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Abstract
Based on recent developments regarding the analysis of algebraic flux correction
schemes, we consider a locally bound-preserving discretization of the time-dependent
advection equation. Specifically, we analyze a monolithic convex limiting scheme
based on piecewise (multi-)linear continuous finite elements in the semi-discrete for-
mulation. To stabilize the discretization, we use low order time derivatives in the
definition of raw antidiffusive fluxes. Our analytical investigation reveals that their
limited counterparts should satisfy a certain compatibility condition. The conducted
numerical experiments suggest that this prerequisite is satisfied unless the size of
mesh elements is vastly different. We prove global-in-time existence of semi-discrete
approximations and derive an a priori error estimate for finite time intervals with a
worst-case convergence rate of 1

2 w. r. t. the L2 error. This rate is optimal in the set-
ting under consideration because we allow all correction factors of the flux-corrected
scheme to become zero. In this case, the algorithm reduces to the bound-preserving
discrete upwinding method but the limited counterpart of this scheme converges much
faster, in practice. Additional numerical experiments are performed to verify the prov-
able convergence rate for a few variants of the scheme.
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1 Introduction

Algebraic flux correction (AFC) schemes were proposed in [25] and have since then
become an active research area [3, 5, 18, 21, 28]. These methods provide a robust
framework guaranteeing that discrete maximum principles hold [6, 27] and/or that
entropy conditions are satisfied in the case of nonlinear equations [22, 23]. Nonlinear
AFC approaches combine a high order baseline scheme, such as the Galerkin finite
element discretization, with a provably bound-preserving low order approximation.
In this manner, global and/or local constraints can be imposed on the values of AFC
solutions resulting from discretizations of various partial differential equations.

The focus of most efforts dealing with AFC schemes was on the development of
numerical algorithms, while theoretical aspects have only recently started to attract
significant interest. Barrenechea et al. [5] were the first to show solvability of a nonlin-
earAFC system arising fromdiscretization of stationary convection-diffusion-reaction
equations. Moreover, they prove that the scheme convergences with a rate of at least
1
2 in the AFC energy norm. In their subsequent work [6], they derived a sharper,
first order error estimate under the assumption that the limiter is linearity preserving.
Unfortunately, the proof technique that was used to obtain this superconvergence result
relies on the presence of diffusive terms. Lohmann [27] extended the analysis of AFC
schemes to the case without diffusive terms and obtained similar theoretical results for
linear hyperbolic problems, again with a provable rate of 1

2 . Other theoretically inves-
tigated aspects of AFC procedures include their connection to edge-based diffusion
[4], proofs of invariant domain preservation for the low order method [13], and a study
of a posteriori error estimators [17]. The recent work of Jha and Ahmed [18] presents
the first theoretical foundation of AFC schemes for parabolic convection-diffusion-
reaction equations. The AFC schemes analyzed therein are based on flux-corrected
transport algorithms that are fully discrete and employ implicit time stepping.

In contrast to [18], this manuscript presents semi-discrete stability and a priori error
analysis of AFC schemes for finite element discretizations of the time-dependent
linear advection equation. To cure the oscillatory behavior of continuous Galerkin
methods, we stabilize the antidiffusive fluxes using low order time derivatives (defined
by (2.14) below). Flux correction is performed usingKuzmin’s [21]monolithic convex
limiting (MCL) scheme. For analytical purposes, we make an assumption regarding
compatibility of the semi-discrete approximations and corresponding time derivatives.
As shown in [15, Sec. 3.3], it is possible to enforce this condition by adapting the
limiting procedure of the standardMCL approach. The results obtained in this manner
are slightly more diffusive but exhibit the same second-order convergence rates in
practice. However, based on our experience, the additional fix only rarely needs to be
activated because compatibility seems to be automatically satisfied for the standard
MCL scheme inmost cases. Evidence for this claim is provided in Sect. 5.4. Therefore,
we do not discuss enforcement of the compatibility condition in this work and instead
refer the interested reader to [15, Sec. 3.3].
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We prove that the nonlinear semi-discrete scheme is stable and that for finite times
its spatial accuracy w. r. t. the L2 norm is at least of order 1

2 for linear finite elements
and generally unstructured meshes. In practice, second order superconvergence can
be expected for smooth solutions and uniform meshes, as evidenced by the numerical
examples of this paper and, for instance [3, 18, 28].

The structure of this article is as follows. We begin with the formulation of the
continuous problem, and review the construction of the monolithic AFC schemes
under discussion. Subsequently, in individual sections, we present the main theoretical
outcomes of our work, an energy estimate and an a priori error analysis. Finally, we
report the results of numerical experiments and draw conclusions. The contents of this
paper are to a large degree based on [14, Ch. 5], which improves upon the analysis
presented in our preprint [15]. In particular, we improved both the theoretical parts and
the numerical examples by properly addressing the treatment of boundary conditions
and presenting numerical results not just for simple 1D problems but also in the 2D
case.

2 Discretization of the advection equation

In this section, we summarize theMCL strategy for linear transport problems [21]. Our
presentation includes a brief discussion of the continuous model problem, a summary
of the design principles of the low order method, as well as the formulation of the
corresponding monolithic flux-correction schemes. Algebraic limiters of this kind
have only recently been applied to different target discretizations such as high-order
discontinuous Galerkin methods, e. g., [30]. These algorithms exploit ideas originally
proposed in the context of continuous finite elements. It is therefore natural to perform
our analysis in this framework as well.

2.1 Continuousmodel problem

LetΩ ⊂ R
d , d ∈ {1, 2, 3} be a polyhedral domain, v ∈ C(Ω×R+)d a known velocity

field, and n ∈ R
d the unit outward normal to ∂Ω . We define the time-dependent in-

and outflow boundaries of Ω as

Γ−(t) := {x ∈ ∂Ω : v(x, t) · n(x) < 0}, Γ+(t) := {x ∈ ∂Ω : v(x, t) · n(x) > 0}.

In what follows, we suppress the dependence of Γ±(t) on time t . The initial-boundary
value problem for the linear advection equation reads

∂t u + v · ∇u = 0 in Ω × R+, (2.1a)

u = û on Γ− × R+, (2.1b)

u = u0 in Ω, (2.1c)

where û is a given inflow boundary profile and u0 is an initial datum. For analyti-
cal purposes, we assume that the velocity field is solenoidal, i. e., ∇ · v = 0 in Ω ,
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which allows us to interpret (2.1a) as a hyperbolic conservation law with flux function
f (u, x, t) = v(x, t)u. Let us remark that the flux correction tools discussed in this
section can also be applied to problem (2.1) in the case of more general velocities.

To derive the weak formulation of (2.1), we multiply (2.1a) by a test function w

and perform integration by parts. Replacing the consistent flux v ·n u appearing in the
resulting boundary integral with the upwind flux

fn(u, û) :=
{
v · n u on Γ+,

v · n û on Γ−,
(2.2)

to incorporate the boundary data û, we obtain

∫
Ω

w∂t u dx −
∫

Ω

∇ · (w v)u dx +
∫

∂Ω

w fn(u, û) ds = 0. (2.3)

With regard to the continuous weak formulation of (2.1), we follow Di Pietro and Ern
[8, Chs. 2–3]. In particular, we introduce the graph space [8, Def. 2.1]

V := {w ∈ L2(Ω) : v · ∇w ∈ L2(Ω)}

and define a weak solution to (2.1) as follows.

Definition 1 (Weak solutions to the linear advection equation) A function u ∈
C(R+;V) ∩ C1(R+;L2(Ω)) is a weak solution to (2.1) if u(·, 0) = u0 almost every-
where in Ω and∫

Ω

w ∂t u dx + a(u, w) = b(w) ∀w ∈ V, t ∈ R+, (2.4)

where

a(·, ·) : V × V → R, a(u, w) :=
∫

Ω

w v · ∇u dx −
∫

Γ−
w u v · n ds, (2.5)

b(·) : V → R, b(w) := −
∫

Γ−
w û v · n ds. (2.6)

Formulation (2.4)–(2.6) is derived from (2.3) by performing integration by parts and
using the definition of the upwind flux (2.2). Thus, only boundary integrals over the
inlet Γ− appear in (2.5) and (2.6).

Remark 1 In this work, we assume that a unique solution u in the sense of Definition
1 and [8] exists. For settings similar to ours, the validity of this assumption can be
rigorously proven (see for instance [7]) but for general velocities this is not a trivial
task. In principle, one can invoke the method of characteristics and use an energy
estimate to show well-posedness. However, rigorous existence and uniqueness results
regarding solutions of (2.4) are typically obtained under additional assumptions. For
details on these issues, we refer the reader to [8, Sec. 3.1.1] and the references therein.
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Remark 2 For the integrals in theweak formulation below to bewell-defined, Di Pietro
and Ern [8, Sec. 2.1.3] require that in- and outflow boundaries are well-separated, i. e.,

inf
(x, y)∈Γ−×Γ+

‖x − y‖ > 0. (2.7)

Since our analysis is based on the same variational expression, we admit that the
theory dictates this assumption on the model. However, we remark that some classical
benchmarks for advection problems, such as LeVeque’s solid body rotation [26] (see
Sect. 5.3) do not satisfy (2.7).

2.2 Finite element discretization and low order method

The low order method that is employed in this work is the algebraic Lax–Friedrichs
scheme [1, 13, 29, 33] adapted to linear advection problems. In the AFC literature,
this linear version is called the discrete upwinding method because of its equivalence
to the node-centered upwind finite volume scheme [25, Sec. 6]. Let us now review the
main steps of deriving this low order method. First, we discretize (2.4) in space using
continuous linear finite elements.

Let Kh = {K 1, . . . K E } be a simplicial mesh of E = E(h) ∈ N disjoint elements
such that Ω = ⋃E

e=1 K
e. Furthermore, let x1, . . . , xN ∈ Ω , N = N (h) ∈ N, be the

vertices of the mesh and ϕ1, . . . , ϕN be the corresponding piecewise linear Lagrange
basis polynomials, satisfying ϕi (x j ) = δi j . For simplicity, we assume that the mesh
has no hanging nodes. The corresponding finite element space shall be denoted as
Vh := {wh ∈ C(Ω) : wh |K ∈ P1(K ) ∀K ∈ Kh} and the semi-discrete numerical
solution is expanded as follows

uh(x, t) :=
N∑
i=1

ui (t)ϕi (x), ui (t) = uh(xi , t).

Testing (2.4) with ϕi , i ∈ {1, . . . , N }, we obtain the spatial semi-discretization

N∑
j=1

mi j
du j

dt
= −

N∑
j=1

ai j u j −
∫

Γ−
ϕi

(
û −

N∑
j=1

u jϕ j
)
v · n ds, (2.8)

where mi j are scalar-valued entries of the consistent mass matrix

M = (mi j )
N
i, j=1, mi j =

∫
Ω

ϕi ϕ j dx, i, j ∈ {1, . . . , N },

and

A = (ai j )
N
i, j=1, ai j =

∫
Ω

ϕi v · ∇ϕ j dx, i, j ∈ {1, . . . , N }.
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Let us now briefly summarize the steps to construct the low order method used in
[13, 21], among others. We perform row sum mass lumping, i. e., replace the entries
of M in the left hand side of (2.8) with those of

ML = diag(m1, . . . ,mN ), mi :=
N∑
j=1

mi j =
∫

Ω

ϕi dx, i ∈ {1, . . . , N }.

In addition, we use the partition of unity property of basis functions, i. e., the fact that
they sum to one everywhere in Ω to rewrite

N∑
j=1

ai j u j =
∑

j∈Ni\{i}
ai j (u j − ui ).

Here Ni is the nodal stencil defined by

Ni := { j ∈ {1, . . . , N } : int(suppϕi ) ∩ int(suppϕ j ) 	= ∅},

where int(·) denotes the interior of a set and supp is the support of a function.Moreover,
we add diffusive fluxes of the form di j (u j − ui ), where

di j = max{|ai j |, |a ji |}, i ∈ {1, . . . , N }, j ∈ Ni \ {i}. (2.9)

As a final modification to (2.8), we employ a lumped approximation of boundary
terms. This step involves a localization of boundary integrals to individual faces on
the domain boundary.

Definition 2 (Nodal boundary faces, [14]) Let F∂Ω denote the set of (d − 1)-
dimensional boundary faces of Kh . Then the set Fi contains all boundary faces that
meet at node xi ∈ ∂Ω , i ∈ {1, . . . , N }. For Γk ∈ Fi , we define ûki := û(xi ) as the
value of û corresponding to Γk ⊆ Γ−.

The above modifications made to (2.8) yield the low order method

mi
dui
dt

=
∑

j∈Ni\{i}
(di j − ai j )(u j − ui ) +

∑
Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N },

(2.10)

where

bki := −
∫

Γk

ϕi min{0, v · n} ds.

Note that bki ≥ 0. We may also write (2.10) in the bar state form [13, 16, 21]

mi
dui
dt

=
∑

j∈Ni\{i}
2di j (ūi j − ui ) +

∑
Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N }, (2.11)
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where the bar states ūi j are defined by

ūi j =

⎧⎪⎨
⎪⎩
ui + u j

2
− ai j (u j − ui )

2di j
if ai j 	= 0,

ui + u j

2
if ai j = 0,

i ∈ {1, . . . , N }, j ∈ Ni \ {i}.

(2.12)

Remark 3 Definition (2.9) ensures that ūi j is a convex combination of ui and u j

because

min{ui , u j } ≤ ūi j ≤ max{ui , u j } ⇔ |ai j | ≤ di j .

Instead of (2.9), the classical version of the discrete upwinding method uses [25]

di j = max{ai j , 0, a ji }, i ∈ {1, . . . , N }, j ∈ Ni \ {i}. (2.13)

If ∇ · v = 0, this definition is equivalent to (2.9), unless both nodes xi and x j lie on
∂Ω . This fact follows from integration by parts and omission of the resulting boundary
integral. The validity of discrete maximum principles for nodal values can be shown
for (2.13) using alternative proof techniques [27, Sec. 4.3.2]. However, individual bar
states ūi j of the discrete upwinding method based on (2.13) may violate the local
maximum principle min{ui , u j } ≤ ūi j ≤ max{ui , u j }.

2.3 Monolithic convex limiting

The low order method (2.10) produces very diffusive approximations. To recover the
accuracy of the standard finite element discretization (2.8), we perform algebraic flux
correction. First, we define raw antidiffusive fluxes fi j = mi j (u̇i − u̇ j )+di j (ui −u j )

for i ∈ {1, . . . , N }, j ∈ Ni \{i} and their limited counterparts f ∗
i j , which are specified

below. Here u̇h = ∑N
i=1 u̇iϕi is a suitable approximation to the time derivative duh

dt .
Following [21], we employ the low order nodal values

u̇i = 1

mi

∑
j∈Ni\{i}

(di j − ai j )(u j − ui ) + 1

mi

∑
Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N },

(2.14)

to compute u̇h in practice. This approach can be interpreted as a modification of the
target scheme corresponding to the standard continuous Galerkin discretization that
otherwise exhibits a suboptimal first order convergence rate [31, Sec. 14.3.1]. As illus-
trated in Sect. 5.2, the use of low order time derivatives u̇i (instead of their consistent
Galerkin counterparts defined by (5.2) below) also has a stabilizing effect on the over-
all approximation. This approach was proposed in the original publication on MCL
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schemes [21] and corresponds to a cheap and effective target scheme. Advanced stabi-
lization techniques for higher-ordermethods applied to linear and nonlinear hyperbolic
problems can be found in [28] and [23], respectively. By the above definition of raw
antidiffusive fluxes, we have fi j = − f j i . To preserve the conservation property of the
limited scheme, we enforce the corresponding constraint f ∗

i j = − f ∗
j i for the limited

antidiffusive fluxes as is common in the AFC methodology [25]. Using the equiv-
alence of formulations (2.10) and (2.11), we obtain a similar bar state form for the
semi-discrete flux correction scheme [21]

mi
dui
dt

=
∑

j∈Ni\{i}
[(di j − ai j )(u j − ui ) + f ∗

i j ] +
∑

Γk∈Fi

bki (û
k
i − ui ) (2.15a)

=
∑

j∈Ni\{i}
2di j (ū

∗
i j − ui ) +

∑
Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N },

(2.15b)

where the limited bar states are defined by [21]

ū∗
i j := ūi j + f ∗

i j

2di j
.

Thus, a forward Euler update for (2.15) reads

ũi =
⎡
⎣1 − Δt

mi

⎛
⎝ ∑

j∈Ni\{i}
2di j +

∑
Γk∈Fi

bki

⎞
⎠
⎤
⎦ ui + Δt

mi

⎛
⎝ ∑

j∈Ni\{i}
2di j ū

∗
i j +

∑
Γk∈Fi

bki û
k
i

⎞
⎠ ,

where Δt is the time step. Hence, the updated solution ũi is a convex combination of
ui , the ū∗

i j , and the ûki , provided that the Courant–Friedrichs–Lewy (CFL) condition

Δt ≤ min
i∈{1,...,N }

mi∑
j∈Ni\{i} 2di j + ∑

Γk∈Fi
bki

(2.16)

is satisfied. In other words, if (2.16) holds, the forward-Euler updated solution ũi
preserves all local bounds that these states are constrained by. This argument made
here for a forwardEuler step directly carries over to p-stage, pth-order accurate strong-
stability-preserving Runge–Kutta (SSPp-RK) methods [12, 34], where p ∈ {1, 2, 3}.

In the process of flux correction, we enforce the local maximum principles

umin
i ≤ ū∗

i j ≤ umax
i , umin

i := min
j∈Ni

u j , umax
i := max

j∈Ni

u j (2.17)

in addition to skew symmetry of antidiffusive fluxes. Rearranging these constraints, we
obtain Kuzmin’s formula for the limited antidiffusive fluxes of his monolithic convex
limiter [21]
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f ∗
i j =

{
min{ fi j , 2di j umax

i − w̄i j , w̄ j i − 2di j umin
j } if fi j ≥ 0,

max{ fi j , 2di j umin
i − w̄i j , w̄ j i − 2di j umax

j } if fi j ≤ 0,
(2.18)

where w̄i j := 2di j ūi j .

Lemma 1 (Conservation property of theMCL scheme, [21, 25, 33]) The semi-discrete
scheme (2.15) in which f ∗

i j = − f ∗
j i is conservative in the following sense

d

dt

∫
Ω

uh dx = −
∫

Ω

v · ∇uh dx −
N∑
i=1

∑
Γk∈Fi

∫
Γk

ϕi (û
k
i − ui )min{0, v · n} ds.

(2.19)

Proof Summing over all degrees of freedom, we exploit the symmetry of diffusion
coefficients di j , skew symmetry of antidiffusive fluxes f ∗

i j , and the zero row sum
property of matrix A. ��

Remark 4 Continuous weak solutions u defined by (2.4) satisfy the conservation rela-
tion

d

dt

∫
Ω

u dx = −
∫

Ω

v · ∇u dx −
∫

Γ−
(û − u)v · n ds. (2.20)

Thus, (2.19) is a semi-discrete counterpart of (2.20) that accounts for the flux-lumped
quadrature rule used in the AFC setting.

Let us now rewrite the bar state form (2.15b) of the semi-discrete MCL scheme
in a formulation that is more amenable to theoretical investigations. Despite the fact
that using MCL, the fluxes f ∗

i j can be calculated directly via (2.18), we introduce
correction factors αi j (uh) = α j i (uh) ∈ [0, 1] defined by αi j (uh) = f ∗

i j/ fi j if fi j 	= 0
and αi j (uh) = 1 otherwise. The dependence of correction factors on the discrete
solution makes AFC schemes nonlinear. Using the above definition of fi j , the semi-
discrete MCL scheme (2.15) reads

mi
dui
dt

=
∑

j∈Ni\{i}
[(1 − αi j (uh)) di j (u j − ui ) − ai j (u j − ui ) + αi j (uh)mi j (u̇i − u̇ j )]

+
∑

Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N }, (2.21)

and can equivalently be written as

N∑
i=1

wimi
dui
dt

+ ah(uh, wh) + dh(uh; uh, wh) − mh(uh; u̇h, wh) = bh(wh) (2.22)
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for all wh ∈ Vh given by wh = ∑N
j=1 w jϕ j . The bilinear and linear forms

ah(uh, wh) :=
∫

Ω

wh v · ∇uh dx −
N∑
i=1

wi ui

∫
Γ−

ϕi v · n ds,

bh(wh) := −
N∑
i=1

wi

∑
Γk∈Fi

ûki

∫
Γk

ϕi min{0, v · n} ds

are associated with the (stabilized) Galerkin finite element discretization correspond-
ing to αi j = 1 for all i ∈ {1, . . . , N }, j ∈ Ni \ {i}. The nonlinear forms [5, 18,
27]

dh(uh; vh, wh) =
N∑
i=1

wi

∑
j∈Ni\{i}

(1 − αi j (uh)) di j (vi − v j ), (2.23)

mh(uh; vh, wh) =
N∑
i=1

wi

∑
j∈Ni\{i}

αi j (uh)mi j (vi − v j ) (2.24)

in (2.22) are due to algebraic flux correction.

Lemma 2 (Scalar product properties of nonlinear forms, [5])Forarbitrary uh, vh, wh ∈
Vh, the nonlinear forms (2.23) and (2.24) satisfy

dh(uh; vh, vh) ≥ 0, dh(uh; vh, wh)
2 ≤ dh(uh; vh, vh) dh(uh;wh, wh),

mh(uh; vh, vh) ≥ 0, mh(uh; vh, wh)
2 ≤ mh(uh; vh, vh)mh(uh;wh, wh).

Proof Proofs of these statements for dh(·; ·, ·) can be found in [27, p. 113], see also
[5, Lem. 3.1 and Sec. 6]. The same arguments apply to mh(·; ·, ·). ��

3 Energy estimate

Let us now derive an energy estimate for approximations obtained via (2.22). In the
proof of this stability result, we rely on the assumption that the following requirement
is satisfied.

Definition 3 (Compatibility condition, [15, Ineq. (3.16)]) Let u̇h, uh ∈ Vh be given
functions and λ := ‖v‖L∞(Ω×R+)d be the maximum velocity. Define the nonlinear
forms dh(·; ·, ·) and mh(·; ·, ·) as in (2.23) and (2.24), respectively. Suppose that there
exists a constant γ ∈ (0, 1) such that

γ h

λ
mh(uh; u̇h, u̇h) ≤ (1 − γ )dh(uh; uh, uh) − mh(uh; u̇h, uh). (3.1)

Then we say that u̇h ∈ Vh is compatible with uh ∈ Vh .
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The ratio h/λ has physical units [h]/[λ] = m/(ms−1) = s. It is used in inequality 3.1
to ensure that all terms have the same units for [u̇h] = s−1[uh]. Note that if we set
wh = uh in (2.22), the two nonlinear forms contained therein coincide with the right
hand side of (3.1) plus the nonnegative remainder γ dh(uh; uh, uh). Due to Lemma 2,
we can bound these terms below by a positive number if (uh, u̇h) is a compatible pair.
This argument is our main motivation for relying on (3.1) for theoretical purposes.
Clearly, the pair (uh, 0) satisfies (3.1). Thus if we do not compensate themass lumping
error in the process of limiting, the scheme automatically satisfies (3.1). As illustrated
in Sect. 5.4, the standard MCL scheme using low order time derivatives (2.14) for
stabilization purposes is also prone to producing compatible pairs. In [15, Sec. 3.3]
we present a modified MCL procedure with which (3.1) can be guaranteed. Due to
the complicated nature of this approach we chose not to discuss it any further in this
work.

Before presenting our energy estimate, we need to prove the following technical
result.

Lemma 3 Any function vh ∈ Vh defined by vh = ∑N
i=1 viϕi satisfies the identity

v2h −
N∑
i=1

v2i ϕi = −
N∑

i, j=1i< j

(vi − v j )
2ϕi ϕ j .

Proof Invoking the partition of unity property of basis functions, we obtain

v2h −
N∑
i=1

v2i ϕi =
N∑
i=1

v2i ϕi (ϕi − 1) +
N∑

i, j=1i 	= j

vi v j ϕi ϕ j = −
N∑

i, j=1i 	= j

v2i ϕi ϕ j

+
N∑

i, j=1i 	= j

vi v jϕi ϕ j

=
N∑

i, j=1i< j

vi (v j − vi ) ϕi ϕ j +
N∑

i, j=1 j<i

vi (v j − vi ) ϕi ϕ j

=
N∑

i, j=1i< j

(vi − v j )(v j − vi ) ϕi ϕ j .

��

Proposition 1 (Semi-discrete energy estimate)Assume that there is a finite time T > 0
such that v(·, t) ∈ W1,∞(Ω) and ∇ · v(·, t) = 0 in Ω for all t ∈ (0, T ). Let uh(t) and
u̇h(t) satisfy (2.22) and, additionally, the compatibility condition (3.1)with a constant
γ ∈ (0, 1) for all t ∈ (0, T ). Then the following estimate holds for the solution uh(T )

of the semi-discrete problem (2.22)
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N∑
i=1

mi ui (T )2 +
∫ T

0

∫
Γ+

u2h v · n ds dt −
∫ T

0

N∑
i, j=1i< j

(ui − u j )
2
∫

Γ−
ϕi ϕ j v · n ds

− 1

2

∫ T

0

N∑
i=1

u2i

∫
Γ−

ϕi v · n ds + 2γ
∫ T

0

[h
λ
mh(uh; u̇h, u̇h) + dh(uh; uh, uh)

]
dt

≤
N∑
i=1

mi ui (0)
2 + 2

∫ T

0

N∑
i=1

∑
Γk∈Fi

∫
Γk

ϕi (û
k
i )

2 max{0,−v · n} ds dt .

(3.2)

Proof Testing (2.22) with wh = uh , we use the compatibility condition (3.1), the
identity uh v · ∇uh = 1

2∇ · (v u2h), the divergence theorem and Young’s inequality to
show that

1

2

N∑
i=1

mi
d(ui )2

dt
+ 1

2

∫
∂Ω

u2h v · n ds −
N∑
i=1

u2i

∫
Γ−

ϕi v · n ds

+ γ h

λ
mh(uh; u̇h, u̇h) + γ dh(uh; uh, uh)

≤
N∑
i=1

ui mi
dui
dt

+
∫

Ω

uh v · ∇uh dx −
N∑
i=1

u2i

∫
Γ−

ϕi v · n ds

+ dh(uh; uh, uh) − mh(uh; u̇h, uh)

= bh(uh) = −
N∑
i=1

∑
Γk∈Fi

∫
Γk

ϕi ui û
k
i min{0, v · n} ds

≤ −
N∑
i=1

u2i
4

∫
Γ−

ϕi v · n ds −
N∑
i=1

∑
Γk∈Fi

∫
Γk

ϕi (û
k
i )

2 min{0, v · n} ds.

Multiplying by factor 2 and combining the integrals over Γ−, we write this inequality
as

N∑
i=1

mi
d(ui )2

dt
+

∫
Γ+

u2h v · n ds +
∫

Γ−
v · n

(
u2h −

N∑
i=1

u2i ϕi

)
ds

− 1

2

N∑
i=1

u2i

∫
Γ−

ϕi v · n ds + 2γ h

λ
mh(uh; u̇h, u̇h) + 2γ dh(uh; uh, uh)

≤ 2
N∑
i=1

∑
Γk∈Fi

∫
Γk

ϕi (û
k
i )

2 max{0,−v · n} ds.

Employing Lemma 3 and integrating in time produces (3.2). ��
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Note that as a consequence of Lemma 2 and of the nonnegativity of basis functions, all
terms appearing on the left hand side of inequality (3.2) are nonnegative. To guarantee
that the assumptions of Proposition 1 are satisfied in practice, one can use the scheme
proposed in [15, Sec. 3.3], which enforces (3.1) for user defined values of γ . In our
experience, failure to apply this limiter has no negative practical effects, however.

Remark 5 The readermaywonder what significance is attached to Proposition 1. Since
the fully discreteMCL scheme produces locally bound-preserving approximations, it
is stable by design. Preservation of global bounds in the semi-discrete setting can
be shown as in [24] under the assumption that a solution exists. The semi-discrete
MCL scheme represents a nonlinear system of ordinary differential equations. Well-
posedness of such initial value problems can be shownby invoking the Picard–Lindelöf
theorem, which guarantees the existence of solutions on finite time intervals. Once
local existence is established, we exploit a global existence and uniqueness result for
ordinary differential equations [2, Thm. 7.6]. According to this theorem, solutions
that cannot be extended to arbitrary times must in fact blow up, which, in our case,
is prevented by Proposition 1. It follows that the semi-discrete MCL scheme (2.22)
possesses a unique solution that exists for all times t ≥ 0.

4 Error analysis

Compared to the energy estimate derived in the previous section, our error analysis
is rather involved. In particular, we need to make additional assumptions on the data
of the continuous problem (2.4) as well as on the mesh sequences. These aspects are
discussed in Sect. 4.1. Subsequently, in Sect. 4.2, we recall some auxiliary results from
the literature on numerical analysis of finite element methods including AFC schemes.
Finally, in Sect. 4.3, we state, prove, and discuss the main result of this work, which
is a semi-discrete a priori error estimate for MCL approximations.

Throughout this section, the letter C (possibly with a subscript) denotes a generic
positive constant that is independent of the mesh size h. Moreover, we assume that
h ≤ 1 and therefore h p ≤ hq for p ≥ q.

4.1 Preliminaries

Recall that we only consider meshes that are affine and geometrically conforming
triangulations of Ω ⊂ R

d , d ∈ {1, 2, 3}. Additionally, we restricted ourselves to sim-
plicialmeshes,which allows us to exploit the linearity of finite element approximations
inside mesh cells.

The a priori error estimate thatwe present in Sect. 4.3 is valid only for quasi-uniform
families of meshes, i. e., there has to exist C > 0 such that [8, Sec. 3.1.2]

h := max
K∈Kh

hK ≤ C min
K∈Kh

hK ,

where hK = diam(K ). As is standard in finite element analysis, we also assume
shape-regularity of (Kh)h>0. For this requirement to be satisfied, there has to exist
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C > 0 such thatChK ≤ rK , where rK is the radius of the largest open ball that fits into
K [8, Sec. 1.4.1]. Additionally, we assume that the mesh faces, which are simplices
in Rd−1, are also shape regular in this sense. Our final assumption regarding the mesh
sequence is that there exists C > 0 such that h ≤ Ch̃, where h̃ = minΓ ∈F∂Ω

diam(Γ )

and F∂Ω is the set of boundary faces (cf. Definition 2). We do not need to assume
contact regularity of the mesh sequence [8, Def. 1.38] as Di Pietro and Ern do because
this requirement is automatically satisfied for simplicial triangulations.

Following [5, 27], we assume H2(Ω) regularity of the exact solution u(·, t) for all
t ≥ 0. We also require the time derivative ∂t u to have this regularity. Specifically, we
restrict our investigations to exact solutions of (2.4) that satisfy

u ∈ W1,∞(R+;H2(Ω)), u|Γ− ∈ L∞(R+;H2(Γ−)).

For simplicity, we set uh(·, 0) equal to the continuous interpolant Ihu0 ∈ Vh of
u0 ∈ C(Ω). The interpolation operator Ih : C(Ω) → Vh is defined by

w �→ wh :=
N∑
i=1

w(xi ) ϕi .

Also for simplicity, we assume that the boundary data û is linear on every boundary
face Γ ∈ F−, where F− = F−(t) := {Γ ∈ F∂Ω : Γ ∩ Γ− 	= ∅}. This assumption
corresponds to a particular choice of the quadrature rule for boundary integrals.

4.2 Auxiliary statements

To prepare the ground for the derivation of our error estimate, we first summarize
a few important ingredients of its proof, beginning with some standard inequalities.
Then we discuss aspects that are peculiar to algebraic flux correction schemes. Most
of the AFC results were originally proven by Barrenechea et al. [5].

Lemma 4 (Interpolation error estimate for volume integrals) Let (Kh)h>0 be a shape-
regular family of meshes over Ω ⊂ R

d , d ∈ {1, 2, 3}. Then there exists C > 0 such
that

‖w − Ihw‖L2(Ω) + h|w − Ihw|H1(Ω) ≤ Ch2|w|H2(Ω) ∀w ∈ H2(Ω).

Proof See [10, Sec. 1.5.1, in particular Ex. 1.111]. ��
Lemma 5 (Interpolation error estimate for face integrals) Let (Kh)h>0 be a shape-
regular family of meshes over Ω ⊂ R

d , d ∈ {1, 2, 3} and let Γ ⊂ ∂K be a face of
K ∈ Kh. Then there exists C > 0 such that

‖w − Ihw‖L2(Γ ) ≤ Ch3/2K |w|H2(K ) ∀w ∈ H2(K ).

Proof The claim follows from the continuous trace inequality [8, Lem. 1.49] in com-
bination with Lemma 4. ��
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Lemma 6 (Discrete trace inequality, [8] Lem. 1.46) Let (Kh)h>0 be a shape-regular
family of meshes over Ω ⊂ R

d , d ∈ {1, 2, 3} and let Γ ⊂ ∂K be a face of K ∈ Kh.
Then there exists C > 0 such that

‖vh‖L2(Γ ) ≤ Ch−1/2
K ‖vh‖L2(K ) ∀vh ∈ P1(K ).

Lemma 7 (Inverse inequality, [8] Lem. 1.44) Let (Kh)h>0 be a shape-regular family
of meshes over Ω ⊂ R

d , d ∈ {1, 2, 3} and let K ∈ Kh. Then there exists C > 0 such
that

|vh |H1(K ) ≤ Ch−1
K ‖vh‖L2(K ) ∀vh ∈ P1(K ).

Lemma 8 ([5]) Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ R
d ,

d ∈ {1, 2, 3}. Define Γi j := {μxi + (1−μ)x j : μ ∈ [0, 1]} for a pair of mesh vertices
(xi , x j ) i ∈ {1, . . . , N }, j ∈ Ni \ {i}. Let K ∈ Kh with Γi j ⊂ ∂K. Then there exists
C > 0 such that

|vh(xi ) − vh(x j )| ≤ Ch1−d/2
K |vh |H1(K ) ∀vh ∈ P1(K ).

Proof The claim follows from a Taylor expansion, linearity, and shape regularity, see
[5, Pf. of Lem. 7.3] or [27, Ineq. (4.90)] for details. ��
Lemma 9 ([5, 18]) Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ R

d ,
d ∈ {1, 2, 3}. Then there exist constants C1 = C1(d) > 0 and C2 = C2(d, v) > 0
such that

mi j ≤ C1h
d , di j ≤ C2h

d−1, i ∈ {1, . . . , N }, j ∈ Ni \ {i}.

Proof Clearly, supp(ϕiϕ j ) ⊆ Ωi j := {x ∈ Ω : ∃μ ∈ [0, 1] : |x−(μxi+(1−μ)x j )| ≤
h}, and due to shape regularity, there exists C = C(d) > 0 such that |Ωi j | ≤ Chd .
Therefore

mi j =
∫

Ωi j

ϕi ϕ j dx ≤ ‖ϕi‖L2(Ωi j )
‖ϕ j‖L2(Ωi j )

≤ ‖1‖2L2(Ωi j )
= |Ωi j | ≤ Chd .

The estimate for di j is obtained similarly by invoking (2.9), factoring out themaximum
velocity λ and using the inverse inequality, i. e., Lemma 7, see [5, Pf. of Lem. 7.3] or
[27, Pf. of Thm. 4.72] for details. ��
Lemma 10 ([5]) Let (Kh)h>0 be a shape-regular family of meshes over Ω ⊂ R

d ,
d ∈ {1, 2, 3}. Then there exist constants C1 = C1(d) > 0 and C2 = C2(d, v) > 0
such that

mh(vh; Ihw, Ihw) ≤ C1h
2‖w‖2H2(Ω)

, dh(vh; Ihw, Ihw) ≤ C2h‖w‖2H2(Ω)

for all vh ∈ Vh, w ∈ H2(Ω).
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Proof The estimate for dh(·; ·, ·) is derived in [27, Ineq. (4.122)] by invoking Lemma
4, 8, and 9, see also [5, Lem. 3.1]. The estimate for mh(·; ·, ·) is obtained similarly.

��

4.3 A priori error estimate

To state our main result, we need to define some auxiliary quantities. For t ≥ 0, let
ϑh(t) = ∑N

i=1 ϑi (t)ϕi ∈ Vh be the discrete error ϑh(t) := Ihu(t) − uh(t) and define

q(T ) :=
N∑

i, j=1i< j

mi j (ϑi (T ) − ϑ j (T ))2 +
∫ T

0

[ ∫
Γ+

ϑ2
h v · n ds −

N∑
i=1

ϑ2
i

∫
Γ−

ϕi v · n ds

−
N∑

i, j=1i< j

(ϑi − ϑ j )
2
∫

Γ−
ϕi ϕ j v · n ds + γ dh(uh; uh, uh) + γ h

λ
mh(uh; u̇h, u̇h)

]
dt,

z(T ) :=
∫ T

0

[
‖∂t u‖2H2(Ω)

+ ‖u‖2H2(Ω)
+ ‖u‖2H2(Γ−)

+ |û|2H1(Γ−)

]
dt .

Proposition 2 (Semi-discrete a priori error estimate) Let the assumptions made in
Sect. 4.1 be satisfied. Assume that there is a finite time T > 0 such that v(·, t) ∈
W1,∞(Ω) and ∇ · v(·, t) = 0 in Ω for all t ∈ (0, T ). Let uh(t) and u̇h(t) satisfy
(2.22) and, additionally, the compatibility condition (3.1) with a constant γ ∈ (0, 1)
independent of h for all t ∈ (0, T ). Then there exist positive constants C1 = C1(d, v),
C2 = C2(d, v, γ ), and C3 = C3(d) such that the estimate

‖u(T ) − uh(T )‖L2(Ω) ≤ C3h
2|u(T )|H2(Ω) +

√
y(T ) + C1

∫ T

0
eC1(T−t) y(t) dt

(4.1)

holds for the exact solution u(T ) of the continuous problem (2.4), the exact solution
uh(T ) of the semi-discrete problem (2.22), and y(T ) :=C2h z(T ) − q(T ).

Remark 6 We do not see any practical problems if (3.1) is invalid, only the theoretical
results would no longer apply.

Corollary 1 (Convergence order of the semi-discreteMCL scheme)Under the assump-
tions of Proposition 2, the a priori error estimate

‖u(T ) − uh(T )‖L2(Ω) ≤ C3h
2|u(T )|H2(Ω) +

√
eC1T C2h ‖z‖L∞(0,T ) ≤ C4 h

1
2

(4.2)

holds with a constant C4 = C4(C1,C2,C3, T , u, û) > 0, which behaves as eC1T /2.

Proof (of Corollary 1) Since q and z are nonnegative functions, we may use the
estimate y(T ) ≤ C2h z(T ) in (4.1). The claim follows by calculating the integral of
the exponential function. ��
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Proof (of Proposition 2) This proof combines recent results on AFC schemes [5, 27]
with a new way of proving a priori error estimates for nonconforming discretizations
of the advection equation [32]. A particular similarity of the approach developed in
[32] to our theory is that both apply to semi-discrete formulations.

We introduce the interpolation error Θ(t) = Θ(u, h; t) := u(t) − Ihu(t) and sub-
tract (2.22) from (2.4). Setting w = wh = ϑh , we obtain the error equation

Ξ1︷ ︸︸ ︷∫
Ω

ϑh
∂u

∂t
dx −

N∑
i=1

ϑi mi
dui
dt

+
Ξ2︷ ︸︸ ︷

a(u, ϑh) − ah(uh, ϑh)

= b(ϑh) − bh(ϑh)︸ ︷︷ ︸
Ξ3

+ dh(uh; uh, ϑh) − mh(uh; u̇h, ϑh)︸ ︷︷ ︸
Ξ4

.

Recall that the identity mi = ∑N
j=1mi j holds for row sum mass lumping. Using this

decomposition of mi and the identities u = Θ + ϑh + Ihu − ϑh, uh = Ihu − ϑh , we
find that

Ξ1 =
∫

Ω

ϑh
∂Θ

∂t
dx +

∫
Ω

ϑh
dϑh

dt
dx +

N∑
i=1

ϑi
d

dt

( N∑
j=1

mi j [(Ihu) j − ϑ j ] − mi [(Ihu)i − ϑi ]
)

=
∫

Ω

ϑh
∂Θ

∂t
dx + 1

2

d

dt
‖ϑh‖2L2(Ω)

+
N∑

i, j=1

ϑi mi j
d

dt

[
(Ihu) j − (Ihu)i − (ϑ j − ϑi )

]

=
∫

Ω

ϑh
∂Θ

∂t
dx + 1

2

d

dt
‖ϑh‖2L2(Ω)

+
N∑

i, j=1i< j

(ϑi − ϑ j )mi j
d

dt

[
(Ihu) j − (Ihu)i − (ϑ j − ϑi )

]
.

Arguing as in the proof of Proposition 1, we invoke the divergence theorem, Lemma
3 as well as the identities u = Θ + Ihu and uh = Ihu − ϑh , which yields

Ξ2 =
∫

Ω

ϑh v · ∇Θ dx + 1

2

∫
∂Ω

ϑ2
h v · n ds −

∫
Γ−

ϑh Θ v · n ds

−
∫

Γ−
ϑh Ihu v · n ds +

N∑
i=1

ϑi (u(xi ) − ϑi )

∫
Γ−

ϕi v · n ds

=
∫

Ω

ϑh v · ∇Θ dx + 1

2

∫
Γ+

ϑ2
h v · n ds −

∫
Γ−

ϑh Θ v · n ds

− 1

2

N∑
i, j=1i< j

(ϑi − ϑ j )
2
∫

Γ−
ϕi ϕ j v · n ds − 1

2

N∑
i=1

ϑ2
i

∫
Γ−

ϕi v · n ds
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+
∫

Γ−

( N∑
i=1

ϑi ϕi (u(xi ) − Ihu)
)
v · n ds.

As in [19, Thm. 3.43], we exploit transformation to the reference element, shape-
regularity, and the equivalence of norms in finite dimensional spaces to show that

N∑
i=1

∫
Γ

(vi ϕi )
2 ds ≤

N∑
i=1

∫
Γ

v2i ϕi ds ≤ C‖vh‖2L2(Γ )
∀vh ∈ Vh, Γ ∈ F∂Ω. (4.3)

To derive an estimate for Ξ3, we rewrite the boundary integrals as a sum of integrals
over faces. On each face Γ ∈ F−, we use the estimate |ûki − û| ≤ ChΓ |∇û|, where
hΓ = diam(Γ ). In addition, we invoke Young’s inequality, estimate (4.3), Lemma 6,
and incorporate λ = ‖v‖L∞(Ω×R+)d into the constant C , which yields

Ξ3 =
N∑
i=1

∑
Γk∈Fi

∫
Γk

ϑiϕi (û
k
i − û) min{0, v · n} ds

≤ C
∑

Γ ∈F−

N∑
i=1

∫
Γ

[
hΓ (ϑiϕi )

2 + 1

hΓ

|ûki − û|2] ds
≤ C

∑
Γ ∈F−

hΓ

(
‖ϑh‖2L2(Γ )

+ |û|2H1(Γ )

)
≤ C‖ϑh‖2L2(Ω)

+ Ch|û|2H1(Γ−)
. (4.4)

For the nonlinear terms in Ξ4, we use Lemma 2, Young’s inequality, the compatibility
condition (3.1) with constant γ ∈ (0, 1), and Lemma 10 to deduce

Ξ4 = dh(uh; uh, Ihu) − dh(uh; uh, uh) + mh(uh; u̇h, uh) − mh(uh; u̇h, Ihu)

≤ γ

2
dh(uh; uh, uh) + 1

2γ
dh(uh; Ihu, Ihu) − γ dh(uh; uh, uh)

− γ h

λ
mh(uh, u̇h, u̇h) + γ h

2λ
mh(uh; u̇h, u̇h) + λ

2γ h
mh(uh; Ihu, Ihu)

≤ − γ

2
dh(uh; uh, uh) − γ h

2λ
mh(uh, u̇h, u̇h) + Ch‖u‖2H2(Ω)

,

where the factor 1/γ was incorporated into the constant C . Combining the above
identities for Ξ1 and Ξ2 with the inequalities for Ξ3 and Ξ4 produces the estimate

d

dt
‖ϑh‖2L2(Ω)

+
N∑

i, j=1i< j

mi j
d

dt
(ϑi − ϑ j )

2 +
∫
Γ+

ϑ2
h v · n ds −

N∑
i=1

ϑ2
i

∫
Γ−

ϕi v · n ds

−
N∑

i, j=1i< j

(ϑi − ϑ j )
2
∫
Γ−

ϕi ϕ j v · n ds + γ dh(uh; uh , uh)
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+ γ h

λ
mh(uh , u̇h , u̇h)

≤ − 2
∫
Ω

ϑh
∂Θ

∂t
dx + 2

N∑
i, j=1i< j

(ϑi − ϑ j )mi j
[
(Ih∂t u)i − (Ih∂t u) j

]

− 2
∫
Ω

ϑh v · ∇Θ dx + 2
∫
Γ−

ϑh Θ v · n ds + C‖ϑh‖2L2(Ω)
+ Ch|û|2H1(Γ−)

− 2
∫
Γ−

( N∑
i=1

ϑiϕi (u(xi ) − Ihu)
)
v · n ds + Ch‖u‖2H2(Ω)

=:(�). (4.5)

The terms on the right hand side of inequality (4.5) are now bounded using standard
arguments. Specifically, we make use of the assumptions on the mesh and of Young’s
inequality, apply Lemma 4 to Θ = u − Ihu and ∂tΘ , invoke Lemma 5 through 9 and
argue as in the derivation of (4.4) to obtain

(�) ≤ ‖ϑh‖2L2(Ω)
+ Ch4|∂t u|2

H2(Ω)
+ Ch2

∑
K∈Kh

|ϑh |H1(K )|Ih∂t u − ∂t u + ∂t u|H1(K )

+ C‖ϑh‖2L2(Ω)
+ Ch2|u|2

H2(Ω)
+ λ

∑
Γ ∈F−

(
hΓ ‖ϑh‖2L2(Γ )

+ 1

hΓ

‖Θ‖2
L2(Γ )

)
+ C‖ϑh‖2L2(Ω)

+ Ch|û|2
H1(Γ−)

+ C
∑

Γ ∈F−
hΓ

∫
Γ

[ N∑
i=1

(ϑiϕi )
2 + |∇(Ihu − u + u)|2] ds + Ch‖u‖2

H2(Ω)

≤ ‖ϑh‖2L2(Ω)
+ Ch4|∂t u|2

H2(Ω)
+ Ch‖ϑh‖2L2(Ω)

+ Ch3|∂t u|2
H2(Ω)

+ Ch|∂t u|2
H1(Ω)

+ C‖ϑh‖2L2(Ω)
+ Ch2|u|2

H2(Ω)
+ C‖ϑh‖2L2(Ω)

+ Ch2|u|2
H2(Ω)

+ C‖ϑh‖2L2(Ω)

+ Ch|û|2
H1(Γ−)

+ C
∑

Γ ∈F−
hΓ

(
‖ϑh‖2L2(Γ )

+ ‖u‖2
H2(Γ )

)
+ Ch‖u‖2

H2(Ω)

≤ C1‖ϑh‖2L2(Ω)
+ C2h

(
‖∂t u‖2

H2(Ω)
+ ‖u‖2

H2(Ω)
+ ‖u‖2

H2(Γ−)
+ |û|2

H1(Γ−)

)
.

We now integrate in time observing that, by our definition of the discrete initial data,
we have ϑh(0) ≡ 0. At this stage, we recall the previously given definitions of q and
z, which enables us to write the resulting inequality as

‖ϑh(T )‖2L2(Ω)
≤ C1

∫ T

0
‖ϑh(t)‖2L2(Ω)

dt + C2h z(T ) − q(T ).

Using Grönwall’s Lemma as in [9, Lem. 1.9], we obtain

‖ϑh(T )‖2L2(Ω)
≤ C1

∫ T

0
eC1(T−t) (C2h z(t) − q(t)) dt + C2h z(T ) − q(T ).

The triangle inequality applied to u − uh = Θ + ϑh then yields the error estimate
(4.1) by Lemma 4. ��
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We conclude the theoretical discussion with a few remarks regarding the derived
error estimate. Let us first point out that in the general setting with unspecified cor-
rection factors αi j our result is indeed optimal (cf. Sect. 5.1). If we set all correction
factors equal to zero, we obtain the low order method, which cannot be expected to
be more than 1

2 order accurate in general.
A drawback of our current approach is that the constant on the right hand side of the

a priori error estimate (4.2) depends exponentially on the time T . Kučera and Shu [20]
demonstrate that exponentially increasing constants can be avoided in some situations.
They discretize the advection equation using discontinuous Galerkin methods and
derive an error estimatewithout invokingGrönwall’s inequality. It would be interesting
to investigate the merit of their approach for the purposes of our analysis.

Let us briefly remark that we assumed all integrals appearing in the bilinear and
linear forms ah(·, ·) and bh(·) to be evaluated exactly. In fact, even the energy estimate
stated in Proposition 1 was derived under this assumption. For polynomial velocities
one can indeed employ a quadrature rule of sufficiently high order to accurately com-
pute all integrals. For general velocities, the theory we present needs to be adapted to
include quadrature errors. As is common for linear finite elements [10, Thm. 8.5], we
recommend to employ quadrature rules that are exact for polynomials in P2 and P3
for volume and boundary integrals, respectively.

Admittedly, a major limitation of Proposition 2 is the fact that the estimate is valid
only for problemswith exact solutions of veryhigh regularity. In particular, the assump-
tion that ∂t u is H2 in space is restrictive. In our opinion, the adaptation of the proofs
in [5, 27] to the time-dependent setting necessitates this regularity. One can argue that
if the exact solution is smooth enough for Proposition 2 to be applicable, a limiter
may not even be needed and we could instead employ a stabilized Galerkin method.
Since this strategy does not guarantee the validity of discrete maximum principles,
AFC schemes provide an appealing alternative. Therefore, theoretical investigations
of these methods should be undertaken. It is hoped that our results may serve as a
stepping stone for further efforts in this direction.

5 Numerical examples

Let us now corroborate the theoretical results of this work with numerical experi-
ments. The following acronyms are used to distinguish the numerical methods under
investigation

• LOW: low order method (2.10),
• MCL: monolithic convex limiting scheme (2.15),
• target: target scheme, i. e., (2.15)with f ∗

i j = fi j for all i ∈ {1, . . . , N }, j ∈ Ni \{i}.
Other methods used for comparative purposes are specified below. Recall that our
stability and convergence proofs rely on the compatibility condition (3.1). In general,
this condition is not fulfilled by the standard MCL approach. However, if u̇h is set to
zero, i. e., if themass lumping error is not compensated, (3.1) holds due to Lemma 2. To
distinguish between the standard MCL scheme employing low order time derivatives
u̇i given by (2.14) and the lumped-mass version, in which u̇h ≡ 0, we employ the
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Table 1 Convergence history for the one-dimensional advection equation on a sequence of uniform periodic
meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for u0(x) = exp(−100(x − 0.5)2)

1/h LOW EOC MCL-L EOC MCL-0 EOC

32 2.21E−01 6.92E−02 9.93E−02

64 1.75E−01 0.34 2.07E−02 1.74 4.46E−02 1.16

128 1.26E−01 0.47 4.65E−03 2.16 1.65E−02 1.44

256 8.18E−02 0.62 1.12E−03 2.06 5.29E−03 1.64

512 4.84E−02 0.76 2.76E−04 2.02 1.65E−03 1.68

acronyms MCL-L and MCL-0, respectively. Here the letter L stands for low order
time derivatives, while 0 stands for zero time derivatives.

In all simulations, we choose the time step according to (2.16) by setting Δt =
νΔtmax, where ν ∈ (0, 1] is a user-defined value and Δtmax is the right hand side of
inequality (2.16). Discrete initial conditions are obtained by interpolating the contin-
uous initial datum in the discrete space.

In the following sections, we verify that approximations converge at least as fast
as the provable rate of 1

2 . Moreover, we stress the need for stabilization by the use of
low order time derivatives (2.14) and present a comparison of results obtained with
various definitions of antidiffusive fluxes in the MCL scheme. Finally, we perform
an a posteriori check to see for which values of the parameter γ the compatibility
condition (3.1) is satisfied by the MCL-L scheme.

5.1 Experimental orders of convergence

In this section,we solve the one-dimensional advection equationwith constant velocity
v = 1. The spatial domain Ω = (0, 1) has periodic boundaries. Thus, at each time
instant T ∈ N0, the exact solution coincides with the initial condition. In this example,
we use u0(x) = exp(−100(x − 0.5)2).

We study the experimental orders of convergence for discrete upwinding (LOW),
MCL-L, and MCL-0 schemes using SSP2-RK time stepping and CFL parameter ν =
0.5. While values as large as ν = 1 can safely be employed without causing violations
of maximum principles, smaller values may be necessary to observe certain rates
of convergence. Alternatively, SSP3-RK time stepping can be used to improve the
temporal accuracy. In this study,we employ sequences of nestedmesheswith generally
nonuniform mesh size h obtained by randomly perturbing the positions of the interior
mesh vertices of the coarsest grid. The relative mesh sizes minK∈Kh hK /h of the
three sequences are 1 (uniform), ≈ 0.69 (mildly perturbed), and ≈ 0.087 (severely
perturbed), respectively. We present the L2(Ω) errors at the final time T = 1 and the
corresponding experimental orders of convergence (EOC) in Tables 1, 2, 3.

The observed rates are in accordance with our expectations. As suggested by Corol-
lary 1, discrete upwinding converges at least with the rate of 1

2 . Actually, the low order
method becomes first order accurate on very fine uniformmeshes. Our preferredMCL-
L scheme produces second order accurate results in this test. If no correction of the
mass lumping error is performed, the order of accuracy deteriorates, while still exceed-
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Table 2 Convergence history for the one-dimensional advection equation on a sequence ofmildly perturbed
periodic meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for u0(x) = exp(−100(x −
0.5)2)

1/h LOW EOC MCL-L EOC MCL-0 EOC

32 2.21E−01 7.06E−02 9.97E-02

64 1.75E−01 0.34 2.22E−02 1.67 4.51E−02 1.15

128 1.26E−01 0.47 4.95E−03 2.17 1.70E−02 1.40

256 8.23E−02 0.62 1.16E−03 2.09 5.48E−03 1.64

512 4.88E−02 0.75 2.87E−04 2.01 1.71E−03 1.68

Table 3 Convergence history for the one-dimensional advection equation on a sequence of severely per-
turbed periodic meshes. The ‖ · ‖L2(Ω) errors at T = 1 and the corresponding EOC for u0(x) =
exp(−100(x − 0.5)2)

1/h LOW EOC MCL-L EOC MCL-0 EOC

32 2.24E−01 1.01E−01 1.16E−01

64 1.82E−01 0.30 4.85E−02 1.05 5.65E−02 1.03

128 1.36E−01 0.43 1.25E−02 1.96 2.33E−02 1.28

256 9.08E−02 0.58 2.98E−03 2.07 7.72E−03 1.59

512 5.51E−02 0.72 7.26E−04 2.04 2.46E−03 1.65

ing the provable rate of 1
2 . In this example, the influence of mesh perturbations on the

results is insignificant. A decay in the convergence rate of the standard MCL scheme
for a steady problem was observed on perturbed 2D meshes in [21, Sec. 6.1].

5.2 On the stabilizing effect of low order time derivatives

Let us now compare the standard Galerkin approach to methods that are stabilized by
incorporating low order time derivatives (2.14) via antidiffusive fluxes. We consider
the same setup as in the previous section with the exception that the initial condition
u0 is replaced by [15]

u0(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 if 0.2 ≤ x ≤ 0.4,

exp(10) exp( 1
0.5−x ) exp( 1

x−0.9 ) if 0.5 < x < 0.9,

0 otherwise.

(5.1)

This profile features discontinuities as well as a C∞ region. In Fig. 1 we display stan-
dard continuous Galerkin approximations obtained with four different combinations
of time stepping schemes and CFL parameters on a uniform, a mildly perturbed and
a severely perturbed mesh with 128 elements in each case. Spurious ripples that are
not local to the vicinity of the discontinuities can be observed in all profiles. Although
limiters can remove these oscillations, the quality of approximations obtained in this
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Fig. 1 One-dimensional advection equationwith initial condition (5.1). ConsistentGalerkin approximations
at T = 1 obtained with SSP RK time stepping on periodic meshes consisting of 128 elements

Fig. 2 One-dimensional advection equation with initial condition (5.1). Stabilized Galerkin approximations
at T = 1 obtained with SSP2-RK time stepping and ν = 1 on periodic meshes consisting of 128 elements

fashion is usually poor compared to solutions obtained with flux limiters applied to a
stabilized target discretization (cf. Sect. 5.3).

Next, we compute approximations of the stabilized target scheme, i. e., (2.21) with
αi j = 1 for all i ∈ {1, . . . , N }, j ∈ Ni \ {i}. These are compared to the profiles
obtained with discrete upwinding (LOW), MCL-L, and MCL-0 schemes. SSP2-RK
time stepping with CFL parameter ν = 1 is employed in combination with all spatial
semi-discretizations. The results of this study are displayed in Fig. 2.

We observe significant improvements in the solution quality for the unlimited tar-
get scheme compared to the consistent Galerkin approximations displayed in Fig. 1.
Numerical results obtained with LOW,MCL-L andMCL-0 exhibit behavior similar to
that observed in Sect. 5.1 In particular, the MCL-0 scheme produces a nonsymmetric
profile in the left part of the domain, which can be attributed to dispersive errors that
occur commonly if the mass lumping error is not compensated [35].

5.3 Solid body rotation

Let us now apply the MCL scheme to a 2D solid body rotation benchmark [26] in
which Ω = (0, 1)2, v(x, y) = 2π (0.5 − y, x − 0.5)T , û = 0 and

u0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ucone0 (x, y) if r(x, y; 0.5, 0.25) ≤ r0,

u
bump
0 (x, y) if r(x, y; 0.25, 0.5) ≤ r0,

1 if r(x, y; 0.5, 0.75) ≤ r0 ∧ (|x − 0.5| ≥ 0.025 ∨ y ≥ 1 − r0) ,

0 otherwise,
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Fig. 3 Exact initial condition of the solid body rotation [26] interpolated in Vh for a uniform triangular
mesh consisting of 2 · 1282 elements

where r(x, y; x0, y0) :=√
(x − x0)2 + (y − y0)2, r0 = 0.15, and

ucone0 (x, y) = 1 − r(x, y; 0.5, 0.25)
r0

,

ubump
0 (x, y) = 1

4

(
1 + cos

(
π r(x, y; 0.25, 0.5)

r0

))
.

In this example, a cone, a smooth bump and a slotted cylinder rotate around the domain
center. At each time instant T ∈ N0, the exact solution is equal to the initial condition,
which is shown in Fig. 3. The numerical results displayed in this section are visualized
with the open source C++ software GLVis [11].

We solve this problem numerically using triangular meshes and h = c/128, where
c = √

2 for uniform grids and c = 1 for unstructured ones. For time stepping we
employ the SSP2-RK method with constant time steps Δt = 5 · 10−4 and Δt =
3.125 · 10−4, respectively. In addition to MCL-L and MCL-0 schemes, we test the
MCL-G approach, in which the consistent Galerkin time derivative u̇Gh = ∑N

j=1 u̇
G
j ϕ j

defined by

N∑
j=1

mi j u̇
G
j = −

∑
j∈Ni\{i}

ai j (u j − ui ) +
∑

Γk∈Fi

bki (û
k
i − ui ), i ∈ {1, . . . , N }

(5.2)

is employed to correct the mass lumping error through the antidiffusive fluxes fi j =
mi j (u̇i − u̇ j ) + di j (ui − u j ). The numerical results of this study are displayed in
Fig. 4 and the approximate L2(Ω) errors e2 at the final time T = 1 are presented in
the captions along with the maximum solution value umax

h for each approximation.
The minimum value of each approximation is zero up to machine precision.

Although all obtained profiles appear to be similar to each other, we can make out
somedifferences by closely examining the results. First,we observe that on the uniform
mesh MCL-0 is noticeably more diffusive than MCL-L and MCL-G. In particular, the
smooth hump is not well resolved in this approach due to dispersive errors that arise
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Fig. 4 Solid body rotation for the 2D advection equation [26]. MCL-L (left), MCL-0 (center), and MCL-G
(right) approximations at T = 1. Solutions obtained on uniform (top row) and unstructured (bottom row)
triangular meshes with SSP2-RK time stepping using Δt = 5 · 10−4 and Δt = 3.125 · 10−4, respectively

in lumped Galerkin approximations [35]. The unstabilized MCL-G scheme does not
suffer from this deficiency and, in fact, produces the smallest approximate error values
among the three approaches. However, the lack of stabilization leads to a distortion in
the shape of the sharp cone and, on the uniformmesh, a similar feature can be spotted in
the region of the slotted cylinder. In the case of the advection equation, this issue does
not seem to have a dominating effect on the obtained profiles but, in our experience [14,
Sec. 3.4.3.2], the MCL-G scheme produces more pronounced spurious oscillations if
applied to more involved problems like the Euler equations of gas dynamics. The
quality of approximations obtained in this manner can be improved by employing
smaller time steps or higher order SSP-RK methods [21, Fig. 2 (e)]. Nevertheless,
some form of stabilization should be used in combination with continuous Galerkin
discretizations of hyperbolic problems. Therefore, MCL-L is the preferable option
among the three schemes under investigation. Alternative stabilization techniques for
standard finite elements can be found in [23, 27] for linear and nonlinear problems,
respectively.

5.4 A posteriori compatibility check

The compatibility condition (3.1) turned out to be an invaluable tool for our theo-
retical investigations. Unfortunately, we are unable to prove that the MCL-L scheme
automatically produces compatible pairs (uh, u̇h) under suitable assumptions on the
mesh. However, it is easy to check for which values of γ ∈ (0, 1) condition (3.1) is
fulfilled a posteriori. Indeed, (3.1) is equivalent to

γ ≤ dh(uh; uh, uh) − mh(uh; u̇h, uh)
dh(uh; uh, uh) + h

λ
mh(uh; u̇h, u̇h)

(5.3)
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Table 4 Maximum values of γ

over all time steps for four 1D
examples. Results obtained on
uniform meshes with SSP2-RK
time stepping and CFL
parameters ν = 1 (upper half)
and ν = 0.1 (lower half)

1/h Test 1 Test 2 Test 3 Test 4

32 0.58 0.65 0.62 0.67

64 0.54 0.54 0.56 0.56

128 0.52 0.53 0.52 0.55

256 0.51 0.52 0.51 0.53

512 0.50 0.52 0.51 0.52

32 0.62 0.66 0.64 0.66

64 0.56 0.58 0.58 0.60

128 0.53 0.55 0.54 0.57

256 0.52 0.53 0.52 0.57

512 0.51 0.52 0.51 0.55

if the denominator in the right hand side of (5.3) is nonzero (it is nonnegative due
to Lemma 2). If the numerator in (5.3) is also nonnegative, this criterion yields an
upper bound on γ . Having calculated these a posteriori bounds via (5.3), one can
check how they behave upon mesh refinement. Two issues that lead to a violation of
compatibility can occur in practice. First, (5.3) can produce a negative upper bound
on γ , a case that is not covered by our theory. Secondly, γ may approach zero upon
mesh refinement, which would cause the constant in the leading order term of our error
estimate to approach infinity. We found the former concern to be valid on perturbed
one-dimensional meshes. Using smaller time steps does not resolve incompatibility
issues, which seem to be caused by triangulations of bad quality. In such instances,
our stability and error estimates are not applicable to MCL-L but remain valid for the
LOW and MCL-0 schemes, as well as for the method proposed in [15, Sec. 3.3] that
enforces compatibility.

Having performed the described a posteriori check for various test problems, we
conjecture that compatibility of (uh, u̇h) holds for the MCL-L scheme on uniform
meshes. Below we report the results of our experiments in which we compute the
values of the right hand side of (5.3). First, we consider four one-dimensional test
problems. In each case, the spatial domain Ω = (0, 1) is equipped with periodic
boundaries and the velocity is v = 1. The first and second tests are the same as in
Sects. 5.1 and 5.2. In the third and fourth tests, the final time is T = 0.5 and the initial
conditions read

u0(x) =
{
0.5

(
1 + cos

(
π

0.15 (x − 0.25)
))

if |x − 0.25| < 0.15,

0 otherwise,

and u0(x) = max{0, 1 − 10|x − 0.2|}, respectively.
We solve each of these problems on a hierarchy of uniformmeshes using SSP2-RK

time stepping with CFL parameters ν ∈ {1, 0.1}. The largest value of γ for which
(3.1) is satisfied during the whole simulation is presented in Table 4.

Additionally, we repeat the solid body rotation test [26] from Sect. 5.3 on sequences
of uniform (c = √

2) and unstructured (c = 1) triangular meshes and compute a pos-
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Table 5 Maximum values of γ over all time steps for the solid body rotation [26]. Results obtained on
uniform and unstructured meshes with SSP2-RK time stepping and constant time steps

c/h Uniform meshes #TS Unstructured meshes minK∈Kh
hK /h #TS

32 γ = 0.59 500 γ = 0.48 0.32 625

64 γ = 0.54 1000 γ = 0.45 0.31 1250

128 γ = 0.49 2000 γ = 0.46 0.29 3200

256 γ = 0.49 4000 γ = 0.47 0.28 6400

512 γ = 0.48 8000 γ = 0.47 0.26 12500

teriori values for γ via (5.3). The results of this study are summarized in Table 5,
where #TS refers to the total number of employed time steps.

We observe slightly larger maximum values of γ on coarse girds than on fine
meshes. The use of smaller time steps seems to have marginal influence on the results.
In all cases, we have γ > 0.4, which is consistent to the value that we used in [15]
to enforce (3.1). Contrary to the 1D case, (5.3) does not produce negative values for
γ even on unstructured meshes in 2D. This observation leads us to believe that the
low order time derivative u̇h given by (2.14) is compatible to uh even for a certain
class of unstructured meshes. Further theoretical and numerical studies are required
to pinpoint, exactly which conditions a sequence of unstructured meshes has to satisfy
in order to produce compatible pairs (uh, u̇h) via the standard MCL approach. The
opposite point of view is that the compatibility condition (3.1) can actually be used to
determine the mesh quality for mesh optimization purposes. Feasibility and benefits
of this approach are yet to be determined.

6 Conclusions

We performed numerical analysis for a discretization of the linear advection equa-
tion based on an algebraic flux correction scheme. The employed monolithic convex
limiting technique is a semi-discrete approach that enforces discrete maximum princi-
ples in fully discrete discretizations based on strong stability preserving Runge–Kutta
methods. Outcomes of the conducted research include a stability and an a priori error
estimate in the semi-discrete setting. To prove that the scheme converges with a rate
of at least 1

2 , we formulated a compatibility condition for the discrete solution and
corresponding approximate time derivatives. It is possible to enforce such constraints
via additional limiting. However, our numerical examples indicate that the original
MCL scheme produces essentially compatible functions if the antidiffusive fluxes are
stabilized, e. g., using a low order approximation (2.14) to the nodal time derivatives.

It is hoped that the ideas presented in this work can be used for analysis of fully
discrete problems and extended to nonlinear conservation laws, hopefully even systems
like the Euler equations of gas dynamics. Other interesting avenues to explore in
future studies include analysis of AFC schemes for other target discretizations, such
as discontinuous Galerkin methods and/or higher order finite elements. Moreover, the
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aspects of inexact numerical integration may need to be taken into account. We invite
the interested reader to participate in these research endeavors.

Acknowledgements The authors would like to thank Prof. Dmitri Kuzmin for many fruitful discussions
and his contributions to an earlier version of this manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that this research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abgrall, R.: Essentially non-oscillatory residual distribution schemes for hyperbolic problems. J. Com-
put. Phys. 214, 773–808 (2006). https://doi.org/10.1016/j.jcp.2005.10.034

2. Amann, H.: Ordinary Differential Equations (De Gruyter) (1990). https://doi.org/10.1515/
9783110853698

3. Anderson, R., Dobrev, V., Kolev, T., Kuzmin, D., Quezada de Luna, M., Rieben, R., Tomov, V.: High-
order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for
the transport equation. J. Comput. Phys. 334, 102–124 (2017). https://doi.org/10.1016/j.jcp.2016.12.
031

4. Barrenechea, G.R., Burman, E., Karakatsani, F.: Edge-based nonlinear diffusion for finite element
approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.
Numer. Math. 135, 521–545 (2017). https://doi.org/10.1007/s00211-016-0808-z

5. Barrenechea, G.R., John, V., Knobloch, P.: Analysis of algebraic flux correction schemes. SIAM J.
Numer. Anal. 54, 2427–2451 (2016). https://doi.org/10.1137/15M1018216

6. Barrenechea, G.R., John, V., Knobloch, P., Rankin, R.: A unified analysis of algebraic flux correction
schemes for convection-diffusion equations. SeMA J. 75, 655–685 (2018). https://doi.org/10.1007/
s40324-018-0160-6

7. Dafermos,C.M.:HyperbolicConservationLaws inContinuumPhysics (Springer) 1st ed. (2000)https://
doi.org/10.1007/978-3-662-22019-1

8. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous GalerkinMethods (Springer) (2012).
https://doi.org/10.1007/978-3-642-22980-0

9. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method (Springer) (2015). https://doi.org/10.1007/
978-3-319-19267-3

10. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements (Springer) (2004). https://doi.org/
10.1007/978-1-4757-4355-5

11. GLVis: OpenGL Finite Element Visualization Tool https://glvis.org
12. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization meth-

ods. SIAM Rev. 43, 89–112 (2001). https://doi.org/10.1137/S003614450036757X
13. Guermond, J.-L., Popov, B.: Invariant domains and first-order continuous finite element approxima-

tion for hyperbolic systems. SIAM J. Numer. Anal. 54, 2466–2489 (2016). https://doi.org/10.1137/
16M1074291

123

8 Page 28 of 29 BIT Numerical Mathematics (2023) 63:8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jcp.2005.10.034
https://doi.org/10.1515/9783110853698
https://doi.org/10.1515/9783110853698
https://doi.org/10.1016/j.jcp.2016.12.031
https://doi.org/10.1016/j.jcp.2016.12.031
https://doi.org/10.1007/s00211-016-0808-z
https://doi.org/10.1137/15M1018216
https://doi.org/10.1007/s40324-018-0160-6
https://doi.org/10.1007/s40324-018-0160-6
https://doi.org/10.1007/978-3-662-22019-1
https://doi.org/10.1007/978-3-662-22019-1
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-319-19267-3
https://doi.org/10.1007/978-3-319-19267-3
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://glvis.org
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/16M1074291
https://doi.org/10.1137/16M1074291


14. Hajduk, H.: Algebraically constrained finite element methods for hyperbolic problems with applica-
tions in geophysics and gas dynamics Ph.D. thesis TU Dortmund University (2022) https://doi.org/10.
17877/DE290R-22850

15. Hajduk, H., Rupp, A., Kuzmin, D.: Analysis of algebraic flux correction for semi-discrete advection
problems (2021) arXiv:2104.05639math.NA

16. Harten,A., Lax, P.D., vanLeer,B.:Onupstreamdifferencing andGodunov-type schemes for hyperbolic
conservation laws. SIAM Rev. 25, 35–61 (1983). https://doi.org/10.1137/1025002

17. Jha, A.: A residual based a posteriori error estimators for AFC schemes for convection-diffusion
equations. Comput. Math. Appl. 97, 86–99 (2021). https://doi.org/10.1016/j.camwa.2021.05.031

18. Jha,A.,Ahmed,N.:Analysis of flux corrected transport schemes for evolutionary convection-diffusion-
reaction equations (2021) arXiv:2103.04776math.NA

19. Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations
(Springer) (2003). https://doi.org/10.1007/b97419
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