) = (0, 0, 1, 0, 0)T and using a
tolerance of 10−5.

method version stages order cpu time steps

GAUSS-LOBATTO DIRECT 2-3 4 0.93 55
RADAU DIRECT 4 7 0.99 28
DORMAND-PRINCE INHERENT 7 4 1.33 47
DORMAND-PRINCE INHERENT 13 7 1.29 28
GAUSS INHERENT 2 4 11.76 55
RADAU INHERENT 4 7 12.92 34

In particular, we observe that we are able to solve the given problem by explicit
schemes for the chosen inherent ODE with nearly the same efficiency as the standard
direct methods. As in the standard ODE case, implicit methods applied to the inherent
ODE are for this problem outperformed by explicit methods since the inherent ODE
is non-stiff.

In the following experiments we measure the geometric error in the flow � with
respect to a quadratic Lie group (1.5), i. e. the deviation of the flow � from being
pointwise in the corresponding Lie group, by ‖�(t)T X�(t) − X‖, where we use the
matrix norm defined by ‖
‖ = maxi, j=1,...,n |
i j | for a matrix 
 = [
i j ] ∈ R

n,n .

Experiment 5.3 The self-adjoint DAE E(t)ẋ = A(t)x given by

E = QT Ê Q, A = QT ÂQ − QT Ê Q̇,

where

Ê =
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ , Â =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ , Q =

⎡
⎣ 1 s 0

s 1 s
0 s 1

⎤
⎦ ,

with s(t) = 1
2 sinωt, ω = 1, possesses a symplectic flow with respect to the first two

components of the transformed unknown x̂ = Qx .
The following table shows the performance and the maximal geometric error in the

flow for various discretization schemes when integrating over the interval [0, 200π ]
using 1, 000 equidistant steps. We used the simplified approach due to μ = 0.

method version stages order cpu time error

GAUSS-LOBATTO DIRECT 2-3 4 1.44 1.380e-02
DORMAND-PRINCE INHERENT 7 4 5.36 2.468e-01
GAUSS ROTATED 2 4 23.68 7.281e-04
GAUSS SELF_ADJOINT 2 4 24.88 1.927e-11

In particular, we see that the last method given in the table shows a geometric error
only governed by roundoff effects, thus constituting a geometric integrator for this
class of problems.
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Experiment 5.4 The skew-adjoint DAE E(t)ẋ = A(t)x given by

E = QT Ê Q, A = QT ÂQ − QT Ê Q̇,

where

Ê =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Â =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣
1 s 0 0
s 1 s 0
0 s 1 s
0 0 s 1

⎤
⎥⎥⎦ ,

with s(t) = 1
2 sinωt, ω = 1, possesses an orthogonal flow with respect to the first

two components of the transformed unknown x̂ = Qx .
The following table shows the performance and the maximal geometric error in the

flow for various discretization schemes when integrating over the interval [0, 200π ]
using 1, 000 equidistant steps. We used the simplified approach due to μ = 0.

method version stages order cpu time error

GAUSS-LOBATTO DIRECT 2 − 3 4 2.05 1.226e-01
DORMAND-PRINCE INHERENT 7 4 12.52 1.965e-02
GAUSS ROTATED 2 4 74.85 9.363e+00
GAUSS SKEW_ADJOINT 2 4 80.64 3.814e-12

In particular, we see that the last method given in the table shows a geometric error
only governed by roundoff effects, thus constituting a geometric integrator for this
class of problems.

Experiment 5.5 The skew-adjoint DAE E(t)ẋ = A(t)x given by

E = QT Ê Q, A = QT ÂQ − QT Ê Q̇,

where

Ê =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Â =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎢⎣

1 s 0 0 0
s 1 s 0 0
0 s 1 s 0
0 0 s 1 s
0 0 0 s 1

⎤
⎥⎥⎥⎥⎦ ,

with s(t) = 1
2 sinωt, ω = 1, possesses a generalized orthogonal flow in O(2, 1) with

respect to the first three components of the transformed unknown x̂ = Qx .
The following table shows the performance and the maximal geometric error in the

flow for various discretization schemes when integrating over the interval [0, 200π ]
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using 1, 000 equidistant steps. We used the simplified approach due to μ = 0.

method version stages order cpu time error

GAUSS-LOBATTO DIRECT 2-3 4 3.33 4.548e-01
DORMAND-PRINCE INHERENT 7 4 32.40 8.957e-01
GAUSS ROTATED 2 4 226.55 6.912e-01
GAUSS SKEW_ADJOINT 2 4 288.55 1.096e-11

In particular, we see that again the last method given in the table shows a geometric
error only governed by roundoff effects, thus constituting a geometric integrator for
this class of problems.

6 Conclusions

We have presented discretization methods for DAEs that are based on the integration
of an inherent ODE which is extracted from the derivative array equations associated
with the given DAE utilizing automatic differentiation. We have shown that for this
inherentODEwe can use classical discretization schemes for the numerical integration
ofODEs that cannot be used forDAEs directly. For self-adjoint and skew-adjoint linear
time-varying DAEs we have shown that the inherent ODE can be constructed in such
a way that it inherits these symmetry properties of the given DAE and thus also the
geometric properties of its flow. We then have exploited this property to construct
geometric integration schemes with a numerical flow that preserves these geometric
properties.
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