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Abstract
Xiao andQin (Comput Phys Commun 265:107981, 2021) recently proposed a remark-
ably simple modification of the Boris algorithm to compute the guiding centre of the
highly oscillatory motion of a charged particle with step sizes that are much larger
than the period of gyrorotations. They gave strong numerical evidence but no error
analysis. This paper provides an analysis of the large-stepsize modified Boris method
in a setting that has a strong non-uniform magnetic field and moderately bounded
velocities, considered over a fixed finite time interval. The error analysis is based on
comparing the modulated Fourier expansions of the exact and numerical solutions, for
which the differential equations of the dominant terms are derived explicitly. Numer-
ical experiments illustrate and complement the theoretical results.

Keywords Charged particle · Strong non-uniform magnetic field · Guiding centre ·
Modified Boris integrator · Modulated Fourier expansion

Mathematics Subject Classification 65L20 · 65L11 · 65P10 · 78A35

1 Introduction

Integrating the equations ofmotionof chargedparticles is a fundamental computational
task in particle methods of plasma physics, e.g. [2]. The standard numerical integrator
for these computations is the Boris algorithm [3], which has the charm of simplicity
and remarkable conservation properties [8, 17]. In the practically important situation
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of a strong magnetic field and moderate velocities, which will be considered in this
paper, the particle trajectories show fast gyrorotations of small radius around a guiding
centre [15].

To approximate the guiding centre motion, one approach—not considered here—is
to integrate numerically the known but structurally complicated differential equations
for the approximate guiding centre by a suitable numerical method [6].

In a different and arguably more efficient approach, a Boris-type integrator with
appropriate modifications is applied to the original equations of motion of the charged
particle with large step sizes that do not resolve the high-frequency oscillations. As
the standard Boris algorithm used with large step sizes is known to produce numerical
solutionswith unphysically large gyroradius [16, 18], modifications to it are necessary.
In the case of a near-uniform strong magnetic field, it suffices to filter out the normal
component of the initial velocity [10], but the mere modification of initial values is
not sufficient in a strongly non-uniform magnetic field. Xiao and Qin [22] recently
proposed to additionally modify the electric field in a non-obvious way when using
the Boris algorithm with large step sizes and showed striking numerical results, but no
error analysis was given. It was then found that a very similar numerical method, with
the same extra force term, was already proposed by Vu and Brackbill [19] (Method
III) in 1995, motivated by Parker and Birdsall [16] on the large-stepsize behaviour
of the Boris method; see in particular formula (10) in [16], based on the equations
of guiding-centre motion as given by Northrop [15], which are at the origin of the
extra force term added to the schemes in [19] and [22]. A very interesting approach to
understanding such methods in terms of slow manifolds was recently given by Burby
and Klotz [5] and Burby and Hirvijoki [4], but these papers deal with the exact flow on
and near the slow manifold and do not clarify the behaviour of the numerical method
for large step sizes.

The objective of the present paper is to give a rigorous analysis of the modified
Boris algorithm of Xiao and Qin [22] for approximating the guiding centre motion of
a charged particle in a strong non-uniform magnetic field taking large time steps that
cover many periods of gyrorotation.

In Sect. 2 we formulate the general setting of charged-particle motion in a strongly
non-uniform strong magnetic field, describe the Boris algorithm and its modification,
and state our main result, Theorem 2.1, which yields second-order error bounds for the
position and velocity of the guiding centre when approximatedwith themodifiedBoris
method with large step sizes whose square exceeds the inverse of the strength of the
magnetic field. In Sect. 3we present results of numerical experiments that illustrate and
complement the theory. In Sect. 4 we give modulated Fourier expansions of both the
exact and the numerical solution. Their comparison yields the proof of Theorem 2.1.

2 Large-stepsize modified Boris method and its error bound

2.1 Setting

The motion of a charged particle (of unit mass and charge) in a magnetic and electric
field is governed by the differential equation
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ẍ = ẋ × B(x) + E(x), (2.1)

where x(t) ∈ R
3 is the position at time t , v(t) = ẋ(t) is the velocity, B is the magnetic

field and E is the electric field. Here, B(x) = ∇ × A(x) with a vector potential
A(x) ∈ R

3 and E(x) = −∇φ(x) with a scalar potential φ(x) ∈ R, which we assume
to be bounded from below. We are interested in the case of a strong magnetic field

B(x) = Bε(x) = 1

ε
B1(x), 0 < ε � 1, (2.2)

where B1 and its first two derivatives are bounded independently of the small parameter
ε, and |B1(x)| ≥ 1 for all x . The derivatives of E(x) are also assumed to be bounded
independently of ε. (Note that in contrast to, e.g., [10, 11], it is not assumed here that
derivatives of the strong magnetic field B are bounded independently of ε. Here, the
derivatives of B are of size O(ε−1) as is B itself.)

The motion (2.1) and its approximation are to be studied over time intervals t ∈
[0, T ] with fixed T independent of ε, for initial values (x(0), ẋ(0)) that are bounded
independently of ε: for some constants M0, M1,

|x(0)| ≤ M0, |ẋ(0)| ≤ M1. (2.3)

Under these conditions, it is known that the magnetic moment

μ(x, v) = 1

2

|v × B(x)|2
|B(x)|3 ,

which is of size O(ε) under our assumptions, is an adiabatic invariant [14, 15]:
μ(x(t), ẋ(t)) is conserved up to O(ε2) over very long times t ≤ ε−N with arbitrary
N > 1 [1, 9]. Here we consider (2.1) only over fixed times T that are independent of
ε.

2.2 Modified Boris method of Xiao and Qin [22]

The integrator for charge-particle dynamics (2.1) proposed in [22] is a remarkably
simple but nontrivial modification of the Boris algorithm, with the objective to approx-
imate the guiding centre of the particle motion with large step sizes h � ε without
resolving the gyrorotations. In its two-step formulation the method computes the new
position xn+1 as an approximation at time tn+1 = (n + 1)h via

xn+1 − 2xn + xn−1

h2
= vn × B(xn) + E(xn) − μ0 ∇|B|(xn) (2.4)

with the initial magnetic moment μ0 = μ(x(0), ẋ(0)) and the symmetric finite dif-
ference velocity approximation

vn = xn+1 − xn−1

2h
. (2.5)
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This differs from the original Boris method only in the addition of the extra term
−μ0 ∇|B|(xn), which also appears in the differential equations for the guiding centre;
see [15] and, e.g., Theorem 4.1 below. Note that μ0 ∇|B|(x) = O(1) under our
assumptions, whereas it is O(ε) under the stronger assumption of maximal ordering
in [10, 11] and could therefore be ignored in the numerical methods of those papers.

The modified Boris method starts from modified initial values

x0 = x(0), v0 = P‖(x0) ẋ(0), (2.6)

where P‖(x0) is the orthogonal projection onto the span of B(x0). With P⊥(x0) =
I − P‖(x0), we note that

v0⊥ = P⊥(x0)v0 = 0,

i.e., the perpendicular component of the initial velocity has been filtered out.
Note that the modified Boris method (2.4) is not consistent with (2.1) as h → 0 and

ε is fixed. It is identical to the standard Boris integrator for the modified force field

Emod(x) = E(x) − μ0 ∇|B|(x) = −∇(φ + μ0|B|)(x).

The actual implementation uses the common one-step formulation of the Boris algo-
rithm [3].

2.3 Large-stepsize error bound

For the following theorem, which is the main result of this paper, we need a nonde-
generacy condition:

For (x, v) along the numerical trajectory, the linear maps

Lx,v : P⊥(x)R3 → P⊥(x)R3, z �→ z + 1
4h

2 P⊥(x)
(
v × B ′(x)z

)
(2.7)

have an inverse that is bounded independently of (x, v) and of

h and ε with h2/ε ≤ C∗.

This determines an upper bound C∗ on the ratio h2/ε. We have the following large-
stepsize error bound for the modified Boris method.

Theorem 2.1 Consider applying the modified Boris method to (2.1)–(2.3) with modi-
fied initial values (2.6) over a time interval 0 ≤ t ≤ T (with T independent of ε) using
a step size h with h2 ∼ ε, i.e.,

c∗ε ≤ h2 ≤ C∗ε

for some positive constants c∗ and C∗. Under the nondegeneracy condition (2.7), the
errors in position x and parallel velocity v‖ = P‖(x)v (where P‖(x) denotes the
orthogonal projection onto the span of B(x)) at time tn = nh ≤ T are bounded by
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|xn − x(tn)| ≤ Ch2, |vn‖ − v‖(tn)| ≤ Ch2, |vn⊥| ≤ Ch2,

where C is independent of ε, h and n with nh ≤ T (but depends on T, on bounds of
derivatives of B1 and E, and on c∗ and C∗).

Since x(t) and v‖(t) are O(ε) close to the guiding centre at time t and its velocity,
respectively, and since ε ∼ h2 by assumption, Theorem 2.1 yields that the modified
Boris method approximates the guiding centre motion with O(h2) accuracy for step
sizes h that are much larger than the gyroperiod 2π/|B(x)| ∼ ε.

The proof of this theorem will be given in Sect. 4.

Remark 2.1 It is of interest to understand how the error bound changes when ε � h2

or h � ε � h2. An O(h2) error bound still holds true for the less restrictive stepsize
condition

c∗ε ≤ h2 ≤ C∗εα for 0 ≤ α < 1

for less strongly varying magnetic fields

B(x) = 1

ε
B1(ε

1−αx).

This can still be obtained with essentially the same proof, but we will not work out
the lengthy yet conceptually straightforward details.

In the situation of h2 ≤ ε � h given by

c∗εβ ≤ h2 ≤ C∗ε for 1 < β < 2,

an O(ε) error bound can be shown without an extra assumption on derivatives of B,
again with essentially the same proof.

3 Numerical experiments

We show numerical results of the modified Boris method for two examples.

3.1 Tokamak example from [22]

We consider the motion of a charged particle in a tokamak geometry without electric
field [22]. In Cartesian coordinates, the magnetic field is given as

B(x) =
(
−2x2 + x1x3

2R2 ,
2x1 − x2x3

2R2 ,
R − 1

2R

)�
with R =

√
x21 + x22 .

Starting with the initial position x(0) = (1.05, 0, 0)� and the initial velocity ẋ(0) =
(2.1 × 10−3, 4.3 × 10−4, 0)�, the orbit projected onto the (R, x3) plane is a banana
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Fig. 1 Banana orbits on the R − x3 plane computed by different methods with T = 3.75 × 104, h =
0.2 and h = 20. In the left picture, the scattered dots correspond to h = 20, whereas the thick-peeled
banana corresponds to h = 0.2. In the centre and right pictures, the results for h = 0.2 and h = 20 are
indistinguishable

orbit. The final time considered is T = 3.75 × 104. We note that upon rescaling time
as t → εt with ε = 10−3, the problem has the scaling of Sect. 2.1.

Figure 1 shows the trajectories computed by the standard Boris, standard Boris with
projected initial velocity and the modified Boris algorithm. Two step sizes h = 0.2
and h = 20 are chosen. It is observed that when h = 0.2, the standard Boris shows
the correct result while the gyroradius gets larger with larger step size. For h = 20
the numerical result is completely wrong. If we use standard Boris with v0⊥ = 0,
the gyroradius is always small, but the trajectory is not correct. A similar behaviour
(not shown here) is observed also for the filtered methods of [10, 11], which were
designed for a scaling (maximal ordering) where μ∇|B| is O(ε) small. After adding
the μ0∇|B| term, which is O(1) for the problem considered here, the modified Boris
method shows correct results even for the large step size h = 20.

3.2 Order of accuracy

We test the numerical accuracy of modified Boris algorithm with large time step by
applying the scheme to the example in [9]. We have the electric field

E(x) = −∇φ(x) with the potential φ(x) = x31 − x32 + 1

5
x41 + x42 + x43 ,

the magnetic field

B(x) = 1

2ε

⎛

⎝
x2 − x3
x1 + x3
x2 − x1

⎞

⎠ ,

and we take initial values

x(0) = (0.0, 1.0, 0.1)�, ẋ(0) = (0.09, 0.55, 0.3)�.
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Fig. 2 Global error versus ε (ε = 1/2 j , j = 13, · · · 22) with different h for the modified Boris algorithm

Figure 2 shows the absolute errors in x , v‖ and v⊥ at time t = 1 versus ε for various
h. It is observed that the errors in x and v‖ tend to a constant error level proportional
to h2, which is in accordance with our theoretical result in Theorem 2.1.

4 Modulated Fourier expansions and proof of Theorem 2.1

Theorem 2.1 will be proved by comparing the modulated Fourier expansions of the
exact and numerical solutions. Modulated Fourier expansions have previously been
used in the analysis of numerical methods for oscillatory differential equations, see
[7, 12] and numerous further papers, and lately also for charged-particle dynamics
in a strong magnetic field [9–11, 20, 21]. Incidentally, modulated Fourier expansions
(though not under this name) were used for studying the gyration of charged particles
by Kruskal [14] as early as 1958.

The analysis given here builds on that of [9] for the exact solution in the situation
of a strong non-uniform magnetic field and on that of [10] for the Boris method with
large step sizes in the situation of a mildly non-uniform strong magnetic field.

In this section we give the modulated Fourier expansions of the exact solution
(Theorem 4.1) and of the numerical solution (Theorem 4.2), including explicit expres-
sions for the differential equations of the dominant modulation functions. The analysis
identifies the additional term in the modified Boris algorithm as the additional term
appearing for the motion of the guiding centre in the modulated Fourier expansion
that is missed by the standard Boris algorithm. This explains the excellent behaviour
of the algorithm. The proof of Theorem 2.1 is then obtained by a comparison of
Theorems 4.1 and 4.2.

4.1 Modulated Fourier expansion of the exact solution

We write the solution of (2.1) as
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x(t) ≈
∑

k∈Z
zk(t) eikϕ(t)/ε, 0 ≤ t ≤ T ,

with piecewise smooth modulation functions zk and phase function ϕ for which all
time derivatives are bounded independently of ε, except at the discontinuities of zk

and ϕ̇ at integral multiples t = nε with jumps of size O(εN ), for an arbitrarily chosen
integer N > 1. The phase satisfies ϕ̇(t)/ε = |B(z0(t))| and z0(t) is the guiding centre
at time t (defined up to O(εN )).

Following [9], we diagonalize the linear map v �→ v × B(x), which has eigen-
values λ1 = i|B(x)|, λ0 = 0 and λ−1 = −i|B(x)|. The corresponding normalized
eigenvectors are denoted by ν1(x), ν0(x), and ν−1(x). We let Pj (x) = ν j (x)ν j (x)∗ be
the orthogonal projections onto the eigenspaces, where we note that P‖(x) = P0(x)
and P⊥(x) = I − P‖(x) = P1(x) + P−1(x). We write the coefficient functions in the
basis ν j (z0(t)),

zk =
1∑

j=−1

zkj , zkj (t) = Pj (z
0(t))zk(t), k �= 0,

whereas for k = 0 we decompose

z0 = c0 +
1∑

j=−1

z0j , z0j (t) = Pj (z
0(t))(z0(t) − c0(t)),

where c0(t) is a piecewise constant functionwith a finite number of jumps independent
of ε, chosen arbitrarily such that |x(t) − c0(t)| remains distinctly smaller than the
inverse of a bound of the derivative of P0 in a neighbourhood of the solution.

The following result is based on Theorem 4.1 of [9], where the existence of the
modulated Fourier expansion of solutions of (2.1)–(2.2) was established together with
bounds of the modulation functions and of the remainder term. However, the differen-
tial equations for the dominant modulation functions z00, z

0±1 and z±1
±1 and their initial

values were not stated explicitly. As these will be needed in the following and are also
of independent interest, they are given here.

Theorem 4.1 Let x(t) be a solution of (2.1)–(2.2) with an initial velocity bounded
independently of ε (|ẋ(0)| ≤ M). For an arbitrary truncation index N ≥ 1 we then
have an expansion

x(t) =
∑

|k|≤N−1

zk(t) eikϕ(t)/ε + RN (t), 0 ≤ t ≤ T ,

where the phase function satisfies ϕ̇(t) = |B1(z0(t))| (recall that B(x) = B1(x)/ε
with B1 independent of ε), and we fix ϕ(0) = 0.

(a) The coefficient functions zk(t) are piecewise continuous with jumps of size O(εN )

at integral multiples of ε and are smooth elsewhere. Together with their derivatives
(up to order N) they are bounded as
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zk = O(ε|k|) for all |k| ≤ N − 1

and further satisfy zkj = O(ε2) for |k| = 1, j �= k. Moreover, ż0×B1(z0) = O(ε).

The functions zk are unique up to O(εN ).
(b) The remainder term and its derivative are bounded by

RN (t) = O(εN ), ṘN (t) = O(εN−1), 0 ≤ t ≤ T .

(c) On each time interval nε ≤ t < (n+1)ε ≤ T (for integers n ≥ 0), the functions z00,
z0±1, z

1
1, z

−1
−1 satisfy the following differential equations. Here, all functions B, E,

Pj are evaluated at the guiding centre z0(t), andwewrite Ṗj = (d/dt)Pj (z0(t)) =
P ′
j (z

0(t))ż0(t) and analogously P̈j . Moreover, μ0 = μ(x(0), ẋ(0))) is the mag-
netic moment. Omitting the ubiquitous argument t , we have

z̈00 = 2 Ṗ0 ż
0 + P̈0(z

0 − c0) + P0
(
E − μ0 ∇|B|

)
+ O(ε),

ż0±1 = Ṗ±1(z
0 − c0) ± i

|B| Ṗ±1 ż
0 ± i

|B| P±1

(
E − μ0 ∇|B|

)
+ O(ε2),

ż±1
±1 = Ṗ±1z

±1
±1 − (d/dt)|B|

|B| z±1
±1 ∓ i

|B| P±1

(
ż0 × B ′(z0)z±1

±1

)
+ O(ε2).

All other modulation functions zkj are given by algebraic expressions depending

on z0, ż00, z
1
1, z

−1
−1.

(d) Initial values for the differential equations of item (c) are given by

z0(0) = x(0) + ẋ(0) × B(x(0))

|B(x(0))|2 + O(ε2),

ż00(0) = P0 ẋ(0) + Ṗ0(z
0(0) − c0(0)) + O(ε),

z±1
±1(0) = ∓i

|B| P±1 ẋ(0) + O(ε2),

where B, B ′ and Pj are evaluated at the initial guiding centre z0(0) (up to O(ε2)).

The constants symbolized by the O-notation are independent of ε and t with0 ≤ t ≤ T ,
but depend on N, on the velocity bound M, on bounds of derivatives of B and E in a
neighbourhood of the trajectory {x(t) : 0 ≤ t ≤ T }, and on the final time T .

Remark 4.1 Since the energy H(x, v) = 1
2 |v|2 + φ(x) is conserved, it is bounded by

1
2 M̃

2 := 1
2M

2 + φ(x(0)) and we have 1
2 |ẋ(t)|2 ≤ M̃2 − φ(x(t)). As we assumed

that the scalar potential φ is bounded from below, this gives an a priori bound on the
velocity. Hence, the solution stays in a ball with centre x(0) and radius depending
only on x(0) and ẋ(0) in a fixed time interval 0 ≤ t ≤ T .

Remark 4.2 The differential equations for z00 and z0±1 are implicit, because the term
P̈(z0)(z0 − c0) contains z̈00. By our choice of c0, which ensures that |z0 − c0| is
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sufficiently small, the equation can be solved for z̈00 to yield an explicit second-order
differential equation. Similarly, the first-order differential equations for z0±1, which
contain the time derivative in the term Ṗ±1(z0)(z0 − c0), can be solved for ż0±1 to
yield explicit first-order differential equations. As was noted in [9], the modulation
functions zk are independent of the choice of c0.

Remark 4.3 From the second equation of (c), it is straightforward to get (with P⊥ =
P1 + P−1 and P‖ = P0)

P⊥ ż0 = 1

|B| P‖ ż0 × d(B/|B|)
dt

+ 1

|B|2
(
E − μ0 ∇|B|

)
× B + O(ε2),

with B,∇|B|, P‖, P⊥ and E evaluated at the guiding centre z0, which shows several
slow drifts for the guiding centre motion usually derived by averaging techniques in
the physical literature.

Proof It is sufficient to prove the theorem on time intervals of length ε. At the end of an
interval [(n−1)ε, nε], the construction of themodulated Fourier expansion is restarted
from the exact solution values x(nε), ẋ(nε), which in view of the uniqueness of the
modulation functions up to O(εN ) stated in (a) and the bound of the remainder term
stated in (b) leads to jump discontinuities of size O(εN ) in the modulation functions
and the derivative of the phase function.

Statements (a) and (b) are given by Theorem 4.1 in [9]. Here, we just give the proof
of (c) and (d).

(c): Inserting the modulated Fourier expansion into the differential equation (2.1)
and comparing the coefficients of eikϕ(t)/ε yields

z̈k + 2ik
ϕ̇

ε
żk +

(
ik

ϕ̈

ε
− k2

ϕ̇2

ε2

)
zk = Fk,

where the right-hand side Fk is obtained from a Taylor expansion of B and E at z0;
see [9] for the general formula. For k = 0, we obtain the motion of the guiding centre
z0(t):

z̈0 = ż0 × B(z0) + E(z0) + 2Re
( iϕ̇

ε
z1 × B ′(z0)z−1

)

︸ ︷︷ ︸
=:I

+O(ε). (4.1)

For k = ±1, we have

± 2i
ϕ̇

ε
ż±1+

(
±i

ϕ̈

ε
− ϕ̇2

ε2

)
z±1=

(
ż±1 ± i

ϕ̇

ε
z±1

)
× B(z0)+ ż0×B ′(z0)z±1+O(ε).

(4.2)
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We first study the case k = 0, i.e. (4.1). Here we begin by giving an alternative
expression for the term I , which is an O(1) term. We show that

I = −μ0 ∇|B|(z0) + O(ε). (4.3)

With the normalized eigenvectors ν j , we have z11 = ζν1 and z−1
−1 = ζν−1 with

ν−1 = ν1. We define the local orthonormal basis e1, e2, e3 of R3 by the eigenvectors
ν j as ν0 = B/|B| = e1 and ν±1 = 1√

2
(e2 ± ie3). Using that zkj = O(ε2) for |k| = 1

and j �= k by part (a), the term I can then be written as

I = iϕ̇

ε
z11 × B ′(z0)z−1

−1 − iϕ̇

ε
z−1
−1 × B ′(z0)z11 + O(ε)

= |B(z0)||z11|2
(
e2 × B ′(z0)e3 − e3 × B ′(z0)e2

)
+ O(ε). (4.4)

Following equation (11) in [15], we find

e2 × B ′(z0)e3 − e3 × B ′(z0)e2 = −∇|B|(z0). (4.5)

On the other hand,

x = z0 + O(ε), ẋ = ż0 + i
ϕ̇

ε
z11e

iϕ/ε − i
ϕ̇

ε
z−1
−1e

−iϕ/ε + O(ε)

and thus

ẋ × B(x) = ż0 × B(z0) − |B(z0)|2
(
z11e

iϕ/ε + z−1
−1e

−iϕ/ε
)

+ O(ε0).

From the orthogonality of z11 and z−1
−1 it follows that

μ(x, ẋ) = 1

2

|ẋ × B(x)|2
|B(x)|3 = |B(z0)| |z11|2 + O(ε2). (4.6)

Inserting (4.5) and (4.6) into (4.4) gives

I = −μ(x, ẋ)∇|B|(z0) + O(ε).

Using the adiabatic invariance [9, 15] μ(x(t), ẋ(t)) = μ0 + O(ε2), we obtain (4.3),
and hence equation (4.1) can be equivalently written as

z̈0 = ż0 × B(z0) + E(z0) − μ0 ∇|B|(z0) + O(ε). (4.7)

— Multiplying (4.7) with P0(z0) gives

P0(z
0)z̈0 = P0(z

0)
(
E(z0) − μ0 ∇|B|(z0)) + O(ε).
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Using the product rule

z̈00 = d2

dt2
(
P0(z

0)(z0 − c0)
) = P0(z

0)z̈0 + 2 Ṗ0(z
0)ż0 + P̈0(z

0)(z0 − c0),

this gives the first equation in (c).
— Multiplying (4.7) with P±1(z0) gives

P±1(z
0)z̈0 = ±i

ϕ̇

ε
P±1(z

0)ż0 + P±1(z
0)(E(z0) − μ0 ∇|B|(z0)) + O(ε).

Substituting P±1(z0)ż0 = ż0±1 − Ṗ±1(z0)(z0 − c0) yields

ż0±1− Ṗ±1(z
0)(z0−c0) = ∓i

ε

ϕ̇
P±1(z

0)z̈0±i
ε

ϕ̇
P±1(z

0)
(
E(z0)−μ0 ∇|B|(z0))+O(ε2)

= ∓i
ε

ϕ̇

(
z̈0±1 − P̈±1(z

0)(z0 − c0) − 2 Ṗ±1(z
0)ż0

)

± i
ε

ϕ̇
P±1(z

0)
(
E(z0) − μ0 ∇|B|(z0)) + O(ε2).

Denoting g±1 = ż0±1 − Ṗ±1(z0 − c0), we have ġ±1 = z̈0±1 − P̈±1(z0)(z0 − c0) −
Ṗ±1(z0)ż0. The above equation can be expressed as

g±1 = ∓i
ε

ϕ̇
ġ±1 ± i

ε

ϕ̇
Ṗ±1(z

0)ż0 ± i
ε

ϕ̇
P±1(z

0)
(
E(z0) − μ0 ∇|B|(z0)

)
+ O(ε2).

Bydifferentiation and substitution, the first termon the right-hand side can be absorbed
into the O(ε2) term, and so we get the second equation in (c).

Since the ε−2-terms cancel in (4.2) after projection with P±1(z0), the ε−1-terms
are dominant and we obtain the last equation in (c).

(d): The initial values can be obtained by the same arguments as in the proof of
Theorem 4.1 in [11]. ��

4.2 Modulated Fourier expansion of the numerical solution

The modulated Fourier expansion can be extended to the numerical solution of the
modified Boris algorithm similarly to Theorem 4.2 in [10]. There are, however, addi-
tional terms and difficulties to be considered, since here we do not have a magnetic
field in a near-constant direction as in [10].

Theorem 4.2 Let xn be the numerical solution obtained by applying themodified Boris
algorithm to (2.1)–(2.3) with a stepsize h satisfying

c∗ε ≤ h2 ≤ C∗ε (4.8)

for some positive constants c∗ and C∗. We assume that the component orthogonal to
B(x0) of the starting velocity, v0⊥ = P⊥(x0)v0 = v0 − P0(x0)v0, is chosen to be
small:
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|v0⊥| ≤ c1ε. (4.9)

We further make the nondegeneracy assumption (2.7). For an arbitrary truncation
index N ≥ 2, we then have a decomposition

xn = y(tn) + (−1)nz(tn) + RN (tn), tn = nh ≤ T , (4.10)

with the following properties:

(a) The functions y(t) and z(t), 0 ≤ t ≤ T , are piecewise continuous with jumps of
size O(hN ) at integral multiples of h and are smooth elsewhere. Together with
their derivatives (up to order N) they are bounded as y = O(1), z = O(h2). They
are unique up to O(hN ). Moreover, P⊥(y)ẏ = O(ε) and P0(y)z = O(h4).

(b) The remainder term is bounded by

RN (t) = O(hN ) for 0 ≤ t ≤ T .

(c) We let c0(t) be a piecewise constant function that is sufficiently close to y(t).
The functions y j = Pj (y)(y − c0) ( j = 0,±1) and z±1 = P±1z satisfy the
following differential equations for 0 ≤ t ≤ T except at the jumps. Here, all
functions B, E, Pj are evaluated at the numerical guiding centre y(t), and we
write Ṗj = (d/dt)Pj (y(t)) = P ′

j (y(t))ẏ(t) and analogously P̈j . Moreover, μ0 =
μ(x(0), ẋ(0))) is the magnetic moment. Omitting the ubiquitous argument t , we
have

ÿ0 = 2 Ṗ0 ẏ + P̈0(y − c0) + P0
(
E − μ0 ∇|B|

)
+ O(h2)

ẏ±1 = Ṗ±1(y − c0) ± i

|B| Ṗ±1 ẏ ± i

|B| P±1

(
E − μ0 ∇|B|

)
+ O(h2)

ż±1 = Ṗ±1z ∓ 4i

h2|B| z±1∓ i

|B| P±1
(
ẏ × B ′(y)z

) + O(εh2).

The function z0 = P0(y)(z − c0) is given by an algebraic expression depending
on y, ẏ0 and z±1.

(d) Initial values for the differential equations of item (c) are given by

y(0) = x0 + O(h2),

ẏ0(0) = P0(x
0)v0 + O(h2),

z±1(0) = O(h2).

The constants symbolized by the O-notation are independent of ε, h and n with 0 ≤
nh ≤ T , but depend on the velocity bound, on bounds of derivatives of B and E in a
neighbourhood of the numerical trajectory, and on the final time T .

Remark 4.4 The essential observation is that for the modified Boris method, the dif-
ferential equations for the numerical guiding centre y(t) are the same, up to a defect
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of size O(h2), as the differential equations for the guiding centre z0(t) of the exact
solution, and also the initial values agree up to O(h2). In contrast, for the standard
Boris method with parallel-projected initial velocity, the terms μ0 ∇|B| are missing.
This is the reason for the failure of the standard Boris method with modified starting
values for large step sizes h2 ≥ ε in the situation of strongly non-uniform strong
magnetic fields.

Proof This theorem is proved similarly to Theorem 4.2 in [10] (which gives an analo-
gous decomposition for the standard Boris method in the case of a near-constant strong
magnetic field) combinedwith the treatment of the strongly nonuniformmagnetic field
in Theorem 4.1 in [9]. Here, we do not repeat the arguments in the proofs of those
papers for (a) and (b) (such as the recursive elimination of higher time derivatives, an
idea going back in time as far as the Euler–Maclaurin summation formula [13]) but
concentrate on the parts (c) and (d) that are specific for the present situation.

Since a general strong magnetic field is considered, the time interval of validity
of the modulated Fourier expansion is here O(h) instead of O(1), and so we need to
patch together many such short-time expansions, starting anew from each xn , in the
same way we did in Theorem 4.1 over intervals of length proportional to ε.

Inserting the decomposition (4.10) into the numerical method (2.4) and separating
the terms without and with the factor (−1)n gives

ÿ + O(h2) = (
ẏ + O(h2)

) × B(y) − ż × B ′(y)z + E(y) − μ0 ∇|B|(y) + O(h2)

(4.11)

− 4

h2
z − z̈ + O(h2) = −ż × B(y) + ẏ × B ′(y)z + E ′(y)z + O(h2). (4.12)

Since z = O(h2) and ż = O(h2), the second term on the right hand side of the first
equation is

ż × B ′(y)z = O(h4/ε) = O(h2)

in our stepsize regime h2 ∼ ε.
Taking the projection P0 = P0(y) on both sides of (4.11) yields the first equation

in (c). Taking the projection P±1 on both sides gives

P±1 ÿ + O(h2) = ±i|B(y)|P±1 ẏ + P±1

(
E(y) − μ0 ∇|B|(y)

)
+ O(h2|B(y)|).

As in Theorem 4.1 we thus have, with B = B(y),

P±1 ẏ = ± i

|B| Ṗ±1 ẏ ± i

|B| P±1

(
E(y) − μ0 ∇|B(y)|

)
+ O(h2).

Taking the projection P±1 = P±1(y) on both sides of (4.12) yields

− 4

h2
z±1 − P±1 z̈ + O(h2) = ∓i|B|P±1 ż + P±1

(
ẏ × B ′(y)z

) + O(h2),
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and so we find

P±1 ż = ∓ 4i

h2|B| z±1 ∓ i

|B| P±1
(
ẏ × B ′(y)z

) + O(εh2).

We thus have the differential equations of part (c). Taking P0 on both sides of (4.12)
and multiplying with −h2/4 yields

z0 = − 1
4h

2 P0(ẏ × B ′(y)z) + O(h4).

Since P⊥ ẏ = O(ε), we have P0(ẏ × B ′(y)z) = P0(P⊥ ẏ × B ′(y)z) = O(z). This
gives us z0 = O(h4) provided that z±1 = O(h2).

(d) The numerical approximation to the velocity is given by

vn = xn+1 − xn−1

2h
= ẏ(tn) + ...

y (tn)h
2 + · · · − (−1)n(ż(tn) + ...

z (tn)h
2 + · · · ),

and so we have

vn⊥ = P⊥ ẏ(tn) − (−1)n P⊥ ż(tn) + O(h2),

which under the bounds of (a) yields vn⊥ = O(h2). We now consider this equation for
n = 0. Since the above equation for P±1 ż and the bound for z0 yield

P⊥ ż(0) = 4

h2|B0| Lx0,v0(z⊥(0)) × B0

|B0| + O(h4),

the above equation for v0⊥ yields

4

h2|B0| Lx0,v0(z⊥(0)) × B0

|B0| = P⊥ ẏ(0) − v0⊥ + h2P⊥
...
y (0) + O(h2z) + O(h4),

and with the nondegeneracy condition (2.7) we are now able to construct z⊥(0) and
hence z±1(0), which thanks to h2 ∼ ε and v0⊥ = O(ε) are indeed of size O(h2). ��

4.3 Proof of Theorem 2.1

Theorem 4.1 represents the exact solution as

x(t) = z0(t) + O(ε),

and Theorem 4.2 represents the numerical solution of the modified Boris method with
h2 ∼ ε as

xn = y(tn) + O(h2),
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where the guiding centre z0(t) and the numerical guiding centre y(tn) satisfy the same
differential equations up to O(h2) with the same initial values up to O(h2), and the
jumps of size O(εN ) or O(hN ) for arbitrary N contribute less than O(h2) to the
difference. (The piecewise constant function c0(t) can be chosen the same in both
cases.) Therefore, z0(t) and y(t) differ by O(h2) on a fixed time interval 0 ≤ t ≤ T .
This proves the O(h2) error bound for the positions in Theorem 2.1.

We now turn to the error bound for the velocity. We compare the velocity of the
exact solution

v(t) = ẋ(t) = ż0(t) + iϕ̇(t)

ε
z11(t)e

iϕ(t)/ε − iϕ̇(t)

ε
z−1
−1(t)e

−iϕ(t)/ε + O(ε)

and the numerical velocity

vn = xn+1 − xn−1

2h
= ẏ(tn) − (−1)n ż(tn) + O(hN ).

Since P‖(z0)z±1
±1 = 0 and P‖(y)z = z0 = O(h4), and since we already know that

z0(t) − y(t) = O(h2) and z0(t) − x(t) = O(ε) and y(tn) − xn = O(h2), it follows
that

vn‖ − v‖(tn) = P‖(xn)vn − P‖(x(tn))v(tn) = O(h2).

Finally, the bound vn⊥ = O(h2) was already shown in part (d) of the proof of Theo-
rem 4.2. This completes the proof of Theorem 2.1.
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