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Abstract
The following work concerns the construction of an entropy dissipative finite volume
solver based on the convex combination of an entropy conservative and an entropy
dissipative flux. We aim to construct a semidiscrete scheme that is entropy stable in
the sense of the entropy criterion of Dafermos as well as in the classical sense entropy
dissipative. The proposed semidiscrete scheme shows nice properties like 2p order
accuracy in smooth regions as well as a non-oscillatory behavior around shocks.
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1 Introduction

The robustness of numerical methods for hyperbolic conservation laws of the form

∂u(x, t)

∂t
+ ∂ f ◦ u(x, t)

∂x
= 0 for u(x, t) : R × R → R

m with f : Rm → R
m

(1.1)

is greatly enhanced by numerical methods that do not only approximate (1.1) but also
satisfy entropy inequalities

∂U ◦ u

∂t
+ ∂F ◦ u

∂x
≤ 0. (1.2)
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1674 S.-C. Klein

These are used to select one weak solution out of many possible weak solutions. One
could further assume that the error for fixed grid size could be reduced by adhering to
entropy inequalities. A scheme has to satisfy (1.2) in a discrete sense

Un+1
k −Un

k

Δt
+

Fn
k+ 1

2
− Fn

k− 1
2

Δx
≤ 0

as proposed in [20, 30, 31] for all or at least one entropy pair (U , F). If solutions
of a scheme satisfy all of these inequalities it is called an entropy stable scheme and
entropy dissipative if only one entropy inequality is satisfied. Examples of schemes
constructed with the aim of being entropy dissipative are for example given in [1, 2, 4,
13, 14, 19].While the objective of this work is also centered around entropy dissipative
schemes the motivation stems from an alternative entropy criterion by Dafermos. A
second distinction lies in the fact that most of the aforementioned authors construct
generalizations of finite element methods while this work is based on classical finite
volumemethods.Wewill first look at some numerical artifacts that can still occur with
entropy dissipative schemes. Afterwards, a scheme will be constructed that is entropy
dissipative and at least approximately satisfies the entropy condition of Dafermos [5]
and some numerical tests using this scheme will be carried out. Dafermos defined a
different entropy criterion using the total entropy in the domain

Eu(t) =
∫

U ◦ u(x, t)dx .

A Dafermos entropy solution u is a weak solution that satisfies

∀t > 0 : dEu(t)

dt
≤ dEũ(t)

dt

compared to all otherweak solutions ũ of the conservation law (1.1). In essence entropy
of the solution decreases faster than the entropy of all other solutions.

2 Comparing schemes by their entropy dissipation

Stable high order schemes are often constructed by the addition of suitable dissipation
to an at least entropy conservative base scheme, e.g. [29]. The equation approximated
by the resulting scheme is typically of the form

∂u

∂t
+ ∂ f (u)

∂x
= ε

∂2su

∂x2s
.

The amount of dissipation ε has a strong influence on the resulting errors. Tomuch dis-
sipation results in a simulation of a diffusion (heat) equation while too small amounts
of dissipation are responsible for oscillations and can lead to instabilities and order
losses. It arises the question of why schemes with low entropy dissipation show bad
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Using the Dafermos entropy rate criterion in numerical schemes 1675

behavior even if they are formally of high order and entropy dissipative, as they ful-
fil the entropy inequality for at least one entropy. We would like to shed some light
on the connection between the correct amount of entropy dissipation defined by the
Dafermos criterion using the following numerical experiments. It should be noted that
the Dafermos criterion was designed for solutions to conservation laws and not their
numerical approximations; this means we will look at some numerical solutions and
make some assumptions about their limit solutions and their behavior.

Numerical experiment 1 (Comparing two schemes by the Dafermos criterion) A sim-
ulation of the Burgers equation

∂u

∂t
+ 1

2

∂u2

∂x
= 0

with u0(x) = sin(πx)was carried out on a periodic domainΩ = [0, 2) for t ∈ [0, 2].
The entropy conservative flux of order 4 from [22, 32] was used with a dissipation
operator due to [8] and ε = 0.5 as dissipation coefficient. The numerical solution was
compared to a solution calculatedbyaGodunov scheme. The solutionandgraphs of the
complete entropy in the domain for the quadratic entropy can be seen in Fig. 1. Several
times a new simulationwas started using the solution of the entropy conservative fluxes
in conjunction with dissipation as a starting point and the Godunov method as solver.
The corresponding total entropy was also plotted in the total entropy diagrams. As
we would like to be sure that our conclusions do not depend on the number of points
in the domain the simulation was carried out once more with 3000 instead of 100
cells. We can clearly see that the entropy dissipative method produces bad results,
because oscillations appear around the shock. We can also see that the Godunov
scheme dissipates more entropy than the other scheme. The simulations which where
carried out by the Godunov method with the solution of the high order method at
different times as a starting point are especially interesting. These show a strong
reduction of the total entropy until the total entropy of the solution calculated by the
Godunov method from the beginning is reached. The Dafermos entropy criterion is
only partially applicable in this case as the solutions are approximate solutions. It
states in this case that the solution of the high order solver is not the entropy solution,
although the solver is technically entropy dissipative, because the negative derivative
of the total entropy can even be more negative. It should be noted that the Godunov
method on the other hand dissipates entropy even for smooth solutions. This opposes
the known theory of hyperbolic conservation laws, as smooth solutions satisfy an
entropy equality referred to as an additional conservation law [5, 20]. The Godunov
method satisfies the entropy equality only approximately as the entropy dissipation is
small compared to the entropy dissipation after the onset of the shock, but not zero.
The Godunov method is still the best possible three point first order method as it is the
method with the least possible dissipation that converges to the entropy solution [30,
31].

Numerical experiment 2 (Per cell dissipation of the Godunov method) As we saw in
the last example the Godunov method leads to a significantly higher total entropy
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(a) (b)

(c)

(e) (f)

(d)

Fig. 1 Solution to u0(x) = sin(πx) for the Burgers equation with N = 100 cells in the first 3 Graphs and
N = 3000 cells in the last 3 Graphs. A simulation with the Godunov method was started with the solution
of the entropy dissipative high order (EDHO) scheme as a starting point at different times.The Godunov
method is the basic Godunov scheme with the exact Riemann solver for the Burgers equation and without
any reconstruction. Time integration was carried out using a CFL number of λ = 0.5 and the SSPRK104
scheme.The high order scheme is composed of an entropy stable flux and a dissipation operator. The fourth
order entropy conservative flux constructed out of Tadmors entropy conservative flux [32] for the Burgers
equation and the linear combination developed by LeFloch, Mercier and Rhode [22] is used. A periodic
fourth order dissipation operator with the coefficients given in [8] was used as a dissipation operator with
strength ε = 0.5. Time integration was, as in the case before, done using the SSPRK104 method
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Using the Dafermos entropy rate criterion in numerical schemes 1677

(a) (b)

Fig. 2 Per cell entropy inequality for the Godunov scheme. The same Godunov method was used as in
Fig. 1 with N = 100 cells

reduction than our high order method, which leads to the question of where this
dissipation occurs. This is why the violation of the entropy equation was plotted for
the aforementioned numerical experiment for the Godunov method in Fig. 2. We can
see that a small amount of entropy dissipation occurs during the simulation of a smooth
solution while a much bigger amount of entropy dissipation occurs centered around a
shock, if present, in compliance with the entropy inequality for shocks. This knowledge
was already put to work in [34] using edge sensors.

The last two numerical experiments lead to a new design philosophy for numerical
schemes. A good numerical scheme should not only be entropy dissipative in the
sense of the entropy inequality. It should also dissipate the correct amount of entropy.
This can be governed by the entropy equality for smooth areas, the entropy inequality
for shocks and the Dafermos entropy criterion. The Godunov method violates this
philosophy by dissipating entropy in smooth areas, while the aforementioned high
order method dissipates less entropy than needed and possible around shocks, which
violates the Dafermos criterion. It should be noted at the same time that schemes can
also dissipate toomuch entropy in the vicinity of a shock or a maximum. Our proposed
scheme will be built out of the following components.

– Let the scheme decide if the entropy equality or the entropy inequality holds in an
area - this is equivalent to the presence of a shock.

– Use an entropy conservative flux if the entropy equality holds.
– Dissipate entropy with correct rate in the other case by the use of a dissipative first
order flux.

Deciding which amount of entropy dissipation is the correct amount is a non-trivial
sub-problem. It is not wise to aim for unconstrained maximized entropy dissipation
in a numerical method as given by the Dafermos criterion. The reason for this is that
the conservation law works as a constraint for the variational formulation of entropy
dissipation. Numerical solvers can violate this constraint to some extent and dissipate
even more entropy at the cost of higher approximation errors, as even more dissipation
leads to larger approximation errors. This is why the highest amount of entropy loss
that does not sacrifice low approximation errors is needed.
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1678 S.-C. Klein

It is difficult to find a definition for a suitable amount of entropy loss that does not
sacrifice low approximation errors. Godunov’s method dissipates the least amount of
entropy possible for single conservation laws of all E-fluxes [30, 31], and is thereby
a natural candidate. Especially as a high order approximation makes no sense for a
region of discontinuity.

Remark 2.1 One could ask why the Godunov and not an even more dissipative flux
like the local Lax-Friedrichs flux should be selected. We are interested in the highest
amount of dissipation that does not lower the accuracy, in the sense of the error
between numerical approximation and exact (entropy) solution for fixed grid size.
While the Lax-Friedrichs method has the same formal order of accuracy the method
is less accurate for a fixed grid than the Godunov method and therefore violates our
additional constraint. Another perspective can be that a higher entropy dissipation
rate than the Godunov method has to be also higher than the entropy rate of the
exact solution as the Godunov method uses averages of exact solutions. One could
conjecture that such a high dissipation is not possible for any exact weak solution. The
Lax-Friedrichs method will be still used in some of the following numerical tests to
avoid solving Riemann problems for the Euler equations as the error between exact
solution and LF method vanishes for growing grid sizes.

The following chapter is devoted to the construction of the aforementioned solver
that tries to satisfy these requirements and uses the Godunov flux as a guide for the
correct amount of entropy to dissipate. For simplicity this is done by using an entropy
stable first order flux in this case for the dissipation and Tadmor’s high order flux in
entropy conservative areas of the domain. This scheme thereby should be a numerical
scheme that at least approximately satisfies the Dafermos entropy criterion.

3 The best of both worlds

We will use entropy conservative fluxes as pioneered in [32]. A flux f will be termed
entropy conservative if it satisfies a semidiscrete entropy equality

dU (uk(t))

dt
= F(uk−p−1, . . . , uk+p) − F(uk−p, . . . , uk+p+1)

Δx
.

Definition 3.1 (Convex combination flux) We define a new numerical flux by

f GT
α (ui , ui+1) = α f G (ui , ui+1) + (1 − α) f T (ui , ui+1)

where α ∈ [0, 1] is a parameter controlling a convex combination between the
Godunov flux presented in [11, 23] and the entropy conservative flux given in [32].
The value of

α = α(ui−p+1, . . . , ui+p)

will in general depend on ui and therefore the properties of the flux will depend on
the selected function α(ui−p+1, . . . , ui+p).
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Using the Dafermos entropy rate criterion in numerical schemes 1679

It should be clear that this construction does not depend on the use of the Godunov
flux. In fact any other numerical flux function could be used, and we will refer to a
flux constructed this way using the Lax-Friedrichs scheme as the LFT-Flux and to
a flux constructed using the Godunov scheme as the GT flux. Several other entropy
conservative fluxes [18, 26] have been constructed for some conservation laws and
these can be also substituted for the basic Tadmor entropy conservative flux.

Lemma 3.1 TheGT-Flux is a consistent and local Lipschitz continuous numerical flux.

Proof Consistency can be proved by direct insertion.

fα(u, u) = α f G (u, u) + (1 − α) f T (u, u) = α f (u) + (1 − α) f (u) = f (u)

Wewill interpret the arguments of the numerical fluxes as tuples a = (ui , ui+1) during
the rest of the proof. The Godunov and Tadmor fluxes are Lipschitz continuous with
the constants LG and LT ,

∣∣ fG(a) − fg(b)
∣∣ ≤ LG ‖a − b‖

| fT (a) − fT (b)| ≤ LT ‖a − b‖ .

We can conclude using the triangle inequality that the fluxes are also bounded for any
bounded subset U ⊂ R

2p×m

∀a ∈ U , ∀I ∈ {G, T } : | f I (a)| ≤ | f I (a) − f I (a0)| + | f I (a0)|
≤ | f I (a0)| + L I ‖a − a0‖
≤ | f I (a0)| + L I Ma0 = MI ,

where Ma0 > 0 is any bound that satisfies ∀a ∈ U : ‖a − a0‖ ≤ Ma0 and a0 ∈ U is
an arbitrary point. Another calculation shows that

fα(a) = F(α, a) : [0, 1] × R
2p×m → R

m

is a local Lipschitz continuous function

∣∣ fα(a) − fβ(b)
∣∣ = |α fG(a) + (1 − α) fT (a) − β fG(b) − (1 − β) fT (b)|
= |α fG(a) − β fG(b) + (1 − α) fT (a) − (1 − β) fT (b)|
= |α fG(a) − β fG(a) + β fG(a) − β fG(b)

+ (1 − α) fT (a)−(1 − β) fT (a)+(1 − β) fT (a)−(1 − β) fT (b)|
≤ |α − β| | fG(a)| + |β| | fG(a) − fG(b)|

+ |β − α| | fT (a)| + |1 − β| | fT (a) − fT (b)|
≤ |α − β| (MG + MT ) + ‖a − b‖ (LG + LT ).
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1680 S.-C. Klein

Using the previous lemma proving that fα(ui−p+1,...,ui+p) (ui , ui+1) is a local Lips-

chitz continuous flux boils down to proving that α : R2p×m → [0, 1] is local Lipschitz
continuous.

We will now prove that this new flux satisfies a semidiscrete entropy inequality at
least if there is a cell boundary where αk+ 1

2
�= 0 holds. The proof is based on cell

subdivision, averaging and the convexity of the entropy as already used in [31].

Theorem 3.1 The GT flux satisfies the semidiscrete cell entropy inequality

dU ◦ uk
dt

≤
FGT

α
k− 1

2

(uk−1, uk) − FGT
α
k+ 1

2

(uk, uk+1)

Δx

with the numerical entropy Flux

FGT
α (ul , ur ) = αFG(ul , ur ) + (1 − α)FT (ul , ur )

where FG(ul , ur ) = F(uR(0, ul , ur )) and

FT (ul , ur )

= 〈 ∂U
∂u (ul ) + ∂U

∂u (ur ), f T (ul , ur )〉 + F(ul) + F(ur ) − 〈 ∂U
∂u (ul ), f (ul )〉 − 〈 ∂U

∂u (ur ), f (ur )〉
2

are the respective entropy fluxes of the Godunov [31] and Tadmor fluxes [32].

Proof We begin our proof by deriving a semidiscrete cell entropy inequality from
the discrete cell entropy inequality for the Godunov flux by going over to the limit
Δt → 0

0 ≥ lim
Δt→0

U (un+1
k ) −U (unk )

Δt
− FG(unk−1, u

n
k ) − FG(unk , u

n
k+1)

Δx

= dU ◦ u

dt
− FG(uk−1, uk) − FG(uk, uk+1)

Δx

=
〈
vk,

duk
dt

〉
− FG(uk−1, uk) − FG(uk, uk+1)

Δx

=
〈
vk,

f G(uk−1, uk) − f G(uk, uk+1)

Δx

〉
− FG(uk−1, uk) − FG(uk, uk+1)

Δx
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Using the Dafermos entropy rate criterion in numerical schemes 1681

The same holds in the sense of an equality also for the product of the entropy variable
with the Tadmor flux. We first look at the special case αk− 1

2
= α = αk+ 1

2
and use the

entropy variable vk = ∂U◦u
∂u |uk to find

dU ◦ uk
dt

=
〈
vk ,

du

dt

〉

=
〈
vk ,

α f G(uk−1, uk) + (1 − α) f T (uk−1, uk) − α f T (uk , uk+1) − (1 − α) f G(uk , uk+1)

Δx

〉

= α

〈
vk ,

f G(uk−1, uk) − f G(uk , uk+1)

Δx

〉
+ (1 − α)

〈
vk ,

f T (uk−1, uk) − f T (uk , uk+1)

Δx

〉

≤ α
FG(uk−1, uk) − FG(uk , uk+1)

Δx
+ (1 − α)

FT (uk−1, uk) − FT (uk , uk+1)

Δx

= FGT
α (uk−1, uk) − FGT

α (uk , uk+1)

Δx
.

Furthermore, we now consider the general case αk− 1
2

�= αk+ 1
2
under usage of the first

case. The derivative of the average uk can be rewritten as the average of two schemes
for the averages uk− 1

4
and uk+ 1

4

duk− 1
4

dt
=

fα
k− 1

2
(uk−1, uk) − fα

k− 1
2
(uk, uk)

Δx/2

duk+ 1
4

dt
=

fα
k+ 1

2
(uk, uk) − fα

k+ 1
2
(uk, uk+1)

Δx/2
,

that can be thought of as the cell subdivision in Fig. 3

duk
dt

=
fα

k− 1
2
(uk−1, uk) − fα

k+ 1
2
(uk, uk+1)

Δx

= 1

2

( fα
k− 1

2
(uk−1, uk) − fα

k− 1
2
(uk, uk)

Δx/2
+

fα
k+ 1

2
(uk, uk) − fα

k+ 1
2
(uk, uk+1)

Δx/2

)

=
du

k− 1
4

dt +
du

k+ 1
4

dt

2
.

This is the semidiscrete equivalent of the cell division usually employed to make use
of the convexity of the entropy. In our case this allows us to change from αk− 1

2
to
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Fig. 3 The subdivision of a cell in space, initialized with the mean value of the old cell

αk+ 1
2
as our fluxes are consistent, namely f GT

α
k− 1

2

(u, u) = f (u) = f GT
α
k− 1

2

(u, u). This

implies together with the consistency of the entropy fluxes

dU ◦ uk
dt

=
〈
vk ,

duk
dt

〉
= 1

2

(〈
vk ,

duk− 1
4

dt

〉
+

〈
vk ,

duk+ 1
4

dt

〉)

≤ 1

2

⎛
⎜⎝

FGT
α− 1

2
(uk−1, uk) − FGT

α− 1
2
(uk , uk)

Δx/2
+

FGT
α+ 1

2
(uk , uk) − FGT

α+ 1
2
(uk , uk+1)

Δx/2

⎞
⎟⎠

=
FGT
α
k− 1

2

(uk−1, uk) − FGT
α
k+ 1

2

(uk , uk+1)

Δx
(3.1)

and completes the Proof. 	


The aforementioned arguments show that our flux is entropy dissipative in the usual
sense if α is chosen to be nonzero.

In [22, Sect. 4.1] the entropy conservative flux of Tadmorwas extended via the usage
of linear combinations into an entropy conservative flux of order 2p. We will also use
this idea on our flux.Aswehave already usedα as a parameter for convex combinations
we will use crp instead to denote the coefficients in the linear combination.

Definition 3.2 We define the high order LMRGT flux of order 2p as

f LMRGT
α (uk−p+1, . . . , uk+p)=

p∑
r=1

crp( f
GT
α (uk, uk+r )+· · ·+ f GT

α (uk−r+1, uk+1)).

It follows from the definition that this flux is of order 2p for αk = 0 i.e. when the
entropy equality holds. One further deduces from

f LMRGT
α (uk−p+1, . . . , uk+p) − f LMRGT

0 (uk−p+1, . . . , uk+p)

= α

p∑
r=1

crp(( f
G(uk , uk+r ) − f T (uk , uk+r ) + · · · + f G(uk−r+1, uk+1) − f T (uk−r+1, uk+1))

= α O(Δx),
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Using the Dafermos entropy rate criterion in numerical schemes 1683

that the scheme is even of order 2p if the linear combination for an 2p order accurate
entropy conservative flux is used in the construction and α(uk−q+1, . . . , uk+q) =
O((Δx)2p−1) holds.

While one aims for a discrete entropy inequality we are at least able to proof a
semidiscrete cell entropy inequality for this flux

Corollary 3.1 The semidiscrete scheme

duk
dt

=
f LMRGT
α
k− 1

2

(uk−p, . . . , uk+p−1) − f LMRGT
α
k+ 1

2

(uk−p+1, uk+p)

Δx

= −
p∑

r=1

crp

f GT
α
k+ 1

2

(uk, uk+r ) − f GT
α
k− 1

2

(uk−r , uk)

Δx

satisfies a semidiscrete entropy inequality

dU ◦ uk
dt

≤
FLMRGT

α
k− 1

2

(uk−p, . . . , uk+p−1) − FLMRGT
α
k+ 1

2

(uk−p+1, . . . , uk+p)

Δx

with an consistent numerical entropy flux given by

FLMRGT
α (uk−p+1, . . . , uk+p)=

p∑
r=1

crp(F
GT
α (uk, uk+r ) + · · · + FGT

α (uk−r+1, uk+1))

if ∀k : αk+ 1
2

∈ (0, 1] holds.

Proof We follow the proof of the semidiscrete entropy inequality from [22, Sect. 4.1]
and multiply the definition of the scheme by the entropy variable vk to find

dU ◦ uk
dt

= 〈vk, duk
dt

〉 =
〈
vk,

p∑
r=1

crp

f GT
α
k− 1

2

(uk−r , uk) − f GT
α
k+ 1

2

(uk, uk+r )

Δx

〉

=
p∑

r=1

crp

〈
vk,

f GT
α
k− 1

2

(uk−r , uk) − f GT
α
k+ 1

2

(uk, uk+r )

Δx

〉

(3.1)≤
p∑

r=1

crp

FGT
α
k− 1

2

(uk−r , uk) − FGT
α
k+ 1

2

(uk, uk+r )

Δx

=
FGT LMR

α
k− 1

2

(uk−p, uk+p−1) − FGT LMR
α
k+ 1

2

(uk−p+1, uk+p)

Δx
.
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Our first numerical experiment showed that an entropy dissipative scheme alone is
not enough to guarantee good approximate solutions. This iswhywewill nowconstruct
an algorithm to find values for α to control our flux according to the Dafermos entropy
criterion.

Definition 3.3 We call α : R2p×m → [0, 1] an entropy inequality predictor with a
(2p) point stencil if

lim
h→0

α(ui−p+1, . . . , ui+p)

=
{
0 ∃x ∈ [xi − (p − 1)Δx, xi + pΔx] : ∂U◦u

∂t + ∂F◦u
∂x < 0

1 ∀x ∈ [xi − (p − 1)Δx, xi + pΔx] : ∂U◦u
∂t + ∂F◦u

∂x = 0

holds for the complete stencil. The input values ui−p+1, . . . , ui+p shall be the mean
values of the solution in the respective cells as present in a Finite Volume solver. We
will call the entropy inequality predictor slope limited if

|αi − αi+1| < M with αi = α(ui−p+1, . . . , ui+p)

holds for some M < 1 and all i .

The slope limiting property was inspired by the idea to limit the slope of α with
respect to the grid index i . This should not be mixed up with a bound on the slope
of α with respect to x . Such a bound would be scaling with the distance between xi
and xi+1 as present in the usual definition of a difference quotient. This ensures that
α switches between 0 and 1 over several mesh points while the size of this switch is
scaled down with respect to the physical scale for a finer grid. The switch needs at
least �1/M� points.
Lemma 3.2 (Smoothstep [24]) The function

Hsm(x) =

⎧⎪⎨
⎪⎩
0 x ≤ 0

6x5 − 15x4 + 10x3 0 ≤ x ≤ 1

1 1 ≤ x

is a C2 function with zero first and second derivatives at x = 0 and x = 1.

We will need some special operations on functions for the construction of our
predictor which are motivated by mollification. The convolution [21, p. 216] of f and
g is defined as

f ∗ g(x) =
∫

Ω

f (y)g(x − y)dy

for suitable f and g. Please note that this can be interpreted as the integral of all
combinations of f (·) with g(−·) multiplied over R and indexed by their respective
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Fig. 4 Plot of the smooth step
function

shift between the argument of f and g. A mollification, first defined in [9], is a
convolution of a function f with a suitable g giving a smoother function as f . The
result [21, p. 216]

‖ f ∗ g‖1 ≤ ‖ f ‖1 ‖g‖1 ,

relates the norm of the mollified function f ∗g to the original function. As convolution
is coupled to (Lebesgue)-integration which in turn provides the Lebesgue norms, one
can ask if also an equivalent of convolution for other norms exists.Wewill find such an
equivalent with interesting properties for our application related to the uniform norm
‖·‖∞.

Definition 3.4 (Minkowsky sum and Minkowsky product) Given two sets A ⊂ R and
B ⊂ R we define the Minkowsky sum and Minkoswky product as

A ⊕ B = {a + b | a ∈ A, b ∈ B}

and

A � B = {ab | a ∈ A, b ∈ B}.

Lemma 3.3 (Special properties of the Minkowsky product and sum) Let A, B ⊂ R

be two sets. In this case

sup(A ⊕ B) = sup A + sup B

holds. If additionally ∀a ∈ A : a ≥ 0 and ∀b ∈ B : b ≥ 0 hold the equality

sup(A � B) = sup A · sup B

is also satisfied. In other words the supremum is additive and positively homogeneous
for sets.
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Definition 3.5 (Minkowsky product of functions)Let f , g : R → R. TheirMinkowsky
product is a map f � g : R → R, defined by

( f � g)(x) = { f (x − y)g(y) | y ∈ R}.

In other words the Minkowsky product of f and g at x is the set of all values of
f multiplied by g so that the argument added together gives x . Compare this to the
integrand of the convolution.

Definition 3.6 Let f , g : R → R be bounded real maps. The sup-mollification of f
and g is defined as

f � g(x) = sup f � g(x) = sup
y∈R

( f (x − y)g(x)).

Please note that f � g is a set depending on x and the supremum is not taken over x ,
but over the set at the point x .

We will use the defined sup-mollification operator to ensure the slope limiting
property of our entropy inequality predictor. We will now prove some useful lemmas
that will also show that our entropy inequality predictor is Lipschitz continuous and
keeps α up at one in a region around an entropy dissipating shock.

Lemma 3.4 Let f , g : R → R≥0 be bounded functions. In this case

sup
x

f � g(x) = sup
z

f (z) sup
z

g(z)

holds.

Proof An easy calculation shows

sup
x

f � g = sup
x

sup
y

f (y)g(x − y) = sup
(x,y)∈R2

f (y)g(x − y)

= sup
(x,y)∈R2

f (y)g(x) = sup ran f � ran g

= (sup ran f ) · (sup ran g).

	

Lemma 3.5 Let f , g : R → R be bounded functions. Then

∣∣∣∣sup
x

f (x) − sup
y

g(y)

∣∣∣∣ ≤ sup
x

| f (x) − g(x)|

holds.
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Proof We start by stating that

sup
x

f (x) = sup
x

g(x) + f (x) − g(x) ≤ sup
y

g(y) + sup
x

f (x) − g(x)

holds. This can be rearranged and bounded so that

sup
x

f (x) − sup
y

g(y) ≤ sup
x

f (x) − g(x) ≤ sup
x

| f (x) − g(x)|

holds. As this also holds if the roles of f , g are swapped, it follows

∣∣∣∣sup
x

f (x) − sup
y

g(y)

∣∣∣∣ ≤ sup
x

| f (x) − g(x)| .

	

Lemma 3.6 (Sup-mollification is a Lipschitz continuous operator) For bounded
f1, f2, g : R → R it holds

‖ f1 � g − f2 � g‖∞ ≤ ‖g‖∞ ‖ f1 − f2‖∞

Proof We use lemma 3.5 and 3.4 to prove

‖ f1 � g − f2 � g‖∞ = sup
x

∣∣∣∣sup
y

f1(y)g(x − y) − sup
y

f2(y)g(x − y)

∣∣∣∣
lem 3.5≤ sup

x
sup
y

| f1(y)g(x − y) − f2(y)g(x − y)|

= sup
x

sup
y

| f1(y) − f2(y)| |g(x − y)|
lem 3.4= sup

x
| f1(x) − f2(x)| sup

y
|g(y)|

= ‖g‖∞ ‖ f1 − f2‖∞ .

	

Lemma 3.7 (Slope condition inequality) Let f , g : R → R be bounded functions. If
g satisfies for a fixed h ∈ R

∃M ∈ R : sup
x∈R

|g(x + h) − g(x)| ≤ M,

then the sup-mollification f � g full fills

| f � g(x + h) − f � g(x)| ≤ M · sup | f (y)| .
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Proof We again use lemma 3.5 to prove

| f � g(x + h) − f � g(x)| =
∣∣∣∣sup

y
f (y)g(x + h − y) − sup f (y)g(x − y)

∣∣∣∣
≤ sup

y
| f (y)g(x + h − y) − f (y)g(x − y)|

= sup
y

| f (y)| |g(x + h − y) − g(x − y)|

≤ sup
y

| f (y)| sup
y

|g(x + h − y) − g(x − y)|

≤ M · sup | f | .

	

Lemma 3.8 (Plateau condition inequality) Let f , g : R → R be bounded, x0 ∈ R and
ε > 0. Then

∀x ∈ [−ε, ε] : g(x) > c ∈ R

implies

∀x ∈ [x0 − ε, x0 + ε] : f � g(x) ≥ c f (x0).

Proof Let x ∈ [x0 − ε, x0 + ε]. If we set y = x0 it follows x − y ∈ [−ε, ε] and

f (y)g(x − y) = f (x0)g(x − y) ≥ f (x0)c

�⇒ f (x0)c ≤ sup
y

f (y)g(x − y) = f � g(x).

	

Definition 3.7 (Discrete sup-mollification) Let for n ∈ N be the vector space of step
functions on [0, 1] denoted as

Sn = { f : [0, 1] → R | ∀i = 0, . . . , n − 1 : f |[i/n,(i+1)/n] = fi ∈ R}.

We can further define an embedding Z : Sn → S of this space into the step functions
over R, denoted as S, by

Z : Sn → S, f �→ Z f , Z f (x) =
{
f (x) x ∈ [0, 1]
0 else

.

These two definitions allow us to define the discrete sup-mollification of f , g ∈ Sn
as

( f � g)|[i/n,(i+1)/n]

123



Using the Dafermos entropy rate criterion in numerical schemes 1689

= (Z f � Zg)|[i/n,(i+1)/n] = max
j∈{0,...,n−1} f̃ j g̃i− j . for i = 0, . . . , n − 1.

The values f̃i ∈ R and g̃i ∈ R relate to fi and gi as

f̃i =
{
fi i ∈ {0, . . . , n − 1}
0 else

g̃i =
{
gi i ∈ {0, . . . , n − 1}
0 else

.

The sup mollfication for step functions on the interval [a, b] shall be defined using
the coordinate transform ϕ(x) = x−a

b−a and the corresponding inverse ϕ−1(y) = a +
y(b − a). Using this transform yields

( f � g)(x) = (Z( f ◦ ϕ) � Z(g ◦ ϕ)) ◦ ϕ−1(x).

It is also possible to exactly sup-mollify piecewise linear functions.

Example 3.1 (The Godunov Flux entropy inequality predictor) A suitable entropy
inequality predictor can be constructed from the Godunov flux by looking at it’s
entropy dissipation

snk = F(unk+1, u
n
k ) − F(unk , u

n
k−1)

Δx
+ U (un+1

k ) −U (unk )

Δt
≤ 0

as given in [30, 31]. As the Godunov scheme is entropy stable snk ≤ 0 holds ∀n, k. We
can use this value to predict if the entropy equality holds - or the inequality. A problem
occurs as in fact snk < 0 is even true for smooth initial conditions like u0(x) = sin(πx)
in the first time step.

Similar Problems appear in the context of edge sensors and local viscosity [3, 34]
and are usually solved by a thresholding process. In our case this threshold will be
carried out by the smooth step function Hsm from lemma 3.2 to ensure a Lipschitz-
continuous transition. As there are in fact two free parameters in this approach, one
for determining the lower threshold, and another to control the width of the smooth
step, it is imperative to find parameters that are at least independent of the used grid.
We therefore define

u+ = max
k

unk u− = min
k

unk

for single conservation laws and

u+ = u(argmax
x

U ◦ u(x, t), t) u− = u(argmin
x

U ◦ u(x, t), t)

as the cell values having maximum and minimum entropy in the domain for systems
of conservation laws. These values can be afterwards used to construct the Riemann
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problem with the initial conditions

u1(x, 0) =
{
u−

u+ u2(x, 0) =
{
u+ x < 0

u− x ≥ 0
.

By looking at their entropy dissipation snk when the Godunov scheme is applied one
finds a reference

sref = min

(
min
k

snk (u1(·, 0)),min
k

snk (u2(·, 0))
)

for the entropy dissipation of a strong shock that could be present in the solution.While
this approach involves a lot of hand waving the numerical results are quite satisfactory
and further research could be centered around this issue. The values

rnk = Hsm

⎛
⎝

snk
sref

− a

b

⎞
⎠

depend smoothly on snk but can still have extremely localized spikes as wide as only
a few cells. The parameter a ∈ R is a threshold under which the result of the entropy
inequality predictor should be thought of as zero, while b ∈ R corresponds to a typical
amplitude of a spike in the entropy dissipation indicating a shock. Numerical tests
indicate that a instantaneous switching between fluxes leads to undesired oscillations
around their interface. Furthermore, the stencil of the high order Tadmor flux is wider
than the stencil of the Godunov scheme and the derivation of the high order Tadmor
scheme assumes an entropy conservative solution in its derivation, which will be
violated by an entropy dissipating discontinuity in the solution. These two problems
are considered in the definition of the entropy inequality predictor. Responsible are
the slope limiting property and the definition as a scale for the violation of the entropy
equality on the entire stencil of a scheme. In this case the wider stencil of the high
order modified Tadmor scheme is relevant. We will satisfy these requirements using
sup-mollification of rnk , i.e. its associated piecewise constant function, and a suitable
kernel. We chose the cut hat function

h(x) = max(0,min(1, 2x + 2,−2x + 2))

in a properly rescaled fashion for this purpose. and define

α = r � h.

Other choices are possible, and it is not clear yet if a smoother mollifier improves the
scheme.
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Fig. 5 Plot of a cut hat function
h(x)

Lemma 3.9 The Godunov Flux inequality predictor

αn = Hsm

⎛
⎝

snk
sref

− a

b

⎞
⎠ � h

is slope limited.

Proof This follows from the fact that

ran Hsm

⎛
⎝

snk
sref

− a

b

⎞
⎠ ⊂ [0, 1]

holds and the cut hat function has limited slope using the slope condition inequality.	

While the aforementioned entropy inequality predictor is able to deliver satisfactory

results the solution of a Riemann problem, needed to calculate the Godunov flux, is
not always easily obtained. This is why two other entropy inequality predictors, one
of theoretical and one also of practical value, were constructed.

Example 3.2 (The Lax-Friedrichs entropy inequality predictor) The aforementioned
construction can be also applied to the Lax-Friedrichs scheme, and it’s corresponding
entropy inequality and entropy flux, proved in [20, 30, 31]. The entropy flux is given
by

F(ul , ur ) = F(ul) + F(ur )

2
+ U (ul) −U (ur )

2λ
,

leading to the entropy production

snk = F(unk+1, u
n
k ) − F(unk , u

n
k−1)

Δx
+ U (un+1

k ) −U (unk )

Δt
≤ 0.
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Entering these results leads to the entropy inequality predictor

αn = Hsm

⎛
⎝

snk
sref

− a

b

⎞
⎠ � h.

Sadly, while this predictor has a rigorous provable background from [20], its practical
use is complicated. The line between an area of entropy conservation and an entropy
dissipating shock is blurred by the big amount of dissipation present in the Lax-
Friedrichs scheme that also happens in smooth areas. This is why a second entropy
inequality predictor was constructed with reduced dissipation. This reduction is based
on linear reconstruction in an ENO type fashion [16].

Example 3.3 (The ENO2 Lax Friedrichs entropy inequality predictor) Given an piece-
wise constant solution unk one first calculates the piecewise linear reconstructions

ũnk (x) =
{
unk + al(x − xk) al < ar
unk + ar (x − xk) ar ≥ al

al = unk − unk−1

xk − xk−1
ar = unk+1 − unk

xk+1 − xk
.

Using this reconstruction directly in a finite volume entropy inequality is not possible,
as the scheme

un+1
k = unk + λ

(
f
(
ũnk−1

(
xk− 1

2

)
, ũnk

(
xk− 1

2

))
− f

(
ũnk

(
xk+ 1

2

)
, ũnk+1

(
xk+ 1

2

)))

has to the authors knowledge no known entropy fluxes. We instead seek to calculate
an approximation of the entropy dissipation of this reconstructed solution by using it
as the initial condition for a first order Lax-Friedrichs solver. It is sufficient to use this
solver at points of discontinuity as the entropy equality holds for the smooth areas of
the solution. We therefore use the subdivision of our primary cells sketched in Fig. 6
to start the Lax-Friedrichs method. Let xk+1/2 be the cell boundary between the cell
around xk and xk+1 and Δx

6 ≥ ε > 0 an arbitrary parameter for a sub-cell size. We
introduce new cell boundaries at

x−
l = xk+ 1

2
− 3ε x+

l = x−
m = xk+ 1

2
− ε x+

m = xk+ 1
2

+ ε = x−
r x+

r = xk+ 1
2

+ 3ε

to form new cells around

xl = xk+ 1
2

− 2ε xm = xk+ 1
2

xr = xk+ 1
2

+ 2ε.

These cells are initialized with the mean values of ũn(x) in these cells

vl = 1

2ε

∫ x+
l

x−
l

ũn(x)dx vm = 1

2ε

∫ x+
m

x−
m

ũn(x)dx vr = 1

2ε

∫ x+
r

x−
r

ũn(x)dx .
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Fig. 6 Subdivision and averaging after an ENO reconstruction

After one step of calculations we can take the entropy dissipation of the Lax-Friedrichs
Scheme in the middle cell

sk+ 1
2

= U

(
vl + vr

2
+ λ

f (vl) − f (vr )

2

)
− U (vl) +U (vr ))

2
+ λ

F(vl) − F(vr )

2

as an approximation of the true entropy dissipation at this edge. The value of ε is not
critical in this calculation, and we can pass to the limit ε → 0 to find

sk+ 1
2

= U

⎛
⎝ ũnk

(
xk+ 1

2

)
+ ũnk+1

(
xk+ 1

2

)

2
+ λ

f
(
ũnk

(
xk+ 1

2

))
− f

(
ũnk+1

(
xk+ 1

2

))

2

⎞
⎠

−
U

(
ũnk

(
xk+ 1

2

))
+U

(
ũnk+1

(
xk+ 1

2

))

2
+ λ

F
(
ũnk

(
xk+ 1

2

))
− F

(
ũnk+1

(
xk+ 1

2

))

2

and proceed as before with the usual stepping and sup-mollification operators. One
should note that as λ is constant the time step used for this calculation tends to zero
and hence this entropy inequality is of no use for the ENO-LxF scheme and only gives
an estimate for the entropy dissipation.

Remark 3.1 The aforementioned method is easily generalized to several space dimen-
sions using a grid with tensor product structure and application of the presented
methods in every direction, as also pointed out for correction procedure via recon-
struction (CPR) Methods in their summation-by-parts (SBP) interpretation in [27].

Remark 3.2 The entropy inequality predictors are not discontinuity sensors. The func-
tion α should sense positions where entropy dissipation takes place. The entropy
equality dictates that there has to be in fact a discontinuity if entropy is dissipated. The
opposite implication does not hold. A discontinuity can be present in the solution but
still no entropy is dissipated. An example of such behavior is the contact discontinuity
present in some solutions to Riemann problems for the Euler equations. Therefore, a
different approach, not equivalent to sensing discontinuities, is the aim of the scheme.
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4 Numerical tests

4.1 Numerical tests for the Burgers equation

Numerical tests were carried out for the new numerical flux composed of the entropy
inequality predictor coupled to the convex combination flux. Sadly our scheme is not
free of open parameters. The parameters a, b were chosen as a = 1/20, b = 1/100
after some experiments. Wrong selection of a results in a late or early detection of
needed entropy dissipation. Those problems vanish for finer grids, as the entropy
inequality predictor gives a refined distinction between conservation and entropy dis-
sipation in this case. Still the optimal values for a are only distributed over one order
of magnitude. To high values of b result in difficulties during time integration as this
yields big Lipschitz constants for the resulting flux, while to small values result in
a slow switching of the scheme between entropy conservation and extremal entropy
dissipation. The values for b are not as critical as values for a and equally acceptable
values span several orders of magnitude. A second decision which had to be made
concerned the entropy pair. The pair U (u) = u2/2, F(u) = u3/3 was chosen for this
purpose. We compare the new scheme directly to the Godunov scheme as the new
scheme uses the Godunov scheme for dissipative regions. The Burgers equation was
solved for N = 50 cells and periodic boundary conditions. A known good solution
was calculated by a Godunov scheme with Ncontrol = 5000 cells. Time integration
was carried out using the SSPRK104 algorithm [12].

Our numerical tests were carried out to test two assumptions.

– The total entropy of the numerical solution of the GT scheme is a (good) approx-
imation of the total entropy of the true solution.

– The norm ‖u(·, t) − unumeric(·, t)‖ is improved by our scheme over the error one
gets from the Godunov scheme.

The first assumption seems to be true. By looking at Fig. 10a the entropy of the GT
scheme is, by construction, constant as long as u is smooth. The behavior is also
desirable for non-smooth solutions as the numerical derivative of the total entropy
approximates the exact derivative quite well. Interestingly the total entropy of the less
dissipative GT scheme is smaller than the total entropy of the Godunov method for
large times, which is the same for the exact solution. Assumptions on the quality of
the solution can be made from the solution plots in 7. The smooth solutions show good
correspondence between exact solution and the GT solution. In the discontinuous case
the solution at the discontinuity corresponds to the solution of the Godunov method
but is still significantlymore exact in smooth areas. After these qualitative assumptions
some quantitativemeasurements were carried out in form of norms of the errors.While
the L1 normof the errorwas reduced for smooth and non-smooth solutions the L2 norm
error for non-smooth solutions was only improved by a small amount as the shock
is not better resolved than by the Godunov scheme. Several upwind schemes show
glitches concerning rarefaction waves [35]. The scheme was tested for this deficiency
using a Riemann problem with ul = −1.0 and ur = 1.0 as initial condition and the
results are shown in Fig. 9. One could imagine that the sonic glitch, clearly present
in the solution calculated by the Godunov method, will be also part of the solution
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(a) (b)

(c) (d)

(e)

Fig. 7 Numerical experiment with the GT scheme. The entropy conservative flux is the eight order flux [22,
32] while the classic Godunov schemewith exact Riemann solver was used as entropy dissipative flux. Time
integration was carried out using the SSPRK104 method and a CFL number of λ = 0.5. The parameters of
the Godunov entropy inequality predictor were a = 1/20, b = 1/100. The cutted hat function used in the
sup mollification was rescaled to fit the support of the hat into a 2p + 1 wide stencil with p = 8, i.e. to fit
the stencil of the high order flux

calculated by the GT scheme. This is only partly the case. The strength of the sonic
glitch is significantly reduced compared to the Godunov scheme.

4.2 Numerical tests for the Euler equations of gas-dynamics

After these promising results for the Burgers equation numerical tests were carried
out for the Euler equations of gas dynamics
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(a) (b)

Fig. 8 Error norms over time for the solutions in Fig. 7 over time

(a) (b)

Fig. 9 Results for a Riemann Problem given by the initial condition ul = −1.0, ur = 1.0. A grid consisting
of 50 cells was used in conjunction with a CFL number of λ = 0.5 and the SSPRK104 time integration
method [12]. Parameters where the same as in Fig. 7. The solution of the basic Godunov scheme was plotted
as a reference for the possible sonic point glitch. The used GT scheme, based on the eight order entropy
conservative flux, uses the same Godunov method as a low order flux. The sonic glitch is significantly
reduced by the application of the GT scheme

u = (ρ, ρv, E) f (ρ, ρv, E) =
⎡
⎣ ρv

ρv2 + p
v(E + p)

⎤
⎦ P = (γ − 1)

(
E − 1

2
ρv2

)

in conjunction with the LxFRI scheme and the ENO2LxF entropy inequality predictor.
The physical entropy [15, 33]

U (ρ, ρv, E) = −ρS F(ρ, ρv, E) = −ρvS S = ln(pρ−γ )

was used in the entropy inequality predictor whereas the entropy conservative flux

f R(ul , ur ) =
⎛
⎝ ρ̂û

ρ̂û2 + p̂1
ρ̂û Ĥ

⎞
⎠ z =

√
ρ

p

⎛
⎝1
u
p

⎞
⎠

123



Using the Dafermos entropy rate criterion in numerical schemes 1697

(a) (b)

(d)(c)

(e) (f)

Fig. 10 Shu-Osher testcase at t = 1.8. LMRLxFRI scheme of Order 6. The entropy conservative flux is the
entropy conservative flux from [18] while the Lax-Friedrich flux was used as entropy dissipative flux. Time
integration was carried out using the SSPRK104 method and a CFL number of λ = 0.1. The parameters
of the ENO2-Lax-Friedrichs entropy inequality predictor were a = 1/1000, b = 1/1000. The cutted hat
function used in the sup mollification was rescaled to fit the support of the hat into a 2p + 1 wide stencil
with p = 6, i.e. to fit the stencil of the high order flux. The values of α

k+ 1
2
were also plotted

ρ̂ = z1z
ln
3 p̂1 = z3

z1
p̂2 = γ + 1

2γ

zln3
zln1

+ γ − 1

2γ

z3
z1

â =
√

γ p̂2
ρ̂

Ĥ = â2

γ − 1
+ û2

2

developed by Ismail and Roe in [18] that conserves the selected entropy was used for
the entropy conservative part of the scheme. This flux was selected as it is also used
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(a) (b)

(c)

Fig. 11 convergence analysis for the Euler equations. LMRLxFRI Scheme of order 6. The same parameters
and fluxes as in Fig. 10 were used

in several other publications [6, 7]. Other options, including fluxes that also conserves
the kinetic energy, are possible [25]. The parameters a = 1/1000 and b = 1/1000,
that were determined experimentally as before, were used. A new set of parameters
is needed as a different entropy inequality predictor is used whose typical amplitudes
and offset are different. Different entropies can also influence these parameters and an
analysis giving explicit formulas is planed for a future publication. Reference solutions
were calculated by the LMRLxFRI schemewith N = 1600 points of order 6 and using
SSPRK104 for time integration. First the ability of the scheme to resolve shocks was
tested by the Shu-Osher test case number 6 from [28] given by the initial conditions

ρ0(x, 0) =
{
3.857153

1 + ε sin(5x)
v0(x, 0) =

{
2.629

0
p0(x, 0) =

{
10.333 x < 1

1 x ≥ 1
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The results can examined in Fig. 10. A second experiment was carried out to demon-
strate the ability of the scheme to achieve high order in smooth areas. The initial
condition

ρ0(x, 0) = 3.857153 + ε sin(2x) v0(x, 0) = 2.0 p0(x, 0) = 10.33333.

is a density variation that is carried downstream to the right and the results from the
convergence analysis are shown in Fig. 11.

5 Conclusion

We first looked at some numerical solutions to hyperbolic conservation laws and saw
that the entropy inequality is not enough to guarantee high quality solutions. After-
wards a new philosophy for the construction of schemes was proposed as they should
satisfy the Dafermos entropy criterion and the entropy equality for smooth solutions.
We then constructed such a solver by the hybrid usage of entropy conservative and
entropy dissipative fluxes. Numerical experiments showed that having no entropy
dissipation for smooth solutions, as motivated by the entropy equality, and enough
entropy dissipation in discontinuous areas by the Godunov or respective LxF scheme
provides a scheme with improved accuracy in smooth areas over the Godunov scheme
and an accuracy not worse than the Godunov or respective LxF scheme in non-smooth
areas. This can be seen as an improvement over prior attempts of using the Dafermos
criterion for numerical schemes as in [26, Chap. 9.2] where excessive dissipation in
smooth areas lead to bad solutions. The primary difference being that the stencil selec-
tor proposed in [26, Chap. 9.2] also tried to dissipate the maximum amount of entropy
in smooth areas while in fact the analytic theory in form of the entropy equality dic-
tates the conservation of entropy as the maximum allowable reduction of entropy in
this case. Research is ongoing concerning the improvement of stencil selection algo-
rithms in reconstruction based methods by taking into account not only the maximum
entropy dissipation but also the entropy equality for smooth areas. The methods that
were constructed to calculate the coefficient α could be used also in methods based on
steered dissipation as for example in [10, Chap. 11]. Better α distributions could on
the other hand greatly enhance the abilities of the constructed schemes. An algorithm
based on artificial intelligence has been tested by the author and a preprint [17] con-
cerning several other algorithms to calculate α is available. Practical applications of
finite volume methods are often multidimensional problems therefore a future publi-
cation concerning this scheme will generalize the presented method to multiple space
dimensions on unstructured grids.
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