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Abstract
Finite-difference based approaches are common for approximating the Caputo frac-
tional derivative. Often, these methods lead to a reduction of the convergence rate
that depends on the fractional order. In this note, we approximate the expressions in
the fractional derivative components using a separate quadrature rule for the integral
and a separate discretization of the derivative in the integrand. By this approach, the
error terms from the Newton–Cotes quadrature and the differentiation are isolated and
it is possible to conclude that the order dependent error is inevitable when the end
points of the interval are included in the quadrature. Furthermore, we show experi-
mentally that the theoretical findings carries over to quadrature rules without the end
points included. Finally we show how to increase accuracy for smooth functions, and
compensate for the order dependent loss.
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1 Introduction

In comparison to normal integer derivatives, fractional derivatives include a memory
effect, which is advantageous when modeling real materials in mechanics and elec-
tronics, as well as in the description of rheological properties of solids [26]. Other
applications where this memory effect is important include modeling of speech [6],
bioengineering [20], fluid dynamics [16] and finance [29]. There are several formu-
lations of fractional derivatives, and the most common ones are Riemann-Lioville’s,
Grünwald-Letnikov’s and Caputo’s formulation [25].

Fractional differential equations (FDEs) extend ordinary differential equations by
introducing or replacing the integer order derivatives with fractional derivatives. The
Caputo derivative is suitable when modeling real physical problems, since it requires
integer (and not fractional) order of the derivative as initial condition in FDEs. Together
with a closed quadrature rule (including both end-points), the finite-difference approx-
imation is a common approach for evaluating the Caputo fractional derivative.

High-order methods for the Caputo fractional derivative have been developed in [8,
19] where the order is 3−α and in [22] of order 4−α. Another approach for the Caputo
fractional derivative based on quadratic interpolation and compact operators, which
obtain convergence rates of 3 − α, is presented in [12]. In [10], a similar procedure
for the diffusion-wave equation (1 < α < 2) obtained a convergence rate of 4 − α.
In [24], Odibat presents a modification of the Trapezoidal rule for approximating the
fractional integral and Caputo derivative to second order. A convergent scheme for
the diffusion-wave equation where the truncation error depends on the fraction of
the derivative (usually denoted by α) was derived in [31]. Similar error estimates are
found in [18, 23]. A comprehensive review of finite differencemethods and the relation
between accuracy, stability and treatment of boundary conditions is provided in [32],
where order reduction in numerical approximations is observed at the boundaries.

Fractional derivatives can be used to form FDEs but also stand alone, for example
when used in a P I λDμ controller [26]. FDEs are a special type of Volterra equations
with weakly singular kernels [13]. To treat the singularity, different strategies can be
employed such as gradedmeshes or transformations [7, 14, 27] Other numerical meth-
ods include non-polynomial spline methods [17], spectral methods [11, 33], piecewise
constant approximation or integrabilization methods [3, 4] and the discrete time ran-
dom walk approach [1, 2, 5]. Yet, another strategy, which we use in this article, is
integration by parts. This bypasses the singularity already in the continuous setting,
but requires additional smoothness of the integrand.

High-order methods are beneficial when accurate solutions to partial differential
equations is the target [15]. They heavily rely on stable and accurate weak boundary
and interface conditions, which summation-by-parts operators (SBP) together with the
Simultaneous-Approximation-Term technique (SAT) provide for finite differences [9].
We will in this work illustrate that the approximation of the individual components of
the fractional derivative (integral, convolution kernel and integrand) by SBP operators
yields a concise numerical approximation of the fractional derivative. This enables
results from the extensive SBP literature [9] to be employed to fractional order prob-
lems.
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In this note, we examine a methodology for numerically computing the Caputo
fractional derivative of smooth functions with non-singular derivatives by approx-
imating the expression component-wise using a quadrature for the integral and an
appropriate discretization of the integrand using SBP operators. Of particular interest
is the limitations of the convergence rates for closed quadratures and the influence
of the parameter α as observed in the references above. We do not intend to develop
a new numerical method, but rather aim to edify the source of the reduced accuracy
obtained from traditional quadrature methods. Moreover, we illustrate the dependence
of the convergence rate on the position within the domain, most appreciably so when
the quadrature domain approaches the singularity in the integration kernel. Finally we
show how to increase accuracy for smooth functions, and compensate for the order
dependent loss. The insights provided herein may lead to the development of robust
and more accurate quadrature methods for integrals of this nature.

2 Fractional calculus preliminaries

All preliminaries presented here can be found in [26]. The fractional integral is defined
as

I α
0,t f (t) = 1

�(α)

∫ t

0
(t − τ)α−1 f (τ )dτ, (2.1)

where �(α) = ∫ ∞
0 zα−1e−zdz is the Gamma function. The Caputo derivative is given

by

CD
α
0,t f (t) = I (m−α)

0,t
dm

dtm
f (t) = 1

�(m − α)

∫ t

0
(t − τ)m−α−1 f (m)(τ )dτ, (2.2)

where m − 1 < α < m. For 0 < α < 1, (2.2) simplifies to

Dα f (t) = C D
α
0,t f (t) = 1

�(1 − α)

∫ t

0
(t − τ)−α f ′(τ )dτ , (2.3)

where the first equality is introduced to ease the notation for the upcoming analysis.
In this work we only consider the case of m = 1. This is justified by the possibility
of decomposing a higher order fractional derivative into a system of first and αth
(0 < α < 1) order differential equations.

3 The reduction of accuracy in quadrature

This section illustrates the common reduction of order in quadrature methods when
approximating the convolution integral of the fractional derivative. Considering the
domain τ ∈ [0, t], with uniform discretisation τ = {0, �τ, . . . , t − �τ, t}, we show
that O(�τ 1−α) terms cannot be avoided or cancelled by any Newton–Cotes quadra-
ture. This claim is proved in Sect. 4.

123



17 Page 4 of 14 BIT Numerical Mathematics (2023) 63 :17

We begin by considering the convolution integral

∫ t

0
(t − τ)−α f ′(τ )dτ =

∫ �τ

0
(t − τ)−α f ′(τ )dτ + · · ·

∫ t

t−�τ

(t − τ)−α f ′(τ )dτ .

(3.1)

We parameterise the integration limits and consider an arbitrary ‘sub’ integral subject
to the general integration limits τ ∈ [a, b], such that b − a = �τ . This enables the
change in behaviour as b → t to be quantified. Explicitly this integral is

∫ b

a
(t − τ)−α f ′(τ )dτ =

∫ b

a
g(τ )dτ, (3.2)

where g(τ ) = (t − τ)−α f ′(τ ). We now replace the integrand g(τ ) with the Taylor
series of this function expanded around the midpoint of the integral domain, τ̃ = a+b

2 ,
yielding

g(τ ) = g (τ̃ ) + (τ − τ̃ ) g′ (τ̃ ) + 1

2
(τ − τ̃ )2 g′′ (τ̃ ) + O

(
(τ − τ̃ )3

)
. (3.3)

This expansion is a valid use of the Taylor series since we never explicitly evaluate
g(τ ) (or any derivatives of g(τ )) at τ = t where we have a singularity. We now
compute the integral in (3.2) with �τ = b − a, to obtain,

∫ b

a
g(τ )dτ = �τg (τ̃ ) + 1

24
�τ 3g′′ (τ̃ ) + �τ 5

1920
g(4) (τ̃ ) + �τ 7

322560
g(6) (τ̃ ) + · · · ,

=
∞∑
i=0

�τ 2i+1

22i (2i + 1)!g
(2i)(τ̃ )

=
∑
j even

�τ j+1

2 j ( j + 1)!g
( j)(τ̃ ), (3.4)

noting that the integral of odd derivative terms is zero, due to the expansion around
the midpoint of the domain.

We may construct a quadrature (trapezoidal) to cancel the leading term in Eq. (3.4)
using

g(a) = g (τ̃ ) − 1

2
�τg′ (τ̃ ) + 1

8
�τ 2g′′ (τ̃ ) + · · · , (3.5)

g(b) = g (τ̃ ) + 1

2
�τg′ (τ̃ ) + 1

8
�τ 2g′′ (τ̃ ) + · · · , (3.6)

noting that the error, E , is then given by,
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E =
∫ b

a
g(τ )dτ − �τ

(
g(a) + g(b)

2

)

= − 1

12
�τ 3g′′ (τ̃ ) − 1

480
�τ 5g(4) (τ̃ ) + · · · (3.7)

Now onemight be inclined to conclude that E = O(�τ 3) in all subintervals. However
since,

g(τ ) = (t − τ)−α f ′(τ ) = K (t − τ) f ′(τ ), (3.8)

where K (t−τ) = (t−τ)−α , the derivatives of g(τ )will include increasing derivatives
of the kernel K (t − τ), due to repeated application of the product rule. Note that,

g′′(τ ) = f ′(τ )K ′′(t − τ) − 2 f ′′(τ )K ′(t − τ) + f (3)(τ )K (t − τ)

= α(α + 1) f ′(τ )(t − τ)−α−2 + 2α f ′′(τ )(t − τ)−α−1 + f (3)(τ )(t − τ)−α.

(3.9)

Then the first term in Eq. (3.7) is then given by

− 1

12
�τ 3g′′ (τ̃ ) = − 1

12
�τ 3

(
α(α + 1) f ′(τ̃ )(t − τ̃ )−α−2

+2α f ′′(τ̃ )(t − τ̃ )−α−1 + f (3)(τ̃ )(t − τ̃ )−α
)

,

= O

(
�τ 3(t − b + �τ

2
)−α−2

)
, (3.10)

since τ̃ = b − �τ/2.
This process can be repeated for every error term in Eq. (3.7) giving the general

form,

�τ n+1g(n) = O

(
�τ n+1(t − b + �τ

2
)−α−n

)
, n = 2, 4, . . . . (3.11)

The form in (3.11) illustrates that there are two sources of truncation error, and the
dominance of one over the other is predicated by the position in the integral, or the
value of b. Examining (3.11), when b = �τ (corresponding to the first sub integral),
or when the quadrature is sufficiently far from the singularity the order, (3.11), is
dominated by the �τ n+1 since

∣∣∣∣(t − �τ

2
)−α−n

∣∣∣∣ �
∣∣∣�τ n+1

∣∣∣ , (3.12)

provided �τ � t . This phenomenon is also observed numerically where, away from
the singularity, our quadrature recoversO(�τ 3) per subinterval, and when N of these
errors are summed, we observe error like O(�τ 2).
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Fig. 1 Behaviour of the leading error term with m = 1, t = 1 and α = 1/2 as a function of b

When b = t , or when b is sufficiently close to the singularity, then we have relation
(3.11) reducing to

O
(
�τ 1−α2n+α

)
, n = 2, 4, . . . . (3.13)

By observing the convergence behaviour at the lower and upper integration termi-
nals we are able to establish bounds on the order of convergence of the total quadrature
scheme. However, we are also interested in how the order of convergence changes
across the domain. To assess this, we visualise the convergence in (3.7) as a function
of b. We note that the expansions used in (3.5) and (3.6) are centered in the midpoint
of each domain, so as to avoid evaluating the integrand at the point of singularity.

Figure 1 illustrates the convergence order of each subinterval, τ ∈ [b−�τ, b], as a
function of b. As b → 0 the integrand exhibits no singular behaviour and recovers the
expected convergence rate. However, as b → t the degeneration of convergence rate
fromO(�τ 3) toO(�τ 1−α) occurs gradually as the quadrature approaches the singu-
larity at τ = t . More importantly, the leading error for any Newton–Cotes quadrature
at b = t is given by (3.13) and is bound by �τ 1−α regardless of the value of n. The
natural approach in improving the accuracy of a quadrature is to increase the number
of quadrature nodes to cancel increasing error terms. However, as was shown above,
this procedure does not reduce the order of leading error term, regardless of howmany
quadrature nodes are used.

While Fig. 1 illustrates the order of the truncation error of each subdomain, τ ∈
[b − �τ, b], parameterised by b, we need the accumulated truncation error over all
subdomains to quantify the truncation error of the total quadrature.

Considering the sum over all sub-intervals we have,
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Fig. 2 Theoretical convergence behaviour over all subintervals with m = 1 and α as a function of �τ ,
continuous lines denote the slope of 1 − α

Etot =
N∑
i=1

�τ 2p+1
(
t − i�τ − �τ

2

)−α−2p

, (3.14)

where �τ = t/N , and p indicates the error behaviour for the pth term in the Taylor
series. The function Etot is sampledwith decreasing values of�τ and various values of
α, shown in Fig. 2. From this figurewe can see that the dynamics of the total quadrature
follow O(�τ 1−α), an inevitable limitation using this approach. This poor accuracy
has been previously observed and can be improved upon using several methodologies
[8, 10, 22], however these approaches are not directly related to the Newton–Cotes
type quadrature present in this work. Subsequent sections in this work propose a
methodology for improving the accuracy.

4 Generalisations

This section generalises the results shown in the previous section to an arbitrary order
Newton–Cotes quadrature as well as the expected convergence ceiling imposed by a
generalised weakly singular kernel in the form K (τ ) = (t − τ)k−α , where k ∈ N.
Typically Newton–Cotes quadratures with n nodes in a given stencil will exhibit a
convergence rate of O(�τ n) for non-singular integrands.

Proposition 1 A Newton–Cotes quadrature of order n for integrals containing a
weakly singular kernel of the form

(t − τ)k−α, ∀k ∈ N,

have a convergence rate of

O
(
�τ k+1−α

)
,
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independent of n.

Proof Consider a discretisation of the domain [a, b]with equally spaced nodes, so that
{τ0, τ1, . . . , τn} = {a, a + �τ, . . . , b}. Given g(τ ) = K (t − τ) f ′(τ ) and provided
f (τ ) is sufficiently smooth, then we have an nth order Newton–Cotes quadrature
defined as

∫ b

a
g(τ )dτ ≈

n∑
i=0

ωi g(τi ), (4.1)

whereωi is obtained from computing (3.5) and (3.6) on each subinterval and collecting
the equally sized coefficients. The values for ωi ’s are computed to match and cancel
the first n terms of (3.4) Hence, this quadrature has error

E =
∫ b

a
g(τ )dτ −

n∑
i=0

ωi g(τi ) ∼ g(n)(τ̃ )�τ n+1. (4.2)

The leading error term in (4.2) contains the nth derivative of g(τ̃ ), g(n)(τ̃ ). More-
over, generalising (3.9) using the generalised Leibniz Rule (product rule of high order
derivatives) we have, with g(τ ) = K (t − τ) f ′(τ ),

g(n)(τ̃ ) =
n∑
j=0

(
n

j

)
K ( j)(t − τ) f (n− j+1)(τ ). (4.3)

The term in the above summation limits the convergence rate for j = n, is K (n)(t −
τ) f ′(τ ). We can now more precisely define (4.2) as

E ∼ �τ n+1
n∑
j=0

(
n

j

)
K ( j)(t − τ) f (n− j+1)(τ ). (4.4)

The leading cause of error occurs in the final term of the sum, i.e. for j = n,

E = O
(
�τ n+1K (n)(t − τ) f ′(τ )

)

= O

(
�τ n+1 (−1)n�(k − α + 1)

�(k − n − α + 1)

(
�τ

2

)k−n−α
)

= O
(
�τ k+1−α

)
, (4.5)

where τ = t − �τ
2 is sufficiently close to the singular boundary and the nth derivative

of the convolution kernel is given by
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K (n)(t − τ) = (−1)n�(k − α + 1)

�(k − n − α + 1)

(
�τ

2

)k−n−α

. (4.6)

��
Remark 4.1 In summary, we highlight that the error result obtained in (4.5) is inde-
pendent of n, indicating that the source of error inherent in this class of quadrature for
weakly singular kernels is independent of the order of the specific quadrature used.

5 Raising the accuracy to compensate for the previously described
loss

To obtain a numerical approximation of (2.3), we discretize the domain τ ∈ [0, t]with
N + 1 equidistant grid points τi = ih, where i = 0, 1, 2, . . . , N and h = t/N . Also,
let P = diag(ω0, . . . , ωN )h and f = ( f (x0), . . . f (xN )). If a closed quadrature rule
of the form

∫ t

0
f (τ )dτ ≈ h

N∑
i=0

ωi f (xi ) = 1Pf (5.1)

is used, where ωi > 0 are weights, then the singularity of the integrand in (2.3) at
τ = t will lead to a blow-up.

To cure this anomaly, (2.2) is rewritten by using integration by parts which leads
to the modified formula

Dα f (t) = 1

�(2 − α)

[
t1−α f ′(0) +

∫ t

0
(t − τ)1−α f ′′(τ )dτ

]
(5.2)

and removes the singularity. Approximating (5.2) numerically yields

Dα f (t) ≈ Dα
h f = 1

�(2 − α)

(
t1−α(D1f)0 + 1PT 1−αD2f

)
. (5.3)

In (5.3), D1f ≈ f ′ and D2f ≈ f ′′ are finite-difference approximations of f ′ and f ′′
evaluated on the grid. The matrix D1 approximates the first derivative [30], while
D2 generates an approximation of the second derivative [21]. Furthermore, T =
diag(t, t − h, . . . , 0) and the exponent in T 1−α should be interpreted element-wise.

To verify the accuracy of (5.3), we compare the numerical result to a known ana-
lytical value. For polynomials of degree n, an analytic expression can be obtained
by repeatedly using integration-by-parts: Dαtn = n!tn−α/�(n + 1 − α). Given two
step-sizes, h1, h2, the error in (5.3) is ehi = ∣∣Dα f (t) − Dα

hi
f
∣∣, i = 1, 2, and the

convergence rate is rh1 = log(eh1/eh2)/ log(h1/h2). To start, we let P2 contain the
weights of the second order Trapezoidal rule and D1,21, D2,21 be the matrices con-
taining the second order accurate central finite-difference schemes in the interior and
appropriate first order forward and backward stencils at the boundaries. The error and
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Table 1 Error and convergence rate of Dα t3 for different values of α

α 0.2 0.4 0.6 0.8
N e r e r e r e r

21 5.53e–03 – 1.80e–02 – 4.49e–02 – 1.02e–01 –

41 1.79e–03 1.63 6.39e–03 1.49 1.78e–02 1.34 4.54e–02 1.16

81 5.64e–04 1.67 2.22e–03 1.52 6.92e–03 1.36 2.00e–02 1.18

The Trapezoidal rule approximates the integral and the second order finite difference operators,
D1,21, D2,21, approximate the derivatives

Table 2 Error and convergence rate of Dα t3 for different values of α

α 0.2 0.4 0.6 0.8
N e r e r e r e r

21 4.61e–04 – 2.47e–03 – 9.41e–03 – 3.05e–02 –

41 1.32e–04 1.81 8.11e–04 1.61 3.56e–03 1.40 1.32e–02 1.20

81 3.77e–05 1.80 2.67e–04 1.60 1.35e–03 1.40 5.76e–03 1.20

A quadrature rule of order seven is used and differentiation matrices D1,84, D2,84 of order eight in the
interior and four at the boundaries

convergence rate is presented in Table 1 for f (t) = t3. We find that the convergence
rate approaches 2 − α, thus we have raised the order of the accuracy by one.

In an ambition to further increase the convergence rate, we use a quadrature matrix
P and differentiation matrix D of higher order. Table 2 presents the result for SBP84,
where P7 now is a diagonal and positive definite matrix forming a quadrature of
order seven and D1,84, D2,84 are eighth order in the interior and fourth order at the
boundaries. These operators are sufficiently accurate such that numerical integration
and differentiation errors are negligible [21, 30, 32]. However, as for the lower order
case, the numerical experiments again suggest a convergence rate of 2 − α, with no
improvement in accuracy. Similar results are obtained for other smooth functions f
in the integrand.

The results in Tables 1 and 2 and the previous analysis in Sect. 4 illustrate that there
are two factors limiting the accuracy: (1) the natural error source that is related to the
fractional kernel and present for all closed quadratures and (2) the order of the specific
quadrature. The most significant error source determines the convergence rate.

To verify our claim, we start by integrating (2.2) by parts to get

Dα f (t) = t1−α f ′(0)
�(2 − α)

+ 1

�(3 − α)

(
t2−α f ′′(0) +

∫ t

0
(t − τ)2−α f (3)(τ )dτ

)
.

(5.4)

123



BIT Numerical Mathematics (2023) 63 :17 Page 11 of 14 17

Table 3 Error and convergence rate of Dα t3 for different values of α for (5.5)

α 0.2 0.4 0.6 0.8
N e r e r e r e r

21 2.82e–06 – 1.17e–05 – 3.08e–05 – 5.22e–05 –

41 4.05e–07 2.80 1.93e–06 2.60 5.84e–06 2.40 1.14e–05 2.20

81 5.82e–08 2.80 3.18e–07 2.60 1.11e–06 2.40 2.47e–06 2.20

The quadrature matrix P7 and the differentiation matrices D1,84, D2,84 have been used in the computations

Table 4 Error and convergence rate of Dα t3 for different values of α for (5.5)

α 0.2 0.4 0.6 0.8
N e r e r e r e r

21 1.15e–02 – 1.16e–02 – 1.06e–02 – 8.06e–03 –

41 2.94e–03 1.97 2.98e–03 1.95 2.79e–03 1.93 2.16e–03 1.90

81 7.44e–04 1.98 7.60e–04 1.97 7.21e–04 1.95 5.69e–04 1.92

The quadrature matrix P2 and the differentiation matrices D1,21, D2,21 have been used in the computations

Note that (5.4) can only be obtained if f is smooth enough and has non-singular
derivatives. A discrete approximation of (5.4) is

Dα
h f = t1−α(Df)0

�(2 − α)
+ 1

�(3 − α)

(
t2−α(D2f)0 + 1PT 2−αD3f

)
. (5.5)

In (5.4), D3f = D2D1f ≈ f ′′′ and the quadraturematrices are the sameas inSect. 5. For
the fractional kernel (t−τ)1−α , the convergence order of the numerical approximation
(5.3) was 2 − α. Raising the power of the kernel to 2 − α as in (5.4), we expect a
high-order version of the numerical approximation in (5.5) to generate a convergence
of order 3− α. The error and convergence rates for the scheme in (5.5) together with
P7 and D1,84, D2,84 and f (t) = t3 are presented in Table 3. As expected, the results
suggest a convergence rate of 3− α, meaning that (1) is the limiting factor. If P or D
are of lower convergence order, then (2) will dominate instead, as seen in Table 4.

In a similar manner, repeatedly using integrating-by-parts results in

Dα f (t) = 1

�(n + 1 − α)

∫ t

0
(t − τ)n−α f (n+1)(τ )dτ +

n∑
i=1

t i−α f (i)(0)

�(i + 1 − α)
,

(5.6)

which can be used to increase the order. Discretizing (5.6) leads to

Dα
h f (t) = 1

�(n + 1 − α)

(
1PT n−αDn+1f

)
+

n∑
i=1

t i−α(Di f)0
�(i + 1 − α)

, (5.7)
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Table 5 Error and convergence rate for the 2nd order quadrature rule

α 0.2 0.4 0.6 0.8
N e2 q2 e3 q3 e4 q4 e5 q5

21 7.42e–04 – 6.36e–04 – 5.00e–04 – 3.05e–04 –

61 8.29e–05 1.99 7.23e–05 1.98 5.88e–05 1.95 3.81e–05 1.89

101 2.99e–05 2.00 2.62e–05 1.99 2.16e–05 1.96 1.43e–05 1.92

Table 6 Error and convergence rate for the 4th order quadrature rule

α 0.2 0.4 0.6 0.8
N e r e r e r e r

21 8.26e–06 – 2.12e–05 – 3.54e–05 – 3.86e–05 –

61 3.86e–07 2.79 1.23e–06 2.59 2.54e–06 2.40 3.45e–06 2.20

101 9.25e–08 2.80 3.25e–07 2.60 7.47e–07 2.40 1.12e–06 2.20

where Di f ≈ f (i) is the i-th derivative evaluated on the grid. The obvious downsides of
(5.6) and (5.7) are that the function must be smooth enough with non-singular deriva-
tives and secondly, the necessity of an high-order approximation of a high derivative.

6 The extension to open quadratures

The analysis above carries over to open quadratures as well, which we will illustrate
numerically by considering the composite 2nd order midpoint rule and the composite
4th order Milne’s rule [28], denoted by PO

2 and PO
4 , respectively. For the approxima-

tion
∫ t
0 (t−τ)2−αdτ ≈ 1PT 2−α1, we expect that PO

2 leads to 2nd order convergence
and PO

4 leads to 3− α. Tables 5 and 6 presents the results, which agree with our the-
oretical speculation.

7 Conclusions

We have investigated the numerical approximations of Caputo’s formulation for frac-
tional derivatives for closed quadrature rules. We showed that the convergence rate
for such discretization depend naturally on the fractional parameter α. Two different
error sources determine the convergence rate: (1) the inherent error associated with
the numerical integration of the kernel and (2) the order accuracy of the numerical
method used. Themost significant one determines the convergence rate. Moreover, we
have shown in the case of a general Newton–Cotes quadrature that the leading term in
the error expression is limited not by the order of the quadrature but by the degree of
the singularity present in the integrand. We have also shown how to increase the order
of accuracy by using integration by parts. The present work is general for smooth
integrands. In future work we aim to extend the analysis to non-smooth integrands.
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Lastly, we presented numerical evidence that the theoretical findings carries over to
open quadratures as well.
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