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Abstract
Rational approximation recently emerged as an efficient numerical tool for the solution
of exterior wave propagation problems. Currently, this technique is limited to wave
media which are invariant along the main propagation direction. We propose a new
model order reduction-based approach for compressing unbounded waveguides with
layered inclusions. It is based on the solution of a nonlinear rational least squares prob-
lem using the RKFIT method. We show that approximants can be converted into an
accurate finite difference representation within a rational Krylov framework. Numer-
ical experiments indicate that RKFIT computes more accurate grids than previous
analytic approaches and even works in the presence of pronounced scattering reso-
nances. Spectral adaptation effects allow for finite difference grids with dimensions
near or even below the Nyquist limit.
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1 Introduction

In this work we present a new approach to the compression of Dirichlet-to-Neumann
(DtN) maps of infinite waveguides with layered inclusions. This approach is inspired
by rational approximation techniques frommodel order reduction (see, e.g., [4]), in this
case the RKFIT algorithm for nonlinear rational approximation [9]. As a prototypical
problem we consider the infinite finite difference (FD) scheme

2h−1
[
h−1(u1 − u0) + b

]
= (A + c0 I )u0 (1.1a)

h−1
[
h−1(u j+1 − u j ) − h−1(u j − u j−1)

]
= (A + c j I )u j , j = 1, 2, . . . (1.1b)

where either u0 ∈ C
N or b ∈ C

N is given, A ∈ C
N×N is Hermitian, c j = 0 for all

j > L , and the solution {u j }∞j=0 ⊂ C
N is assumed to be bounded. This problem arises

from the FD discretization of the three-dimensional (indefinite) Helmholtz equation

∇2u + (k2∞ − c(x))u = 0

for (x, y, z) ∈ [0,+∞) × [0, 1] × [0, 1] with a compactly supported offset function
c(x) for the wave number k∞ and appropriate boundary conditions. Here, thematrix A
corresponds to the discretization of the transverse differential operator−∂2yy−∂2zz−k2∞
at x = 0 and is Hermitian indefinite. The variation of the wave number in the x-
direction is modelled by varying coefficients c j , with the “effective” wave number√
k2∞ − c j at eachgrid point. TheDtNoperator F for (1.1) is definedby the relationship

Fu0 = b.
Since (1.1) is a linear recurrence, F = fh(A) is a matrix function in A. If c j ≡ 0,

the DtN function for (1.1) at x = 0 is fh(λ) = √
λ + (hλ/2)2. As h → 0 we

obtain the DtN function f (λ) = √
λ for the continuous problem. In this case, a

near-optimal rational approximant to f can be constructed analytically [12, 13, 16].
More precisely, let the eigenvalues of A be contained in the union of two intervals
K = [a1, b1] ∪ [a2, b2] with a1 < b1 < 0 < a2 < b2. Then [12] gives an explicit
construction of a compound Zolotarev rational function r (Z)

n of type (n, n − 1) such
that

max
λ∈K |1 − r (Z)

n (λ)/ f (λ)| 
 exp
(
−2π2n/log (256a1b2/(a2b1))

)
as n → ∞ (1.2)

for sufficiently large interval ratios a1/b1 and b2/a2. It is also shown in [12]
that the convergence factor in (1.2) is optimal. Hence, the approximation error
‖ f (A) − r (Z)

n (A)‖2 ≤ C maxλ∈K |1 − r (Z)
n (λ)/ f (λ)| decays exponentially at the

same optimal rate. Interestingly, the continued fraction form of r (Z)
n gives rise to a

geometrically meaningful three-point FD scheme. By “geometrically meaningful” we
mean that the complex grid points align on a curve in the complex plane which can
be interpreted as a “smooth” deformation of the original x-coordinate axis. This is
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Model order reduction of layered waveguides via rational Krylov fitting 1553

similar to the celebrated perfectly matched layers (PMLs) which are introduced via
complex coordinate stretching [3, 5, 11, 14].

The analytic approach just outlined is essentially limited to DtN functions such
as

√
λ and

√
λ + (hλ/2)2. Here we aim to overcome this limitation by numerically

computing a low-order rational approximant rn(A) ≈ fh(A) and converting it into a
sparse representation in form of a three-point finite difference scheme.1 Our approach
is applicable even in cases where the DtN map to be approximated is highly irregular
due to the presence of scattering poles.

An illustrating example is given in Fig. 1, where the top panels show the ampli-
tude/phase of the solution of a waveguide problem on [0,+∞) × [0, 1], truncated
and discretized by 300 × 150 points. The step size is h = 1/150 in both coordinate
directions. For this problem we have chosen k∞ = 14 and c j = −92 for the grid
points j = 0, 1, . . . , L = 150. An absorbing boundary condition has been fitted to
the right end of the domain to mimic the infinite extension x → ∞. The modulus
of the associated DtN function fh is shown in the bottom of Fig. 1 (solid red curve).
This function has several singularities between and close to the eigenvalues of the
transverse FD matrix A (the eigenvalue positions are indicated by the black dots).
In particular, one eigenvalue λ j ≈ 50.5 is extremely close to a singularity of fh ,
which can be associated with the near-resonance observed in the left portion of the
waveguide. These singularities make it impossible to construct a uniform approximant
rn ≈ fh over the negative and positive spectral subintervals of A. Nevertheless, the
RKFIT approximant rn of order n = 8, also shown in the bottom of Fig. 1 (dashed blue
curve), has a relative accuracy ‖ fh(A)u0 − rn(A)u0‖2/‖ fh(A)u0‖2 ≈ 1.4×10−6 for
the DtN map. We see that rn achieves this high accuracy by being close to fh in the
vicinity of the eigenvalues of A, but not necessarily in between them. This remark-
able spectral adaptation is achieved without requiring a spectral decomposition of A
explicitly; RKFIT merely requires matrix-vector products with the DtN map.

Our RKFIT approach is also applicable when A is non-Hermitian, which may
result from absorbing boundary conditions in the transversal plane.We demonstrate in
several experiments that the RKFIT-FD grids are exponentially accurate as an approx-
imation to the full FD scheme, with only a small number of grid points required for
practical accuracy. As a result of spectral adaptation effects, the Nyquist limit of two
grid points per wavelength does not fully apply to RKFIT-FD grids. For the problem
in Fig. 1, for example, we computed an RKFIT-FD grid of only n = 8 points which
accurately (to about six digits of relative accuracy) mimics the response of the full
variable-coefficient waveguide discretized by 300 grid points in the x-direction. This
is a significant compression of the full grid.

The rest of this paper is structured as follows: in Sect. 2 we derive analytic
expressions of DtN maps for constant- and variable-coefficient media. We relate the
optimization of these DtN maps to approximation problems. Section 3 establishes a
new connection between rational Krylov spaces and FD grids. In Sect. 4 we tailor
the RKFIT algorithm to our specific application. Sections 5 and 6 study the conver-
gence behaviour of the algorithm. In Sect. 7 we discuss the numerical results and

1 Another recent approach for compressing an NtD operator for the Helmholtz equation is based on
randomized matrix probing [10]. This approach has the advantage of handling a rather wide class of
multidimensional variable-coefficient problems at the expense of losing the sparse representation.
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Fig. 1 A waveguide with varying wave number in the x-direction (piecewise constant over the first 150
grid points and the remaining grid points until infinity). The top row shows the amplitude and phase of the
solution, with the position of the coefficient jump highlighted by vertical dashed line. The bottom shows a
plot of the exact DtN function fh (solid red line) over the spectral interval of the indefinite matrix A. The
plot is logarithmic on both axes, with the x-axis showing a negative and positive part of the real axis, glued
together by the gray linear part in between. The RKFIT approximant of degree n = 8 (dotted blue curve)
exhibits spectral adaptation to some of A’s eigenvalues (black dots)

compare them to the Nyquist limit and other (spectral) discretization schemes. In the
“Appendix” we give a rational approximation interpretation of the Nyquist limit and
explain why this limit is not necessarily strict for RKFIT-FD grids.

2 FromDtNmaps to continued fractions and FD grids

There is an intimate connection between FD grids and rational functions. To see this,
let us first consider the scalar ODE u′′(x) = λu(x) on x ≥ 0 and its FD discretization

h−1
[
h−1(u j+1 − u j ) − h−1(u j − u j−1)

]
= λu j , j = 1, 2, . . . , (2.1)

whereλ andu0 are given constants andwedemand thatun remains bounded asn → ∞.
This linear recurrence is a scalar version of (1.1b) with c ≡ 0. It can easily be solved by
computing the roots of the characteristic polynomial p(t) = (t2 − (2+h2λ)t +1)/h2

and choosing the solution u j = (1 + h2λ/2 − h
√

λ + h2λ2/4) j · u0. Indeed this is
the only solution that decays for λ > 0. Moreover, this solution is bounded under the
condition2 λ ≥ −4/h2 and unbounded for λ < −4/h2.

2 This is an interesting condition in the indefinite Helmholtz case, where the role of λ is played by the
eigenvalues of the shifted Laplacian −∇2 − k2 and k is the wave number. Because we require λ ≥ −4/h2,
we have a condition k2 ≤ 4/h2 on the wave number, which is equivalent to kh ≤ 2. The solution of the
Helmholtz equation in a homogeneous medium has wave length � = 2π/k. Hence the number of FD grid
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We can use the explicit solution {u j } to extract interesting information about the
problem. For example, from the FD relation 2h−1

[
h−1(u1 − u0) + b

] = λu0, the
scalar version of (1.1a), we obtain an approximation b to the Neumann boundary data
−u′(x = 0) for the continuous analogue of the FD scheme. Eliminating u1 using the
above formula, we can directly relate u0 and b via b = √

λ + h2λ2/4 u0 =: fh(λ)u0.
We refer to fh as the DtN function or discrete impedance function. By letting h → ∞
we recover the DtN relation b = √

λu0 =: f (λ)u0 and indeed b = −u′(0) for the
continuous solution u(x) = exp(−x

√
λ)u0.

Now let us turn to the variable-coefficient problem (1.1) in scalar form:

2h−1
[
h−1(u1 − u0) + b

]
= (λ + c0)u0 (2.2a)

h−1
[
h−1(u j+1 − u j ) − h−1(u j − u j−1)

]
= (λ + c j )u j , j = 1, 2, . . . . (2.2b)

By eliminating the grid points with indices j > L (where c j = 0) we find the DtN
relation b/u0 = fh(λ) in continued fraction form

fh(λ) = h(λ + c0)

2
+ 1

h + 1

h(λ + c1) + 1

h + · · · + 1

h(λ + cL ) + 1

h + 1

hλ

2
+

√
λ + h2λ2

4

. (2.3)

In view of the original vector-valued problem (1.1), the role of λ is played by the
eigenvalues of the matrix A. When employing a rational approximant rn ≈ fh it
hence seems reasonable to be accurate on the spectral region of A. For example, if A
is diagonalizable as A = Xdiag(λ1, λ2, . . . , λN )X−1, we have ‖ fh(A) − rn(A)‖2 ≤
‖X‖2‖X−1‖2 max1≤ j≤N | fh(λ j ) − rn(λ j )|. Hence if the condition number κ(X) =
‖X‖2‖X−1‖2 is moderate, we can bound the accuracy of rn(A) using a scalar approx-
imation problem on the eigenvalues λ j . The rational approximant rn can be viewed
as a reduced order model of (2.2) where the spectral parameter λ of the transversal
operator is an equivalent of the temporal (Laplace) frequency in linear time invariant
dynamical systems (see, e.g., [4]).

3 From FD grids to rational Krylov spaces

The crucial observation for optimizing the rational approximant rn ≈ fh of a DtN
function, or equivalently its associated FD grid, is that the grid steps do not need to

Footnote 2 continued
points per wavelength, n = �/h, must satisfy n = �/h = 2π/(kh) ≥ π in order to approximate a bounded
oscillatory solution.
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be equispaced, and not even real-valued. Consider the FD scheme

ĥ−1
0 [(u1 − u0) + b] = λu0 (3.1a)

ĥ−1
j

[
h−1
j+1(u j+1 − u j ) − h−1

j (u j − u j−1)
]

= λu j , j = 1, . . . , n − 1 (3.1b)

with arbitrary complex-valued primal and dual grid steps h j and ĥ j−1 ( j =
1, 2, . . . , n), respectively. The continued fraction form of the associated DtN maps,
derived in exactly the same manner as for the case of constant h in Sect. 2, is

rn(λ) = ĥ0λ + 1

h1 + 1

ĥ1λ + 1

h2 + · · · + 1

ĥn−1λ + 1

hn

. (3.2)

This is a rational function of type (n, n − 1), i.e., a quotient pn/qn−1 of polyno-
mials of degree n and n − 1, respectively. By choosing the free grid steps we can
optimize it for our purposes. In particular, we can tune (3.1) so that it implements a
rational approximation to any DtN map, even if the associated analytic DtN function
fh is complicated. To this end, we need a robust method for computing such rational
approximants and a numerical conversion into continued fraction form.

The vector form of (3.1) is

ĥ−1
0

[
h−1
1 (u1 − u0) + b

]
= Au0 (3.3a)

ĥ−1
j

[
h−1
j+1(u j+1 − u j ) − h−1

j (u j − u j−1)
]

= Au j , j = 1, . . . , n − 1. (3.3b)

Again, b = rn(A)u0 with a rational function rn = pn/qn−1 whose continued fraction
form (3.2) involves the grid steps h j and ĥ j−1. The vectors u j and b = rn(A)u0 satisfy
a rational Krylov decomposition

AUn+1 K̃n = Un+1 H̃n, (3.4)

where Un+1 = [ rn(A)u0 |u0 |u1 | · · · |un−1 ] ∈ C
N×(n+1) and K̃n, H̃n ∈ C

(n+1)×n

are

K̃n =

⎡
⎢⎢⎢⎢⎢⎣

0
ĥ0

ĥ1
. . .

ĥn−1

⎤
⎥⎥⎥⎥⎥⎦

, H̃n =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−h−1

1 h−1
1

h−1
1 −h−1

1 − h−1
2

. . .

. . .
. . . h−1

n−1
h−1
n−1 −h−1

n−1 − h−1
n

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(3.5)
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The entries in (H̃n, K̃n) encode the recursion coefficients in (3.1) and the columns
of Un+1 all correspond to rational functions in A multiplied by the vector u0. More
precisely,

colspan(Un+1) = qn−1(A)−1span{u0, Au0, . . . , Anu0}

for some denominator polynomial qn−1 of degree at most n − 1 and with no roots at
any of A’s eigenvalues. Such a space is also known as a rational Krylov space [18].
In the next section we will show how to generate decompositions of the form (3.4)
numerically and how to interpret them as FD grids.

4 The RKFIT approach

Assume that F, A ∈ C
N×N are given matrices and v ∈ C

N with ‖v‖2 = 1. Our aim
is to find a rational approximant rn(A)v such that

‖Fv − rn(A)v‖2 → min. (4.1)

For the purpose of this paper, F is the linear DtN map and the sought rational function
rn = pn/qn−1 is of type (n, n − 1). As (4.1) is a nonconvex optimization problem
it may have many solutions, exactly one solution, or no solution at all. However,
this difficulty has not prevented the development of algorithms for the (approximate)
solution of (4.1); see [9] for a discussion of various algorithms. The RKFIT algorithm
[7, 9] is particularly suited for this task and in this section we shall briefly review it
and adapt it to our application.

4.1 Search and target spaces

Given a set of poles ξ1, ξ2, . . . , ξn−1 ∈ C and an associated nodal polynomial
qn−1(λ) = ∏n−1

j=1(λ− ξ j ), RKFIT makes use of two spaces, namely an n-dimensional

search space Vn defined as Vn := qn−1(A)−1Kn(A, v), and an (n + 1)-dimensional
target space Wn+1 defined as Wn+1 := qn−1(A)−1Kn+1(A, v). Here, K j (A, v) =
span{v, Av, . . . , A j−1v} is the standard (polynomial) Krylov space of dimension j
for the matrix A and starting vector v. Let Vn ∈ C

N×n and Wn+1 ∈ C
N×(n+1) be

orthonormal bases for Vn and Wn+1, respectively.
The space Vn is a rational Krylov space with starting vector v and the poles

ξ1, . . . , ξn−1, i.e., a linear space of type (n−1, n−1) rational functions (p j/qn−1)(A)v,
all sharing the same denominator qn−1. As a consequence, we can arrange the columns
of Vn such that Vne1 = v and a rational Krylov decomposition

AVnKn−1 = VnHn−1 (4.2)

is satisfied. The existence of such a decomposition under the assumption that Vn is
a rational Krylov space is shown in [7, Thm. 2.5]. For a given sequence of poles
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ξ1, . . . , ξn−1, decompositions of this form are computed by Ruhe’s rational Krylov
sequence (RKS) algorithm [18, Section 2] and its variant described in [8, Algo-
rithm 2.1]. Here, (Hn−1, Kn−1) is an unreduced upper Hessenberg pair of size
n × (n − 1), i.e., both Hn−1 and Kn−1 are upper Hessenberg matrices which do not
share a common zero element on the subdiagonal. The following result, established
in [7, Thm. 2.5], relates the generalized eigenvalues of the lower (n − 1) × (n − 1)
submatrices of (Hn−1, Kn−1), the poles of the rational Krylov space, and its starting
vector.

Theorem 4.1 The generalized eigenvalues of the lower (n− 1)× (n− 1) submatrices
of (Hn−1, Kn−1) of (4.2) are the poles ξ1, . . . , ξn−1 of the rational Krylov space Vn

with starting vector v.
Conversely, let a decomposition AV̂n K̂n−1 = V̂n Ĥn−1 with V̂n ∈ C

N×n of full

column rank andanunreduced upperHessenberg pair (Ĥn−1, K̂n−1)be given. Assume

further that none of the generalized eigenvalues ξ̂ j of the lower (n − 1) × (n − 1)
submatrices of (Ĥn−1, K̂n−1) coincides with an eigenvalue of A. Then the columns of

V̂n form a basis for a rational Krylov space with starting vector V̂ne1 and poles ξ̂ j .

4.2 Pole relocation and projection step

Themain component ofRKFIT is a pole relocation step based onTheorem4.1.Assume
that a guess for the denominator polynomial qn−1 is available and orthonormal bases
Vn and Wn+1 for the spaces Vn and Wn+1 have been computed. Then we can identify
a vector v̂ ∈ Vn , ‖̂v‖2 = 1, such that F v̂ is best approximated by some vector in
Wn+1. More precisely, we can find a coefficient vector cn ∈ C

n , ‖cn‖2 = 1, such that
‖(IN −Wn+1W ∗

n+1)FVncn‖2 → min. The vector cn is given as a right singular vector
of (IN − Wn+1W ∗

n+1)FVn corresponding to a smallest singular value.
Assume that a “sufficiently good” denominator qn−1 of rn = pn/qn−1 has been

found. Then the problem of finding the numerator pn such that ‖Fv−rn(A)v‖2 is min-
imal becomes a linear one. Indeed, the vector rn(A)v := Wn+1W ∗

n+1Fv corresponds
to the orthogonal projection of Fv onto Wn+1 and its representation in the rational
Krylov basis Wn+1 is

rn(A)v = Wn+1cn+1, where cn+1 := W ∗
n+1Fv. (4.3)

The pseudocode for a single RKFIT iteration is given in Algorithm 4.1. A MATLAB
implementation is contained in the Rational Krylov Toolbox [6] which is available
online at http://rktoolbox.org.

4.3 Conversion to continued fraction form

Similarly to what we did in (4.2), we can arrange the columns of Wn+1 so that
Wn+1e1 = v and a rational Krylov decomposition

AWn+1Kn = Wn+1Hn (4.4)
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Algorithm 4.1 One RKFIT iteration for superdiagonal approximants.

Require: Matrices A, F ∈ C
N×N , nonzero v ∈ C

N , and initial poles ξ1, ξ2, . . . , ξn−1 ∈ C \ �(A) (in
the first iteration it is recommended to initialize all poles at ∞).

Ensure: Improved poles ξ̂1, ξ̂2, . . . , ξ̂n−1.

1. Compute a rational Krylov decomposition AWn+1Kn = Wn+1Hn with Wn+1e1 = v/‖v‖2 and poles
ξ1, ξ2, . . . , ξn−1, ∞.

2. Define Vn = Wn+1[ In | 0 ]T .
3. Compute a right singular vector cn ∈ C

n of (I −Wn+1W
∗
n+1)FVn corresponding to a smallest singular

value.

4. Form AV̂n Ĥn−1 = V̂n K̂n−1 spanningR(Vn) with V̂ne1 = Vncn .

5. Compute ξ̂1, ξ̂2, . . . , ξ̂n−1 as the generalized eigenvalues of the lower (n − 1) × (n − 1) part of
(Ĥn−1, K̂n−1).

is satisfied, where (Hn, Kn) is an unreduced upper Hessenberg pair of size (n+1)×n.
Indeed, we haveVn ⊂ Wn+1 andWn+1 is a rational Krylov spacewith starting vector v,
finite poles ξ1, . . . , ξn−1, and a formal additional “pole” at ∞.

Our aim is to transform the decomposition (4.4) so that it can be identified with
(3.4) when u0 = v. This transformation should not alter the space Wn+1 but merely
transform the basisWn+1 into the continued fraction basisUn+1 and the pair (Hn, Kn)

into the tridiagonal-and-diagonal form of (3.5).
First we transform (4.4) so that rn(A)v defined in (4.3) becomes the first vector in

the rational Krylov basis, and v the second. To this end, we define the transformation
matrix X = [ cn+1 | e1 | x3 | · · · xn+1] ∈ C

(n+1)×(n+1) with the columns x3, . . . , xn+1
chosen freely but so that X is invertible, and rewrite (4.4) by inserting XX−1:

AW (0)
n+1K

(0)
n = W (0)

n+1H
(0)
n , (4.5)

where W (0)
n+1 = Wn+1X , K

(0)
n = X−1Kn and H (0)

n = X−1Hn . By construction,

the transformed rational Krylov basis W (0)
n+1 is of the form W (0)

n+1 = [
rn(A)v | v | ∗

| · · · | ∗ ] ∈ C
N×(n+1). The transformation to (4.5) has potentially destroyed the

upper Hessenberg structure of the decomposition and (H (0)
n , K (0)

n ) generally is a dense
(n + 1) × n matrix pair. Here is a pictorial view of decomposition (4.5) for the case
n = 4:

AW (0)
n+1

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

= W (0)
n+1

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

. (4.6)

We now transform (H (0)
n , K (0)

n ) into tridiagonal-and-diagonal form by successive

right and left multiplication, giving rise to pairs (H ( j)
n , K ( j)

n ) ( j = 1, 2, . . . , 5) all
corresponding to the same rational Krylov spaceWn+1 and all without the two leading
vectors in W (0)

n+1 being altered. More precisely, the allowed transformations are:
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– right-multiplication of the pair by any invertible matrix R ∈ C
n×n ,

– left-multiplication of the pair by an invertible matrix L ∈ C
(n+1)×(n+1), the first

two columns of which are [ e1 | e2 ]. This ensures that inserting L−1L into the
decomposition will not alter the leading two vectors [ rn(A)v | v ] in the rational
Krylov basis.

Here are the transformations we perform:

1. We right-multiply the pair (H (0)
n , K (0)

n ) by the inverse of the lower n × n part

of K (0)
n , giving rise to (H (1)

n , K (1)
n ) (we now only show a pictorial view of the

transformed pairs):

AW (1)
n+1

⎡
⎢⎢⎢⎢⎣

0 ∗ ∗ ∗
1
1
1
1

⎤
⎥⎥⎥⎥⎦

= W (1)
n+1

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

.

The Krylov basis matrix W (1)
n+1 = W (0)

n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ] has not

changed. The (1, 1) element of the transformed matrix K (1)
n = [k(1)

i j ] is auto-
matically zero because the decomposition states that the linear combination
k(1)
11 Arn(A)v + k(1)

21 v is in the column span of W (1)
n+1, a space of type (n, n − 1)

rational functions. This linear combination is a type (n+1, n−1) rational function
unless k11 = 0.

2. We left-multiply the pairs to zero the first row of K (1)
n completely. This can be

done by adding multiples of the 3rd, 4th,…, (n + 1)th row to the first. As a result
we obtain

AW (2)
n+1

⎡
⎢⎢⎢⎢⎣

0
1
1
1
1

⎤
⎥⎥⎥⎥⎦

= W (2)
n+1

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

. (4.7)

This left-multiplication does not affect the leading two columns of the Krylov
basis, hence W (2)

n+1 is still of the form W (2)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].

3. We right-multiply the pair to zero all elements in the first row of H (2)
n except the

(1, 1) entry, which we can assume to be nonzero (see Remark 4.1). This can be
done by adding multiples of the first column to the 2nd, 3rd,…,nth column. As
a result we have

AW (3)
n+1

⎡
⎢⎢⎢⎢⎣

0
1 ∗ ∗ ∗
1
1
1

⎤
⎥⎥⎥⎥⎦

= W (3)
n+1

⎡
⎢⎢⎢⎢⎣

∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

.

Again, this right-multiplication has not affected W (3)
n+1 = W (2)

n+1.
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4. With a further left-multiplication, adding multiples of the 3rd, 4th,…,(n + 1)st
row to the second row, we can zero all the entries in the second row of K (3)

n , except
the entry in the (2, 1) position:

AW (4)
n+1

⎡
⎢⎢⎢⎢⎣

0
1
1
1
1

⎤
⎥⎥⎥⎥⎦

= W (4)
n+1

⎡
⎢⎢⎢⎢⎣

∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦

.

Note that H (4)
n still has zero entries in its first row. Also, W (4)

n+1 is still of the form

W (4)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].

5. We apply the two-sided Lanczos algorithm with the lower n × n part of H (4)
n ,

using e1 as the left and right starting vector. This produces biorthogonal matri-
ces ZL , ZR ∈ C

n×n , ZH
L ZR = In . Left-multiplying the decomposition with

blkdiag(1, ZH
L ) and right-multiplication with ZR results in the demanded struc-

ture:

AW (5)
n+1

⎡
⎢⎢⎢⎢⎣

0
1
1
1
1

⎤
⎥⎥⎥⎥⎦

= W (5)
n+1

⎡
⎢⎢⎢⎢⎣

∗
∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

⎤
⎥⎥⎥⎥⎦

. (4.8)

6. Finally, let the nonzero entries of H (5)
n be denoted by ηi, j (1 ≤ j ≤ n, j ≤ i ≤

j + 2), then we aim to scale these entries so that they are matched with those
of the matrix H̃n in (3.5). This can be achieved by left multiplication of the pair
with L = diag(1, 1, �3, . . . , �n+1) ∈ C

(n+1)×(n+1) and right multiplication with
R = diag(ρ1, ρ2, . . . , ρn) ∈ C

n×n . The diagonal entries of L and R are found by
equating H̃n in (3.5) and LH (5)

n R, starting from the (1, 1) entry and going down
columnwise. We obtain r1 = 1/η1,1, h1 = −1/(η2,1ρ1), �3 = 1/(η3,1h1ρ1),
and for j = 2, 3, . . . r j = 1/(� jη j, j h j−1), h j = −1/(1/h j−1 + � j+1η j+1, jρ j ),
� j+2 = 1/(η j+2, j h jρ j ). The diagonal entries of K̃n in (3.5) satisfy ĥ j−1 =
� j+1ρ j , j = 1, . . . , n, and thus the pair has been transformed exactly into the
form (3.5).

The above six-step procedure converts the RKFIT approximant rn into continued
fraction form and hence allows its interpretation as an FD scheme. This scheme is
referred to as an RKFIT-FD grid. Note that all transformations only act on small
matrices of size (n + 1) × n and the computation of the tall skinny matrices W ( j)

n+1 is
not required if one only needs the continued fraction parameters. We have extended
the Rational Krylov Toolbox by the contfrac method, which implements the con-
version of an RKFUN, the fundamental data type to represent and work with rational
functions rn , into continued fraction form following the above transformations.Numer-
ically, these transformations may be ill conditioned and the use of multiple precision
arithmetic is recommended. The toolbox supports MATLAB’s Variable Precision
Arithmetic and the Advanpix Multiprecision Toolbox [1].
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Remark 4.1 In Step 3 we have assumed that the (1, 1) element of H (2)
n is nonzero.

This assumption is always satisfied: assuming to the contrary that the (1, 1) element
of H (2)

n vanishes, the first column of (4.7) reads Av = W (2)
n+2[0, ∗, . . . , ∗]T . This is a

contradiction as the left-hand side of this equation is a superdiagonal rational function
in A times v, whereas the trailing n columns of W (2)

n+1 can be taken to be a basis for
Vn ⊂ Wn+1, which only contains diagonal (and subdiagonal) rational functions in A
times v (provided that all poles ξ1, . . . , ξn−1 are finite).

Remark 4.2 In Step 5we have assumed that the lower n×n part of H (4)
n can be tridiago-

nalized by the two-sided Lanczos algorithm.While this conversion can potentially fail,
we conjecture that if rn admits a continued fraction form (3.2) then such an unlucky
breakdown cannot occur. (The conditions for the rational function (rn(λ) − ĥ0λ) to
posses this so-called Stieltjes continued fraction form [19] are reviewed in [15]; see
Theorem 1.39 therein.) Even if our conjecture was false, the starting vector vwill typi-
cally be chosen at random in our application. So if an unlucky breakdownoccurs, trying
again with another vector v would easily solve the problem. We have not encountered
any unlucky breakdowns in our experiments.

5 Numerical tests: constant-coefficient case

The nonlinear rational least squares problem (4.1) is nonconvex and there is no guar-
antee that a minimizing solution exists, nor that such a solution would be unique. As a
consequence of these theoretical difficulties and due to the nonlinear nature ofRKFIT’s
pole relocation procedure, a comprehensive convergence analysis seems currently
intractable. (An exception is [9, Corollary 3.2], which states that in exact arithmetic
RKFIT converges within a single iteration if F itself is a rational matrix function
of appropriate type.) However, for some special cases we can compare the RKFIT
approximants to analytically constructed near-best approximants. Here we provide
such comparisons to the compound Zolotarev approach in [12] and the approximants
studied by Newman and Vjacheslavov [17, Section 4].

Throughout this sectionwe assume that A is Hermitian with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λN . In our discussion of available convergence bounds we will usually focus on
the function f (λ) = √

λ, however, as has been argued in [12, Section 5.1], it is possible
to obtain similar bounds for the discrete impedance function fh(λ) = √

λ + (hλ/2)2.
Some of our numerical experiments will be for the latter function, illustrating that the
convergence behavior is indeed similar to that for the former.

5.1 Two-interval approximation with coarse spectrum

Our first test concerns the approximation of F = fh(A), fh(λ) = √
λ + (hλ/2)2,

where A is a nonsingular indefiniteHermitianmatrixwith relatively large gaps between
neighboring eigenvalues. We recall the convergence result (1.2) from the introduction,
which states that the geometric convergence factor is governed by the ratios of the
spectral subintervals [a1, b1] and [a2, b2], a1 < b1 < 0 < a2 < b2.
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Example 5.1 In Fig. 2 (top left)we show the relative errors ‖Fu0−rn(A)u0‖2/ ‖Fu0‖2
of the type (n, n−1) rational functions obtained by RKFIT (dashed red curve) and the
two-interval Zolotarev approach (dotted blue) for varying degrees n = 1, 2, . . . , 25.
Here thematrix A is defined as A = L/h2−k2∞ I ∈ R

N×N , where N = 150, h = 1/N ,
k∞ = 15, and

L =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦

. (5.1)

The matrix L corresponds to a scaled FD discretization of the 1D Laplace operator
with homogeneous Neumann boundary conditions. The spectral subintervals of A are
[a1, b1] ≈ [−225,−67.2] and [a2, b2] ≈ [21.5, 8.98 × 104]. The vector u0 ∈ R

N is
chosen at random with normally distributed entries. To compute the RKFIT approx-
imant rn we have used another random training vector v with normally distributed
entries. The corresponding errors ‖Fv − rn(A)v‖2/‖Fv‖2 together with the num-
ber of required RKFIT iterations are also shown in the plot (solid red curve). For
all degrees n at most 5 RKFIT iterations where required until stagnation occurred.
Note that the two RKFIT convergence curves (for the vectors u0 and v) are very close
together, indicating that the random choice for the training vector does not affect much
the computed RKFIT approximant. Note further that the RKFIT convergence follows
the geometric rate predicted by (1.2) (dotted black curve) very closely initially (up to
a degree n ≈ 10), but then the convergence becomes superlinear. This convergence
acceleration is due to the spectral adaptation of the RKFIT approximant.

The spectral adaptation is illustrated in the graph on the top right of Fig. 2, which
plots the error curve | fh(λ) − r10(λ)| of the RKFIT approximant r10 (solid red curve)
over the spectral interval of A, together with the attained values at the eigenvalues
of A (red crosses). In particular, close to λ = 0, there are two eigenvalues at which
the error curve attains a relatively small value in comparison to the other eigenvalues
farther away (meaning that rn interpolates fh nearby). These eigenvalues have started
to become “deflated” byRKFIT, effectively shrinking the spectral subintervals [a1, b1]
and [a2, b2], and thereby leading to the observed superlinear convergence.

In the bottomof Fig. 2we show the poles and residues of theRKFIT approximant r10
(left) and the associated continued fraction parameters (right), giving rise to theRKFIT-
FD grid. All the involved quantities have been computed using the new contfrac
method in the Rational Krylov Toolbox.

5.2 Two-interval approximation with dense spectrum

The superlinear convergence effects observed in the previous example should dis-
appear when the spectrum of A is dense enough so that, for the order n under
consideration, no eigenvalues of A are deflated by interpolation nodes of rn . The
next example demonstrates this.

Example 5.2 In Fig. 3 we show the relative errors ‖Fu0 − rn(A)u0‖2/‖Fu0‖2 of the
type (n, n − 1) rational functions obtained by RKFIT and the Zolotarev approach for
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Fig. 2 Top: Accuracy comparison of RKFIT and Zolotarev approximants for a shifted 1D Laplacian which
has a rather coarse spectrum, hence resulting in superlinear RKFIT convergence. The DtN function is
fh(λ) =

√
λ + (hλ/2)2. The small numbers on the solid red convergence curve on the left indicate the

number of required RKFIT iterations. Bottom: The poles and residues of the RKFIT approximant r10 (left)
and the associated continued fraction parameters (right)

varying degrees n = 1, 2, . . . , 25. Now the matrix A corresponds to a shifted 2D
Laplacian A = (L ⊗ L)/h2 − k2∞ I ∈ R

N×N with N = 1502, h = 1/150, k∞ = 15,
and with L defined in (5.1). The special structure of L (and A) allows for the use of the
2Ddiscrete cosine transform for computing F = fh(A). The spectral subintervals of A
are [a1, b1] ≈ [−225,−27.7] and [a2, b2] ≈ [21.5, 1.80× 105]. The vector u0 ∈ R

N

is chosen at random with normally distributed entries. We also show the relative error
of the RKFIT approximant rn(A)v with another randomly chosen training vector v,
and the number of required RKFIT iterations. As in the previous example there is
no big difference in accuracy when evaluating the RKFIT approximant for u0 or v,
however, the number of required RKFIT iterations is slightly higher in this example.
As the eigenvalues of the matrix A are relatively dense in its spectral interval, we now
observe that no spectral adaptation takes place and both the RKFIT and the Zolotarev
approximants converge at the rate predicted by (1.2).

In the bottom of Fig. 3 we show the grid vectors u j satisfying the FD relation (3.3)
for n = 10, with the RKFIT-FD grid parameters h j and ĥ j−1 ( j = 0, 1, . . . , 10)
extracted from r10. The entries of u j are complex-valued, hence we show the log10 of
the amplitude and phase separately. Note how the amplitude decays very quickly as the
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Fig. 3 Top: Comparison of RKFIT and Zolotarev approximants for a shifted 2D Laplacian. Bottom: The
log10 of the amplitude and phase of the grid vectors u j ( j = 0, 1, . . . , n = 10). Qualitatively, the poles
and residues and the complex grid steps for the associated RKFIT approximant r10 look similar to those in
Fig. 2 and are therefore omitted

random signal travels further to the right in the grid, illustrating the good absorption
property of this grid.

5.3 Approximation on an indefinite interval

In order to remove the spectral gap [b1, a2] from which the previous two examples
benefited, we now consider the approximation on an indefinite interval.

Example 5.3 We approximate f (λ) = √
λ on the indefinite interval [a1, b2] = [−225,

1.80×105]. Note that [a1, b2] is the same as in the previous Example 5.2, but without
the spectral gap about zero. This problem is of interest as, in the variable-coefficient
case, one cannot easily exploit a spectral gap between the eigenvalues of A which
are closest to zero. This is because a varying coefficient c(x) can be thought of as a
variable shift of the eigenvalues of A; hence an eigenvalue-free interval [b1, a2] may
not always exist.

To mimic continuous approximation on an interval, we use for A a surrogate diag-
onal matrix of size N = 200 having 100 logspaced eigenvalues in [a1,−10−16] and
[10−16, b2], respectively. The training vector v is chosen as [1, 1, . . . , 1]T . We run
RKFIT for degrees n = 1, 2, . . . , 25. The relative error of the RKFIT approximants
‖Fv − rn(A)v‖2/‖Fv‖2 seems to reduce like exp(−π

√
n); see Fig. 4 (left).

We also compare RKFIT to a two-interval Remez-type approximant obtained by
using the interpolation nodes of numerically computed best approximants to

√
λ on

123



1566 V. Druskin et al.

 0

 3
 5

 5
 6

 6
 6

 6
 7

 7
 7

 8
 8

 9  9  9 10 11 11 12 13 13 14 15 15

0 5 10 15 20 25

degree n

10-6

10-4

10-2

100
re

la
tiv

e 
2-

no
rm

 e
rr

or
Convergence for Indefinite Interval

RKFIT (iter)
Remez-type
exp(-pi*sqrt(n))

Error Curve, n = 10

-100 -1   -0.01 0.01 1    100  10000

10-4

10-3

10-2

10-1

100

RKFIT
Remez-type

Fig. 4 RKFIT approximation of f (λ) = √
λ on an indefinite interval [a1, b2], a1 < 0 < b2, compared

to a two-interval Remez-type approximant. Qualitatively, the poles/residues and the complex grid steps
associated with r10 look similar to those in Fig. 2 and are therefore omitted

[0, 1], scaling them appropriately, and unifying them for the intervals [a1, 0] and
[0, b2]. The number of interpolation nodes on both intervals is balanced so that the
resulting error curve is closest to being equioscillatory on the whole of [a1, b2].
Again the error of the so-obtained Remez-type approximant seems to reduce like
exp(−π

√
n).

Remark 5.1 The uniform rational approximation of
√

λ on a semi-definite interval
[0, b2] has been studied by Newman and Vjacheslavov. It is known that the error
reduces like exp(−π

√
2n) with the degree n; see [17, Section 4]. Based on the obser-

vations in Fig. 4 we conjecture that the error of the best rational approximant to
√

λ

on an indefinite interval [a1, b2] reduces like exp(−π
√
n).

6 Numerical tests: variable-coefficient case

We now consider a variable-coefficient function cmotivated by a geophysical seismic
exploration setup as shown in Fig. 5. Here a pressure wave signal of a single frequency
is emitted by an acoustic transmitter in the Earth’s subsurface, travels through the
underground, and is then logged by receivers on the surface. From thesemeasurements
geophysicists try to infer variations in the wave speed to draw conclusions about the
subsurface composition. The computational domain of interest is a three-dimensional
portion of the Earth and we might have knowledge about the sediment layers below
this domain, i.e., for x ≥ 0 in Fig. 5. While the acoustic waves in x ≥ 0 may not
be of interest on their own, the layers might cause wave reflections back into the
computational domain and hence need be part of the model.

Example 6.1 At the x = 0 interface of the computational domain, shown in Fig. 5, we
assume to have a 2D Laplacian A = (L ⊗ L)/h2 − k2∞ I with L defined in (5.1), and
N = 1502, h = 150, and k∞ = 15. Now the function fh of interest is (2.3), with the
coefficients c j obtained by discretizing the piecewise-constant coefficient function c
which equals−400 on [0, T ),+125 on [T , 2T ) and 0 on [2T ,∞). The thickness of the
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Fig. 5 Typical setup of a seismic exploration of the Earth’s subsurface. It is of practical interest to compress
the layered medium in x ≥ 0 into a single PML with a small number of grid points

two finite layers T is varied in {0.25, 0.5, 1, 2}. For each thickness T , the four panels
in the top of Fig. 6 show the modulus of fh over the spectral subintervals [a1, b1] and
[a2, b2] of A, glued together with the gray linear region [b1, a2]. It becomes apparent
that with increasing T the function fh exhibits more poles on or nearby the spectral
interval of A, indicated by the upward spikes.

The convergence of the RKFIT approximants for increasing degree n is shown in
Fig. 6 on the bottom left. For each thickness T there are two curves very nearby: a solid
curve showing the relative 2-norm approximation error for Fv (where v is a random
training vector) and a dashed curve for Fu0 (where u0 is another random testing
vector). We observe that RKFIT converges very robustly for this piecewise constant-
coefficient problem. Similar behavior has been observed in many numerical tests with
other offset functions c. We refer to the example collection of the Rational Krylov
Toolbox which contains further examples. The codes for producing our examples are
available online and can easily be modified to other coefficient functions.

Example 6.2 Here we consider a diagonal matrix A with the same indefinite spectral
interval as the matrix in the previous example but with dense eigenvalues, namely 100
logspaced eigenvalues in [a1,−10−16] and [10−16, b2], respectively. The convergence
is shown on the bottom right of Fig. 6. Again the RKFIT behavior is very robust
even for high approximation degrees n, but compared to the above Example 6.1 the
convergence is delayed, indicating that spectral adaptation has been prevented here.

7 Discussion and conclusions

Anobvious alternative to our grid compression approach in the two examples of Sect. 6
would be to use an efficient discretization method on c’s support, and then to append
it to the constant-coefficient PML of [12]. In principle such an approach requires at
least the integer part of N = π−1

∫ H
0

√
k2∞ − c(x) dx discretization points according

to the Nyquist sampling rate, where H is the total thickness of c’s support. In fact, the
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Fig. 6 Top: The four panels show the modulus of the discrete variable-coefficient DtN function fh for
varying thickness T of the two finite layers. Bottom: The two plots show the RKFIT convergence for
approximating fh(A)vwhen A is a shifted 2D Laplacian (left) and a diagonal matrix with dense eigenvalues
in the same spectral interval (right), respectively

classical spectral element method (SEM) with polynomial local basis requires at least
π
2 N grid points [2]. (The downside of SEM compared to our FD approach is its high
linear solver cost per unknown caused by the dense structure of the resulting linear
systems.) The following table shows the minimal number of grid points required for
discretizing the two finite layers in the examples of Sect. 6, depending on the layer
thickness T , as well as the number of RKFIT-FD grid points to achieve a relative
accuracy of 10−5 for the same problem:

Although we also observe with RKFIT-FD a tendency that the DtN functions
become more difficult to approximate when the layer thickness increases (an increase
of the coefficient jumps between the layers will have a similar effect), the number of
required grid points can be significantly smaller than the Nyquist limit N. A possible
explanation for this phenomenon is RKFIT’s ability to adapt to the spectrum of A, not
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T = 0.25 T = 0.5 T = 1 T = 2

Nyquist minimum N 8.75 17.5 35 70
SEM minium π

2 N 13.7 27.5 55.0 110.0
RKFIT-FD (Example 6.1) 8 10 16 19
RKFIT-FD (Example 6.2) 14 11 17 28

being slowed down in convergence by singularities of the DtN function well separated
from the eigenvalues of A. In the “Appendix” we analyze this phenomenon.
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A Nyquist limit-type criterion for rational approximation

The top-four panels in Fig. 6 suggest that the DtN function fh , specified in (2.3),
develops more and more poles on the real axis as the thickness of the finite layers
increases. These poles are also known as scattering resonances. In order to analyze
this behavior, we consider a two-layer waveguide problem with piecewise constant
wave numbers similar to the one in Fig. 1, but now in the continuous setting without
any FD approximation. This problem is governed by the equations

u′′(x) = (λ + c)u(x) for x ∈ [0, T ), u′′(x) = λu(x) for x ∈ [T ,∞),

with given u(0) = u0 and the decay condition u(x) → 0 as x → ∞. Here, T is
the thickness of the first layer with an offset coefficient c. In terms of the Helmholtz
equation, a value c = −k20 < 0 means that the wave number on the first layer is larger
than on the second, whereas c > 0 means that the wave number on the first layer is
smaller than on the second. If c = 0 we have a homogeneous infinite waveguide.

Our aim is to solve for u explicitly and to determine a formula for the DtN function
f satisfying f (λ)u0 = −u′(0). For x ∈ [0, T ] we have

u(x) = αex
√

λ+c + (u0 − α)e−x
√

λ+c2α sinh
(
x
√

λ + c
) + e−x

√
λ+cu0,
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Fig. 7 The DtN function f defined in (A.1), as well as its discrete counterpart (2.3), for two different
choices of the parameters (T , c)

where the square roots are understood as the analytical continuation through the upper
half plane from the axis λ > −c. For x ∈ [T ,∞) we require a decaying solution,
hence u(x) = βe−x

√
λ there. By continuity of u(x) at x = T we have

β = (
2α sinh

(
T

√
λ + c

) + e−T
√

λ+cu0
) · eT

√
λ.

By continuity of u′(x) at x = T we further require

√
λ + c · (

2α cosh(T
√

λ + c) − e−T
√

λ+cu0
) = −β

√
λ · e−T

√
λ,

hence

√
λ + c · (

2α cosh(T
√

λ + c) − e−T
√

λ+cu0
) = −(

2α sinh
(
T

√
λ + c

)

+e−T
√

λ+cu0
) · √

λ,

from which α can be determined as

α = u0
2

·
(√

λ + c − √
λ
)
e−T

√
λ+c

√
λ + c cosh(T

√
λ + c) + √

λ sinh
(
T

√
λ + c

) .

Note that α = αλ is a function of λ. Using the fact that u′(0) = (2αλ − u0)
√

λ + c,
the DtN function f satisfying f (λ)u0 = −u′(0) is given as

f (λ) =
√

λ + c · sinh(T√
λ + c) + √

λ · cosh (
T

√
λ + c

)
√

λ + c · cosh(T√
λ + c) + √

λ · sinh (
T

√
λ + c

) · √
λ + c. (A.1)

A plot of this function for two different parameter choices T = 5 and c = ±9 is
shown in Fig. 7. We observe that this function is smooth over the whole real axis when
c ≥ 0, while it develops singularities when c < 0. The following lemma shows that
the number of real poles is proportional to c and T .
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Lemma A.1 The function f defined in (A.1) can be analytically continued from
λ > max{0,−c} through the upper half plane to the whole real axis except for two
ramification points λ = 0 and λ = −c and possibly a finite number of poles. For
c > 0, the function f has no poles on the real axis. For c < 0, the function f has⌊
T

√−c
π

⌋
+ q real poles, where q ∈ {0, 1}, all located in the interval (0,−c).

Proof We investigate the roots of the denominator g(λ) = √
λ + c ·cosh(T√

λ + c)+√
λ · sinh(T√

λ + c). We first consider the case c < 0 and argue that there are no real
roots of g outside [0,−c]. For λ < 0, the factors

√
λ + c and

√
λ are purely imaginary

and nonzero, while cosh(T
√

λ + c) = cos(T z) is purely real and sinh(T
√

λ + c) =
i sin(T z)purely imaginary (here and throughout the proof z = imag(

√
λ + c)).Hence,

λ can only be a root of g if cos(T z) = sin(T z) = 0, but this cannot happen as cos(·)
and sin(·) do not have any roots in common. A similar argument shows that there are
no roots of g for λ > −c.

For λ ∈ (0,−c), z = imag(
√

λ + c) varies in (0,
√−c) and we want to count

the number of roots of the purely imaginary function h(z) = g(λ) = i z cos(T z) +√
z2 + c ·sin(T z) on that interval. Consider the subintervals Ik = ((k−1)π/T , kπ/T ]

for k = 1, 2, . . . , K = �T√−c/π�. Then on the first half of each Ik the function
imag(h) is strictly positive (or negative), while on the second half it is strictly mono-
tonically decreasing (increasing) with a sign change. Therefore each Ik contributes
exactly one root of h. The final interval (Kπ/T ,

√−c) may or may not contain a
further root of h. By the same argument one shows that the roots of the numerator of
f are located on the first half’s of Ik , and hence the roots of the denominator do not
cancel out.

For c ≥ 0 one argues similarly to the first part of the proof that the denominator
function g has no roots for all real values of λ. �

To interpret this result in terms of the indefinite Helmholtz equation (∂yy + ∂zz)u+
(k2∞ − c(x))u = 0 for c < 0, first note that the DtN function (A.1) does not depend
on k∞, but merely on the offset c. We may therefore set k∞ = 0, in which case the
wave number on the first finite layer is simply k = √−c. Furthermore, � = 2π/k =
2π/

√−c is the corresponding wavelength. Using this notation, Lemma A.1 states that
f has ≈ 2T /� poles on the real axis, that is, two real poles per wavelength!
Although LemmaA.1 is stated for the continuous waveguide problem, discrete DtN

functions fh seem to have poles very close to those of their continuous counterparts
f . An example is shown in Fig. 7 (dashed red curve), which corresponds to (2.3) with
“piecewise” constant coefficients c j and h = 0.05.

Returning to the RKFIT convergence, we observed in the experiments in Sect. 6 that
the minimal number n of RKFIT-FD grid points required to achieve convergence does
not seem to be directly linked to the Nyquist criterion. Although fh may have a large
number N of singularities on the spectral interval of A, RKFIT’s spectral adaptation
capabilities mean that rn does not need to resolve them all, and therefore the degree n
can be significantly smaller than N. Although LemmaA.1 effectively states a Nyquist-
type criterion for the layered waveguide, from a rational approximation point of view
RKFIT-FD grids can outperform it in case of a favorable spectral distribution of the
matrix A.
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