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Abstract
In this paper, we first establish well-posedness results for one-dimensional McKean–
Vlasov stochastic differential equations (SDEs) and related particle systems with a
measure-dependent drift coefficient that is discontinuous in the spatial component, and
a diffusion coefficient which is a Lipschitz function of the state only. We only require
a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point
of discontinuity of the drift, while we need to impose certain structural assumptions
on the measure-dependence of the drift. Second, we study Euler–Maruyama type
schemes for the particle system to approximate the solution of the one-dimensional
McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the
number of time-steps and number of particles. Due to the discontinuity of the drift,
the convergence analysis is non-standard and the usual strong convergence order 1/2
known for the Lipschitz case cannot be recovered for all presented schemes.
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1 Introduction

In this article, we study the existence and uniqueness of strong solutions for classes
of McKean–Vlasov SDEs, where the drift exhibits a discontinuity in the spatial com-
ponent. We also provide time-stepping schemes of Euler–Maruyama type, for which
we show strong convergence of a certain rate.

A McKean–Vlasov equation (introduced in [44, 45]) for a d-dimensional process
X = (Xt )t∈[0,T ], with a given finite time-horizon T > 0, is an SDE where the
underlying coefficients depend on the current state Xt and, additionally, on the law of
Xt . We consider more specifically the one-dimensional equation of the form

dXt = b(Xt ,LXt ) dt + σ(Xt ) dWt , X0 = ξ ∈ L0
2(R), (1.1)

where L0
2(R) denotes the space of real-valued, F0-measurable random variables with

second finite moments, (Wt )t∈[0,T ] is a one-dimensional standard Brownian motion
andLXt denotes the marginal law of the process X at time t ∈ [0, T ]. In particular, we
are concerned with the well-posedness of equations of the form (1.1), where b(·, μ)

is discontinuous in zero, and piecewise Lipschitz on the subintervals (−∞, 0) and
(0,∞). Concerning the measure component of the drift, we will require global Lips-
chitz continuity with respect to the Wasserstein distance with quadratic cost denoted
byW2 (see below for a precise definition). The diffusion termwill be only state depen-
dent and globally Lipschitz continuous. Our setting contrasts with the standard case
with globally Lipschitz continuous coefficients, which is well-studied in the literature,
both from an analytic and numerical perspective, e.g., in [7, 46, 58], respectively.

The study of SDEs andMcKean–Vlasov equations with discontinuous drift is moti-
vated by such models in biology (see, e.g., [25]) and financial mathematics (see, e.g.,
Atlas models in equity markets [3, 33] and dividend maximisation problems [59]).
Further, in stochastic control a discontinuous control can lead to equations with dis-
continuous drift (see [57]). In the context of stochastic N -player games, non-smooth
cost functions (such as the �1-regularisation) or constraints on the size of the control
process can result in discontinuous controls (bang-bang type optimal controls) and
hence will give controlled state dynamics with discontinuous drift, as in [11].

We start our literature review with some key references on standard SDEs with
irregular and discontinuous drift, namely [39, 40, 61, 62], and then proceed to discuss
some recent articles on McKean–Vlasov SDEs with non-Lipschitz drift. Zvonkin [62]
(for one-dimensional SDEs) andVeretennikov [61] (for themulti-dimensional setting)
prove the existence of a unique strong solution for an SDE where the drift is assumed
to be measurable and bounded, but the diffusion coefficient σ needs to satisfy rather
strong assumptions, namely that it is bounded and uniformly elliptic, i.e., there is a
λ > 0 such that for all x ∈ R

d and all v ∈ R
d , we have v�σ(x)σ (x)�v ≥ λv�v. An
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Well-posedness and numerical schemes for one-dimensional… 1507

interesting addition to the aforementioned results in the case where the diffusion is not
uniformly elliptic was established in the one-dimensional case in [39]. The authors
assume the drift coefficient to be piecewise Lipschitz and σ to be globally Lipschitz
with σ(η) �= 0 for each of finitely many points of discontinuity η of the drift. This
condition guarantees that the process does not spend a positive amount of time in the
singularity. Under these assumptions, by explicitly constructing a transformation that
removes the singularities, the existence of a unique strong solution can be proven and
a numerical procedure for solving this class of SDEs can be constructed.

The main contribution of [40] is the extension of the one-dimensional case to the
multi-dimensional setting under the assumption of piecewise Lipschitz continuity of
the drift. In [40], the authors introduce a meaningful concept of piecewise Lipschitz
continuity in higher dimensions, which is based on the notion of the so-called intrinsic
metric. As already indicated by the one-dimensional case, there needs to be an intricate
connection between the geometry of the set of discontinuities and the diffusion coeffi-
cient. We note that the exceptional set of singularities, denoted by Θ , is assumed to be
a C4 hypersurface and for the diffusion part one requires the following: There exists
a constant C > 0 such that |σ(η)�n(η)| ≥ C for all η ∈ Θ , where n(η) is orthog-
onal to the tangent space of Θ in η and |n(η)| = 1. Under these assumptions (and
some additional technical conditions on the coefficients and on the geometry of Θ)
the existence of a unique strong solution for multi-dimensional SDEs with piecewise
Lipschitz continuous drift can be proven.

Moving on to McKean–Vlasov equations, the existence and uniqueness theory for
strong solutions of such SDEs with coefficients of linear growth and Lipschitz type
conditions (with respect to the state and the measure component) is well-established
(see, e.g., [13, 58]). More general existence/uniqueness results for weak and strong
solutions of McKean–Vlasov SDEs can be found in [6, 37, 48]. The article [6] is
concerned with the weak and strong existence/uniqueness of one-dimensional equa-
tions with additive noise, where the drift is assumed to be measurable, continuous in
the measure component with respect to the Monge–Kantorovich metric and further
satisfies a linear growth condition. In [37, 48], a d-dimensional setting is considered,
where the drift is assumed to be bounded, measureable (and possibly path-dependent)
and Lipschitz continuous in the measure component with respect to the total varia-
tion distance. The diffusion is non-degenerate and independent of the measure. Under
these assumptions (and some technical conditions) weak existence and uniqueness is
proven.

For further recent existence and uniqueness results for strong and weak solutions of
McKean–Vlasov SDEs, including results concerning standard Lipschitz assumptions
on the coefficients, we refer to [15, 20, 21, 27, 30, 42, 55] and the references given
therein.

The numerical analysis of SDEs with discontinuous drifts has received significant
attention over the last few years, see, e.g., [19, 29, 38–41, 49–52] and the references
therein forwell-posedness results and for strong andweak convergence rates of numer-
ical schemes.

In particular, in [39] (for the one-dimensional case) and in [40] (for the multi-
dimensional setting) the standard strong convergence rate of order 1/2 for a method
derived from the Euler–Maruyama scheme was proven. However, the applicability
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of these schemes is limited as they require the explicit knowledge of a transforma-
tion (and its inverse) to map the SDE with discontinuous coefficients into one with
Lipschitz continuous coefficients. In [41], an Euler–Maruyama scheme without the
aforementioned transformation is introduced (in a multi-dimensional setting). While
this scheme is easier to apply, the authors only show a strong convergence rate of order
1/4 − ε for any ε > 0, imposing also the stronger assumption of boundedness for
both coefficients of the underlying SDE. The central idea of [41] is to quantify the
probability that a multi-dimensional process is in a small neighbourhood of the set of
discontinuities, using an occupation time formula. In the one-dimensional case, with
coefficients of linear growth, these techniques were refined in [49] and the expected
strong convergence rate of order 1/2 was recovered. Other recent works concerned
with the numerical approximation of SDEs with discontinuous drifts include [50,
51], where a higher order scheme and an adaptive time-stepping scheme were intro-
duced, respectively. In [38] a numerical scheme for classical one-dimensional diffusion
processes generated by a differential operator involving discontinuous coefficients is
presented. As the generator is non-local for McKean–Vlasov equations it seems a
challenging problem to use these techniques in our framework.

The simulation ofMcKean–Vlasov SDEs typically involves two steps: First, at each
time t , the true measure LXt is approximated by the empirical measure

μXN

t (dx) := 1

N

N∑

j=1

δ
X j,N
t

(dx),

where δx denotes the Dirac measure at point x and (XN
t )t∈[0,T ] = (X1,N

t , . . . ,

XN ,N
t )�t∈[0,T ], an interacting particle system, is the solution to the RdN -dimensional

SDE with components

dXi,N
t = b(Xi,N

t , μXN

t ) dt + σ(Xi,N
t ) dWi

t , Xi,N
0 = ξ i .

Here, Wi = (Wi
t )t∈[0,T ] and ξ i , for i ∈ {1, . . . , N }, are independent Brownian

motions (also independent of W ) and independent copies of ξ , respectively. In a
next step, one needs to introduce a reasonable time-stepping method to discretise the
particles (Xi,N

t )t∈[0,T ] over some finite time horizon [0, T ]. Numerical schemes for
interacting particle systems with Hölder continuous coefficients (in the state variable)
and with coefficients satisfying certain assumptions on monotonicity (in the state vari-
able) and Lipschitz continuity (in the measure variable), can be found in [4, 5, 36, 54]
(and the references cited therein), respectively, where a strong convergence analy-
sis is conducted. In [1, 9], a quantitative L p-error analysis in terms of density and
cumulative distribution function approximation is presented. The survey [7] discusses
several examples and numerical schemes for McKean–Vlasov equations involving
singular drifts, e.g., a probabilistic interpretation of the Burgers equation, see also [9],
of the 2D-incompressible Navier–Stokes equation (see e.g., [22, 47]) and turbulent
flow models [53]. Other examples of McKean–Vlasov equations with singular drifts
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Well-posedness and numerical schemes for one-dimensional… 1509

appear in the Keller–Segel equation [26], the Coulomb gas model [17], the Thomson
problem [32], and the Stefan problem [34, 35].

Our numerical schemes present an original approximation method which, as of
now, is restricted to the specific case of a one-dimensional spatial and one-point dis-
continuous drift component, but provides, again in this specific framework, a suitable
alternative to the methodical mollification/cut-off approximation methods.

In this article, we first focus on the decomposable case, namely that

b(x, μ) = b1(x) + b2(x, μ),

where b1 is piecewise Lipschitz continuouswith a discontinuity in zero, and b2 satisfies
the usual Lipschitz assumptions in both components. This structure allows us to present
the main ideas of the analysis to be used later in a more general setting, in particular
a transformation of the state variable to remove the discontinuity. In this setting, we
prove well-posedness of the McKean–Vlasov equation and the associated particle
system. This structure includes the important class of McKean–Vlasov equations of
the form

dXt =
(
V (Xt ) +

∫

R

β(Xt − y)LXt (dy)

)
dt + σ(Xt ) dWt , X0 = ξ, (1.2)

where V describes an external potential and β an interaction kernel; see, e.g., [31] and
the references cited therein related to mean-field over-damped Langevin equations.
These models also embed the class of self-stabilizing diffusions and the McKean–
Vlasov model related to the granular media equation.

We then relax the structural assumption on decomposability slightly, but still have
to require certain continuity of the measure derivatives at the points of discontinuity,
which encompasses the above setting as a special case. The necessity for this condition
arises due to the explicit measure or time dependence of the employed transformation.
A future research direction concerns a setting where the point of discontinuity is time-
dependent, or depends on the distribution of the process (Xt )t∈[0,T ], which is relevant
to study further practically important models, e.g., from [33].

Having established the existenceof a unique strong solutionwith boundedmoments,
we propose two Euler–Maruyama schemes for the particle systems as numerical
approximations to the McKean–Vlasov equations. For an Euler–Maruyama scheme
applied to the SDE in the transformed state, strong convergence of order 1/2 fol-
lows immediately, while for a direct time-discretisation of the particle system without
transformation, we are only able to show order 1/9. Numerical tests indicate that this
order is in general not sharp. We will discuss the reasons for this gap and possible
improvements later.

The main contributions of the present article are as follows. First, we establish the
well-posedness of McKean–Vlasov SDEs (with a certain discontinuity) and of their
associated particle systems. Techniques fromvariational calculus on themeasure space
P(R) equipped with the Wasserstein distance W2 will be essential in the proofs, due
to the possible measure dependence of the transformation applied to the processes as
described above. The second central contribution of the present paper is the develop-
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ment of numerical schemes for approximating such McKean–Vlasov SDEs and their
associated particle systems. Here, a non-standard strong convergence analysis based
on occupation time estimates of the discretised processes in a neighbourhood of the
discontinuity will be presented.

The remainder of the paper is organised as follows: In Sect. 2, we collect all prelim-
inary tools and notions needed throughout the paper. The precise problem description
and themain results are presented in Sect. 3. Then, Sect. 4 discusses numerical schemes
for McKean–Vlasov SDEs with discontinuous drift. We show strong convergence of
certain orders with respect to the number of particles and time-steps, respectively. In
Sect. 5, we apply our numerical scheme to a model problem arising in neuroscience
[25] and to a slight modification of a mean-field game in systemic risk [16, 28].

2 Preliminaries

In the sequel, we will introduce several concepts and notions, which will be needed
throughout this article. In addition, we will give a brief introduction to the so-called
Lions derivative (abbreviated by L-derivative), which allows us to define a derivative
with respect to measures of the spaceP2(R) (see below for a precise definition). Also,
we recall the transformation used to cope with drifts having discontinuities in a given
finite number of points and first developed in [39]. We give a summary of important
properties of this mapping. Note that generic constants used in this article are denoted
by C > 0. They are independent of the number of particles and number of time-steps,
and might change their values from line to line.

2.1 Notions and notation

We start with introducing some notions and fixing the notation.

– Throughout this article, (Ω,F , (Ft )t∈[0,T ],P) will denote a filtered probability
space, where F = (Ft )t∈[0,T ] is the natural filtration of W augmented with an
independent σ -algebra F0 and (Ω,F ,P) is assumed to be atomless.

– (Rd , 〈·, ·〉 , | · |) represents the d-dimensional (d ≥ 1) Euclidean space. As a
matrix-norm, we will use ‖A‖ := supv∈Rd ,|v|=1 |Av|, for any A ∈ R

d×d .
– We useP(R) to denote the family of all probability measures on (R,B(R)), where
B(R)denotes theBorelσ -field overR anddefine the subset of probabilitymeasures
with finite second moment by

P2(R) :=
{
μ ∈ P(R) :

∫

R

|x |2μ(dx) < ∞
}
.

– We recall the definition of the standard Wasserstein distance with quadratic cost:
For any μ, ν ∈ P2(R), we define

W2(μ, ν) :=
(

inf
π∈Π(μ,ν)

∫

R×R

|x − y|2π(dx, dy)

)1/2
,
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Well-posedness and numerical schemes for one-dimensional… 1511

where Π(μ, ν) denotes the set of all couplings between μ and ν.
– For a given p ≥ 2, L0

p(R) refers to the space of real-valued,F0-measurable random
variables X satisfying E[|X |p] < ∞ and for a terminal time T > 0, S p([0, T ])
refers to the space of real-valued continuous, F-adapted processes, defined on
the interval [0, T ], with finite p-th moments, i.e., processes (Xt )t∈[0,T ] satisfying
E
[
supt∈[0,T ] |Xt |p

]
< ∞.

We briefly introduce the L-derivative of a functional f : P2(R) → R, as it will appear
in the proofs presented in the main section. For further information on this concept,
we refer to [12] or [10]. Here, we follow the exposition of [14]. We will associate to
the function f a lifted function f̃ , defined by f̃ (X) = f (LX ), where LX is the law
of X , for X ∈ L2(Ω,F ,P;R).

This will allow us to introduce L-differentiability as Fréchet derivative on the lifted
space. In particular, a function f onP2(R) is said to be L-differentiable atμ0 ∈ P2(R)

if there exists a random variable X0 ∈ L2(Ω,F ,P;R)with lawμ0, such that the lifted
function f̃ is Fréchet differentiable at X0.

Now, the Riesz representation theorem implies that there is a (P-a.s.) unique Φ ∈
L2(Ω,F ,P;R) with

f̃ (X) = f̃ (X0) + 〈Φ, X − X0〉L2 + o(‖X − X0‖L2), as ‖X − X0‖L2 → 0,

with the standard inner product and norm on L2(Ω,F ,P;R). If f is L-differentiable
for all μ0 ∈ P2(R), then we say that f is L-differentiable.

It is known (see, e.g., [14, Proposition 5.25]) that there exists a Borel measurable
function χ : R → R, such that Φ = χ(X0) almost surely, and hence

f (LX ) = f (LX0) + E 〈χ(X0), X − X0〉 + o(‖X − X0‖L2).

Note that χ only depends on the law of X0, but not on X0 itself. We define
∂μ f (LX0)(y) := χ(y), y ∈ R, as the L-derivative of f at μ0. If, in addition, for
a fixed y ∈ R, there is a version of the mapping P2(R) � μ �→ ∂μ f (μ)(y) which is
continuously L-differentiable, then the L-derivative of ∂μ f (·)(y) : P2(R) → R, is
defined as

∂2μ f (μ)(y, y′) := ∂μ(∂μ f )(·)(y)(μ, y′),

for (μ, y, y′) ∈ P2(R) × R × R.
We require a definition describing regularity properties of a function f : P2(R) →

R in terms of the measure derivative (see [14, 18]).

Definition 2.1 Let f : P2(R) → R be a given functional.

– We say that f is an element of the class C(1,1)
b , if f is continuously L-differentiable,

for any μ, there is a continuous version of the mapping R � y �→ ∂μ f (μ)(y) and
the derivatives

∂μ f (μ)(y), ∂y{∂μ f (μ)(·)}(y),
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1512 G. Leobacher et al.

exist, are bounded and jointly continuous in the variables (μ, y) such that y ∈
Supp(μ).

– We say that f is an element of the class C(2,1)
b , if it is an element of C(1,1)

b and in
addition the second order Lions derivative ∂2μ f (μ)(y, y′) exists, is bounded and is
again jointly continuous in the corresponding variables. Also, the joint continuity
of all derivatives is here required globally, i.e., for all (μ, y, y′).

We give the following additional remark, which links the L-derivative of functions of
empirical measures to the standard partial derivatives of its empirical projections. For
a functional f : P2(R) → R, we associate with it the finite dimensional projection
f N : RN → R defined as

f N (xN ) := f

⎛

⎝ 1

N

N∑

j=1

δx j

⎞

⎠ ,

for xN := (x1, . . . , xN ). If f ∈ C(2,1)
b , then f N is twice differentiable (in a classical

sense) and

∂xi f
N (xN ) = 1

N
∂μ f

⎛

⎝ 1

N

N∑

j=1

δx j

⎞

⎠ (xi ),

∂xi ∂xk f
N (xN ) = 1

N
∂y∂μ f

⎛

⎝ 1

N

N∑

j=1

δx j

⎞

⎠ (xi )δi,k + 1

N 2 ∂2μ f

⎛

⎝ 1

N

N∑

j=1

δx j

⎞

⎠ (xi , xk),

where δi,k is the Kronecker delta, see, e.g., [14, Proposition 5.35].

2.2 Properties of the transformation G

In [39], the authors consider one-dimensional SDEs of the form

dXt = b(Xt ) dt + σ(Xt ) dWt , X0 = x ∈ R,

with a piecewise Lipschitz continuous drift coefficient b that is discontinuous in K ∈ N

pointsη1, . . . , ηK , and aLipschitz diffusion coefficientσ that does not vanish in anyηk .
A mapping G : R → R is defined to transform the SDE into one for Z = G(X) with
globally Lipschitz continuous coefficients. For simplicity, we restrict the discussion
to K = 1 with η1 = 0. We define the mapping G by

G(x) := x + αx |x |φ
( x
c

)
,
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where

φ(x) :=
{

(1 − x2)3, |x | ≤ 1,

0, |x | > 1
α := b(0−) − b(0+)

2σ 2(0)
,

and c is a constant satisfying 0 < c < 1/|α|. The choice of α yields a Lipschitz
continuous drift coefficient for the SDE of Z = G(X), in particular, it removes the
discontinuity in 0 from the drift. The restriction on c guarantees that G possesses a
global inverse.

It is known from [40] that G satisfies the following properties:

– G is C1(R,R) with 0 < infx∈R G ′(x) ≤ supx∈R G ′(x) < ∞. Therefore, G is
Lipschitz continuous and has an inverseG−1 : R → R that is Lipschitz continuous
as well.

– The derivative G ′ is Lipschitz continuous (i.e., also absolutely continuous). In
addition, G ′ has a bounded Lebesgue density G ′′ : R → R, which is Lipschitz
continuous on each of the subintervals (−∞, 0) and (0,∞). Also, Itô’s formula
can still be applied to G and G−1.

3 Existence and uniqueness results

The following subsections are devoted to proving well-posedness results for certain
classes of one-dimensional McKean–Vlasov SDEs with a drift having a discontinuity
in zero. In a first step, we study a simple class where the resulting transformation will
not depend on the measure. Here, the transformation techniques developed in [39] will
allow us to prove existence and uniqueness of a strong solution. The second class of
McKean–Vlasov SDEs investigated below has the intrinsic difficulty that the required
transformation will depend on the measure (i.e., will be time-dependent). Hence, a
fixed-point iteration in the measure component will be required and we need to use
techniques from variational calculus on the measure space P2(R), in particular an Itô
formula for functionals acting on this space.

For each of these classes of McKean–Vlasov SDEs, we will additionally study the
well-posedness of their associated interacting particle system. Although they can be
considered as N -dimensional classical SDEs, with N denoting the number of particles,
the resulting set of discontinuities of the N -dimensional drift cannot be handled by
the main results of [40].

Future work is needed to extend the methods developed in this article to a multi-
dimensional framework. In particular, it seems that the decomposable case can be
generalised when discontinuities of the form discussed in [40] are considered.

3.1 McKean–Vlasov SDEs and interacting particle systems with decomposable
drift

For a given terminal time T > 0 and given p ≥ 2, we consider a one-dimensional
McKean–Vlasov SDE of the form
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1514 G. Leobacher et al.

dXt = b(Xt ,LXt ) dt + σ(Xt ) dWt , X0 = ξ ∈ L0
p(R), (3.1)

where b : R × P2(R) → R and σ : R → R are measurable functions.
In the following, we state the model assumptions which will specify the set-up for

this subsection:

H. 1 (1) We have σ(0) �= 0 and there exists a constant L > 0 such that

|σ(x) − σ(x ′)| ≤ L|x − x ′| ∀x, x ′ ∈ R.

(2) The drift is decomposable in the following sense:

b(x, μ) = b1(x) + b2(x, μ) ∀x ∈ R, ∀μ ∈ P2(R),

where b1 : R → R is Lipschitz continuous on the subintervals (−∞, 0) and
(0,∞) and there exists a constant L1 > 0 such that

|b2(x, μ) − b2(x
′, ν)| ≤ L1

(|x − x ′| + W2(μ, ν)
) ∀x, x ′ ∈ R, ∀μ, ν ∈ P2(R).

We now state the main results of this section:

Proposition 3.1 Let Assumption (H.1) be satisfied, let ξ ∈ L0
p(R) for a given p ≥ 2

and assume c < 1/|α|. Then, the McKean–Vlasov SDE defined in (3.1) has a unique
strong solution in S p([0, T ]).
Proof Transforming the McKean–Vlasov SDE (3.1), employing the transformation
G : R → R defined in Sect. 2.2, with

α = b(0−, μ) − b(0+, μ)

2σ 2(0)
= b1(0−) − b1(0+)

2σ 2(0)
,

in order to eliminate the discontinuity in zero, yields a McKean–Vlasov SDE with
globally Lipschitz continuous coefficients. This can be shown in a similar manner to
[39, Theorem 2.5]). Moreover, G has a global inverse due to the choice c < 1/|α| (see
[40, Lemma 2.2]), and Itô’s formula can be applied to G−1, which allows to deduce
the claim. ��

The interacting particles (Xi,N
t )t∈[0,T ], i ∈ {1, . . . , N }, associatedwith (3.1) satisfy

dXi,N
t = b1(X

i,N
t ) dt + b2(X

i,N
t , μXN

t ) dt + σ(Xi,N
t ) dWi

t , (3.2)

where (ξ i ,Wi ), for i ∈ {1, . . . , N }, are independent copies of (ξ,W ).

Proposition 3.2 Let Assumption (H.1) be satisfied, let ξ ∈ L0
p(R) for a given p ≥ 2

and assume c < 1/|α|. Then, the interacting particle system defined in (3.2) has a
unique strong solution in S p([0, T ]).
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Well-posedness and numerical schemes for one-dimensional… 1515

Proof In contrast to the set-up in [40], the set of discontinuities, denoted by Θ , is not
a differentiable manifold, but has the form

Θ = {(x1, . . . , xN )� ∈ R
N : ∃ j ∈ {1, . . . , N } : x j = 0}.

However, we may define GN : RN → R
N by

GN (xN ) := (G(x1), . . . ,G(xN ))�,

where G is as in Proposition 3.1 and xN = (x1, . . . , xN )�, which allows us to trans-
form the particle system (XN

t )t∈[0,T ] = (X1,N
t , . . . , XN ,N

t )�t∈[0,T ] into a new particle
systemwith globally Lipschitz continuous coefficients. Now, GN has a global inverse,
as the mappingG has a global inverse, due to the choice of c (see Sect. 2.2). Therefore,
applying Itô’s formula to the inverse allows to deduce the claim. ��

3.2 McKean–Vlasov SDE with non-decomposable drift

Here, we consider again a one-dimensional McKean–Vlasov SDE of the form (3.1),

dXt = b(Xt ,LXt ) dt + σ(Xt ) dWt , X0 = ξ ∈ L0
p(R). (3.3)

However, in contrast to the above setting, wewill not assume that b can be decomposed
in two parts as in Assumption (H.1(2)) from the previous section, and therefore the
transformation will also depend on the measure. To be precise, for any (x, μ) ∈
R × P2(R), we define

G(x, μ) := x + α(μ)x |x |φ
( x
c

)
, (3.4)

where

φ(x) :=
{

(1 − x2)3, |x | ≤ 1,

0, |x | > 1
α(μ) := b(0−, μ) − b(0+, μ)

2σ 2(0)
, (3.5)

and c > 0 is a constant small enough to guarantee the invertibility of G. When we
speak of an ‘inverse’ of G(x, μ), we mean ‘inverse with respect to x’, i.e., the inverse
is a function G−1 : R × P2(R) → R which satisfies G−1

(
G(x, μ), μ

) = x for all
(x, μ) ∈ R × P2(R) and G

(
G−1(z, μ), μ

) = z for all (z, μ) ∈ R × P2(R). For a
given flow of measures (μt )t∈[0,T ] ∈ C([0, T ],P2(R)), G may also be viewed as a
mapping G : R × [0, T ] → R.

In the following, we state the model assumptions which will specify the set-up for
this subsection:

H. 2 Assumption (H.1(1)) is satisfied and we require:
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1516 G. Leobacher et al.

(1) There exist constants L, L1 > 0 such that

sup
x �=0

|b(x, μ)|
1 + |x | ≤ L, |b(x, μ) − b(x, ν)| ≤ L1W2(μ, ν) ∀x ∈ R \ {0},

∀μ, ν ∈ P2(R).

Additionally, for all μ ∈ P2(R), R � x �→ b(x, μ) is Lipschitz continuous on the
subintervals (−∞, 0) and (0,∞), uniformly with respect to μ.

(2) α ∈ C(1,1)
b , and the mapping P2(R) × R � (μ, y) �→ ∂y∂μα(μ)(y) is Lipschitz

continuous, that is, there exists a constant L2 > 0 such that

|∂y∂μα(μ)(y) − ∂y∂μα(ν)(y′)| ≤ L2
(|y − y′| + W2(μ, ν)

) ∀y, y′ ∈ R,

∀μ, ν ∈ P2(R).

(3) For any μ ∈ P2(R), the mapping R � y �→ ∂μα(μ)(y) vanishes in zero, i.e.,

∂μα(μ)(0) = ∂μb(0
−, μ)(0) − ∂μb(0

+, μ)(0) = 0. (3.6)

(4) The mapping P2(R) ×R � (μ, y) �→ ∂μα(μ)(y)b(y, μ) is Lipschitz continuous.

Remark 3.1 The requirement in (H.2(2)) that α ∈ C(1,1)
b is needed to apply an Itô

formula for α (see [14, Proposition 5.102]).

Remark 3.2 Note that (H.2(4)) could also be replaced by the following alternative set
of assumptions: On each of the two subintervals (−∞, 0) and (0,∞), b(·, μ) is a
C1(R,R) function with bounded derivative and, additionally, for any μ ∈ P2(R), the
mapping R � y �→ ∂y∂μα(μ)(y) vanishes in zero, i.e.,

∂y∂μα(μ)(0) = ∂y∂μb(0
−, μ)(0) − ∂y∂μb(0

+, μ)(0) = 0.

The following proposition shows the Lipschitz continuity of themappingR×P2(R) �
(x, μ) → G−1(x, μ).

Proposition 3.3 Let the functionG bedefinedas in (3.4)with c < 1/ supμ∈P2(R) |α(μ)|
and (3.5) and let Assumption (H.2(1)) be satisfied. Then, there exists a constant L(c),
which depends on c and the model parameters in Assumption (H.2(1)), such that
L(c) → 0 as c → 0 and for any x, y ∈ R and μ, ν ∈ P2(R)

|G−1(x, μ) − G−1(y, ν)| ≤ 2|x − y| + L(c)W2(μ, ν).

Proof First, we note that by differentiating (3.4), we get for x ∈ [−c, c]
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∂xG(x, μ) = 1 − 6α(μ)

c2
|x |x2

(
1 − (x/c)2

)2 + 2α(μ)|x |(1 − (x/c)2)3

= 1 − 2cα(μ)
|x |
c

(
4x2/c2 − 1

) (
1 − (x/c)2

)2
.

It is easy to verify that

sup
x∈[0,c]

∣∣∣
|x |
c

(
4x2/c2 − 1

) (
1 − (x/c)2

)2 ∣∣∣ = sup
z∈[0,1]

∣∣∣|z|(4z2 − 1
) (

1 − z2
)2 ∣∣∣ <

1

4
,

which implies that for all x ∈ R and μ ∈ P2(R)

∣∣∂xG(x, μ) − 1
∣∣ < c

| supμ∈P2(R) α(μ)|
2

.

In particular, if c < 1/ supμ∈P2(R) |α(μ)|, then for all x, y ∈ R and μ ∈ P2(R), we
have

∂xG(x, μ) >
1

2
,
∣∣G−1(x, μ) − G−1(y, μ)

∣∣ < 2|x − y| .

That μ �→ ∂xG(x, μ) is Lipschitz continuous is a consequence of (H.2(1)). It is easy
to show that the mapping x �→ ∂xG(x, μ) is also Lipschitz continuous. Denote the
Lipschitz constant of ∂xG with respect to the first and second argument by Lx and
Lμ, respectively. Writing

G−1(x, μ) =
∫ x

0

1

∂xG(G−1(y, μ), μ)
dy,

we obtain

|G−1(x, μ) − G−1(x, ν)|
≤
∫ x

0

∣∣∣∣
1

∂xG(G−1(y, μ), μ)
− 1

∂xG(G−1(y, ν), μ)

∣∣∣∣ dy

+
∫ x

0

∣∣∣∣
1

∂xG(G−1(y, ν), μ)
− 1

∂xG(G−1(y, ν), ν)

∣∣∣∣ dy

≤
∫ x

0

∣∣∣∣
∂xG(G−1(y, ν), μ) − ∂xG(G−1(y, μ), μ)

∂xG(G−1(y, μ), μ)∂xG(G−1(y, ν), μ)

∣∣∣∣ dy

+
∫ x

0

∣∣∣∣
∂xG(G−1(y, ν), ν) − ∂xG(G−1(y, ν), μ)

∂xG(G−1(y, ν), μ)∂xG(G−1(y, ν), ν)

∣∣∣∣ dy

≤
∫ x

0
4Lx

∣∣∣G−1(y, ν) − G−1(y, μ)

∣∣∣ dy +
∫ x

0
4LμW2(μ, ν) dy

≤ 4Lx

∫ x

0

∣∣∣G−1(y, ν) − G−1(y, μ)

∣∣∣ dy + 4LμxW2(μ, ν) .
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For |x | < c, we have

|G−1(x, μ) − G−1(x, ν)| ≤ 4Lx

∫ x

0

∣∣G−1(y, ν) − G−1(y, μ)
∣∣ dy + 4LμxW2(μ, ν)

≤ 4Lx

∫ x

0

∣∣G−1(y, ν) − G−1(y, μ)
∣∣ dy + 4LμcW2(μ, ν) ,

and hence Gronwall’s inequality implies

|G−1(x, μ) − G−1(x, ν)| ≤ 4LμcW2(μ, ν)e4Lx x ≤ 4Lμce
4Lx cW2(μ, ν) .

For |x | ≥ c, |G−1(x, μ)−G−1(x, ν)| = 0 ≤ 4Lμce4Lx cW2(μ, ν) by the definition of
G. We finally obtain, for all x, y ∈ R and all μ, ν ∈ P2(R), with L(c) := 4Lμce4Lx c,

|G−1(x, μ) − G−1(y, ν)| ≤ |G−1(x, μ) − G−1(x, ν)| + |G−1(x, ν) − G−1(y, ν)|
≤ L(c)W2(μ, ν) + 2|x − y| ≤ max(L(c), 2)(W2(μ, ν) + |x − y|) .

��
Remark 3.3 In what follows, we will assume that c < 1/ supμ∈P2(R) |α(μ)| and
is small enough such that the Lipschitz constant of the mapping P2(R) � μ �→
G−1(x, μ) (i.e., the constant L(c) a few lines above) is less than a half. The reason
for this requirement will become clearer in the proof of Theorem 3.1.

Similar to the previous section, we aim to recover a unique strong solution of (3.3)
by setting Xt = G−1(Zμ

t , μt ), where μt = LXt for t ∈ [0, T ], and (Zμ
t )t∈[0,T ] is the

process obtained by applying the transformation G to X . Even though G is not twice
continuously differentiable in the state variable, Itô’s formula is still applicable due to
the special form of the discontinuity (see [24, Theorem 2.1] and the comments after
the proof of this theorem). Now, observe that

dG(Xt , μt ) = (∂tG(Xt , μt ) + b(Xt , μt ) + α(μt )φ̄
′(Xt )b(Xt , μt )t

+1

2
α(μt )φ̄

′′(Xt )σ
2(Xt )

)
dt

+ (σ (Xt ) + α(μt )φ̄
′(Xt )σ (Xt )) dWt .

Itô’s formula along a flow of measures (μt )t∈[0,T ] ∈ C([0, T ],P2(R)) (see, e.g., [14,
Proposition 5.102]) implies

∂tG(x, μt )

=
∫

R

(
b(y, μt )∂μG(x, μt )(y) + σ 2(y)

2
∂y∂μG(x, μt )(y)

)
μt (dy)

=: Lμt (G(x, ·))(μt ),
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where we recall that ∂y∂μG(x, μt )(y) denotes the derivative of the mappingR � y �→
∂μG(x, μt )(y) and

∂μG(x, μt )(y) = ∂μα(μt )(y)|x |xφ(x/c),

∂y∂μG(x, μt )(y) = ∂y∂μα(μt )(y)|x |xφ(x/c).

Hence, we define

dZμ
t := b̃(Zμ

t , μt ) dt + σ̃ (Zμ
t ) dWt , Zμ

0 = G(ξ, δξ ), (3.7)

where

b̃(z, μ) := Lμ(G(G−1(z, μ), ·)(μ) + b(G−1(z, μ), μ)

+ α(μ)φ̄′(G−1(z, μ))b(G−1(z, μ), μ)

+ 1

2
α(μ)φ̄′′(G−1(z, μ))σ 2(G−1(z, μ)),

σ̃ (z, μ) := σ(G−1(z, μ)) + α(μ)φ̄′(G−1(z, μ))σ (G−1(z, μ)). (3.8)

In the following, we will show that the decoupled SDE (3.7) where the flow
(μt )t∈[0,T ] ∈ C([0, T ],P2(R)) is fixed has Lipschitz continuous coefficients. Note
that for a such a flow of measures the process Xμ in (3.3) (interpreted as classi-
cal SDE) has bounded moments uniformly in (μt )t∈[0,T ], which is a consequence
of (H.1(1)) and (H.2(1)). In particular, for ξ ∈ L0

2(R), we have the a-priori esti-
mate E

[
sup0≤t≤T |Xμ

t |2] ≤ C(1 + E[|ξ |2]) =: C̄ , where C > 0 only depends on
T and the constants appearing in the model assumptions. We will introduce the fol-
lowing subspace of C([0, T ],P2(R)): We define Pb := {μ ∈ C([0, T ],P2(R)) :
supt∈[0,T ]

∫
R
x2 μt (dx) ≤ C̄}, where C̄ is defined as above and complete this space

with the metric supt∈[0,T ] W2(μt , νt ), for (μt )t∈[0,T ], (νt )t∈[0,T ] ∈ Pb.

Lemma 3.1 Let Assumption (H.2) be satisfied and assume c < 1/ supμ∈P2(R) |α(μ)|.
Then, b̃ and σ̃ given in (3.8) are Lipschitz continuous on R × Pb.

Proof Using (H.1(1)), the Lipschitz continuity of z �→ G−1(z, νt ) and the uniform
boundedness of α, see (H.2(1)), in combination with [40, Lemma 2.5], gives the
Lipschitz continuity of z �→ σ̃ (z, νt ), with a Lipschitz constant independent of νt .
Similarly,we candeduce thatνt �→ σ̃ (z, νt ) isLipschitz continuous, due toProposition
3.3 and the Lipschitz continuity of νt �→ α(νt ).

The choice of α along with (H.2(1)) guarantees that the mapping

z �→ b(G−1(z, νt ), νt ) + 1

2
α(νt )φ̄

′′(G−1(z, νt ))σ
2(G−1(z, νt )),

is Lipschitz continuous. From [40, Lemma2.4],we can deduce theLipschitz continuity
of

z �→ α(νt )φ̄
′(G−1(z, νt ))b(G

−1(z, νt ), νt ).
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That

νt �→ b(G−1(z, νt ), νt ) + 1

2
α(νt )φ̄

′′(G−1(z, νt ))σ
2(G−1(z, νt )),

νt �→ α(νt )φ̄
′(G−1(z, νt ))b(G

−1(z, νt ), νt ),

are Lipschitz continuous is a consequence of (H.1(1)) and (H.2(1)), Proposition 3.3
and the fact thatG−1(z, μ(1)) andG−1(z, μ(2)), forμ(1), μ(2) ∈ P2(R), have the same
sign. Also note that φ̄′ and φ̄′′ are (piecewise) Lipschitz continuous and bounded. It
remains to analyse the Lipschitz continuity of

(z, νt ) �→
∫

R

(
b(y, νt )∂μG(G−1(z, νt ), νt )(y) + σ 2(y)

2
∂y∂μG(G−1(z, νt ), νt )(y)

)
νt (dy).

(3.9)

Assumptions (H.2(2)) and (H.2(3)) guarantee that above mapping exists and fur-
ther that the mapping y �→ b(y, νt )∂μG(G−1(z, νt ), νt )(y) is continuous in zero.
We start by analysing the Lipschitz continuity of (3.9) with respect to the measure
variable. Consider now an arbitrary coupling Πt (·, ·) between νt (·) and μt (·), for
(μt )t∈[0,T ], (νt )t∈[0,T ] ∈ Pb, and estimate

∫

R2

(
b(y, νt )∂μG(G−1(z, νt ), νt )(y) − b(x, μt )∂μG(G−1(z, μt ), μt )(x)

)
Πt (dy, dx)

=
∫

R2

(
b(y, νt )∂μG(G−1(z, νt ), νt )(y) − b(x, μt )∂μG(G−1(z, νt ), μt )(x)

)
Πt (dy, dx)

+
∫

R2

(
b(x, μt )∂μG(G−1(z, νt ), μt )(x) − b(x, μt )∂μG(G−1(z, μt ), μt )(x)

)
Πt (dy, dx).

Note that

∫

R2

∣∣∣b(y, νt )∂μG(G−1(z, νt ), νt )(y) − b(x, μt )∂μG(G−1(z, νt ), μt )(x)
∣∣∣ Πt (dy, dx)

=
∫

R2

∣∣∣b(y, νt )∂μα(νt )(y)φ̄(G−1(z, νt )) − b(x, μt )∂μα(μt )(x)φ̄(G−1(z, νt ))
∣∣∣Πt (dy, dx)

≤ CW2(μt , νt ),

where we used (H.2(4)) and the fact that φ̄ is bounded. Furthermore, from the bound-
edness of (x, νt ) �→ ∂μα(νt )(x) and (H.2(1)), we derive

∫

R2

∣∣b(x, μt )∂μG(G−1(z, νt ), μt )(x) − b(x, μt )∂μG(G−1(z, μt ), μt )(x)
∣∣ Πt (dy, dx)

≤
∫

R2

∣∣b(x, μt )∂μα(μt )(x)
∣∣ ∣∣φ̄(G−1(z, νt )) − φ̄(G−1(z, μt ))

∣∣ Πt (dy, dx)
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≤ C
∫

R2
(1 + |x |) ∣∣φ̄(G−1(z, νt )) − φ̄(G−1(z, μt ))

∣∣ Πt (dy, dx)

≤ CW2(μt , νt ). (3.10)

We remark that in the last inequality, we used the Lipschitz continuity of z �→
|z|zφ(z/c), Proposition 3.3 and employed that (μt )t∈[0,T ] is an element of the space
Pb. In a similar manner, we can show the Lipschitz continuity of

z �→
∫

R

b(y, νt )∂μG(G−1(z, νt ), νt )(y) νt (dy).

Analogous statements can be derived for

(z, νt ) �→
∫

R

σ 2(y)

2
∂y∂μG(G−1(z, νt ), νt )(y) νt (dy),

taking (H.1(1)) and (H.2(2)) into account. ��

We are now ready to present the main result and its proof of this section:

Theorem 3.1 Let Assumption (H.2) be satisfied, let ξ ∈ L0
p(R) for a given p ≥ 2

and assume that the constant c is sufficiently small (as in Remark 3.3). Then, the
McKean–Vlasov SDE defined in (3.3) has a unique strong solution in S p([0, T ]).

Proof First, we remark that for any given flow of measures (μt )t∈[0,T ] ∈ C([0, T ],P2
(R)) the SDE defined in (3.7) has a unique strong solution by Lemma 3.1. Now, for
(μt )t∈[0,T ], (νt )t∈[0,T ] ∈ Pb, we obtain, for any t ∈ [0, T ], using Lemma 3.1, BDG’s
inequality and Hölder’s inequality along with Gronwall’s inequality

E
[|Zμ

t − Zν
t |2
]

≤ C

(
E

[∫ t

0
|b̃(Zμ

s , μs) − b̃(Zν
s , νs)|2 ds

]
+ E

[∫ t

0
|σ̃ (Zμ

s , μs) − σ̃ (Zν
s , νs)|2 ds

])

≤ C

(
E

[∫ t

0
|b̃(Zμ

s , μs) − b̃(Zν
s , μs)|2 ds

]
+ E

[∫ t

0
|b̃(Zν

s , μs) − b̃(Zν
s , νs)|2 ds

]

+ E

[∫ t

0
|σ̃ (Zμ

s , μs) − σ̃ (Zν
s , μs)|2 ds

]
+ E

[∫ t

0
|σ̃ (Zν

s , μs) − σ̃ (Zν
s , νs)|2 ds

])

≤ CE

[∫ t

0

(|Zμ
s − Zν

s |2 + W2
2 (μs, νs)

)
ds

]
≤ C
∫ t

0
W2

2 (μs, νs) ds.

For k ≥ 0 and t ∈ [0, T ], we define the Picard iteration

μk+1
t = Law

(
G−1(Zμk

t , μk
t )
)

, (3.11)
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with Zμ0

t = G(ξ, δξ ) and μ0
t = δξ . Note that by Itô’s formula (applied to G−1), the

process defined by Xk+1
t := G−1(Zμk

t , μk
t ) is the solution to

dXk+1
t = b(Xk+1

t , μk
t ) dt + σ(Xk+1

t ) dWt , Xk+1
0 = ξ.

Recall that (Xk+1
t )t∈[0,T ] has uniformly bounded moments (uniformly in k), due to

(H.1(1)) and (H.2(1)), i.e., we have

sup
k≥1

E

[
sup

0≤t≤T
|Xk

t |p
]

≤ C(1 + E[|ξ |p]). (3.12)

The applicability of Itô’s formula for G−1 is a consequence of the fact that the
inverse inherits the regularity of G, in particular the mapping P2(R) � μ �→
G−1(y, μ) is still an element of the class C(1,1)

b (see, PropositionA.1 inAppendixA.1).
Then above estimate and Proposition 3.3 yield

sup
t∈[0,T ]

W2
2 (μk+1

t , μk
t ) ≤ sup

t∈[0,T ]
E

[
|Xk+1

t − Xk
t |2
]

≤ 2 sup
t∈[0,T ]

E

[
|G−1(Zμk

t , μk
t ) − G−1(Zμk−1

t , μk
t )|2
]

+ 2 sup
t∈[0,T ]

E

[
|G−1(Zμk−1

t , μk
t ) − G−1(Zμk−1

t , μk−1
t )|2

]

≤ C
∫ T

0
W2

2 (μk
s , μ

k−1
s )ds + 2L(c) sup

t∈[0,T ]
W2

2 (μk
t , μ

k−1
t )

≤ C
∫ T

0
W2

2 (μk
s , μ

k−1
s )ds + 2L(c) sup

t∈[0,T ]
E

[
|Xk

t − Xk−1
t |2

]
,

(3.13)

where L := 2L(c) < 1 due to the choice of c and C > 0 is a constant depending on
the constants appearing in Proposition 3.3 and Lemma 3.1.

Let now0 < T0 < T such thatCT0+L < 1.With this choice the uniqueness of (3.3)
on [0, T0] follows from the estimate in (3.13) by assuming there exist two solutions
(X , μ) and (Y , ν) to (3.3), withμt and νt the marginal laws of Xt and Yt , respectively,
for t ∈ [0, T0]. In addition, we observe that the sequence of flows (μk)k , for μk =
(μk

t )t∈[0,T0], is a Cauchy sequence in the complete metric space C([0, T ],P2(R))

equipped with the Wasserstein distance supt∈[0,T0] W2(μt , νt ). Hence, (3.11) has a
fixed point, in particular we have Xt = G−1(Zμ

t , μt ), where μt = LXt . Itô’s formula
applied to G−1 yields the claim for the time interval [0, T0]. Repeating the above
procedure starting at T0, we can extend the solution to the interval [T0, T1], for some
T0 < T1 < T . This is possible as the choice of T1 depends on XT0 only through the
second moment of XT0 , for which we have a uniform bound for the entire interval
[0, T ], see (3.12). Proceeding in such a manner, we can obtain well-posedness of (3.3)
on [0, T ]. ��
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3.3 Interacting particle systemwith non-decomposable drift

In the following, we state the model assumptions which will specify the set-up for this
subsection:

H. 3 Assumptions (H.2(3)) and (H.2(4)) are satisfied and we require:

(1) Assumption (H.1(1)) holds and there exists a constant L > 0 such that |σ(x)| ≤ L
for all x ∈ R.

(2) There exists a constant L1 > 0 such that

|b(x, μ) − b(x, ν)| ≤ L1W2(μ, ν) ∀x ∈ R \ {0}, ∀μ, ν ∈ P2(R).

Further, for any μ ∈ P2(R), x �→ b(x, μ) is Lipschitz continuous on the subin-
tervals (−∞, 0) and (0,∞), uniformly with respect to μ.

(3) α ∈ C(1,2)
b is a bounded function and the mappings

P2(R) × R � (μ, y) �→ ∂μα(μ)(y),

P2(R) × R � (μ, y) �→ ∂y∂μα(μ)(y),

P2(R) × R × R � (μ, y, y′) �→ ∂2μα(μ)(y, y′),

are bounded and Lipschitz continuous.

Remark 3.4 Note that, compared to (H.2(1)), we do not require the drift to be uniformly
bounded in the measure component.

The interacting particles of the system (Xi,N
t )t∈[0,T ], for i ∈ {1, . . . , N } associated

with (3.3) satisfy

dXi,N
t = b(Xi,N

t , μXN

t ) dt + σ(Xi,N
t ) dWi

t , (3.14)

where (ξ i ,Wi ), for i ∈ {1, . . . , N }, are independent copies of (ξ,W ).
In contrast to the case of particle systems with decomposable drift, we set α :

P2(R) → R,

α(μxN ) = b(0−, μxN ) − b(0+, μxN )

2σ 2(0)
,

(which could also be interpreted as a mapping αN : RN → R) and apply to each
particle the following transformation G : R × P2(R) → R,

G
(
xi , μ

xN
)

= xi + α
(
μxN
)
xi |xi |φ

(
xi/c
)
. (3.15)
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We set RN � xN �→ Gi (xN ) := G
(
xi , μxN

)
, and use these mappings to define

GN : RN → R
N by

GN (xN ) :=
(
G1(xN ), . . . ,GN (xN )

)�
.

To obtain the transformed process (ZN
t )t∈[0,T ] = (Z1,N

t , . . . , ZN ,N
t )�t∈[0,T ] ∈ R

N ,
we proceed as follows: For any t ∈ [0, T ] and i ∈ {1, . . . , N }, we have, using [14,
Proposition 5.35] (see also Sect. 2)

dG(Xi,N
t , μXN

t ) = dGi (X
1,N
t , . . . , XN ,N

t )

= ∂xi G(Xi,N
t , μXN

t )dXi,N
t + 1

2
∂2xi G(Xi,N

t , μXN

t )d[Xi,N ]t

+ 1

N

N∑

k=1

∂μG(Xi,N
t , μXN

t )(Xk,N
t )dXk,N

t

+ 1

2N

N∑

k=1

∂y∂μG(Xi,N
t , μXN

t )(Xk,N
t )d[Xk,N ]t

+ 1

2N 2

N∑

k=1

∂2μG(Xi,N
t , μXN

t )(Xk,N
t , Xk,N

t )d[Xk,N ]t

+ 1

N
∂xi ∂μG(Xi,N

t , μXN

t )(Xi,N
t )d[Xi,N ]t .

The applicability of Itô’s formula for the function G is guaranteed by [40, Theorem
3.19]. Note that Assumption 3.4 therein is imposed to guarantee Lipschitz continuity
of second order derivatives ofG outside the set of discontinuities. Assumption (H.3(3))
and the definition of G substitute this condition.

Assuming for now the global invertibility of GN , we may introduce

dZN
t = BN

(
G−1

N (ZN
t )
)
dt + ΣN

(
G−1

N (ZN
t )
)
dW N

t , ZN
0 = GN ((X1,N

0 , . . . , XN ,N
0 )),

where W N
t = (W 1

t , . . . ,WN
t )�, BN (xN ) = (B1(xN ), . . . , BN (xN ))� is defined by

Bi (xN ) := ∂xi G(xi , μ
xN )b(xi , μ

xN ) + 1

2
σ 2(xi )∂

2
xi G(xi , μ

xN )

+ 1

N

N∑

k=1

∂μG(xi , μ
xN )(xk)b(xk, μ

xN ) + 1

2N

N∑

k=1

∂y∂μG(xi , μ
xN )(xk)σ

2(xk)

+ 1

2N 2

N∑

k=1

∂2μG(xi , μ
xN )(xk, xk)σ

2(xk) + 1

N
∂xi ∂μG(xi , μ

xN )(xi )σ
2(xi ),

(3.16)
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and ΣN (xN ) = (Σ i, j (xN )
)
i, j∈{1,...,N } by

Σ i, j (xN ) = ∂xi G(xi , μ
xN )σ (xi )δi, j + 1

N
∂μG(xi , μ

xN )(x j )σ (x j ). (3.17)

In the following lemma, we will prove the invertibility of GN .

Lemma 3.2 Let Assumption (H.3(3)) be satisfied and assume that the constant c in
(3.15) satisfies

c < min

⎛

⎝1,
(

sup
xN∈RN

(
|αN (xN )| + max

i∈{1,...,N } |∂μα(μxN )(xi )|
))−1

⎞

⎠ . (3.18)

Then, GN has a global inverse.

Proof We will employ Hadamard’s global inverse function theorem (see, e.g., [56,
Theorem 2.2]) to prove that GN has a global inverse. To do so, we need to verify the
following properties of GN : GN is in C1(RN ,RN×N ), lim|xN |→∞ |GN (xN )| = ∞,
and G′

N (xN ) is invertible for all xN ∈ R
N . The first two mentioned conditions are

obvious, due to the definition of GN and the uniform boundedness of α and φ̄(x) :=
x |x |φ(x/c).

Hence, we need to prove that G′
N (xN ) is invertible. First, note that

G′
N (xN ) = IN×N + diagN×N (φ̄′(x1)αN (xN ), . . . , φ̄′(xN )αN (xN )) + φ̄(xN )α′

N (xN ),

where IN×N is the N × N identity matrix, φ̄(xN ) = (φ̄(x1), . . . , φ̄(xN ))�, with
(α′

N (xN ))i = 1
N ∂μα(μxN )(xi ) and α′

N is a row vector.
Now, we define

A(xN ) := diagN×N (φ̄′(x1)αN (xN ), . . . , φ̄′(xN )αN (xN )) + φ̄(xN )α′
N (xN ),

and remark that G′
N (xN ) can be identified with the linear operator IN×N + A(xN ) :

R
N → R

N . Therefore, succeeding in showing that c can be chosen (uniformly in xN )
in a way such that the operator norm of A(xN ) is smaller than one would yield the
claim, as in this case G′

N (xN ) is close to the identity (see, [40, Lemma 3.17]). We
compute

‖A(xN )‖ ≤ max
i∈{1,...,N } |φ̄

′(xi )||αN (xN )| + max
i∈{1,...,N } |φ̄(xi )||∂μα(μxN )(xi )|

≤ c|αN (xN )| + c2 max
i∈{1,...,N } |∂μα(μxN )(xi )|,

which implies that for

c < min

(
1,

(
|αN (xN )| + max

i∈{1,...,N } |∂μα(μxN )(xi )|
)−1
)

,
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‖A(xN )‖ < 1. Note that (H.3(3)) guarantees that α and its derivatives are uniformly
bounded, i.e., c can be chosen uniformly in xN . Therefore, Hadamard’s global inverse
function theorem proves that, for each given N ≥ 1, GN : RN → R

N is a diffeomor-
phism. ��

Weproceedby showing that the transformedSDEhas (locally)Lipschitz continuous
coefficients.

Lemma 3.3 Let Assumption (H.3) be satisfied. Then, the coefficients BN and ΣN

introduced in (3.16) and (3.17), respectively, are locally Lipschitz continuous with
linear growth.

Proof For xN , yN ∈ R
N , we obtain using (3.17)

‖ΣN (xN ) − ΣN ( yN )‖2

≤
N∑

i=1

|Σ i,i (xN ) − Σ i,i ( yN )|2 +
∑

i �= j

|Σ i, j (xN ) − Σ i, j ( yN )|2

≤
N∑

i=1

|∂xi G(xi , μ
xN )σ (xi ) − ∂yi G(yi , μ

yN )σ (yi )|2

+ 1

N 2

∑

i �= j

|∂μG(xi , μ
xN )(x j )σ (x j ) − ∂μG(yi , μ

xN )(y j )σ (y j )|2

≤ C |xN − yN |2,

where we used (H.3(1)), and the Lipschitz continuity of the functions x �→ ∂xG(x, μ)

and μ �→ ∂xG(x, μ) to estimate the first term. Assumptions (H.3(1)) and (H.3(3)),
in particular the Lipschitz continuity of x �→ ∂μG(x, μ)(y) and μ �→ ∂μG(x, μ)(y),
are employed to handle the second sum. Also note that all these mappings are bounded
due to (H.3(3)) and the definition of the transformation.

Noting that

|BN (xN ) − BN ( yN )|2 =
N∑

i=1

|Bi (xN ) − Bi ( yN )|2,

we further obtain for the drift

|Bi (xN ) − Bi (yN )|2

≤ C

(
|∂xi G(xi , μ

xN )b(xi , μ
xN ) + 1

2
σ 2(xi )∂

2
xi G(xi , μ

xN )

− ∂yi G(yi , μ
yN )b(yi , μ

yN ) − 1

2
σ 2(yi )∂

2
yi G(yi , μ

yN )|2

+ 1

N

N∑

k=1

|∂μG(xi , μ
xN )(xk)b(xk, μ

xN ) − ∂μG(yi , μ
yN )(yk)b(yk, μ

yN )|2
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+ 1

2N

N∑

k=1

|∂y∂μG(xi , μ
xN )(xk)σ

2(xk) − ∂y∂μG(yi , μ
xN )(yk)σ

2(yk)|2

+ 1

2N 2

N∑

k=1

|∂2μG(xi , μ
xN )(xk, xk)σ

2(xk) − ∂2μG(yi , μ
yN )(yk, yk)σ

2(yk)|2

+ 1

N
|∂xi ∂μG(xi , μ

xN )(xi )σ
2(xi ) − ∂yi ∂μG(yi , μ

yN )(yi ))σ
2(yi )|2

)
=:

5∑

i=1

Πi .

That the terms Π3,Π4 and Π5 allow a Lipschitz bound is a consequence of (H.3(1))
and (H.3(3)).

For any R > 0, in view of (H.3(2)) and (H.3(3)), we derive the following estimate
for Π2:

Π2 ≤ C

N

( N∑

k=1

∣∣∣∂μα(μxN )(xk)φ̄(xi )b(xk, μ
xN ) − ∂μα(μyN )(yk)φ̄(xi )b(yk, μ

yN )

∣∣∣
2

+
N∑

k=1

∣∣∣∂μα(μyN )(yk)φ̄(xi )b(yk, μ
yN ) − ∂μα(μyN )(yk)φ̄(yi )b(yk, μ

yN )

∣∣∣
2
)

≤ C

N

N∑

k=1

∣∣∣∂μα(μxN )(xk)b(xk, μ
xN ) − ∂μα(μyN )(yk)b(yk, μ

yN )

∣∣∣+ LR |xi − yi |2,

for some constant LR > 0 and any |xN |, | yN | ≤ R. We proceed with the estimate

N∑

k=1

∣∣∣∂μα(μxN )(xk)b(xk, μ
xN ) − ∂μα(μ yN )(yk)b(yk, μ

yN )

∣∣∣
2 ≤ C

N∑

k=1

|xk − yk |2,

which holds due to Assumptions (H.2(3)) and (H.2(4)). Combining above estimates,
we obtain

Π2 ≤ LR

(
|xi − yi |2 + 1

N

N∑

k=1

|xk − yk |2
)

.

Finally, we point out that

x �→ b(x, μ) + 1

2
σ 2(x)∂2x G(x, μ),
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is Lipschitz continuous due to the choice of α. Employing this along with (H.3(1)),
(H.3(2)) and (H.3(3)), we derive

Π1 ≤ C

(
|xi − yi |2 + 1

N

N∑

k=1

|xk − yk |2
)

,

for some constant C > 0. Taking the estimates for Π1, . . . ,Π5 into account, yields
the local Lipschitz continuity of BN .

The linear growth of BN and ΣN , i.e., that there exists a constant C > 0 such that
|BN (xN )| + ‖ΣN (xN )‖ ≤ C(1+ |xN |) for all xN ∈ R

N , is a direct consequence of
the growth conditions on b and σ along with the bounds for the derivatives of G and
α. ��

Theorem 3.2 Let Assumption (H.3) be satisfied, let ξ ∈ L0
p(R) for a given p ≥ 2

and assume that the constant c in (3.15) satisfies (3.18). Then, the interacting particle
system defined in (3.14) has a unique strong solution in S p([0, T ]).

Proof From Lemma 3.3 and the linear growth of BN and ΣN , we can deduce that
the SDE for ZN has a unique strong solution (see, [43, Chapter 5, Theorem 2.5]).
Applying now Itô’s formula to G−1

N (ZN
t ) proves the strong uniqueness of a solution to

the particle system defined in (3.14). Note that G−1
N exists due to Lemma 3.2 and Itô’s

formula is applicable for G−1
N as it inherits the regularity of GN (see, Appendix A.2

for details). ��

4 Euler–Maruyama schemewith and without transformation

In this section, we restrict most of our discussion to the case of aMcKean–Vlasov SDE
with decomposable drift, due to the simpler structure of the underlying transformation
and the particle systems.

In the following subsections, we will present two Euler–Maruyama schemes to
discretise the particle system defined in (3.2) in time.

For the first scheme (Scheme 1), we will discretise the transformed (continuous)
particle system in time and then exploit the global inverse G−1 to obtain approxi-
mations of the original (discontinuous) particle system. A slight modification of this
scheme will also be applied in the non-decomposable case. An approximation result
with respect to the number of particles will also be presented.

The second scheme (Scheme 2) will be defined by directly discretising the dis-
continuous particle system, without making use of the transformation G. We give
strong convergence rates in terms of the number of time-steps and pathwise strong
propagation of chaos results in order to obtain quantitative L2-approximations for the
underlying McKean–Vlasov SDE.
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4.1 Scheme 1: Euler–Maruyama after transformation (decomposable case)

We define the following explicit Euler–Maruyama scheme to discretise the particle
system (3.2) in time. In a first step, we partition a given time interval [0, T ] into
subintervals of equal length h = T /M , for some integer M > 0, and define tn := nh.
Then, we simulate the transformed particle system by

Zi,N ,M
tn+1

= Zi,N ,M
tn + b̃(G−1(Zi,N ,M

tn ), μZN ,M

tn )h + σ̃ (G−1(Zi,N ,M
tn ))ΔWi

n, (4.1)

for n ∈ {0, . . . , M − 1}, where Zi,N ,M
0 = G(Xi,N

0 ), ΔWi
n = Wi

tn+1
− Wi

tn , for
i ∈ {1, . . . , N }, and

μZN ,M

tn (dx) := 1

N

N∑

j=1

δ
G−1(Z j,N

tn )
(dx).

We introduce the notation η(t) := sup{s ∈ {0, h, . . . , Mh} : s ≤ t}, for t ∈ [0, T ],
which allows us to define the continuous time version of (4.1)

Zi,N ,M
t = Zi,N ,M

0 +
∫ t

0
b̃(G−1(Zi,N ,M

η(s) ), μZN ,M

η(s) ) ds +
∫ t

0
σ̃ (G−1(Zi,N ,M

η(s) )) dWi
s .

(4.2)

Then, we propose an Euler–Maruyama approximation to Xi,N
t , for i ∈ {1, . . . , N }

and t ∈ [0, T ], by

Xi,N ,M
t = G−1(Zi,N ,M

t ). (4.3)

The convergence of this algorithm is proven in the following theorem:

Theorem 4.1 Let Assumption (H.1) be satisfied, let ξ ∈ L0
p(R) for some p > 4

and assume c < 1/|α|. For i ∈ {1, . . . , N }, let (Xi
t )t∈[0,T ] be the unique strong

solution of (3.1) driven by the Brownian motion (Wi
t )t∈[0,T ] with initial data ξ i , and

(Xi,N ,M
t )t∈[0,T ] be given by (4.2) and (4.3). Then, there exists a constant C > 0

(independent of N and M) such that

max
i∈{1,...,N }E

[
sup

t∈[0,T ]
|Xi

t − Xi,N ,M
t |2

]
≤ C
(
h + N−1/2

)
.

Proof Note that

|Xi
t − Xi,N ,M

t |2 ≤ 2|Xi
t − Xi,N

t |2 + 2|Xi,N
t − Xi,N ,M

t |2,

and recall that the dynamics of Zi
t = G(Xi

t ) satisfies

dZi
t = b̃(Zi

t , μ̃
Z
t ) dt + σ̃ (Zi

t ) dW
i
t ,
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where μ̃Z
t := LG−1(Zi

t )
. Therefore, we obtain for some constant C > 0

E

[
sup

t∈[0,T ]
|Xi

t − Xi,N
t |2
]

= E

[
sup

t∈[0,T ]
|G−1(Zi

t ) − G−1(Zi,N
t )|2

]

≤ L2
G−1E

[
sup

t∈[0,T ]
|Zi

t − Zi,N
t |2
]

≤ CN−1/2,

where the last inequality can be derived similarly to the propagation of chaos results for
equations with Lipschitz continuous coefficients as in, e.g., [13] for d = 1 (note that
the rate N−1/2 can be improved into N−1 in case where b2(x, μ) = ∫

R
β(x, y) μ(dy),

with β Lipschitz continuous, see [46]). To apply the aforementioned propagation of
chaos result, we need the requirement that ξ ∈ L0

p(R) for p > 4 (see, also [14,
Theorem 5.8]). Furthermore, we have

E

[
sup

t∈[0,T ]
|Xi,N

t − Xi,N ,M
t |2

]
= E

[
sup

t∈[0,T ]
|G−1(Zi,N

t ) − G−1(Zi,N ,M
t )|2

]

≤ L2
G−1E

[
sup

t∈[0,T ]
|Zi,N

t − Zi,N ,M
t |2

]
≤ Ch,

since the SDEs for (Zi,N
t )t∈[0,T ] and (Zi,N ,M

t )t∈[0,T ] have globally Lipschitz contin-
uous coefficients. From these two estimates the claim follows. ��

4.2 Scheme 2: Euler–Maruyamawithout transformation (decomposable case)

As G and G−1 may be difficult to construct in multi-dimensional settings, and since
the evaluation for the inverse at each time point can be computationally expensive, it
would be preferable to discretise the particle system (Xi,N )i∈{1,...,N } in time directly,
without the use of the transformation G. In addition, a drawback of Scheme 1 is that
an SDE with additive diffusion term will be transformed into one with multiplicative
noise and therefore the Euler–Maruyama scheme no longer coincideswith theMilstein
scheme.We employ an Euler–Maruyama scheme to discretise the particle system (3.2)
and compute an approximate solution by

Xi,N ,M
t = Xi,N

0 +
∫ t

0

(
b1(X

i,N ,M
η(s) ) + b2(X

i,N ,M
η(s) , μXN ,M

η(s) )
)
ds +

∫ t

0
σ(Xi,N ,M

η(s) ) dWi
s .

(4.4)

The following results are concerned with moment stability of the discretised particle
system and estimates for the occupation time of the particle system in the neighbour-
hood of the set of discontinuities.
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Moment stability:
We first remark that due to the linear growth of the coefficients in the state component,
the Lipschitz continuity in the measure variable and the fact that all particles are
identically distributed, we have the following result (see, e.g., [43] for details):

Proposition 4.1 Let Assumption (H.1) be satisfied, and let ξ ∈ L0
p(R) for p ≥ 2.

Then, there exist constants C1,C2 > 0, such that

max
i∈{1,...,N } max

n∈{0,...,M}E
[
|Xi,N ,M

tn |p
]

≤ C1,

and for all i ∈ {1, . . . , N } and for all t ∈ [0, T ],

E

[
|Xi,N ,M

t − Xi,N ,M
η(t) |p

]
≤ C2h

p/2.

Occupation time formula for (4.4):
Below, we will show an estimate of the expected occupation time of a fixed particle
of the system defined by (4.4) in a neighbourhood of zero.

Proposition 4.2 Let Assumption (H.1) be satisfied and let i be an arbitrary but fixed
particle index. Further, let ξ ∈ L0

p(R) for p ≥ 2 and let (Xi,N ,M
t )t∈[0,T ] be given

by (4.4). Then, there exists a constant C > 0 such that for all N , M ∈ N and all
sufficiently small ε > 0

∫ T

0
P

(
{XN ,M

t ∈ Θ i,ε}
)
dt ≤ Cε,

where XN ,M
t = (X1,N ,M

t , . . . , XN ,N ,M
t )� ∈ R

N and Θ i,ε is given by

Θ i,ε := {xN = (x1, . . . , xN )� ∈ R
N : ∃ yN ∈ Θ i with |xN − yN | < ε},

with Θ i := {xN = (x1, . . . , xN )� ∈ R
N : xi = 0}.

Proof We aim to apply [41, Theorem 2.7], which states the following: Let (Xt )t∈[0,T ]
be an Rd -valued Itô process

XT = X0 +
∫ T

0
At dt +

∫ T

0
Bt dWt ,

with progressively measurable processes A = (At )t∈[0,T ] and B = (Bt )t∈[0,T ], where
A is R

d -valued and B is R
d×d -valued. The set of discontinuities, Θ , is assumed

to be a C3 hypersurface of positive reach. Namely, there exists ε > 0 such that
p(x) = argminy∈Θ |x − y| is a single valued function of class C3 on the tubular
neighbourhood Θε := {x ∈ R

d : inf y∈Θ |x − y| < ε} (see Definition 2.4 in [41] for
details). Then, there exists a constant C > 0, such that for all sufficiently small ε > 0

∫ T

0
P
({Xt ∈ Θε}) dt ≤ Cε,

123



1532 G. Leobacher et al.

assuming, additionally, that

1. the processes A and B are almost surely bounded by a constant C if Xt (ω) is in a
small neighbourhood of Θ , and

2. there exists a constant C > 0 such that for almost all ω ∈ Ω , we have: If, for any
t ∈ [0, T ], Xt (ω) is in a small neighbourhood of Θ then

n� (p (Xt (ω))) B�
t (ω)Bt (ω)n (p (Xt (ω))) ≥ C,

where n(x) has length one and is orthogonal to the tangent space of Θ in x .

We now return to our particular model problem. First, we remark that Θ i satisfies
all regularity conditions of [41, Theorem 2.7], i.e., it is a C3 hypersurface of positive
reach. We then observe that the N -dimensional particle system can be rewritten as

dXN ,M
t = BN (XN ,M

η(t) ) dt + ΣN (XN ,M
η(t) ) dW N

t ,

where W N
t = (W 1

t , . . . ,WN
t )� and BN : RN → R

N and ΣN : RN → R
N×N are

defined by

BN (xN ) = (b(x1, μ
xN ), . . . , b(xN , μxN ))�,

ΣN (xN ) = diagN×N (σ (x1), . . . , σ (xN )).

Further, we observe that there is a constant C > 0 such that: If, for any t ∈ [0, T ] and
ω ∈ Ω , XN ,M

t (ω) is in a small neighbourhood of Θ i then

n� (p
(
XN ,M
t (ω)

))
Σ�

N (XN ,M
t (ω))ΣN (XN ,M

t (ω))n
(
p
(
XN ,M
t (ω)

))
≥ C,

as σ is continuous and σ(0) �= 0. Also, note that a normal vector of the tangent
space of Θ i is ei , i.e., the i-th unit vector. Further, a close inspection of the proof
of [41, Theorem 2.7], shows that the boundedness assumption on the coefficients in
a neighbourhood of Θ i is not needed in our case, due to the moment bound of an
individual particle established in Proposition 4.1. Hence,

∫ T

0
P

(
{XN ,M

t ∈ Θ i,ε}
)
dt ≤ Cε,

where the constant C > 0 is independent of N , due to the fact that the normal vector
is the i-th unit vector. ��
Auxiliary proposition:
Based on the occupation time estimate from Proposition 4.2, we will prove the fol-
lowing result, which is needed in the proof of Theorem 4.2 given below.
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Proposition 4.3 Let Assumption (H.1) be satisfied, and let ξ ∈ L0
p(R) for p ≥ 8.

Furthermore, let (Xi,N ,M
t )t∈[0,T ] be given by (4.4). Then, there exists a constant C > 0

(independent of N and M) such that for any t ∈ [0, T ], we have

max
i∈{1,...,N }E

[∣∣∣∣
∫ t

0

(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) ) ds

∣∣∣∣
2
]

≤ Ch2/9.

Proof First, observe that the linear growth of σ and the piecewise Lipschitz continuity
of G ′′ imply that there exists a constant C > 0 such that

∣∣∣
(
G′′(Xi,N ,M

s ) − G′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) )

∣∣∣

≤
⎧
⎨

⎩
C
(
1+(Xi,N ,M

η(s) )2
)

|Xi,N ,M
s −Xi,N ,M

η(s) |, Xi,N ,M
s /∈ (−ε, ε), |Xi,N ,M

s −Xi,N ,M
η(s) |<ε,

C
(
1 + (Xi,N ,M

η(s) )2
)

, otherwise,

where ε > 0 will be specified later. With this at hand, we derive

E

[∣∣∣∣
∫ t

0

(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) ) ds

∣∣∣∣
2
]

≤ C
∫ t

0
E

[∣∣∣
(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) )

∣∣∣
2
]
ds

≤ C

(∫ t

0
E

[∣∣∣
(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) )

∣∣∣
2

×
(
I{Xi,N ,M

s /∈(−ε,ε)}I{|Xi,N ,M
s −Xi,N ,M

η(s) |<ε}

)]
ds

+
∫ t

0
E

[ ∣∣∣
(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) )

∣∣∣
2

×
(
I{Xi,N ,M

s ∈(−ε,ε)} + I{Xi,N ,M
s /∈(−ε,ε)}I{|Xi,N ,M

s −Xi,N ,M
η(s) |≥ε}

)]
ds

)

≤ C

(∫ t

0
E

[ (
1 + (Xi,N ,M

η(s) )4
)

|Xi,N ,M
s − Xi,N ,M

η(s) |2

×
(
I{Xi,N ,M

s /∈(−ε,ε)}I{|Xi,N ,M
s −Xi,N ,M

η(s) |<ε}

)]
ds +

∫ t

0
E

[ (
1 + (Xi,N ,M

η(s) )4
)

×
(
I{Xi,N ,M

s ∈(−ε,ε)} + I{Xi,N ,M
s /∈(−ε,ε)}I{|Xi,N ,M

s −Xi,N ,M
η(s) |≥ε}

)]
ds

)

≤ C

(
ε2 + ε1/2 +

∫ t

0

(
P(|Xi,N ,M

s − Xi,N ,M
η(s) | ≥ ε)

)1/2
ds

)
,

where we used Hölder’s inequality, Propositions 4.1 and 4.2 in the last display.
Markov’s inequality along with Proposition 4.1 imply that there exists a constant
C > 0 such that
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(
P(|Xi,N ,M

s − Xi,N ,M
η(s) | ≥ ε)

)1/2 ≤

(
E

[∣∣∣Xi,N ,M
s − Xi,N ,M

η(s)

∣∣∣
8
])1/2

ε4
≤ Ch2

ε4
.

Choosing ε = h4/9 gives the result. ��
We are now ready to present our main convergence result. In this case, we only obtain
the strong convergence rate of order 1/9:

Theorem 4.2 Let Assumption (H.1) be satisfied, let ξ ∈ L0
p(R) for some p ≥ 8 and

assume c < 1/|α|. Furthermore, let (Xi
t )t∈[0,T ] be the unique strong solution of (3.1)

driven by the Brownian motion (Wi
t )t∈[0,T ]with initial data ξ i and (Xi,N ,M

t )t∈[0,T ]
given by (4.4). Then, there exists a constant C > 0 (independent of N and M) such
that

max
i∈{1,...,N }E

[
sup

t∈[0,T ]
|Xi

t − Xi,N ,M
t |2

]
≤ C
(
h2/9 + N−1/2

)
.

Proof Note that

E

[
sup

t∈[0,T ]
|Xi

t − Xi,N
t |2
]

≤ LG−1E

[
sup

t∈[0,T ]
|G(Xi

t ) − G(Xi,N
t )|2

]

≤ CN−1/2, (4.5)

where in the last display, we used the pathwise propagation of chaos result as in the
previous subsection. Further, we have

E

[
sup

t∈[0,T ]
|Xi,N

t − Xi,N ,M
t |2

]
≤ LG−1E

[
sup

t∈[0,T ]
|Zi,N

t − G(Xi,N ,M
t )|2

]

≤ C

(
E

[
sup

t∈[0,T ]
|Zi,N

t − Zi,N ,M
t |2

]
+ E

[
sup

t∈[0,T ]
|Zi,N ,M

t − G(Xi,N ,M
t )|2

])

≤ C

(
h + E

[
sup

t∈[0,T ]
|Zi,N ,M

t − G(Xi,N ,M
t )|2

])
,

where in the last estimate, we employed standard strong convergence results for the
Euler–Maruyama scheme applied to SDEs with globally Lipschitz continuous coeffi-
cients. Following similar arguments to [41] or [49], one further obtains, by applying
Itô’s formula to G(Xi,N ,M

t ),

E

[
sup

t∈[0,T ]
|Zi,N ,M

t − G(Xi,N ,M
t )|2

]

≤ C

(
h +
∫ T

0
E

[∣∣∣
(
G ′′(Xi,N ,M

s ) − G ′′(Xi,N ,M
η(s) )

)
σ 2(Xi,N ,M

η(s) )

∣∣∣
2
]
ds
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+
∫ T

0
E

[
sup

s∈[0,t]
|Zi,N ,M

s − G(Xi,N ,M
s )|2

]
dt

)
,

where the second summand on the right side is of order h2/9 due to Proposition 4.3.
Hence, Gronwall’s inequality yields

E

[
sup

t∈[0,T ]
|Xi,N

t − Xi,N ,M
t |2

]
≤ Ch2/9, (4.6)

and the claim follows combining (4.5) and (4.6). ��

Remark 4.1 The convergence rate in terms of the number of particles in the above
theorem can again be improved to 1/2 if the drift has the form (1.2), see [46].

The convergence rate in terms of number of time-steps established in Theorem 4.2
could be improved by employing exponential tail estimate techniques, as in [41]. The
resulting strong convergence rate would be 1/4 − ε, for an arbitrarily small ε > 0.
However, to achieve this, one would need to assume boundedness of the coefficients in
Eq. (3.1). Another possibility to recover a better convergence rate in our setting would
be to require that the initial data ξ ∈ L0

p(R) for any p ≥ 2 and that σ is uniformly
bounded. This would enable us to obtain sharper estimates, when employingMarkov’s
inequality in the proof of Proposition 4.3. If we assume moment boundedness of the
initial data of all orders, but allow σ to grow-linearly, we would obtain a rate of order
1/8 − ε.

Moreover, although we expect that the optimal convergence rate of the Euler–
Maruyama scheme applied to the interacting particle system is 1/2 (as for equations
with Lipschitz coefficients), we only achieve the order 1/9 (or 1/4− ε under stronger
assumptions on the initial data or the coefficients of the underlying McKean–Vlasov
SDE), due to the estimate of the probability that Xi,N ,M

η(s) and Xi,N ,M
s have a different

sign, i.e., that the term |G ′′(Xi,N ,M
s ) − G ′′(Xi,N ,M

η(s) )| in the proof of Proposition 4.3
does not allow a Lipschitz type estimate. Refined estimates of the aforementioned
expected sign change, as derived in [49] for one-dimensional SDEs, are not easy to
prove for an interacting particle system. The proof of the main result in [49] is not
applicable to our setting as an individual particle (seen as a one-dimensional equation)
does not satisfyMarkov properties (due to the dependence of interaction terms), which
are key in [49].

4.3 Scheme 1 for the non-decomposable case

Here, we first prove a propagation of chaos result in the case of non-decomposable
drifts in Lemma 4.1. The time-discretisation error is then given in Theorem 4.3.

Lemma 4.1 Let Assumption (H.3) hold, let ξ ∈ L0
p(R) for p > 4 and assume that

b : R × P2(R) → R is uniformly bounded. Let (Xi
t )t∈[0,T ] be the unique strong
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solution of (3.3) driven by the Brownian motion (Wi
t )t∈[0,T ] with initial data ξ i , and

(Xi,N
t )t∈[0,T ] is the solution to the associated particle system. Then, there exists a

constant C > 0 (independent of N) such that

max
i∈{1,...,N } sup

t∈[0,T ]
E

[
|Xi

t − Xi,N
t |2
]

≤ CN−1/2.

Proof First, we observe, using the definitionsμt = LXt ,μ
N
t (dx) = 1

N

∑N
j=1 δ

X j
t
(dx),

and μ
XN ,N−1
t (dx) = 1

N−1

∑
j �=i δX j,N

t
(dx), that

sup
t∈[0,T ]

E

[
|Xi

t − Xi,N
t |2
]

= sup
t∈[0,T ]

E

[
|G−1(G(Xi

t , μt ), μt ) − G−1(G(Xi,N
t , μ

XN ,N−1
t ), μ

XN ,N−1
t )|2

]

≤ C

(
sup

t∈[0,T ]
E

[
|G(Xi

t , μt ) − G(Xi,N
t , μ

XN ,N−1
t )|2

]

+ sup
t∈[0,T ]

L(c)
(
W2

2 (μt , μ
N
t ) + W2

2 (μN
t , μ

XN ,N−1
t )

))
, (4.7)

where L(c) → 0 as c → 0 (see Proposition 3.3). Furthermore, [14, Theorem 5.8]
implies thatW2

2 (μt , μ
N
t ) ≤ CN−1/2 and in addition, by triangle inequality, we deduce

L(c)W2
2 (μN

t , μ
XN ,N−1
t ) ≤ 2L(c)

(
sup

t∈[0,T ]
E

[
|Xi

t − Xi,N
t |2

]
+ W2

2 (μXN

t , μ
XN ,N−1
t )

)

≤ 2L(c) sup
t∈[0,T ]

E

[
|Xi

t − Xi,N
t |2

]
+ CN−1/2, (4.8)

where we usedW2
2 (μXN

t , μ
XN ,N−1
t ) ≤ CN−1, which follows from [60, Lemma 3.1].

To summarise, taking (4.7) and (4.8) into account, we obtain

sup
t∈[0,T ]

E

[
|Xi

t −Xi,N
t |2
]

≤ C

(
sup

t∈[0,T ]
E

[
|G(Xi

t , μt ) − G(Xi,N
t , μXN

t )|2
]

+ sup
t∈[0,T ]

E

[
|G(Xi,N

t , μXN

t )−G(Xi,N
t , μ

XN ,N−1
t )|2

]
+N−1/2

)
.

A similar analysis to above can be employed to handle the second term and hence, we
arrive at

sup
t∈[0,T ]

E

[
|Xi

t − Xi,N
t |2
]

≤ C

(
sup

t∈[0,T ]
E

[
|G(Xi

t , μt ) − G(Xi,N
t , μXN

t )|2
]

+ N−1/2

)
.

(4.9)
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To further estimate (4.9), we apply Itô’s formula to derive

G(Xi
t , μt ) − G(Xi,N

t , μXN

t )

= G(Xi
0, μ0) − G(Xi,N

0 , μXN

0 )

+
∫ t

0

(
b(Xi

s, μs) + α(μs)φ̄
′(Xi

s)b(X
i
s, μs) + 1

2
α(μs)φ̄

′′(Xi
s)σ

2(Xi
s)

)
ds

−
∫ t

0

(
b(Xi,N

s , μXN

s ) + α(μXN

s )φ̄′(Xi,N
s )b(Xi,N

s , μXN

s )

+ 1

2
α(μXN

s )φ̄′′(Xi,N
s )σ 2(Xi,N

s )

)
ds

+
∫ t

0

(
σ(Xi

s) + α(μs)φ̄
′(Xi

s)σ (Xi
s) − σ(Xi,N

s ) − α(μXN

s )φ̄′(Xi,N
s )σ (Xi,N

s )
)
dWi

s

+
∫ t

0

(
∂sG(Xi

s, μs) − 1

2N

N∑

k=1

∂y∂μG(Xi,N
s , μXN

s )(Xk,N
s )σ 2(Xk,N

s )

− 1

N

N∑

k=1

∂μG(Xi,N
s , μXN

s )(Xk,N
s )b(Xk,N

s , μXN

s )
)
ds

−
∫ t

0

1

N

N∑

k=1

∂μG(Xi,N
s , μXN

s )(Xk,N
s )σ (Xk,N

s ) dWk
s

−
∫ t

0

1

2N 2

N∑

k=1

∂2μG(Xi,N
s , μXN

s )(Xk,N
s , Xk,N

s )σ 2(Xk,N
s ) ds

−
∫ t

0

1

N
∂xi ∂μG(Xi,N

s , μXN

s )(Xi,N
s )σ 2(Xi,N

s ) ds =:
7∑

i=1

Πi .

It is clear due to (H.3(3)) that E[|Π6|2] + E[|Π7|2] ≤ CN−1. For the term Π5 we
derive, using BDG’s inequality,

E[|Π5|2] ≤ 1

N
E

[ N∑

k=1

C
∫ t

0

(
∂μG(Xi,N

s , μXN

s )(Xk,N
s )σ (Xk,N

s )

− ∂μα(μs)(X
k
s )φ̄(Xk

s )σ (Xk
s )
)2

ds

+
N∑

k,l=1

∫ t

0
∂μα(μs)(X

k
s )φ̄(Xk

s )σ (Xk
s ) dW

k
s

∫ t

0
∂μα(μs)(X

l
s)φ̄(Xl

s)σ (Xl
s) dW

l
s

]
.

Therefore, taking the Lipschitz continuity of (x, μ) �→ ∂μα(μ)(x)φ̄(x)σ (x) and the

independence of (Xk
t )k∈{1,...,N }, for t ∈ [0, T ], into account and usingW2(μ

XN

s , μs) ≤
W2(μ

XN

s , μN
s ) + W2(μ

N
s , μs) along with [14, Theorem 5.8], we obtain
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E[|Π5|2] ≤ C

(∫ T

0
E

[
|Xi

t − Xi,N
t |2
]
dt + N−1/2

)
.

Similar to Lemma 3.1 combined with BDG’s inequality and Hölder’s inequality,
we deduce

E[|Π1|2] + E[|Π2|2] + E[|Π3|2] + E[|Π4|2]

≤ C

(∫ T

0
E

[
|Xi

t − Xi,N
t |2
]
dt + N−1/2

)
.

Therefore, inserting the estimates for E[|Π1|2], . . . ,E[|Π7|2] back into (4.9), we
deduce the claim using Gronwall’s inequality. ��

The followinghybrid explicit-implicit time-stepping algorithmcomputes a discrete-
time approximation of (Xi,N

t )t∈[0,T ], denoted by Xi,N ,M
tn for n ∈ {0, . . . , M} and

i ∈ {1, . . . , N }:
– Set X̃ i,N ,M

t0 = G(Xi,N
0 , μXN

0 ) and Xi,N ,M
t0 = Xi,N

0 = ξ i .
– For n ≥ 1, compute

X̃ i,N ,M
tn = X̃ i,N ,M

tn−1
+ Bi (X̃

1,N ,M
tn−1

, . . . , X̃ N ,N ,M
tn−1

)h

+
N∑

j=1

Σ i, j (X̃1,N ,M
tn−1

, . . . , X̃ N ,N ,M
tn−1

)ΔW j
n ,

where Bi and Σ i, j are defined by (3.16) and (3.17), respectively.
– Find Xi,N ,M

tn such that Xi,N ,M
tn = G−1(X̃ i,N ,M

tn , μXN ,M

tn ), with μXN ,M

tn (dx) =
1
N

∑N
j=1 δ

X j,N ,M
tn

(dx).

Remark 4.2 The implicit function theorem applied to the function

FN (xN , yN ) = yN −
(
G−1(x1, μ

yN ), . . . ,G−1(xN , μ yN )
)�

, xN , yN ∈ R
N ,

implies that we can express yN in terms of xN . The applicability of the implicit
function theorem follows from similar arguments to the ones presented in Lemma 3.2
along with Proposition A.1.

Remark 4.3 Wecould alsodefine an explicit schemeby setting Xi,N ,M
tn = G−1(X̃ i,N ,M

tn ,

μX̃
N ,M

tn ), with μX̃
N ,M

tn (dx) = 1
N

∑N
j=1 δ

X̃ j,N ,M
tn

(dx). However, to derive a strong con-

vergence rate for the resulting scheme, one has to analyse the quantity E[|Xi,N ,M
tn −

X̃ i,N ,M
tn |2]. Similar arguments as for Scheme 2 could possibly be used here, but our

current analysis does not allow us to derive an optimal convergence rate in h.
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Theorem 4.3 Let Assumption (H.3) hold, let ξ ∈ L0
p(R) for p > 4 and assume that

b : R × P2(R) → R is uniformly bounded. Let (Xi
t )t∈[0,T ] be the unique strong

solution of (3.3) driven by the Brownian motion (Wi
t )t∈[0,T ] with initial data ξ i , and

Xi,N ,M
tn for n ∈ {0, . . . , M} be defined by the above algorithm. Then, there exists a

constant C > 0 (independent of N and M) such that

max
i∈{1,...,N } max

n∈{0,...,M}E
[
|Xi

tn − Xi,N ,M
tn |2

]
≤ C(N−1/2 + h).

Proof We start with the observation that for any n ∈ {0, . . . , M}

|Xi,N
tn − Xi,N ,M

tn |2

= |G−1(G(Xi,N
tn , μ

XN ,N−1
tn ), μ

XN ,N−1
tn ) − G−1(X̃ i,N ,M

tn , μXN ,M

tn )|2

≤ 2|G−1(G(Xi,N
tn , μ

XN ,N−1
tn ), μ

XN ,N−1
tn ) − G−1(G(Xi,N

tn , μXN

tn ), μXN

tn )|2

+ 2|G−1(G(Xi,N
tn , μXN

tn ), μ
XN ,N
tn ) − G−1(X̃ i,N ,M

tn , μXN ,M

tn )|2.

Using the arguments from the previous lemma, the first term can be shown to be of
order O(N−1). For the second term, we derive the estimate

|G−1(G(Xi,N
tn , μXN

tn ), μXN

tn ) − G−1(X̃ i,N ,M
tn , μXN ,M

tn )|2

≤ C
(
|G(Xi,N

tn , μXN

tn ) − X̃ i,N ,M
tn |2 + L(c)W2

2 (μXN

tn , μXN ,M

tn )
)

,

where L(c) → 0 as c → 0, as in Proposition 3.3.
Therefore, we get

E

[
|Xi,N

tn − Xi,N ,M
tn |2

]
≤ C
(
N−1 + E

[
|G(Xi,N

tn , μXN

tn ) − X̃ i,N ,M
tn |2

])
.

Using now the definition of X̃ i,N ,M
tn and Lemma 3.3, one shows that there exists a

constant C > 0 such that E
[
|G(Xi,N

tn , μXN

tn ) − X̃ i,N ,M
tn |2

]
≤ Ch. This together with

Lemma 4.1 yields the claim. ��

5 Numerical illustration

In the following, we will present two examples ofMcKean–Vlasov SDEs and interact-
ing particle systems exhibiting discontinuous drifts in order to motivate the theoretical
study of such equations and to numerically illustrate the strong convergence behaviour
of an Euler–Maruyama scheme. These models find applications in biology and math-
ematical finance, in particular systemic risk.

As we do not know the exact solution of the considered equations, the convergence
rate (in terms of number of time-steps) was determined by comparing two solutions
computed on a fine and coarse grid, respectively, where the same Brownian motions
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were used. In order to illustrate the strong convergence behaviour in the uniform time-
step h, we compute the root-mean-square error (RMSE) by comparing the numerical
solution at level l of the time discretisation with the solution at level l − 1 at the final
time T = 1. To be precise, as error measure we use the quantity

RMSE :=
√√√√ 1

N

N∑

i=1

(
Xi,N ,Ml
T − Xi,N ,Ml−1

T

)2
,

whereMl = 2l T andby Xi,N ,Ml
T wedenote the approximationof X at timeT computed

based on N particles and 2l T time-steps. The number of particles used in the tests will
be specified below.

5.1 Neuronal interactions

In this section, we provide a numerical illustration for a specific model for neuronal
interactions. Interacting particle systems are ubiquitous in neuroscience, such as the
Hodgkin-Huxley model [2, 8] or mean-field equations describing the behaviour of
a (large) network of interacting spiking neurons [23]. For other mean-field models
appearing in neuroscience, we refer to the references given in [23].

A recent model of the action potential of neurons is described in [25] and involves
discontinuous coefficients. The reason for the necessity of introducing discontinuities
is the following: After a charging phase of an individual neuron, subject to spikes of
nearby neurons, randomness, and the effect of discharge with constant rate, the neuron
emits a spike to the network once a certain threshold is hit and is then in a recovery
phase. The change between these two phases is characterised by a discontinuity in the
dynamics describing the potential of each neuron.

The action potential of N interacting neurons at time t ∈ [0, T ], V i,N
t (mod 2) ∈

[0, 2), where V i,N
t ∈ R, i ∈ {1, . . . , N }, is modelled by the discontinuous mean-field

equation

dV i,N
t = λ(V i,N

t (mod 2)) dt + σε(V i,N
t (mod 2)) dWi

t

+ 1

N

N∑

j=1

Θ(ξi , ξ j )I[1,1+κ](V j,N
t (mod 2))I[0,1](V i,N

t (mod 2)) dt,

with square-integrable random initial values V i,N
0 = ηi , for i ∈ {1, . . . , N } and

0 < κ < 1 fixed. The set of i. i. d. random variables {ξ1, . . . , ξN }, ξi ∈ D, describes
the location of the N (non-moving) neurons,where D ismodelled as an open connected
domain of R3. Hence, the position of each neuron is given by Xi,N

t = ξ i at each time
t ∈ [0, T ]. It is further assumed that {ξ1, . . . , ξN , η1, . . . , ηN } are independent for
each integer N ≥ 1. The standard Brownian motions (Wi

t )t∈[0,T ] are independent,
and independent of ξi and ηi , for i ∈ {1, . . . , N }. Observe that V i,N is specified by
an SDE, where the drift has a discontinuity in the state variable (due to the choice of
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λ; see below for details), but also has a jump, in case a particle j �= i reaches the the
critical values 1 or 1 + κ .

The following conditions are imposed in [25] to guarantee strong well-posedness
of the particle system above (see, [25, Theorem 2.2]) and the associated McKean–
Vlasov equation (see, [25, Theorem 6.1]); propagation of chaos type results, i.e., weak
convergence of the law of the empirical distribution of (ξ i , V i,N ) to a Dirac measure
centred at the law of the solution to the underlying McKean–Vlasov equation, are
shown in [25, Theorem 5.7]:

1. λ(v) = −λ̂vI[0,1](v) + I(1,2), λ̂ > 0, Θ(x, y) = sin(|x − y|), for x, y ∈ R
3;

2. σε is a C1b([0, 2]) function satisfying σε ≥ √
2ε > 0 and

σε(v) = √
2ε on [1, 2], σ ε(2) = σε(0) = √

2ε, (σ ε)′(0) = (σ ε)′(2) = 0,

with ε > 0 fixed.

These conditions specify our Example 1. For Example 2, the diffusion termwas chosen
σε(x) = √

2ε + x . For our tests, we used N = 103. Furthermore, we set κ = 0.01,
λ̂ = 0.02 and ε = 0.1. The initial values η1, . . . , ηN are chosen as independent
normal random variables with mean 1 and standard deviation 2. Also, these values
are considered modulo 2. The variables ξ1, . . . , ξN are independent three-dimensional
random variables chosen from the same multivariate normal distribution with some
given mean vector and covariance matrix.

We investigate numerically the convergence of Scheme 2, i.e., the Euler–Maruyama
scheme without applying any transformations. In Fig. 1, we observe strong conver-
gence of order 3/4 for Example 1, which is most likely due to the choice of σε = √

2ε
as constant. In [50] a Milstein scheme for one-dimensional SDEs with discontinuities
in the drift was derived and a strong convergence order of 3/4 was proven. In addition,
it is conjectured in [50] (Conjecture 1 and Conjecture 2) that the rate 3/4 is optimal.

5.2 Systemic risk

In this section, we consider a McKean–Vlasov SDE of the form

dXt = (a (E[Xt ] − Xt ) + κ1I{Xt≤0} + κ2I{Xt>0}
)
dt + (σ + Xt ) dWt , X0 = x ∈ R,

(5.1)

where a ≥ 0 is the mean-reversion rate, κ1 < 0, κ2 > 0 and σ > 0. The strong
well-posedness of (5.1) follows from Proposition 3.1. This equation can be linked to a
model of systemic risk in [16], where a mean-field game of N banks borrowing from,
and lending to, a central bank is proposed. The banks control the rate of their borrowing
depending on their (log-)monetary reserves, which are modelled by a system of SDEs
with interaction through their average. In this settingflocking, and thus systemicdefault
events, may occur. Here, we give a slight reformulation of this problem following [28,
Section 4]. The problem consists in finding (μ̂t , β̂t )t∈[0,T ], where (μ̂t )t∈[0,T ] is a
flow of measures in C([0, T ],P2(R)) and (β̂t )t∈[0,T ] is an adapted, square-integrable
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Fig. 1 Strong convergence of the Euler–Maruyama scheme applied to the particle system obtained by
approximating the equation for the action potential of the neurons

control process (describing the rate of borrowing from, or lending to, the central bank),
such that (β̂t )t∈[0,T ] minimises the objective function given by

J μ̂(x;β) = E

[∫ T
0

(
r |βt | + ε

2

(
X μ̂,β
t − ∫

R
x μ̂t (dx)

)2)
dt

+ c
2

(
X μ̂,β
T − ∫

R
x μ̂T (dx)

)2]
,

for r , ε, c ≥ 0, where

dX μ̂,β
t =

(
a

(∫

R

x μ̂t (dx) − X μ̂,β
t

)
+ βt

)
dt + (σ + X μ̂,β

t ) dWt , X μ̂,β
0 = x ∈ R,

(5.2)

and μ̂t = L
X μ̂,β̂
t

for all t ∈ [0, T ].
For simplicity, we did not add the common noise term as in [16]. In addition, we

modified the diffusion to allow it to be degenerate. In [28], a constraint βt ∈ [κ1, κ2]
on the borrowing/lending rate is imposed for all t ∈ [0, T ]. The minimiser of the
objective function for this mean-field game (with constant diffusion term) is shown to
be a control of bang-zero-bang type (see [28, equation (24)] for an analytic expression).
Written in feedback form, this optimal control strategy has discontinuities that are
time-dependent, i.e., the zero-control region changes over time, a setting not covered
by our current analysis.
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Fig. 2 Sample trajectories of the particle system associated with (5.1) for N = 10 and a = 1 (left) and
a = 10 (right)

Using instead the special bang-bang type control (β∗
t )t∈[0,T ] of the form

β∗
t =
{

κ1, if Xt ≤ 0

κ2, if Xt > 0,

and plugging β∗
t back into (5.2) results into an equation of the form (5.1) with a

one-point discontinuity.
In our numerical experiments, we set κ1 = −0.5, κ2 = 0.5, x = 0 and σ = 0.7.

Further, we consider three different choices for the mean-reversion rate, i.e., we set
a = 1, 5, 10. The expected value is approximated by the empirical mean of N =
104 particles. For a larger value of a, we expect sample paths of (5.1) to be more
concentrated around themean of the samples; see Fig. 2a, b (with T = 1 andM = 27).
We can also observe that for a stronger concentration effect the strong approximation
behaviour becomes better; see Fig. 2b (Fig. 3).

Acknowledgements We want to express our gratitude to two anonymous referees for valuable comments
and suggestions for improvements on an earlier version of this article. WS thanks Yufei Zhang for several
helpful discussions on this topic.

A Auxiliary results

A.1 L-differentiability of G−1

Proposition A.1 Let G : R × P2(R) → R be defined by (3.5) with c > 0 as in
Remark 3.3 and let the assumptions of Proposition 3.3 be satisfied. Assume that G is L-
differentiable, andR � y �→ ∂μG(x, μ)(y) is in C1(R,R) for all (x, μ) ∈ R×P2(R).
Then, the inverse G−1 : R × P2(R) → R is continuously L-differentiable with
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Fig. 3 Strong convergence of the Euler–Maruyama scheme applied to the particle system obtained by
approximating the Eq. (5.1) with a = 1, 5, 10

∂μG
−1(x, μ)(y) = −∂μG(G−1(x, μ), μ)(y)

∂xG(G−1(x, μ), μ)
, (A.1)

for all (x, μ, y) ∈ R × P2(R) × R.

Proof First, we remark that (H.2(2)) guarantees the L-differentiability of G. Let now
X ,Y ∈ L2(Ω,F ,P;R) with LX = μ and LX+Y = ν, for μ, ν ∈ P2(R). Consider
the lifted inverse function G̃−1 defined by G̃−1(y, X) := G−1(y, μ), for any y ∈ R.
Similarly, we set G̃(x, X) := G(x, μ) and G̃(x, X + Y ) := G(x, ν), for any x ∈ R.
Now fix y ∈ R and set x := G̃−1(y, X), h := G̃−1(y, X + Y ) − x .

Observe that y = G(G−1(y, ν), ν) = G(x+h, ν) and also y = G(G−1(y, μ), μ) =
G(x, μ). In addition, due to the Lipschitz continuity of μ �→ G−1(y, μ), we have

|h| = |G−1(y, ν) − G−1(y, μ)| ≤ LW2(ν, μ) ≤ L‖Y‖L2 . (A.2)

In what follows, we aim to show (A.1):

∣∣∣∣G̃
−1(y, X + Y ) − G̃−1(y, X) −

〈−∂μG(x,μ)(X)

∂xG(x,μ)
,Y
〉

L2

∣∣∣∣
‖Y‖L2

≤ C

∣∣∣−∂xG(x, μ)h − 〈∂μG(x, μ)(X),Y
〉
L2

∣∣∣
‖Y‖L2

,
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for some constant C > 0, where we used the boundedness of x �→ ∂xG(x, μ).
Employing this estimate, along with the identity G̃(x, X) = G̃(x + h, X + Y ) and
(A.2), we obtain

∣∣∣∣G̃
−1(y, X + Y ) − G̃−1(y, X) −

〈−∂μG(x,μ)(X)

∂xG(x,μ)
, Y
〉

L2

∣∣∣∣
‖Y‖L2

≤ C

∣∣∣−∂xG(x, μ)h + G̃(x + h, X + Y ) − G̃(x, X) − 〈∂μG(x, μ)(X),Y
〉
L2

∣∣∣
‖Y‖L2

≤ C

∣∣∣G̃(x + h, X + Y ) − G̃(x, X + Y ) − ∂xG(x, ν)h
∣∣∣

‖Y‖L2

+ C
|∂xG(x, ν)h − ∂xG(x, μ)h|

‖Y‖L2

+ C

∣∣∣G̃(x, X + Y ) − G̃(x, X) − 〈∂μG(x, μ)(X),Y
〉
L2

∣∣∣
‖Y‖L2

≤ CL
|G(x + h, ν) − G(x, ν) − ∂xG(x, ν)h|

|h|
+ CL

∣∣∣∂x G̃(x, X + Y ) − ∂x G̃(x, X)

∣∣∣

+ C

∣∣∣G̃(x, X + Y ) − G̃(x, X) − 〈∂μG(x, μ)(X),Y
〉
L2

∣∣∣
‖Y‖L2

.

Now, if ‖Y‖L2 → 0, then also |h| → 0, so the terms in the last estimate tend to
zero from which the claim follows. Furthermore, we remark that the mapping y �→
−∂μG(G−1(x,μ),μ)(y)

∂xG(G−1(x,μ),μ)
is in C1(R,R). ��

A.2 The classC

For a given N ∈ N, we define for all k ∈ {1, . . . , N } the sets

Θk := {xN = (x1, . . . , xN )� : xk = 0}.

Definition A.1 For N ∈ N, we define the class C of functions GN : RN → R
N with

the following properties:

(p1) GN is C1(RN ,RN×N );
(p2) for all xN ∈ R

N , det
(
G′

N (xN )
) �= 0;

(p3) lim|xN |→∞ |GN (xN )| = ∞;
(p4) for all k ∈ {1, . . . , N } and all xN ∈ Θk , we have Gk(xN ) = 0;
(p5) for all j, k ∈ {1, . . . , N } and all xN ∈ Θk , we have ∂x j Gk(xN ) = δ j,k ;
(p6) for all i, j, k ∈ {1, . . . , N } with i �= j the mixed partial derivative ∂xi ∂x j Gk

exists and is continuous;
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(p7) for all j, k ∈ {1, . . . , N } with j �= k the second partial derivative ∂2x j Gk exists
and is continuous;

(p8) for all k ∈ {1, . . . , N } the second partial derivative ∂2xk Gk exists on R
N \ Θk

and is continuous there.

The aim of this appendix is to prove the following theorem:

Theorem A.1 If GN ∈ C , then GN is invertible with G−1
N ∈ C .

Proof Let GN = (G1, . . . ,GN )� ∈ C . The Hadamard global inverse function theo-
rem states that under assumptions (p1), (p2), and (p3), GN is invertible with inverse
in C1(RN ,RN×N ). We denote HN = G−1

N and conclude

(p1) HN ∈ C1(RN ,RN×N );
(p2) for all xN ∈ R

d , det
(
H ′

N (xN )
) �= 0;

(p3) lim|xN |→∞ |HN (xN )| = ∞.

Let k ∈ {1, . . . , N } and fix values x1, . . . , xk−1, xk+1, . . . , xN ∈ R. As GN

has a global inverse, the mapping R � xk �→ Gk(x1, . . . , xN ) is invertible,
i.e., there is precisely one xk with Gk(x1, . . . , xN ) = 0. On the other hand,
Gk(x1, . . . , xk−1, 0, xk+1, . . . , xN ) = 0, and consequently we proved:

(p4) for all k ∈ {1, . . . , N } and all y ∈ Θk , we have Hk( y) = 0.

We note that, since HN ◦ GN is the identity on R
N

∂x j (Hk ◦ GN ) = δ j,k,

and therefore, using (p5) for GN , we have for xN ∈ Θk

δ j,k =
N∑

l=1

∂yl Hk ◦ GN (xN ) ∂x j Gl(xN ) =
N∑

l=1

∂yl Hk ◦ GN (xN ) δ j,l

= ∂y j Hk ◦ GN (xN ).

Now if yN ∈ Θk , then HN ( yN ) ∈ Θk , and therefore ∂y j Hk(y) = ∂y j Hk ◦
GN (HN ( yN )) = δ j,k . To summarise, we have shown:

(p5) for all j, k ∈ {1, . . . , N } and all yN ∈ Θk , we have ∂y j Hk( yN ) = δ j,k .

To prove (p6)–(p8), we first note that for any j, k ∈ {1, . . . , N }

∂y j Gk(HN ( yN )) =
N∑

l=1

∂xl Gk(HN ( yN ))∂y j Hl( yN ) = δ j,k,

and hence
(
∂y j Hl( yN )

)

l∈{1,...,N } =
(
(G′

N )−1(HN ( yN ))
)

j
,
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where the subindex denotes the j-th column of (G′
N )−1. The higher order regularity

properties of HN follow from this expression and the second order differentiability
properties of GN . ��
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