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Abstract
Dynamical low-rank integrators for matrix differential equations recently attracted a
lot of attention and have proven to be very efficient in various applications. In this
paper, we propose a novel strategy for choosing the rank of the projector-splitting
integrator of Lubich and Oseledets adaptively. It is based on a combination of error
estimators for the local time-discretization error and for the low-rank errorwith the aim
to balance both. This ensures that the convergence of the underlying time integrator is
preserved. The adaptive algorithmworks for projector-splitting integrator methods for
first-order matrix differential equations and also for dynamical low-rank integrators
for second-order equations, which use the projector-splitting integrator method in its
substeps. Numerical experiments illustrate the performance of the new integrators.
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1 Introduction

Dynamical low-rank integrators [17, 19] have been designed for the approximation
of large, time-dependent matrices which are solutions to first-order matrix differential
equations

A′(t) = F
(
A(t)

)
, t ∈ [0, T ], A(0) = A0 ∈ C

m×n, (1)

whose solutions can be well approximated by low-rank matrices. The projector-split-
ting integrator introduced in [19] has particularly favorable properties. It is robust in
the presence of small singular values, which appear in the case of over-approximation,
i.e., when the approximation rank is chosen larger than the rank of the solution A(t) of
(1). A variant of this method adapted to strongly dissipative problems was presented
in [5]. Another variant for stiff first-order matrix differential equations was introduced
in [24].

Recently, a novel dynamical low-rank integrator for second-order matrix differen-
tial equations

A′′(t) = F
(
A(t)

)
, t ∈ [0, T ], A(0) = A0, A′(0) = B0, (2)

has been constructed in [12]. Is is based on a Strang splitting of the equivalent first-
order formulation and the projector-splitting integrator [19]. This integrator is also
robust in the case of over-approximation and shows second-order convergence in
time. In particular, with a few amendments it is an effective method for semilinear
second-order matrix differential equations, see Sect. 2.3.

In applications, rank-adaptivity turns out to be essential for the efficiency of the
algorithms. For first-order equations, in [4] a rank-adaptive variant of the unconven-
tional integrator [5] was proposed. However, the approach from [4] is not applicable
to the projector-splitting integrator [19]. In [8], rank-adaptivity for tensor methods
for high-dimensional PDEs was based on a functional tensor train series expansion.
For the special case of finite-dimensional parametrized Hamiltonian systems mod-
eling non-dissipative phenomena, a rank-adaptive structure-preserving reduced basis
method was introduced in [11]. Very recently, in [10] a Predictor–Corrector strategy
for adaptivitywas proposed, and in [31] the authors developed a rank-adaptive splitting
method for the extended Fisher–Kolmogorov equation.

In the present paper, we discuss a general strategy for selecting the rank adaptively
in the projector-splitting integrator. Increasing or decreasing the rank from one time
step to the next was already proposed in [19] and quite recently in [13]. Our main
contribution is a strategy for which the time step of the underlying splitting method,
i.e., the Lie-Trotter splitting for first-order and the Strang splitting for second-order
problems, is the only input parameter. We determine the rank such that the error of the
dynamical low-rank approximation does not spoil the order of the underlying splitting
method applied to the full matrix differential equation. This is achieved by propagating
one additional singular value which is used for accepting or rejecting the current time
step and for selecting the rank in the next step. The decision is based on an estimator
of the global time-discretization error. This adaptivity control is also applicable to
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the dynamical low-rank integrators for stiff problems. The new dynamical low-rank
integrator for (2) uses the projector-splitting integrator in the substeps of the Strang
splitting, which allows to control the rank adaptively also for second-order equations.
Moreover, it can be readily combined with the integrator from [5].

The paper is organized as follows: In Sect. 2, we briefly recall the projector-splitting
integrator introduced in [19] and the LRLF scheme from [12]. Additionally, we sketch
variants of both methods for (stiff) semilinear first-order and second-order differential
equations, respectively. Section 3 is devoted to rank-adaptivity. In Sect. 4, numerical
experiments illustrate the performance of the new schemes.

Throughout this paper,m, n, and r are natural numbers, where w.l.o.g. m ≥ n � r .
If n > m, we consider the equivalent differential equation for the transpose. By Mr

we denote the manifold of complex m × n matrices with rank r ,

Mr = {Ŷ ∈ C
m×n | rank(Ŷ ) = r}.

The Stiefel manifold of m × r unitary matrices is denoted by

Vm,r = {U ∈ C
m×r | UHU = Ir },

where Ir is the identity matrix of dimension r and UH is the conjugate transpose of
U .

The singular value decomposition of a matrix Y ∈ C
m×n is given by

Y = U�V H , U ∈ Vm,m, V ∈ Vn,n, � = diag(σ1, . . . , σn) ∈ C
m×n,

where σ1 ≥ · · · ≥ σn ≥ 0 are its singular values. It is well known that for r < n, the
rank-r best-approximation to Y w.r.t. the Frobenius norm is

Ŷ best = U �̃V H = Û �̂V̂ H ,

where �̃ = diag(σ1, . . . , σr , 0, . . . , 0) and

Û = U [Ir 0] ∈ Vm,r , V̂ = V [Ir 0] ∈ Vn,r , �̂ = diag(σ1, . . . , σr ).

The Frobenius norm is denoted by ‖ · ‖, and the Frobenius inner product by 〈·, ·〉.
The symbol • denotes the entrywise or Hadmard product of matrices. For a given step
size τ we use the notation tk = kτ for any k with 2k ∈ N0.

2 Dynamical low-rank integrators with fixed rank

In this section we give a review on various low-rank integrators for first and second-
order matrix differential equations.
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2.1 First-order differential equations

In the dynamical low-rank approximation of the solution to first-order matrix differen-
tial equations (1), the approximation Â ≈ A is determined as solution of the projected
differential equation

Â′(t) = P
(
Â(t)

)
F
(
Â(t)

)
, Â(0) = Â0. (3)

Here, P
(
Â(t)

)
denotes the orthogonal projector onto the tangent space of the low-rank

manifold Mr at Â(t) ∈ Mr , i.e.,

P
(
Â(t)

)
Z = Z V̂ (t)V̂ (t)H − Û (t)Û (t)H Z V̂ (t)V̂ (t)H + Û (t)Û (t)H Z ,

cf. [17, Lemma 4.1], where Â(t) ∈ Mr is decomposed in a non-unique fashion
resembling the singular value decomposition into

Â(t) = Û (t)Ŝ(t)V̂ (t)H , Û (t) ∈ Vm,r , V̂ (t) ∈ Vn,r , Ŝ(t) ∈ C
r×r invertible.

(4)

For the initial value Â0, typically the rank-r best-approximation to A(0) computed by
a truncated SVD is used.

The dynamical low-rank integrator developed in [19], also called theprojector-split-
ting integrator, is constructed by performing a Lie-Trotter splitting on the right-hand
side of (3) and solving the three subproblems on the low-rankmanifold. This approach
yields an efficient time-stepping algorithm for computing the desired low-rank approx-
imations. One time-step of the projector-splitting integrator is given in Algorithm 1.

Algorithm 1 Projector-splitting integrator for low-rank approximations to the solution
A(t) of (1), single time step, cf. [19, Section 3.2]
1: function PSI(Û , Ŝ, V̂ , r , �A)
2: {input: factors Û , Ŝ, V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r , V̂ ∈ Vn,r ,
3: Ŝ ∈ C

r×r , functions for matrix-vector multiplication with �A and �AH , where
4: �A = τ F( Â) }
5:
6: K̃ = �AV̂
7: K̂ = Û Ŝ + K̃
8: compute QR-decomposition Û Ŝ = K̂
9: Ŝ = Ŝ − Û H K̃
10: L̂ = V̂ ŜH + �AHÛ
11: compute QR-decomposition V̂ ŜH = L̂
12:
13: return Û , Ŝ, V̂ , L̂
14: {output: factors Û , Ŝ, V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t + τ) and L̂ = V̂ ŜH

(optional),
15: with Û ∈ Vm,r , V̂ ∈ Vn,r , Ŝ ∈ C

r×r }
16: end function
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2.2 Second-order differential equations

For the second-order problem (2), a novel dynamical low-rank integrator named LRLF
(low-rank leapfrog) scheme was presented in [12, Section 3]. Given rA, rB ∈ N

and approximations Âk ≈ A(tk) of rank rA and B̂k− 1
2

≈ A′(tk− 1
2
) of rank rB , it

computes approximations Âk+1 ∈ MrA and B̂k+ 1
2

∈ MrB with Âk+1 ≈ A(tk+1) and

B̂k+ 1
2

≈ A′(tk+ 1
2
), respectively. This integrator is based on the first-order formulation

of (2),

[
A
B

]′
=
[

0
F(A)

]
+
[
B
0

]
,

combined with a Strang splitting. The subproblems are first-order matrix differential
equations, (5a, 5b)

A′ = B, B ′ = 0, (5a)

B ′ = F(A), A′ = 0, (5b)

which can be solved exactly. The low-rank matrices Âk+1 and B̂k+ 1
2
are obtained by

approximating the solutions of (5a) by application of Algorithm 1 to

B̃ ′
k− 1

2
(σ ) = F( Âk), B̃k− 1

2
(0) = B̂k− 1

2
, σ ∈ [0, τ ],

Ã′
k(σ ) = B̃k+ 1

2
, Ãk(0) = Âk, σ ∈ [0, τ ].

This leads to the dynamical low-rank integrator LRLF shown in Algorithm 2.

2.3 Semilinear problems

Afixed-rank dynamical low-rank integrator for the stiff semilinear first-order problem

A′(t) = L1A(t) + A(t)L2 + f
(
A(t)

)
, t ∈ [0, T ], A(0) = A0, (6)

where the norms of L1 ∈ C
m×m and L2 ∈ C

n×n are large and f is a Lipschitz
continuous function with moderate Lipschitz constant, was introduced in [24]. It is
based on the subproblems (7a, 7b)

A′ = L1A + AL2, (7a)

A′ = f (A). (7b)

The solution to (7a) is given by

A(t) = exp(t L1)A0 exp(t L2). (8)
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Algorithm 2 DLR integrator for second-order ODEs (2), LRLF scheme, single time
step, cf. [12, Algorithm 2]
1: function LRLF(τ, F, Û , Ŝ, V̂ , T̂ , R̂, Ŵ , rA, rB )
2: {input: step size τ , right-hand side F ,
3: factors Û , Ŝ, V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈

Vn,rA ,
4: Ŝ ∈ C

rA×rA ,
5: factors T̂ , R̂, Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t − τ

2 ) with T̂ ∈ Vm,rB ,
6: Ŵ ∈ Vn,rB , R̂ ∈ C

rB×rB }
7:
8: B̂-step: T̂ , R̂, Ŵ , L = PSI

(
T̂ , R̂, Ŵ , rB , �B

)
where �B = τ F(Û ŜV̂ H )

9:
10: Â-step: Û , Ŝ, V̂ = PSI

(
Û , Ŝ, V̂ , rA, �A

)
where �A = τ T̂ L̂ H

11:
12: return Û , Ŝ, V̂ , T̂ , R̂, Ŵ
13: {output: factors Û , Ŝ, V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
14: V̂ ∈ Vn,rA , Ŝ ∈ C

rA×rA ,

15: factors T̂ , R̂, Ŵ of rank-rB approximationB̂ = T̂ R̂Ŵ H ≈ A′(t + τ
2 ) with T̂ ∈ Vm,rB ,

16: Ŵ ∈ Vn,rB , R̂ ∈ C
rB×rB }

17: end function

Note that the rank of the initial value is preserved for all times [24, Section 3.2]. In
contrast, the rank of the solution to the nonlinear subproblem (7b) may vary in time.

In [24], a low-rank approximation has been computed by applying a Lie-Trotter
splitting to (6) and solving the subproblems (7) by the projector-splitting integrator in
Algorithm 1. This method is called PSI-stiff in the following.

For semilinear second-order equations of the form

A′′(t) = −�2
1A(t) − A(t)�2

2 + f
(
A
)
, t ∈ [0, T ], A(0) = A0, A′(0) = B0,

(9)

with Hermitian, positive semidefinite matrices �1 ∈ C
m×m , �2 ∈ C

n×n and f again
Lipschitz continuous, a dynamical low-rank integrator named LRLF-semi was pro-
posed in [12, Section 5]. It is based on the equivalent first-order formulation of the
second-order problem (9), where the right-hand side is split into

[
A
B

]′
=
[

B
−�2

1A − A�2
2 + f

(
A
)
]

=
[

ω2
1B−�2
1A

]
+
[

ω2
2B−A�2

2

]
+
[

ω2
3B

f (A)

]
. (10)

The weightsωi ≥ 0, i = 1, 2, 3, can be chosen arbitrarily such thatω2
1+ω2

2+ω2
3 = 1.

A natural choice isω2
i = 1/3. The linear subproblems can be solved exactly. Low-rank

approximations to these solutions are obtained by application of the projector-split-
ting integrator. The nonlinear subproblem is solved approximately with a variant of
the LRLF scheme, cf. [12, Algorithm 3]. Denoting the numerical flows of the linear
subproblems by φ

�1
τ and φ

�2
τ , and the numerical flow of the nonlinear subproblem as

φS
τ , respectively, one step of the LRLF-semi scheme reads
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[
Âk+1

B̂k+1

]
=
(
φ

�1
τ
2

◦ φ
�2
τ
2

◦ φS
τ ◦ φ

�2
τ
2

◦ φ
�1
τ
2

) [ Âk

B̂k

]
.

3 Rank adaptivity

In many applications, an appropriate rank for computing a low-rank approximation to
the exact solution of (2) or (1) is not known a priori and it may also vary with time. If
the rank is chosen too small, the low-rank approximation lacks accuracy. Conversely,
if the rank is chosen too large, the algorithm becomes inefficient.

In the following, we develop rank-adaptive variants of the projector-splitting inte-
grators PSI and PSI-stiff for first-order problems and for the LRLF and the LRLF-semi
schemes for second-order problems.

3.1 Selecting the rank

We first discuss the projector-splitting integrator for the first-order problem (1). The
general idea of our rank-adaptive strategy is to approximate the exact solution of (1)
by a low-rank solution of rank rk in the kth time step, but to propagate a solution of
rank rk + 1. The additional information is used as an indicator whether to accept or
reject the current time step, and for selecting the rank rk+1 for the next time step.

Given Âk = Ûk Ŝk V̂ H
k ∈ Mrk+1, a single step of Algorithm 1 yields the ap-

proximation Âk+1 = Ûk+1 Ŝk+1V̂ H
k+1 ∈ Mrk+1. We then compute the singular value

decomposition of Ŝk+1,

Ŝk+1 = Pk+1�k+1Q
H
k+1, �k+1 = diag(̂σ1, . . . , σ̂rk , σ̂rk+1),

with Pk+1, Qk+1 ∈ Vrk+1,rk+1, and σ̂1 ≥ · · · ≥ σ̂rk+1 ≥ 0 so that

Âk+1 = (Ûk+1Pk+1)�k+1(V̂k+1Qk+1)
H

is the singular value decomposition of Âk+1. Given a tolerance tol, we determine rk
such that

σ̂rk+1 < tol ≤ σ̂rk (11)

by distinguishing three cases:

1. Augmentation case If σ̂rk+1 ≥ tol, the step is rejected and recalculated with rank
rk + 2. The ranks of the initial values Ûk, Ŝk, V̂k of the current integration step are
increased by adding a zero entry to Ŝk ,

S∗ =
[
Ŝk 0
0 0

]
∈ C

(rk+2)×(rk+2).
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This choice has been motivated by [19, Section 5.2]. The matrices Ûk and V̂k are
augmented by unit vectors u ∈ C

m and v ∈ C
n such that

U∗ = [
Ûk u

] ∈ Vm,rk+2, V ∗ = [
V̂k v

] ∈ Vn,rk+2.

Numerical tests indicate that choosing u and v as random vectors and orthonor-
malizing them against Ûk and V̂k is reliable and robust, but other choices are also
possible. Clearly, U∗S∗(V ∗)H = Ûk Ŝk V̂ H

k = Âk , thus the initial value of the
current integration step has not changed. However, the numerical approximation
has been enabled to evolve to rank rk + 2. The step is recomputed with the new
initial valuesU∗, S∗, V ∗, and it is again checked if the new smallest singular value
is sufficiently small for accepting the step. This procedure is repeated until (11) is
satisfied and the step is finally accepted, see Algorithm 3 for details.

2. Reduction case If σ̂rk < tol, this indicates that a sufficiently accurate approxi-
mation is available with a smaller rank. The step is accepted, but the rank for the
next step is set to

rk+1 = max
{
argmin{ j | σ̂ j+1 < tol}, rk − 2

}
,

i.e., the rank is reduced by either 1 or 2. Thus, the rank may only decay slowly.
Sudden rank-drops are prohibited. For the initial values in the next time step we
use

S̃ = Ĩ T�k+1 Ĩ , Ũ = (Ûk+1Pk+1) Ĩ , Ṽ = (V̂k+1Qk+1) Ĩ ,

where Ĩ =
[
Irk+1+1

0

]
∈ C

(rk+1)×(rk+1+1). To prevent rank-oscillations, rank re-

duction is prohibited within the first 10 steps after an augmentation step.
3. Persistent case If σ̂rk ≥ tol > σ̂rk+1, the time step is accepted and the same rank

rk+1 = rk is used for the next one.

3.2 Choice of tolerance

It remains to find a suitable tolerance parametertol. The global error of our integrator
is a combination of a time-discretization error and a low-rank approximation error.We
suggest to choose the rank such that the low-rank error is of about the same size as the
time discretization error, but does not exceed the latter. If the time discretization error
is large, the low-rank error is allowed to be large as well, and hence the approximation
rank might be chosen small. If the time discretization error is small, then the approxi-
mation rank needs to be sufficiently large for an equally small low-rank error. By this
procedure, we hope to ensure that the rank-adaptivity does not impair the convergence
order of the integrator.

To balance the low-rank error with the time discretization error, we need to approx-
imate the global time discretization error. This comprises an estimate of the local error
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Algorithm 3 Augmentation
1: function augmentation(Û , Ŝ, V̂ , �A, r ,tol)
2: {input: factors Û , Ŝ, V̂ of rank-(r+1) approximation Â = Û ŜV̂ H with Û ∈ Vm,r+1, V̂ ∈ Vn,r+1,
3: Ŝ ∈ C

(r+1)×(r+1), functions for products with �A, tolerance tol}
4:
5: ready = False
6: while not ready do
7: r = r + 1
8: choose u ∈ C

m orthonormal to Û (e.g., random)
9: choose v ∈ C

n orthonormal to V̂ (e.g., random)
10: compute Û = U∗, S = S∗, V = V ∗ as in (12)
11: Û , Ŝ, V̂ = PSI(Û , Ŝ, V̂ , r + 1, �A)

12: compute singular values σ̂1, . . . , σ̂r+1 of Ŝ
13: ready = (̂σr+1 < tol)

14: end while
15: return Û , Ŝ, V̂ , r
16: {output: factors Û , Ŝ, V̂ of rank-(r +1) approximation to Â+�A with Û ∈ Vm,r+1, V̂ ∈ Vn,r+1,
17: Ŝ ∈ C

(r+1)×(r+1)}
18: end function

and a simple model for the global error. While the error analysis of the projector-split-
ting integrator [16] and of the LRLF scheme [12, Theorem 6] show exponential error
growth w.r.t. time, numerical experiments indicate that this is a far too pessimistic
bound, and that piecewise linear accretion in time is a more realistic scenario. Since
the estimation of the local error induces some computational overhead, we keep an
estimate for M steps before we recompute it. To be more precise, let e	 be an approxi-
mation to the local error at time t	M+1. Since we assume that the local error is constant
for the next M time steps, the global error at time t	M+ j is approximated by E	 + je	,
j = 1, . . . , M , where E	 is defined recursively by

E	+1 = E	 + Me	, 	 = 0, 1, . . . , E0 = 0.

This simple technique worked very well in numerous numerical simulations. Note that
the linear model is a conservative choice in the sense that if the error growth is faster
than linear (e.g., quadratic or even exponential), thenwe underestimate the global error
which enforces the integrator to use a larger rank. We thus still compute a numerical
solution where the low-rank approximation does not impair the time integration error.

The tolerance thresholdtol is then determined heuristically by the following steps:

1. Estimation of the local error (every M steps): Starting from an approximation
Â	M ≈ A(t	M ), we compute an approximation Â	M+1 to A(t	M+1) by perform-
ing one integration step with step size τ and rank r . Additionally, we perform two
time steps with step size τ

2 and the same rank r , starting again from the initial
value Â	M . By this, we obtain an alternative approximation Ă	M+1 ≈ A(t	M+1).
Assuming that the method converges with order p ∈ N in time, we apply Richard-
son extrapolation [9, Section II.4] to estimate the local error e	 at t	M+1 as

e	:= 2p

2p − 1
‖ Â	M+1 − Ă	M+1‖,
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cf. [7, Section 5]. The global error is modeled as

‖A(t	M+ j ) − Â	M+ j‖ ≈ E	 + je	, j = 1, 2, . . . , M . (13)

2. Estimation of the low-rank error: If σ1 ≥ · · · ≥ σn ≥ 0 are the singular values of
the exact solution A(tk+1), then the rank-rk+1 best-approximation Âbest

k+1 to A(tk+1)

fulfills

‖A(tk+1) − Âbest
k+1‖2

‖A(tk+1)‖2 = σ 2
rk+1+1 + · · · + σ 2

n

σ 2
1 + · · · + σ 2

n

≤ (n − rk+1)σ
2
rk+1+1

‖ Âbest
k+1‖2

,

so that

‖A(tk+1) − Âbest
k+1‖ ≤ σrk+1+1

‖A(tk+1)‖
‖ Âbest

k+1‖
√
n − rk+1 ≈ σ̂rk+1+1

√
n − rk+1.

(14)

3. Tolerance threshold: The parameter tolk is set by equating the right-hand sides
of (13) and (14) for k = 	M + j , j = 0, . . . , M − 1. This yields the condition

σ̂rk+1+1 ≤ E	 + je	√
n − rk+1

=:tolk, k = 	M + j . (15)

4. Initial rank: An obvious choice for the initial rank for the integration is r0 =
rank(A0). However, if the rank of A0 is very small, this may not necessarily hold
for the rank of the exact solution A(t), even for small t . On the other hand, if the
rank of A0 is large, this choice is also questionable. In our implementation, we
first perform ν integration steps (with ν small, e.g., ν = 5) with an initial rank
r1 given by the user (say r1 = 5). Rank reduction is disabled in this phase. Then
let r∗ denote the number of singular values of Âν greater than or equal to tolν

defined in (15). If r∗ < r1, we continue the integration with rν+1 = r∗. Otherwise,
we multiply r1 by 2 and rerun the initializing process, until r∗ < r1 holds.

3.3 Rank-adaptive algorithms

The rank-adaptive version of the projector-splitting integrator Algorithm 1 is called
RAPSI for rank-adaptive projector-splitting integrator in the following. A single step
of the RAPSI scheme is given in Algorithm 4.

The rank-adaptive version of the LRLF scheme is derived by replacing the PSI
routines by the RAPSI routines. We name this new integrator rank-adaptive LRLF
(RALRLF) method. It is presented in Algorithm 5.

The rank-adaptive counterpart of the PSI-stiff scheme is named RAPSI-stiff. Since
the linear subproblem preserves the rank, rank-adaptivity is only applied in the inte-
gration of the nonlinear subproblem (7b).

For semilinear second-order matrix differential equations of the form (9), we equip
the integrator LRLF-semi with the adaptivity schemes described above. For the sake
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Algorithm 4 Rank-adaptive projector-splitting integrator for first-order ODEs (1),
single step
1: function RAPSI(Û , Ŝ, V̂ , r , �A, τ, p)
2: {input: factors Û , Ŝ, V̂ of rank-(r + 1) approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r+1,
3: V̂ ∈ Vn,r+1, Ŝ ∈ C

(r+1)×(r+1), functions for products with �A, step size τ}
4:
5: Û1, Ŝ1, V̂1 = PSI

(
Û , Ŝ, V̂ , r + 1, �A

)

6: compute SVD Ŝ1 = P σ̂QH where σ̂ = diag(̂σ1, . . . , σ̂r+1)

7: compute tol according to Sect. 3.2
8: if σ̂r < tol then
9: r1 = argmin{ j | σ̂ j+1 < tol}
10: Ĩ = [

Ir1+1 0
]T ∈ C

(r+1)×(r1+1)

11: Û1 = (Û1P) Ĩ
12: Ŝ1 = Ĩ T σ̂ Ĩ
13: V̂1 = (V̂1Q) Ĩ
14: else if σ̂r+1 ≥ tol then
15: Û1, Ŝ1, V̂1, r1 = augmentation(Û , Ŝ, V̂ ,�A, r ,tol)

16: end if
17: return Û1, Ŝ1, V̂1, r1, optional L = V̂1 Ŝ

H
1

18: {output: factors Û1, Ŝ1, V̂1 of rank-(r1 + 1) approximation Â1 = Û1 Ŝ1V̂
H
1 ≈ A(t + τ) with

19: Û1 ∈ Vm,r1+1, V̂1 ∈ Vn,r1+1, Ŝ1 ∈ C
(r1+1)×(r1+1)}

20: end function

of efficiency, rank changes are only implemented in the integration of the nonlinear
subproblem, even though the linear subproblems are in general not rank-preserving.
Only in the case of rank augmentation in the integration of the nonlinear subproblem,
the affected substeps of [12, Algorithm 3] are recomputed. This adaptive integrator is
named RALRLF-semi.

4 Numerical experiments

We now report on numerical experiments for matrix differential equations resulting
from space discretizations of PDEs on a rectangular domain

� = [−Lx , Lx ] × [−Ly, Ly] ⊂ R
2. (16)

For simplicity, we use a uniform mesh with n grid points in x- and m grid points in
y-direction, i.e.,

�h = {(x j , yi ) | x j = −Lx + jhx , yi = −Ly + ihy, 0 ≤ j ≤ n, 0 ≤ i ≤ m},
with hx = 2Lx

n
, hy = 2Ly

m
, n,m ∈ N.

(17)

Errors of the low-rank solutions are measured w.r.t. numerically computed reference
solutions.Details are given in the respective subsections. Sinceweare only interested in
the time discretization error, reference solutions and low-rank solutions are computed
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Algorithm 5 Rank-adaptive integrator for second-order ODEs (2), RALRLF, full
method
1: function RALRLF(τ, F, A0, B0)
2: {input: step size τ , right-hand side F , initial values A0, B0 ∈ C

m×n}
3:
4: compute initial ranks rA, rB according to Sect. 3.2
5: compute rank-(rA + 1) best-approximation Â = Û ŜV̂ H , Ŝ = diag(̂σ1, . . . , σ̂rA , σ̂rA+1) to A0
6: compute rank-(rB + 1) best-approximation B̂ = T̂ R̂Ŵ H , R̂ = diag(ρ1, . . . , ρrB , ρrB+1) to B0
7: t0 = 0
8: for k = 1, . . . , n do
9: tk = tk−1 + τ

10:
11: B̂-step:

12: T̂ , R̂, Ŵ , rB , L̂ = RAPSI
(
T̂ , R̂, Ŵ , rB , �B, τ, 2

)
where �B =

{
τ
2 F(Û ŜV̂ H ), k = 1,

τ F(Û ŜV̂ H ), else
13:
14: Â-step:
15: Û , Ŝ, V̂ , rA = RAPSI

(
Û , Ŝ, V̂ , rA, �A, τ, 2

)
where �A = τ T̂ L̂ H

16: end for
17: r = rA
18: compute SVD Ŝ = P σ̂QH , Û = (U P) Ĩ , V̂ = (V Q) Ĩ , Ŝ = Ĩ T σ̂ Ĩ where Ĩ = [

Ir 0
]T ∈

C
(r+1)×r

19:
20: return Û , Ŝ, V̂
21: {output: factors Û , Ŝ, V̂ of rank-r approximation to exact solution A(tn) of (2) with Û ∈ Vm,r ,
22: V̂ ∈ Vn,r , Ŝ ∈ C

r×r }
23: end function

on the same spatial grid. The computation of the tolerance threshold as explained in
Sect. 3.2 is performed with M = 100, i.e., every 100 steps we perform four additional
steps with step size τ

2 , so that we increase the computational effort by 4%. Coosing a
smaller value of M may sometimes be advantageous to reduce the global error.

All algorithms have been implemented in Python andwere performed on a computer
with an Intel(R) Core(TM) i7-7820X @ 3.60GHz CPU and 128 GB RAM storage.
The codes are available from [25].

4.1 Nonlinear fractional Ginzburg–Landau equation

The fractional Ginzburg–Landau equation describes a variety of physical phenom-
ena, cf. [22, 23, 28]. Here, we consider the problem in two space dimensions [29]
and with homogeneous Dirichlet boundary conditions. Discretization in space by
the second-order fractional centered difference method [3] yields the stiff semilin-
ear matrix differential equation

A′(t) = −Dx A(t) − A(t)Dy − (κ + iξ)A(t) • A(t) • A(t) + γ A(t), A(0) = A0.

(18)

Here, Dx and Dy are symmetric Toeplitz matrices [18] with first rows
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ν + iη

hα
x

[
gα
1 , gα

2 , . . . , gα
n−1

]
and

ν + iη

hβ
y

[
gβ
1 , gβ

2 , . . . , gβ
m−1

]
,

respectively. Further, i = √−1, ν, κ > 0, η, ξ, γ ∈ R, 1 < α, β < 2 denote given
parameters, and

gμ
k = (−1)k−1Γ (1 + μ)

Γ (μ/2 − k + 2)Γ (μ/2 + k + 2)
, μ ∈ {α, β}, k ∈ Z,

where Γ (·) denotes the Gamma-function.
In [29], (18) was solved with the linearized second-order backward differential

scheme (LBDF2). A fixed-rank dynamical low-rank integrator for (18) was proposed
in [32], based on considerations from [24]. We compute low-rank solutions of (18)
with PSI-stiff and RAPSI-stiff. The solution to the linear subproblem of (18), which
is of form (8), is computed with the Krylov subspace method proposed in [18].

An efficient implementation of products F( Â)E of the right-hand side F(A) in (18)
with a skinny matrix E is crucial. For the linear part, this is achieved by computing
the matrix products in

−DxÛ ŜV̂ H E − Û ŜV̂ H DyE

successively from the right to the left. The implementation of the cubic nonlinear part
of F is more involved, see “Appendix A.2”.

In our first experiment, we use the same parameter values as in [32], namely Lx =
Ly = 10, m = n = 512, ν = η = κ = ξ = γ = 1, T = 1, α = 1.2, β = 1.9, and the
initial value

(A0)i j = 2 sech(x j ) sech(yi ) e
3i(x j+yi ), i, j = 1, . . . ,m.

The (full-rank) reference solution is computed with LBDF2 on the same spatial grid,
with time step size τ = 10−4. Figure 1 shows the relative global errors

err = ‖A − Â‖
‖A‖

between the reference solution A and the respective low-rank solutions Â at t = T for
different step sizes τ . Convergence order one is observed for the PSI-stiff scheme. For
large step sizes, the approximations computed with the RAPSI-stiff method exhibit
large errors. This is explained by the behavior of the singular values, cf. Fig. 1 (right
picture). The time-discretization error is overestimated in this experiment, so that the
tolerance threshold becomes so large that the second largest singular value is discarded.
The induced low-rank error is then of magnitude 10−1. If the parameter M is reduced
to 10, this unfortunate rank reduction vanishes. However, reducing M increases the
workload for the updates oftol, whileM = 100 workedwell in all other experiments
and also in this experiment for smaller step sizes.
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Fig. 1 Fractional Ginzburg–Landau equation, first experiment. The left picture shows the relative global
error at T = 1 for (α, β) = (1.2, 1.9), where the fixed-rank approximation (yellow) is computed with
r = 5. The rank-adaptive approximation was computed with M = 100 (orange) and M = 10 (blue).
The trajectories of the ten largest singular values of the reference solution (gray), the singular values of
RAPSI-stiff (M = 10) for τ = 1 · 10−3 (blue), and the computed tolerance threshold (red, dashed) are
displayed on the right (color figure online)

Fig. 2 Fractional Ginzburg–Landau equation, second experiment. The left picture shows the relative global
error at T = 1 for (α, β) = (1.2, 1.9), where the fixed-rank approximation is computed with r = 8.
The trajectories of the ten largest singular values of the reference solution (gray), the singular values of
RAPSI-stiff for τ = 10−3 (orange), and the computed tolerance threshold (red, dashed) are displayed on
the right (color figure online)

For our second example, we choose the second parameter set from [32], Lx =
Ly = 8, n = m = 512, ν = κ = 1, η = 0.5, ξ = −5, γ = 3, α = 1.2, β = 1.9, and
the initial values

(A0)i j = e−2(x2j+y2i ) ei(S0)i j , where (S0)i j = (ex j+yi + e−(x j+yi ))−1,

for i = 1, . . . ,m − 1, j = 1, . . . , n − 1. The relative global errors at T = 1 are
displayed in Fig. 2. In contrast to the previous experiment, order one is observed for
both integrators.Now the error curves for thefixed-rank integrator and its rank-adaptive
variant align almost perfectly, and the singular values follow nicely the trajectories of
the singular values of the reference solution.

Similar results for both experiments were obtained for the parameter values
(α, β) = (1.5, 1.5), (1.7, 1.3), and (1.9, 1.2), cf. [25].
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Fig. 3 Fractional Schrödinger equation. The left picture shows the relative global error at T = 0.2 for
(α, β) = (1.2, 1.9), where the fixed-rank approximation is computed with r = 5. The trajectories of the
ten largest singular values of the reference solution (gray), the singular values of RAPSI-stiff (M = 100)
for τ = 4 · 10−4 (orange), and the computed tolerance threshold (red, dashed) are displayed on the right
(color figure online)

4.2 Nonlinear fractional Schrödinger equation

The nonlinear fractional Schrödinger equation [30] is a special case of the fractional
Ginzburg–Landau equation (18) with ν = κ = γ = 0. For the limit α, β → 2 it
becomes the classical Schrödinger equation.

In our experiment, the reference solution to the problem was again computed with
the LBDF2 method, using the step size τ = 2 ·10−5. Figure 3 shows the results for the
parameter values from [30], Lx = Ly = 10, n = m = 512, η = 1, ξ = −2, T = 0.2,
α = 1.2, β = 1.9, and the initial value

(A0)i j = sech(x j ) sech(yi ) exp(i(x j + yi )), i, j = 1, . . . ,m − 1.

Again, the relative global error curves match almost perfectly for both low-rank
methods, and are also clearly indicating convergence of order one. The results for
other choices of α and β are available in [25].

4.3 Laser-plasma interaction

As an example for second-order problems, we consider a reduced model of laser-
plasma interaction from [14, 15, 26]. It is given by a wave equation with space-
dependent cubic nonlinearity on a bounded, rectangular domain � given in (16) with
periodic boundary conditions. After space discretization according to [26, Section
4.1.3], we obtain the matrix differential equation

A′′(t) = L A(t) − 0.3χ̃ •
(
A(t) − 1

2
A(t) • A(t) • A(t)

)
= F

(
A(t)

)
, (19)

with initial values A(0) = A0 and A′(0) = B0 given by
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(A0)i j = 0.12 exp
(

− y2i
l20

− x2j
w2
0

+ iyi
)
, (B0)i j =

(
− 2yi

l20
− i
)
(A0)i j ,

where x j , yi are defined in (17) and i = 1, . . . ,m, j = 1, . . . , n. The discrete
Laplacian L acts on A(t) via

L A(t) = F−1
m D2

yFm A(t) + A(t)Dx ,

where Dx ∈ R
n×n denotes the symmetric Toeplitz matrix with first row

− 1

12h2x
[30,−16, 1, 0, . . . , 0, 1,−16] ,

and

Dy = iπ

Ly
diag

(
0, . . . ,

m

2
− 1,−m

2
, . . . ,−1

)
.

Fm denotes the discrete Fourier transformation operator for m Fourier modes and
F−1

m its inverse. Hence we use fourth order finite differences with n equidistant grid
points in transversal direction and a pseudospectral method with m equidistant grid
points in longitudinal direction.

Equation (19) describes the propagation of a laser pulse with wavelength λ0 in
the direction of the positive y-axis through vacuum and through a strongly localized
plasma barrier. The plasma is located between y = 50π and y = 300π and has
constant density 0.3. The localization is modeled by the matrix χ̃ ∈ R

m×n with
entries

χ̃i j =
{
1, 50π ≤ yi ≤ 300π,

0, else.
(20)

The interaction between the pulse and the plasma is modeled by a cubic nonlinearity.
As in [15] we use the parameters λ0 = π , l0 = 10π , w0 = 100π , Lx = 300π , and
Ly = 600π .

Our numerical experiments were carried out for t ∈ [0, 600π ] with n = 1024 and
m = 8192 discretization points in transversal and longitudinal direction, respectively.
The reference solution was computed with the Gautschi-type method from [26], with
step size τ0 = Ly/(80m). For the low-rank solutions we used the step sizes τ = 2kτ0,
k = 2, . . . , 6. The algorithms LRLF and LRLF-semi were performed with fixed ranks
rA = rB = 4.

In [12] it was obeserved that choosing the weights ωi in LRLF-semi according to
the direction of motion can improve the approximation significantly. Since the laser
pulse moves mainly in longitudinal direction, we therefore used the weights

ω2
1 = 2

3
, ω2

2 = 0, ω2
3 = 1

3
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Fig. 4 Laser-plasma interaction. Relative global error between reference solution and low-rank approxi-
mations at T = 600π (left), and absolute error in the maximal intensity for τ = 4τ0 = Ly/(20m) (right).
The fixed-rank methods were computed with rA = rB = 4, the rank-adaptive methods with M = 100

Fig. 5 Laser-plasma interaction. Trajectories of the ten largest singular values of the reference solution
(gray) together with the trajectories of the singular values of the rank-adaptive low-rank integrators for
τ = 4τ0 (left: RALRLF, right: RALRLF-semi), and the respective computed tolerance thresholds (red,
dashed) (color figure online)

in (10) for both LRLF-semi and RALRLF-semi.
The left picture in Fig. 4 shows the relative global error at T = 600π between the

reference solution and the different low-rank integrators. Second-order convergence is
observed in all cases, and the integrators designed for semilinear problems yield better
approximations than the other methods. The accuracy of the rank-adaptive schemes
is comparable to those of the fixed-rank integrators, showing nicely that the heuristics
works well for this example, cf. Fig. 5.

In physics, the maximal intensity maxi, j |Ai j (t)|2 of the propagating pulse over
time is sometimes of higher interest than A itself. In the right picture of Fig. 4, the
absolute error between the maximal intensity of the numerical pulse computed with
the Gautschi-type integrator and themaximal intensity of the approximations obtained
by the low-rank integrators is displayed.

4.4 Sine-Gordon equation

In our last experiment, we consider the two-dimensional sine-Gordon equation on the
domain � from (16) with homogeneous Neumann boundary conditions [1]. Using
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finite differences of second order on the grid (17) with Lx = Ly = 7, n = m = 1001
in both x- and y-direction, we obtain the semi-discretized matrix differential equation

A′′(t) = DA(t) + A(t)DT − � • sin
(
A(t)

)
, t ∈ [0, T ], A ∈ C

(m+1)×(m+1).

Here, sin(A) denotes the entrywise evaluation of the sine function. The matrix D is
given by

D = 1

h2

⎛

⎜⎜⎜⎜
⎜
⎝

−2 2
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

⎞

⎟⎟⎟⎟
⎟
⎠

∈ R
(m+1)×(m+1), h = 1

m + 1
.

The storage-economical evaluation of the products sin( Â)E and sin( Â)H E is pre-
sented in “Appendix A”. There is no preferred direction of propagation, so that we
used the weights

ω2
1 = ω2

2 = ω2
3 = 1

3

in (10) for the LRLF-semi and RALRLF-semi methods .
First we consider the initial values

(A0)i j = 4 arctan exp

(
x j − 3.5

0.954

)
, (B0)i j = 0.629 sech

(
x j − 3.5

0.954

)
,

and

�i j = 1 + sech2
√
x2j + y2i ,

i, j = 0, . . . ,m, of a line soliton in an inhomogeneous medium [2, Section 3.1.3].
The reference solution is computed by the leapfrog scheme on the same spatial grid
with time step size τ = 2.5 · 10−5. Figure 6 shows the relative global errors between
the low-rank approximations and the reference solution. Convergence order two is
observed for all methods. The fixed-rank integrators are slightly more accurate than
their rank-adaptive pendants, probably because they use a higher rank.

In a second setting, we consider the symmetric perturbation of a static line soliton
[2, Section 3.1.2] with �i j = 1, (B0)i j = 0, and

(A0)i j = 4 arctan exp

(
x j + 1 − 2

cosh(yi + 7)
− 2

cosh(yi − 7)

)
, i, j = 0, . . . ,m.

Figure 7 shows a similar behavior of themethods as in thefirst setting. For theRALRLF
schemehowever, the initial rank is rather large, and drops significantly after a few steps.
This is caused in the routine for determining an appropriate initial rank. As explained
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Fig. 6 Sine-Gordon equation, first setting. Relative global error at T = 9 between reference solution
and low-rank approximations (left), and rank evolution of the solutions computed with the rank-adaptive
integrators over time (right) for τ = 10−4. For the fixed-rank integrators, we used rA = rB = 20, for the
rank-adaptive methods M = 100 (color figure online)

Fig. 7 Sine-Gordon equation, second setting. Relative global error at T = 11 between reference solution
and low-rank approximations (left), and rank evolution of the solutions computed with the rank-adaptive
integrators over time (right) for τ = 10−4. For the fixed-rank integrators, we used rA = rB = 50, for the
rank-adaptive methods M = 100 (color figure online)

in Sect. 3.2, the initial guess r1 = 5 is doubled repeatedly until the criterion for
continuing the integration beyond the first ν steps is satisfied. In this experiment, an
initial rank of∼ 23 is adequate. Therefore, the guesses 5, 10, and 20 are rejected, until
r1 = 40 is accepted and rank reduction applies in the subsequent integration steps.

5 Conclusion and outlook

In the present paper, we developed adaptive schemes for dynamical low-rank integra-
tors for first and second-order matrix differential equations. The performance of these
schemes have been illustrated by numerical experiments.

Both the projector-splitting integrator and the unconventional robust integrator have
been successfully adapted to first-order tensor differential equations, cf. [6, 20, 21]

123



9 Page 20 of 24 BIT Numerical Mathematics (2023) 63 :9

and references therein. We are confident that the strategy for the adaptive algorithm
for matrix differential equations also works for the tensor case. This is part of ongoing
research and will be reported in the future.
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A Evaluation of entrywise functions for low-rankmatrices

Let f be a (nonlinear) function that acts entrywise on matrices, let E ∈ C
n×r be an

arbitrary matrix, and let Â = Û ŜV̂ H ∈ Mr be a low-rank matrix with factors Û , Ŝ, V̂
given in (4). For the efficiency of low-rank integrators for nonlinear problems, it is
crucial to evaluate the product

f ( Â)E, (21)

using the factors Û , Ŝ, and V̂ instead of the full matrix Â. However, the entrywise
computation of all components Âi j of Â can not be avoided in general. Nevertheless,
it is not necessary to store the full matrix Â ∈ C

m×n , but it suffices to compute the
rows of Â successively.

A.1 General functions

The i th row of Â is given by

(ei Â) = (ei Ũ )V̂ H ∈ C
1×n, i = 1, . . . ,m,

where Ũ = Û Ŝ. Thematrix products (ei Ũ )V̂ H are carried outwith complexityO(nr).
We now evaluate f entrywise at ei Â and multiply the result with E , which gives the
i th row of the product (21). This sequence of operations can be performed for each
i = 1, . . . ,m independently and thus in parallel. This allows for a fast computation,
even for large m. Similarly, the evaluation of

C = f ( Â)H E, E ∈ C
m×r ,

123

http://creativecommons.org/licenses/by/4.0/


BIT Numerical Mathematics (2023) 63 :9 Page 21 of 24 9

is realized by computing the j th row via

(e jC) = f (Ũ (e j V̂ )H )H E, j = 1, . . . , n.

This approach is suitable for any function f acting entrywise on its argument, e.g.,
trigonometric functions. For monomials, the successive computation of the entries of
Â can be avoided, which speeds up the computation further.

A.2 Monomials

Consider a (complex)monomial of degree p ∈ N, f (z) = z p for z ∈ C. The entrywise
evaluation of f at Â ∈ Mr is defined as

(
f ( Â)

)
i j = Â p

i j .
We now show how to compute the product (21) without computing or storing the

elements of Â explicitly. Let Ũ = Û Ŝ ∈ C
m×r . Then we have

Â = Û ŜV̂ H = Ũ V̂ H =
r∑

j=1

Ũ j V̂
H
j , (22)

where Ũ j is the j th column of Ũ and V̂ j the j th column of V̂ , respectively. The
Hadamard product is distributive and satisfies

(Ũ j V̂
H
j ) • (Ũk V̂

H
k ) = (Ũ j • Ũk)(V̂ j • V̂k)

H

for 1 ≤ j, k ≤ r , cf. [27, Section 2]. Hence, for E ∈ C
n×r it holds

f ( Â)E =
⎛

⎝

⎛

⎝
r∑

j1=1

Ũ j1 V̂
H
j1

⎞

⎠ • · · · •
⎛

⎝
r∑

jp=1

Ũ jp V̂
H
jp

⎞

⎠

⎞

⎠ E

=
⎛

⎝
r∑

j1,..., jp=1

(
Ũ j1 • Ũ j2 • · · · • Ũ jp

)(
V̂ j1 • V̂ j2 • · · · • V̂ jp

)H
⎞

⎠ E

=
r∑

j1,..., jp=1

(Ũ j1 • Ũ j2 • · · · • Ũ jp )
(
(V̂ j1 • V̂ j2 • · · · • V̂ jp )

H E
)
. (23)

For the special case of the cubic nonlinearity which appears in the examples in
Sects. 4.1, 4.2, and 4.3,

f ( Â) = Â • Â • Â,

where Â denotes the complex conjugate of Â, (23) reads

( Â • Â • Â)E =
r∑

j,k,	=1

Ũ jk	V̂
H
jk	E,
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where Ũ jk	 = Ũ j • Ũ k • Ũ	,

V̂ jk	 = V̂ j • V̂k • V̂	.

The computational cost is further reduced by exploiting the symmetry in j and 	,

( Â • Â • Â)E =
r∑

k=1

[ r∑

j=1

(
Ũ 2

j • Ũ k
)((

V̂ 2
j • V̂k

)H
E
)

+ 2
r∑

j=1

j−1∑

	=1

Ũ jk	(V̂
H
jk	E)

]
.

(24)

The product ( Â • Â • Â)H E with E ∈ C
m×r can be computed analogously.

Additional simplifications apply to the product (χ̃ • Â • Â • Â)E with χ̃ ∈ C
m×n

given in (20). It satisfies

χ̃ =
⎡

⎣
0(η−1)×n

1(ξ−η+1)×n

0(m−ξ)×n

⎤

⎦ =
⎛

⎝
0η−1

1ξ−η+1
0m−ξ

⎞

⎠1T
n =:̃1m1

T
n , (25)

where 0n , 1n are the vectors of length n filled with zeros and ones, respectively, and
0n×p and 1n×p the matrices of dimension n× p with all entries being zeros and ones,
respectively. From (22) and (25), we obtain

(χ̃ • Â)E =
[
(̃1m1

T
n ) • Â

]
E =

⎡

⎣
r∑

j=1

diag(̃1m)Ũ j V̂
H
j diag(1n)

⎤

⎦ E

=
r∑

j=1

⎛

⎝
0η−1

ϑ(Ũ j )

0m−ξ

⎞

⎠ (V̂ H
j E) =

⎡

⎢⎢
⎣

0(η−1)×r
r∑

j=1
ϑ(Ũ j )(V̂ H

j )E

0(m−ξ)×r

⎤

⎥⎥
⎦ ,

where ϑ(Ũ j ) denotes the restriction of Ũ j to its ηth to ξ th entries. Here, we made use
of the following property of the Hadarmard product, cf. [27, Section 2]: If A ∈ C

m×n ,
x ∈ R

m , and y ∈ R
n , then

(xyT ) • A = diag(x)A diag(y).

Hence, it suffices to compute and sum up the small matrices ϑ(Ũ j )(V̂ H
j E). Likewise,

using (24), we have

(χ̃ • Â • Â • Â)E

=

⎡

⎢⎢
⎢
⎣

0(η−1)×r

r∑

k=1

[ r∑

j=1

(
ϑ(Ũ j )

2 • ϑ(Ũ k)
)((

V̂ 2
j • V̂k

)H
E
)

+ 2
r∑

j=1

j−1∑

	=1
ϑ(Ũ jk	)(V̂ H

jk	E)
]

0(m−ξ)×r

⎤

⎥⎥
⎥
⎦

.
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The implementation of (χ̃ • Â •Â • Â)H E , E ∈ C
m×r , is realized in the same manner.
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