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Abstract
We present a low-rank greedily adapted hp-finite element algorithm for computing an
approximation to the solution of the Lyapunov operator equation. We show that there
is a hidden regularity in eigenfunctions of the solution of the Lyapunov equation which
can be utilized to justify the use of high order finite element spaces. Our numerical
experiments indicate that we achieve eight figures of accuracy for computing the trace
of the solution of the Lyapunov equation posed in a dumbbell-domain using a finite
element spaceof dimensionof only 104 degrees of freedom.Evenmore surprising is the
observation that hp-refinement has an effect of reducing the rank of the approximation
of the solution.
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1 Introduction

When dealing with non-local operators, low-rank approximation methods are turning
out to be a method of choice both for theoretical analysis as well as a foundation for
constructing highperformance numerical algorithms.Wewill concentrate onnon-local
operators defined as solutions to the continuous time Lyapunov operator equation with
a rank one operator as the right-hand side coefficient. This equation can be formally
written as

AX + X A = bb′ . (1.1)

Here we assume that A is an unbounded (differential) positive definite self-adjoint
operator in a Hilbert space and b′ is a functional on X = dom(A1/2), the domain
of the square root of A. A typical example of the operator A would be a reaction-
diffusion operator inH = L2(�). The formal expression (1.1) can be justified in the
framework of Gelfand triplets X ⊂ H ⊂ W where W = X ′ is the topological
dual of X and ‖ · ‖•, • = X ,H ,W denote the corresponding norms [20]. We use
the notation b∗ to denote the functional b∗ : H → C and b′ to denote the functional
b′ : X → C. Note that H and X do not have the same scalar product and so the
reason for the difference in notation. The notation b′ ∈ X ′ implies that we have not
identified X and X ′, whereas the notation b∗ assumes that H was identified with
its dual.

Under the assumption of the positive definiteness of A, the equation (1.1) has a
unique positive solution X ∈ L (H ). Furthermore, the fact that the operator bb′ is
of rank one implies that X is contained in every Schatten ideal Sp, p ∈ N, see [26].
In particular, this implies that the trace tr(X) is finite. This will be the quantity of
interest which we will monitor in the presented numerical experiments. The physical
relevance of tr(X) stems from the fact that it represents the total output energy of the
formal Cauchy system

ẋ = −Ax,

x(0) = b.

To see this, notice that the solution of this initial value problem is then given by the
formula x(t) = exp(−t A)b and then

E2 =
∫ ∞

0
‖x(t)‖2 dt =

∫ ∞

0
(x(t), x(t)) dt

=
∫ ∞

0
tr(x(t)x(t)∗) dt

= tr

(∫ ∞

0
(exp(−t A)b)(exp(−t A)b)∗ dt

)
= tr(X)

follows. A more common application of the Lyapunov equation is in the study of
the model order reduction for the linear control systems ẋ(t) = −Ax(t) + bu(t), by
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High order approximations of the operator Lyapunov… 1435

means of balanced truncation [1, 22]. We use precisely this context to justify the term
loading for the function b.

By ‖X‖ = √
spr(X∗X), where spr is the spectral radius of an operator, we denote

the operator norm of X . The main goal of this paper is to construct a low-rank
approximation Zr = ∑r

j=1 z j z
∗
j of X using a computationally efficient approxi-

mation method. For a given tolerance τ > 0 such an algorithm constructs Zr such that
‖Zr − X‖ ≤ τ and r is a small integer. In this paper we will be looking for r such that
for the given τ > 0 we have ‖Zr − X‖ ≤ τ and | tr(Zr ) − tr(X)| ≤ τ .

Let μ1(H) ≥ μ2(H) ≥ · · · denote the eigenvalues, counting by multiplicity, of
some compact self-adjoint operator H . For the solution X of (1.1) assume μr (X) >

μr+1(X) for some r ∈ N. The Weyl’s theorem [6, 36] for compact operators now
implies

|μi (X) − μi (Zr )| ≤ ‖X − Zr‖, i = 1, . . . , r .

Let now PEr be the orthogonal projection onto the eigensubspace belonging to the r
largest eigenvalues of X and let PZ be the orthogonal projection onto the subspace
Z = span{z1, . . . , zr }. The Davis-Kahan sin� theorem [8] yields the estimate

‖PEr − PZ ‖ ≤ 1

μr+1(X) − ρr (Z , X)
‖X − Zr‖,

where ρr (Z , X) is the Rayleigh Quotient, formally defined below. In the view of this
the space Z = span{z1, . . . , zr } can be seen as an approximation to the eigenspace
belonging to the r largest eigenvalues of X . In this paper we will interpret the low-
rank approximation problem for the Lyapunov equation as the subspace approximation
problem and use this context to assess the quality of the constructed vectors zi , i =
1, . . . , r . The algorithm which we will present will be formulated for the divergence
form operators posed in a polygonal planar domain. The vectors z j will be constructed
as elements of a low-dimensional space of continuous piecewise polynomial functions
[23].Wewill present our results, as far as possible, in their abstract form and specialize
to particular divergence form operators when presenting numerical examples. The
main theme of the paper is an interplay of the low-rank approximation methods based
on spectral calculus [11] and the utilization of the regularity of the eigenvectors of X
in the construction of higher order adaptive approximation methods [2, 23].

1.1 The novelty of the paper

We construct an a posteriori error estimator for an approximation to the solution of
the Lyapunov equation for the divergence form operator posed in a polygonal domain
in R

2. The estimator is based on the auxiliary subspace technique from [3]. We first
show that the estimator can be approximated by refining the auxiliary subspace. This
yields our first practical algorithm. Then, we present an analysis of the estimator
based on the perturbation theory for the Rayleigh Quotients from [37] combined with
the use of an eigenvalue saturation assumption from [25]. This yields an alternative
computable error indicator. We justify the use of the eigenvalue saturation assumption
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1436 L. Grubišić, H. Hakula

based on a perturbation argument, showing that the solution X is a small perturbation
of an operator with A-analytic eigenvectors. We test the estimator on a sequence
of graded meshes and observe that it correctly indicates the portions of the domain
where the mesh should be refined but also does not indicate those which are not
relevant for a particular solution. We also show that we observe exponential square
root convergence—even in the case of non convex polygonal domains—as we would
when approximating piecewise analytic functions in a domain of R2.

1.2 The outline of the paper

The rest of the paper is structured as follows: We will first in Sect. 2 introduce the
basic notation and present themotivating example. In Sect. 3we review the background
results on the approximation methods for the Lyapunov equation and present the result
on approximate A-analyticity of the eigenvectors of the solution operator. We then
introduce the basic conventions from the hp-finite element approximation theory in
Sect. 4. In Sect. 5 we present an a posteriori error indicator and a framework for an
analysis of its reliability.We then present a greedy hp-refinement strategy based on the
error balancing approach. We continue with further Numerical experiments in Sect.
6. A sketch of the theoretical result related to the case in which the forcing b ∈ X ′ is
such that ‖A−αb‖ < ∞ for some 0 ≤ α < 1/2 is outlined in the “Appendix A”.

2 Basic definitions and amotivating example

In this section we will present a motivating numerical example and introduce the basic
notation and results which are needed to interpret the result. This will in particularly
include the introduction of the regularity classes associated with an operator A and
the review of the perturbation analysis of the Rayleigh Quotient.

Let us recall the following definitions of the regularity classes defined by the positive
definite operator A, see [24, 30]. According to [30, Section 7.4] a vector is called the
infinite vector of the operator A if it is the element of the setA∞ = ∩n∈N dom(An). A
vector x ∈ A∞ is called an A-bounded vector if there exists a constant Bx > 0 such
that

‖Anx‖ ≤ Bn
x , n ∈ N0 ,

and we write x ∈ Ab. A vector x ∈ A∞ is called an A-analytic vector if there exists
a constant Cx > 0 such that

‖Anx‖ ≤ Cn
x n!, n ∈ N0 ,

and wewrite x ∈ Aa . It holds thatAb ⊂ Aa ⊂ A∞ and so eigenvectors of an operator
A are A-bounded vectors. The vector v = exp(−t A)b, for b ∈ H and t > 0, is an
example of an A-analytic vector, see [30, Example 7.5].

Let now � ⊂ R
2 be a bounded domain and let A be a divergence type positive

definite (elliptic and self-adjoint) operator in H = L2(�). Then we have a more
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detailed description of the regularity spaces. In the case in which A is a divergence
form operator with analytic coefficients and b is also analytic and � has at least a C2

regular boundary, an A-analytic function is an (real) analytic function in the classical
sense, and in particular the function v = A−1b is analytic in the interior of �, [24]. In
the case in which A is a divergence type operator with piecewise analytic coefficients,
b is piecewise analytic, and the boundary of � is also piecewise analytic the solution
v = A−1b is still infinitely differentiable. Further, the function v can be represented
as a sum of an analytic function and a function whose singularities are concentrated
at the corners. So even though we cannot control the growth of the derivatives in the
classical sense, the solution is contained in all weighted Sobolev spaces, where the
weighting function is the distance of a point to the corners of the domain [23].

The two prototype domains with the associated low-rank approximations to the
solution of the associated Lyapunov equation are presented in the following examples.
For the coefficients of the Lyapunov equation AX + X A = bb∗ we choose b(x1, x2)
to be the bell curve concentrated at (1/2, 1/2):

b(x1, x2) = exp

(
−δ

(
x1 − 1

2

)2

− δ

(
x2 − 1

2

)2
)

, δ > 0

and we take A to be the Laplace operator with the Dirichlet boundary conditions in
the corresponding domain �.

Example 2.1 (Ellipse) Let us choose the computational domain � as an ellipse. The
operator A in the Lyapunov equation (1.1) is taken to be the Laplace operator with the
zero Dirichlet boundary conditions and we set δ = 5 for the load vector b. This is the
regularity setting as in the classical paper by Nelson [24] and it ensures that A-analytic
vectors are real analytic functions. The solution X is remarkably of (numerical) rank=
2. See Fig. 1 for illustrations of the loading, the first column of X , and two eigenmodes
of X .

Example 2.2 (Dumbbell A) Let us consider a classical Laplace dumbbell problem
with computational domain� = ([0, 2.4]×[0, 1])\(([1, 1.4]×[0, 0.3])∪ ([1, 1.4]×
[0.7, 1])). We choose the operator A in the Lyapunov equation (1.1) to be the Laplace
operator with the zero Dirichlet boundary conditions and set δ = 50 for the load vector
b. The solution X is again of (numerical) rank = 2 and we see that the vectors z1 and
z2 are highly regular away from the corners of the domain. See Fig. 2 for illustrations
of the loading, the first column of X , and two eigenmodes of X .

We will analyze the eigenvalues of a positive compact operator H using variational
techniques. Let x ∈ H \{0} be given, then

ρ(x, H) = (x, Hx)

(x, x)
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1438 L. Grubišić, H. Hakula

(b)(a)

(c) (d)

Fig. 1 A representative example: An elliptic domain with an exponential bell curve concentrated at
(1/2, 1/2). The columns of X can be plotted and the first one is illustrated. In this case the operator
has numerical rank = 2, and the corresponding modes are shown. The dimension of the finite element space
is 104

is the Rayleigh Quotient of the vector x for the operator H . In the case in which we
are given a r -dimensional subspace Z ⊂ H we define the Rayleigh Quotients

ρi (Z , H) = max
S⊂Z
dimS=i

min
x∈S \{0}

(x, Hx)

(x, x)
.

Obviously, for the r dimensional subspace Z we have μi (H) ≥ ρi (Z , H), i =
1, . . . , r . We will now review some basic results on the Rayleigh Quotient analysis
from [15, 17, 37]. Let H : H → H be a positive compact operator and let u,
‖u‖ = 1 be an eigenvector so that Hu = μu, μ ∈ Spec(H). For a given non-zero
vector ψ ∈ H we have the estimate

|μ − ρ(ψ, H)| ≤ μ1(H) sin2(∠{ψ, u}) . (2.1)
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(a) (b)

(c) (d)

Fig. 2 A representative example: A dumbbell domain with an exponential bell curve concentrated at
(1/2, 1/2). The columns of X can be plotted and the first one is illustrated. In this case the operator
has numerical rank= 2, and the corresponding modes are shown. The dimension of the finite element space
is 104

This estimate is obviously very accurate for Rayleigh Quotients ρ(ψ, H) which are
close toμ1(H). This is precisely the setting in which we expect to find ourselves. This
bound has a subspace extension which can be used to treat eigenvalues with higher
multiplicities or clusters of eigenvalues, [15, 18]. We measure the distance between
finite dimensional subspaces X and Y using the concept of the principal angle. Let
PX and PY be the orthogonal projections onto X and Y respectively. The vector
of the sines squared sin2p �(X ,Y ) of the principal angles between X and Y is
defined using eigenvalues of the positive self-adjoint operator S = I − PX PY PX
as sin2p �i (X ,Y ) = μi (S). Since the operator S is a self-adjoint operator, we define
other trigonometric functions of the principal angles using spectral calculus.We define
the sine of the maximal principal angle as sin2 �(X ,Y ) = ‖I − PX PY PX ‖.

Under the assumption that μr (H) > μr+1(H), the crudest estimate from [18,
Theorem 2.2] reads

r∑
i=1

μi (H) −
r∑

i=1

ρi (Z , H) ≤ μ1(H)

r∑
i=1

sin2p �i (Er ,Z ) ≤ μ1(H)r sin2 �(Er ,Z ) .

Here Er denotes the eigensubspace associated to the eigenvaluesμi (H), i = 1, . . . , r .
This estimate implies, using [16, Lemma 5.5] and [35],
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1440 L. Grubišić, H. Hakula

r∑
i=1

μi (H) −
r∑

i=1

ρi (Z , H) ≤ μ1(H)

r∑
i=1

‖vi − zi‖2, (2.2)

where Xvi = μi (X)vi , and vi are an orthonormal set of vectors.

3 The Lyapunov equation

In this section we will review the low-rank approximation estimates for the solution
X of the Lyapunov equation (1.1). Also, we will review basic results on the projection
based approximation methods for the Lyapunov equation.

Given a Gelfand triple X ⊂ H ⊂ W of Hilbert spaces, where W = X ′ is the
dual space toX , we consider an unbounded operator A such that its range is inW and
its domain of definition is given by X = domW (A) = {x ∈ H : ‖Ax‖W < ∞}.
We let A′ : W → X ⊂ W denote the dual operator to A in the duality paring
〈·, ·〉 = 〈·, ·〉W ×X . Moreover, we consider a (not necessarily bounded) linear operator
B : U → W for a Hilbert space U with inner product

(·, ·)U .
The operators A, B give rise to the Lyapunov operator equation in a linear operator

X :

AX + X A′ = −BB ′, (3.1)

which formally stands for the variational formulation

〈
AXz1, z2

〉
W ×X + 〈

X A′z1, z2
〉
W ×X = b(z1, z2), z1, z2 ∈ X , (3.2)

with the sesquilinear form b(z1, z2) = −(
B ′z1, B ′z2

)
U . We refer to, e.g., [7, 14, 29]

for a more detailed discussion of this equation.
We now consider the situation when A is positive definite self-adjoint on H , and

in addition has a compact resolvent. We chooseW = H−1/2, which is equipped with
the scalar product (·, A−1·) = (A−1/2·, A−1/2·), and X = H1/2 = domH (A1/2).

Additionally, we assume that that the product A−1/2B is bounded. This is equivalent
to the assumption that

b(ψ, φ) = −b(A−1/2ψ, A−1/2φ)

is everywhere defined and bounded on H . The substitutions ψ = A1/2z1 and φ =
A1/2z2 then allow us to turn (3.2) into the equivalent equation

(
A1/2ψ, X A−1/2φ) + (X A−1/2ψ, A1/2φ) = b(ψ, φ), ψ, φ ∈ X . (3.3)
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3.1 Approximate A-analyticity of the eigenvectors

A result of [11] showed that in the case in which b ∈ H and A has the compact
resolvent the following estimate holds

‖X −
k∑

p=−k

ωp exp(−tp A)b(exp(−tp A)b, ·)‖ ≤ CSt‖b‖2
2λ1

exp(−π
√
k) . (3.4)

The constant CSt can be bounded to be less than 3, and given k ∈ N the weights ωp

and the nodes tp are given by an explicit formula (see [11])

tp = log(exp(pπ/
√
k) +

√
1 + exp(2pπ/

√
k))/(2λ1),

ωp = π/(2
√
k(1 + exp(pπ/

√
k)λ1) , (3.5)

for p = −k, . . . , k and λ1 denoting the smallest eigenvalue of A. This construction
can still be performed under the weaker assumption that only ‖A−αb‖ < ∞ for some
α, 0 ≤ α < 1/2. Under this assumption one needs to modify ωp and tp to reflect the
changed asymptotic (as t → 0) behavior of exp(−t A)b and the fact that we are using
a sinc quadrature formula for the sector rather than for the strip as was used in [11],
see [27]. For further details of this construction and for ramifications in the context of
this paper, see “Appendix A”. The assumption ‖A−αb‖ < ∞ also covers the standard
boundary control setting for the Lyapunov equation, see [20, 27].

The ramifications of this result are twofold. First it indicates that X can be repre-
sented by the sum of rank one operators and that the error decays exponentially in the
square root of the number of terms in the sum. But equally important is the second
consequence, the range of the operator

Xk =
k∑

p=−k

ωp
(
exp(−tp A)b

)
(exp(−tp A)b, ·) (3.6)

is finite dimensional and it is spanned by the A-analytic vectors vp = exp(−tp A)b.

Proposition 3.1 Assume A is self-adjoint and positive definite and let τ > 0 be given.
By X denote the unique self-adjoint and positive solution of (3.2). Then there exist
numbers r and k such that

| tr(X) −
r∑

i=1

μi (Xk)| ≤ τ tr(X)

and eigenvectors ûi �= 0, Xk ûi = μi (Xk)ûi are A-analytic.
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1442 L. Grubišić, H. Hakula

Proof Since X is trace class, there exists a number r such that | tr(X)−∑r
i=1 μi (X)| ≤

(τ tr(X))/2. Further, let k ∈ N be the smallest k such that

‖X − Xk‖ ≤ CSt‖b‖2
2λ1

exp(−π
√
k) ≤ τ

2r
tr(X)

then

| tr(X) −
r∑

i=1

μi (Xk)| = | tr(X) −
r∑

i=1

μi (X) +
r∑

i=1

μi (X) −
r∑

i=1

μi (Xk)|

≤ (τ tr(X))/2 +
r∑

i=1

|μi (X) − μi (Xk)|

≤ (τ tr(X))/2 + (τ tr(X))/2 .

The last inequality follows by the use of the Weyl’s theorem which implies

|μi (X) − μi (Xk)| ≤ ‖X − Xk‖ ≤ τ/(2r) tr(X) ,

from which the final estimate follows by summing over i . ��
Wecan interpret (3.4) as a substitute regularity result. If we consider the actual operator
X as a perturbation of the operator Xk then we can say that with exponentially (in

√
k)

decaying tolerance the eigenvectors of X are close toAa eigenvectors of the operator
Xk . This in turn implies that a high ordermethod, such as an hp-adaptive finite element
method for operators posed inH = L2(�) might be able to exploit this regularity to
construct a high performance solver which will mix low-rank numerical linear algebra
with full finite element piecewise polynomial adaptivity. Also, this indicates that we
might view the low-rank approximation task as a task of computing the approximation
to the r dominant eigenvalues of the operator X .

3.2 Galerkin approximation of the Lyapunov equation

We will first present abstract approximation results. Let A be positive definite and
self-adjoint operator with a compact resolvent. Let us further assume that we have
constructed a sequence of finite dimensional subspaces Vs ⊂ X = dom(A1/2),
s ∈ N such that Vs1 ⊂ Vs2 for s1 < s2 and the orthogonal projections Ps onto Vs

converge strongly to the identity operator as s → ∞.
According to [20, Section 4.1.2 and Section 5], the Galerkin projection As : Vs →

Vs is given by the formula

As = (A1/2Ps)
∗(A1/2Ps).

It holds that

‖A−1
s Psv − A−1v‖dom(A1/2) ≤ 2‖(I − Ps)A−1v‖dom(A1/2) , (3.7)
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and furthermore ‖A−1
s Ps − A−1‖ → 0. For more on the convergence of discrete

operator approximations see [20, Section 4] and classical references [6, 28]. With this
notation we define the operator Xs : Vs → Vs—in a generic situation when instead
we have some finite element subspace V we tacitly write XV —as the solution of the
finite dimensional operator equation

As Xs + Xs As = −(Psb)(Psb)
∗ . (3.8)

Under additional assumptions on the uniformity of the sequence Ps , a general result
from [20, Theorem 4.1.4.1] states that ‖Xs Ps − X‖ → 0. The precise formulation of
the convergence result is quite technical. Intuitively it could be condensed to checking
that the Galerkin projections As are uniformly coercive in s and that the orthogonal
projections onto Vs converge strongly to identity in a monotone way (in the Loewner
order) and at a guaranteed rate. An example of spaces for which these assumption hold
are spaces associated with a hierarchical finite element scheme defined on a quasi-
uniform grid. For further details see [20, Section 5.2] where the convergence rates
are established for the specific case when Vs are spaces of piecewise linear functions
and A is the Laplace operator posed in a polygonal domain. Since both Xs and X
are bounded operators, norm convergence implies that the eigenvalues converge with
multiplicity and that the associated spectral projections converge in norm.

For practical computations we typically do not have an access to an orthonormal
basis of the space Vs . One either has to solve a linear system in order to compute
the action of the orthogonal projection Ps or seek a computationally more efficient
and stable alternative. Simply, the problem (3.8) can be rephrased as a generalized
Lyapunov equation, which is obtained by dropping the requirement for an access to
an orthonormal basis of Vs . We pay for this flexibility by the introduction of the Gram
matrix Ms of the chosen (non-orthonormal) basis of Vs . The matrix Ms is called
the mass matrix and the equation (3.8) takes the form of the generalized Lyapunov
equation

KsYsMs + MsYsKs = −(Msb)(Msb)
∗ . (3.9)

Here Ks and Ms are the finite element stiffness and the mass matrix and b is the
matrix representation of the load vector b in the chosen finite element basis of Vs ,
see [21, 33]. Let us note that the finite dimensional operator Xs is represented as the
pencil (MsYsMs, Ms) and so the generalized eigenvalue of the pencil coincide with
the eigenvalues of Xs .

The generalized Lyapunov equation (3.9) can be efficiently solved by a projection
iterativemethod. Ourmethod of choice is the projection onto the extendedKrylov sub-
space generated by A and b. This is implemented in MATLAB as the kpik algorithm
of Simoncini [32]. See also [19] for a possibility to solve such operator equations even
when the systems are so large that computing the action of A−1 by a sparse direct
solver is not feasible.
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3.3 Measuring the residual of a low-rank approximation of a Lyapunov equation

Given zi ∈ X let Ŷr = ∑r
k=1 zi z

∗
i be as before. Its Lyapunov equation residual is the

sesquilinear form

r(ψ, φ) =
r∑

i=1

[(
ψ, A1/2zi )(A

−1/2zi , φ) + (A−1/2zi , ψ)(A1/2zi , φ)
]

−(ψ, A−1/2b)(A−1/2b, φ),

for ψ, φ ∈ H . This form is bounded onH , it is of finite rank of at most 2r + 1 and
there exists a unique operator R(Ŷr ) such that

r(ψ, φ) = (ψ, R(Ŷr )φ) .

Subsequently, the solution Y = X − Xr of the equation

(
A1/2ψ,Y A−1/2φ) + (Y A−1/2ψ, A1/2φ) = r(ψ, φ)

can be estimated by

‖X − Xr‖ ≤ 1

2
sup

ψ �=0,φ �=0

|r(ψ, φ)|
‖ψ‖‖φ‖ = 1

2
‖R(Xr )‖ .

Furthermore, Y = X − Xr is contained in every Schatten ideal, since r is of finite
rank.

Let us now formulate an approximation result which might serve as means to
construct an approximation to the size of the residual.

Proposition 3.2 Let z ∈ X be given and let the sequence of orthonormal projections
Ps be such that Psz = z for all s > 0 and let Ps → I strongly. Define

rs(ψ, φ) = (
ψ, A1/2

s z)(A−1/2
s z, φ) + (A−1/2

s z, ψ)(A1/2
s z, φ) − (ψ, A−1/2

s bs)(A
−1/2
s bs , φ)

then ‖Rs(zz∗)−R(zz∗)‖ → 0 as s → ∞. The operator Rs(zz∗) is a bounded operator
representing the form rs and bs = Psb.

Proof Given x, y ∈ H it follows that

‖xx∗ − yy∗‖ ≤ 2max{‖x‖, ‖y‖}‖x − y‖ (3.10)

and so the strong convergence of x → y implies the norm convergence of xx∗ to yy∗.
Now,

rs(ψ, φ) = (ψ,
[
(A1/2

s z)(A−1/2
s z)∗ + (A−1/2

s z)(A1/2
s z)∗ − (A−1/2

s bs)(A
−1/2
s bs)

∗]φ)

and the conclusion follows from the norm resolvent convergence of As to A and the
estimate (3.10) for the norm convergence of the rank one operators. ��
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Fig. 3 Geometrically graded
mesh. At every reentrant corner
the mesh has been graded by
applying the replacement rule
for  times. Here  = 8

(a)

(b)

4 p and hp finite element discretization

As mentioned above, it is crucial to use high order FEM to exploit the regularity of
the solution. In this section we give a general overview of the hp solver at our disposal.
We emphasize that the techniques described here can be applied in general curvilinear
setting without any modification. However, we state the families of finite element
spaces only in the case of domains partitioned into triangles and quadrilaterals.

Let � ⊂ R
2 be a open, bounded domain, with Lipschitz boundary ∂�, H ⊂

H1(�), and let T = {T } be a conforming partition of � into convex (curvilinear)
triangles and quadrilaterals, which we call a mesh or triangulation, see Fig. 3. We do
not impose any restriction on the number of curved edges. Any curved elements are
handled using standard blending function techniques (cf. [34]).

For a given element T and non-negative integer m, we define the local polynomial
space Qm(T ) as follows. If T is a triangle, then Qm(T ) consists of the polynomials
of total degree ≤ m, so dimQm(T ) = (m + 2)(m + 1)/2. If T is a quadrilateral, then
Qm(T ) consists of polynomials of degree ≤ m in each variable, so dimQm(T ) =
(m + 1)2.

For a given triangulation, T , let p : T → N be a function that assigns a pos-
itive integer to each element T ∈ T . This map is called a p-vector. We define the
corresponding finite element space

V = V (T ,p) = {v ∈ X : v|T ∈ Qp(T )(T ) for all T ∈ T } . (4.1)

We note that V ⊂ C(�).
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LetF = {T} be a family of nested meshes obtained from successive refinements
of an initial coarse mesh, where the index  ≥ 0 refers to a refinement level. To
account for possible singular points at points on the boundary where there are non-
convex corners, we apply a geometric grading of element sizes toward singular points
that takes into account this a priori knowledge [31, Section 4.5]. Beginning with a
coarse mesh T0 in which the vertex graph distance between singular points (i.e., the
minimal number of edges in a path connecting these points) is at least two, the mesh
grading approach is implemented using element-level replacement rules employing
exact geometry description as described in [13]. The element layers are created by
nested application of replacement rules on every element touching a singular point.
At each step, only the elements touching the singular point created at the previous one
are refined making the bookkeeping of the layers simple. This is illustrated in Fig. 3.
Notice that these replacement rules need not be the same at different levels, since a
rule for a quadrilateral element may result in a triangle touching the singular point.

Given such a family of meshes, we distinguish two families of finite element spaces
defined on them. We refer to the first as the p-method family because it uses a fixed
polynomial degree for every element in the mesh. For this family, the polynomial
degree p is chosen and applied to each element in the pth mesh in the family,Tp ∈ F ,
i.e. p(T ) = p for all T ∈ Tp. We denote the finite element spaces in this family by
V1,p, and use 1 ≤ p ≤ 8 for our experiments. We note that the spaces are nested,
V1,p ⊂ V1,p+1.We refer to the second family as the hp-family because it uses variable
polynomial degrees in the mesh. For the second family, given a polynomial degree
p, the mesh Tp is chosen as in the first family, but polynomial degrees are no longer
assigned uniformly throughout the mesh. All elements touching a singular point are
assigned polynomial degree 1, the next layer of elements are assigned polynomial
degree 2, and so on, until polynomials of degree p are achieved at the pth layer. Any
elements that are greater than p layers away from all singular points are also assigned
polynomial degree p. The initial mesh and refinement scheme ensures that there is
no ambiguity in how polynomial degrees are assigned to each element. We denote
the finite element spaces in this by V2,p, using 1 ≤ p ≤ 12 for our experiments. As
before, the spaces are nested, V2,p ⊂ V2,p+1, and we also note that V2,p ⊂ V1,p.

For the hp-family it is necessary to construct the local basis functions in such a
way that varying the local polynomial order still results in a continuous formulation.
We distinguish between three types of polynomial functions on an element: vertex
functions, which vanish on all vertices except one; edge functions, which vanish on
all edges except one; and element functions (interior bubble functions), which vanish
on all edges. On the global (mesh) level, vertex functions are supported in the patch
of elements sharing that vertex, edge functions are supported in the (one or two)
elements sharing an edge, and element functions are supported in a single element. It
is this distinction between the types of polynomial functions that enables one to build
elements in which the degrees of the element functions may differ from those of the
edge functions, and the degree used on one edge may differ from that used on another.
In fact, this is precisely what is done in the hp-family, V2,p, to allow for variable
p(T ). In particular, when T and T ′ are adjacent elements whose assigned polynomial
degrees differ by one, say p(T ) = m and p(T ′) = m + 1, the polynomial degree of
the edge functions associated with their shared edge is taken to be m + 1.
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5 A greedy auxiliary subspacemesh refinement

In what follows we will assume that we have a sequence of spaces Vs = Vls ,ps such
that Vs1 ⊂ Vs2 for s1 < s2 and Ps → I strongly as s → ∞. Further, we will assume
that A is a divergence type operator with analytic coefficients and posed in a polygonal
domain �. We will use the notation X for the solution of the Lyapunov equation (3.2)
and Xs will be the solution of the Lyapunov equation projected onto the subspace Vs .
The Xk will denote the operator (3.6), which is the function of the operator A.

In this section we aim to present error indicator which will be shown to be con-
verging to the error estimate in the sense of Proposition 3.2. We will also show what
role approximate A analyticity of the eigenvectors of X might play. Also note that
Proposition 3.2 gives a computable approximation of the error estimator. Namely the
operator Rs(Zr ) is representable as a short sum of rank one operators and so its max-
imal singular value can be efficiently computed by a standard iterative procedure.
However, we will now take an alternative avenue, but before we do so, let us present
an extension to Proposition 3.1.

Theorem 5.1 Let r ∈ N be given such that μr (X) > μr+1(X) and let b ∈ H . Then
for Z = span{z1, . . . , zr } ⊂ V and zi , i = 1, . . . , r pairwise orthogonal and of
norm one, we have, for i = 1, . . . , r , the estimate

|μi (X) − ρ(zi , Xk)| ≤ CSt‖b‖2
2λ1

exp(−π
√
k) + ‖b‖2(1 + CSt exp(−π

√
k))

2λ1
‖ũi − zi‖2 .

Here ũi , ‖ũi‖ = 1 are A-analytic eigenvectors such that μi (Xk) = (ũi , Xkũi ) .
Further, we have

‖μi (X)uiu
∗
i − ρ(zi , Xk)zi z

∗
i ‖ ≤ CSt‖b‖2

2λ1
exp(−π

√
k)

+‖b‖2(1 + CSt exp(−π
√
k))

2λ1

[
‖ũi − zi‖2 + ‖ũi − zi‖

]
.

Proof The proof follows by combining Proposition 3.1 and estimate (2.2). Recall that
Xk is a positive self-adjoint operator, and then using (2.2) compute

|μi (X) − ρ(zi , Xk)| ≤ |μi (X) − μi (Xk)|
+|μi (Xk) − ρ(zi , Xk)|

≤ CSt‖b‖2
2λ1

exp(−π
√
k) + ‖Xk‖‖ũi − zi‖2 .

To finish the proof we need to estimate ‖Xk‖ by an a priori bound. To this end, let ψi

be an orthonormal system of eigenvectors of the self-adjoint and positive operator A.
Then, see also [11, Equation (3.2)],

‖Xk‖ ≤ ‖X‖ + ‖Xk − X‖
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and

|(ψi , Xψ j )| = |(ψi , b)||(b, ψ j )|
λi + λ j

≤ |(ψi , b)||(b, ψ j )|
2λ1

follows. We now compute

‖X‖ ≤ √
tr(X∗X) ≤ 1

2λ1
‖b‖2.

and then conclude

‖Xk‖ ≤ 1

2λ1
‖b‖2(1 + CSt exp(−π

√
k)) .

The last inequality of the theorem follows by combining the estimate for |μi (X) −
ρ(zi , Xk)| and the estimate (3.10). ��

This theorem indicates that in the case of A being the divergence type operator with
analytic coefficients and posed in the polygonal domain the functions ũi are going to
be infinitely differentiable functions which are also A-analytic. For such functions
there exist constants Ci > 0 and γi > 0 such that

min{‖ũi − z‖ : z ∈ Vls ,ps } ≤ Ci exp(−γi

√
dim(Vls ,ps )) . (5.1)

Subsequently one concludes—using the second inequality of Theorem 5.1 r times—
that there exists a rank r of approximation X , whose eigenvectors will belong to the
space Vls ,ps and the eigenvalues will approximate the eigenvalues of the operator
X—in the sense of Theorem 5.1—with the a priori estimate of the form (5.1).

We now present an analysis of our approximation of the a posteriori error estima-
tor. It is based on the norm convergence of the solutions of the projected Lyapunov
equations. Given that the operator A is self-adjoint and that the sequence of sub-
spaces is monotonic we conclude, based on [20, Section 4.1.2 and Section 5], that
‖X − Xs‖ → 0. Then a simple calculation shows that for a given s1 and for each
ε > 0 exists s2 > s1 such that

‖X − Xs1‖ ≤ (1 + ε)‖Xs2 − Xs1‖.

In the case in which Xsi = ∑r
j=1 z

(si )
j (zsij )

∗, i = 1, 2 we have, using (3.10), the
estimate

‖X − Xs1‖ ≤ (1 + ε)‖Xs2 − Xs1‖

≤ (1 + ε)max{‖z(si )j ‖ : i = 1, 2, j = 1, . . . , r}
r∑
j=1

‖z(s2)j − z(s1)j ‖ . (5.2)
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In the case of A being a divergence type operator and Vs = Vls ,ps , we might take
Vs1 = Vls1 ,ps1

and Vs2 = Vls1 ,ps2
. That is to keep the refinement level ls constant and

studying the pure p refinement for improving the auxiliary subspace.
We now argue that instead of the auxiliary subspace adaptively we opt for a fixed

refinement by uniformly increasing the polynomial degree by two. This argument will
be partly heuristic.

A more refined information on the error can be obtained if one interprets the low-
rank approximation task in the context of spectral approximations, as was done in
Proposition 3.1. Recall the estimate (2.1), which according to [15, 18]—in the case in
which ψ and u are of norm one—implies

|μ − ρ(ψ, H)| ≤ μ1‖ψ − u‖2 .

Since we typically do not have access to the vector u, we will use the auxiliary
subspace technique from [3, 12] in a combination with the saturation assumption to
approximate ‖u − ψ‖. Let us demonstrate the auxiliary subspace error estimation
for the interpolation error. Let V ⊂ V aux ⊂ H be two finite element spaces and
let H be an appropriate Sobolev space. Note that in this section uaux will not be
denoting the duality paring for u, but rather that uaux is an element of V aux for some
function u. Then for the finite element approximation ψ ∈ V of the solution u ∈ H
we can define the approximate error function ε ≈ u − ψ by projecting the error
u−ψ onto the space V aux� = V aux �V . With this we immediately get the efficiency
bound ‖ε‖ ≤ ‖u − ψ‖ and the reliability bound is obtained as a combination of the
strong Cauchy inequality for the subspace V aux� and the saturation assumption for the
subspace V aux . In the context of the eigenvalue problem, a saturation assumption for
analyzing the eigenvalue approximation error has been used in [25].We will adapt this
assumption to the case of a compact operator. Assuming we are interested in the top
r eigenvalues of some compact operator H , the saturation assumption holds if there
is a constant 0 ≤ γ < 1 such that

μi (H) − ρi (V
aux , H) ≤ γ (ρi (V

aux , H) − ρi (V , H)), i = 1, . . . , r .

It was then shown in [25] that this is equivalent to stating

(μi (H) − ρi (V , H)) ≤ 1

1 − γ
(ρi (V

aux , H) − ρi (V , H)). (5.3)

This statement is adapted here from the case of an unbounded operator with a
compact resolvent, which was considered in [25].

Remark 5.1 As the spaces V and V aux , for practical hp-finite element computations,
we choose the given hp-space and the hp-space obtained on the samemesh by increas-
ing the polynomial degree by two.
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Fig. 4 The approximate error
function. ε1 = ûaux1 − û1, with
ûaux1 and û1 at p = 6 and p = 4,

respectively. Elemental L2-error
of ε1 distributed over the mesh,
relative scale over [0, 1]

Proposition 5.1 Let the saturation assumption hold for the eigenvalues of some posi-
tive compact operator H. Then

μi (H) − ρi (V , H) ≤ μ1(H)

1 − γ
‖ûauxi − ûi‖2

where ûauxi , ‖ûauxi ‖ = 1 is a vector such that ρi (V aux , H) = (ûauxi , Hûauxi ) and ûi ,
‖ûi‖ = 1 is such that it verifies ρi (V , H) = (ûi , Hûi ).

Proof The result of Knyazev [37] implies

∣∣ρi (V aux , H) − ρi (V , H)
∣∣ ≤ ρ1(V

aux , H)‖ûauxi − ûi‖2
≤ μ1(H)‖ûauxi − ûi‖2 (5.4)

where ûi , ‖ûi‖ = 1 is such that ρi (V , H) = (ûi , Hûi ). The statement of the theorem
follows when one combines (5.4) with (5.3). ��

Our greedy strategy for mesh refinement for such operators is to refine those trian-
gles where the restrictions of the functions εi = ûauxi − ûi , i = 1, . . . , r are above a
given threshold. One sees on Fig. 4 how ε1 picks out the elements near the first two
reentrant corners for refinement, but not the second two.

Corollary 5.1 Let r ∈ N be given such that μr (X) > μr+1(X), b ∈ H . Given
k ∈ N, and let 0 ≤ γ < 1 be the saturation constant for Xk. Then for Z =
span{z1, . . . , zr } ⊂ V and zi , i = 1, . . . , r pairwise orthogonal and of norm one, we
have the estimate

|μi (X) − ρ(zi , Xk)| ≤ CSt‖b‖2
2λ1

exp(−π
√
k) + ‖b‖2(1 + CSt exp(−π

√
k))

2λ1(1 − γ )
‖ũ′

i − zi‖2 .

Here ũ′
i , ‖ũ′

i‖ = 1 are such that ρi (V aux , Xk) = ρ(ũ′
i , Xk) .
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Proof Let 0 ≤ γ < 1 be the saturation constant for Xk , then

|μi (X) − ρ(zi , Xk)| ≤ |μi (X) − μi (Xk)| + |μi (Xk) − ρ(zi , Xk)|
≤ |μi (X) − μi (Xk)| + ‖Xk‖

1 − γ
‖ũk′

i − zi‖2 .

The proof follows using the estimate from Theorem 5.1. ��

Remark 5.2 Let us first address the assumptions of Proposition 5.1 and Corollary 5.1.
Recall that Xk is the function of the operator A. The eigenvalue saturation assumption
with 0 ≤ γ < 1 for operator H = Xk in the case in which A is a divergence type
operator with analytic coefficients can be justified in the same way as it was done
[25]. Namely, Neymeyer argues in [25, Section 4] that the saturation assumption with
γ < 1 holds for the Laplace eigenvalue problem and V being chosen as the space of
piecewise linear functions andV aux as the space of piecewise quadratic functions. The
argument rests on the fact that eigenfunctions of the Laplace operator are harmonic
and a harmonic function whose restriction to the open set of positive measure is zero is
a zero function. Equivalently, eigenfunctions of the operator Xk are analytic functions,
this follows from Nelson [24] for this particular class of operators, and so the same
argument holds. Note that this does not necessarily imply that 1/(1 − γ ) is small,
only that it is finite. Further more detailed analysis would be needed to assess the size
of γ or to prove that it only depends on the shape regularity of the triangulation and
possibly on the polynomial degree. For similar considerations in the context of the
eigenfunction approximations of an unbounded operator see [10].

Note thatwe substitute ûauxi , the i-th eigenvector of XV1—the solution of theLyapunov
equation projected onto V aux . We could quantify, in principle, the error ‖ûauxi − ũ′

i‖
by a direct perturbation analysis. The operators Xk are given by an explicit formula
and the action of Xk onto a vector is in principle computable using contour integration
techniques from [4, 5, 9]. This analysis would however be quite technical, would
require additional technical apparatus and the estimates will likely be unnecessarily
pessimistic. For instance, estimates from [4, 5] are only valid for quasi-uniformly
refinedmeshes and low order finite elements. They also depend on the approximability
of the loading vector b, even though the eigenvectors of the operator Xk are A-analytic
for any b ∈ H . An extension to higher order finite elements is plausible, but would
require extended technical work which is beyond the scope of this paper. Even then,
the constant 1/(1 − γ ) can potentially be very large and the overall estimate would
be quite pessimistic. Instead, we opted to make a heuristic choice and monitor only
‖ûauxi − ûi‖. We will report on the numerical experiments where we will compare
‖ûauxi − ûi‖2 with the error in the i-th eigenvalue. Note also that Proposition 3.2
gives further justification, or an alternative interpretation, for estimating the residual
from an auxiliary subspace. We can compute the norm ‖Rs2(

∑r
i=1 ûi û

∗
i )‖ by a data

sparse SVD computation. Instead of going down this avenue, we can observe that∑r
i=1 ‖ûauxi − ûi‖ is an estimator of this norm and this is the approach which we take

(Fig. 5).
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Fig. 5 Convergence of
‖ûaux1 − û1‖2 (solid line) and
|μ1(X)−μ1(Xr )| (dashed line),
as p = 1, . . . , 6, on a graded
mesh with constant p at  = 4

(a)

(b)

6 Numerical experiments

We will now present an example with a loading b which is not a separable function.
Bearing inmind the a priori error estimate (5.1), wewill be presenting the convergence
plots in which the logarithm of the error will be on the y axis and

√
N , N = dim Vl,p

on the x axis. A straight line plot in this coordinate system implies the convergence
of the order O(exp(−γ

√
N )), for some γ > 0. We will see that we observe such

convergence—if with a smaller γ—even for the domain with reentrant corners and a
less regular b.

Example 6.1 (Dumbbell B) Let us consider a classical Laplace dumbbell problem
with computational domain� = ([0, 2.4]×[0, 1])\(([1, 1.4]×[0, 0.3])∪ ([1, 1.4]×
[0.7, 1])). We chose the operator A in the Lyapunov equation

AX + X A∗ = −bb∗

to be the Laplace operator with the zero Dirichlet boundary conditions. The function
b(x1, x2) is taken to be the indicator function:

b(x1, x2) = ind{|x1 − 1/2| + |x2 − 0.45| ≤ 1/4}.

The solution X is remarkably of numerical rank = 2. See Fig. 6 for illustrations of the
function b, the first column of X , and the two dominant eigenmodes of X .

In our numerical experiments we quantify more precisely the performance of the p-
and hp-discretizations of Examples 2.2 (Dumbbell A) and 6.1 (Dumbbell B). In both
examples the configuration is exactly the same except for the loading which is smooth
in Example 2.2 and discontinuous and not symmetric with respect to the domain in
Example 6.1. The two quantities of interest are the sum of eigenvalues of the solution
X and the rank of X .
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The mesh grading strategy described in Sect. 4 is used in two different sets of
experiments for both examples. First, we consider levels  = 0, . . . , 8, and for every
 we compute the solutions for all (constant) p = 1, . . . , 8. Here  = 0 means that
the background mesh is used without any refinements, this is sometimes referred to
as the “pure p-version”-approach. Second, we compute a proper hp-sequence, where
as  = 1, . . . , 11, we compute the p-vector p using maximal p =  + 1. The final
solution of the hp-sequence is taken as the reference solution.

For every individual experiment the quantities of interest have been computed.

6.1 Convergence in eigenvalues

The observed convergence in the relative error in the sum of eigenvalues
∑

i λi is
illustrated in Figs. 7 and 8. In both cases an overall picture over the set of experiments
is given with a detail plot indicating the region where the loss of convergence rate is
observed. As expected, the hp -discretization is the most efficient one in both cases.
Interestingly, the effect of the singularities is evident especially if one focuses on the
levels  = 0 and  = 2, where it is evident that if the geometric grading is not taken to
sufficiently high level, there is a loss of convergence rate. On the other hand, for the
p-discretization, there appears to be an optimal level (here  = 4) beyond which the
observed rate does not increase, yet the constant does. This is the reason why for the
Dumbbell B the p = 6, 8 graphs have been omitted.

6.2 Asymptotic behavior of the numerical rank

More unusual error measure is the observed numerical rank of the solution. This is
meant in the sense of the Proposition 3.1 with τ = 10−8. At first one could suspect that
the results of Tables 1 and 2 are a simple consequence of keeping the tolerances of the
kpik -algorithm constant even as the dimensions of the cases increase. However, by
comparing the observed ranks with the numbers of degrees of freedom in Figs. 7 and 8
it is clear that this connection does not explain these results. The connection between
the levels  and the polynomial order p indicates that the key here is the accurate
capturing of the effects due to the singular points. Nicely tying with the discussion
above, again the  = 4 appears to be the level where the singularities are first captured.

It is clear that for the discontinuous loading (Dumbbell B) the observed ranks are
slightly higher than those for Dumbbell A with smooth loading.

For a qualitative view of the reduction in rank, in both Figs. 9 and 10 two sets of
eigenmodes from the hp-sequence corresponding to  = 3 and 4 are shown. Consid-
ering the 3D-plots of Fig. 2 for Dumbbell A, one can see that the superfluous modes
(Fig. 9c, d) have features that are ultimately subsumed to the second mode. The expla-
nation here is that the singularities pollute the solution and this results in modes with
very small eigenvalues. For the Dumbbell B the situation is even more interesting. In
fact, the both final two modes have ghost modes at  = 3. Here the eigenvalues are

λB
=3 = {1.4 × 10−3, 1.1 × 10−4, 6.7 × 10−6, 1.2 × 10−6, 3.3 × 10−7, 8.5 × 10−8},
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(a) (b)

(c) (d)

Fig. 6 A dumbbell domain with an indicator function loading. The columns of X can be plotted and the
first one is illustrated. In this case the operator has numerical rank = 2, and the corresponding modes are
shown

Fig. 7 Dumbbell A: Effect of the
mesh grading. Relative error in
the sum of eigenvalues versus
the number of DOFs. For every
indicated level  the error is
computed for a constant
p = 1, . . . , 8. The reference
solution (solid black line) is the
hp-sequence with the proper
p-vector p for levels
 = 1, . . . , 11

Fig. 8 Dumbbell B: Effect of the
mesh grading. Relative error in
the sum of eigenvalues versus
the number of DOFs. For every
indicated level  the error is
computed for a constant
p = 1, . . . , 8. The reference
solution (solid black line) is the
hp-sequence with the proper
p-vector p for levels
 = 1, . . . , 11
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Table 1 Dumbbell A: Observed
ranks

p p

1 2 3 4 5 6 7 8 –

(a) p version (b) hp version

 

0 5 6 6 6 6 5 5 4 0 5

1 5 6 6 5 5 5 2 2 1 6

2 5 6 4 2 2 2 2 2 1 6

3 5 3 2 2 2 2 2 2 3 4

4 6 2 2 2 2 2 2 2 4 2

5 5 2 2 2 2 2 2 2 5 2

6 3 2 2 2 2 2 2 2 6 2

7 2 2 2 2 2 2 2 2 7 2

8 2 2 2 2 2 2 2 2 8 2

The row index is the refinement level  and the column index is the
(constant) polynomial order p or the p-vector p

Table 2 Dumbbell B: Observed
ranks

p p

1 2 3 4 5 6 7 8 –

(a) p version (b) hp version

 

0 5 8 8 9 7 4 2 2 0 5

1 7 8 8 8 7 3 2 2 1 8

2 7 7 6 3 2 2 2 2 2 8

3 7 5 3 2 2 2 2 2 3 6

4 6 3 2 2 2 2 2 2 4 2

5 5 2 2 2 2 2 2 2 5 2

6 2 2 2 2 2 2 2 2 6 2

7 3 2 2 2 2 2 2 2 7 2

8 2 2 2 2 2 2 2 2 8 2

The row index is the refinement level  and the column index is the
(constant) polynomial order p or the p-vector p

and

λB
=4 = {1.5 × 10−3, 2.1 × 10−5},

indicating the this “summation of modes” is also reflected in the eigenvalues as well.
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(a) (b) (c) (d)

(e) (f)

Fig. 9 Dumbbell A: Decreasing rank: Qualitative view via plots from the hp-sequence. As indicated in
Table 1b, the numerical rank changes from 4 to 2 as the level  changes from 3 to 4. As the corner
singularities are better captured the two superfluous modes are subsumed into the second mode

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 Dumbbell B: Decreasing rank: Qualitative view via plots from the hp-sequence. As indicated in
Table 2b, the numerical rank changes from4 to 2 as the level  changes from3 to 4.As the corner singularities
are better captured the first twomodes and the following four at  = 3 are subsumed into the first and second
mode at  = 4, respectively

7 Conclusions

In this paper we have presented the approximate, controlled by a threshold on the
numerical rank, regularity structure of the solution operator to the operator Lyapunov
equation.We point out the following consequence of the use of the threshold parameter
to define the numerical rank—the dominant eigenvalues of the solution X can be seen
to form the cluster. We are not computing the average of this cluster as is done in he
work of Osborn [28]. We instead compute and track the asymptotic behavior of the
sum of the clustered eigenvalues, as is done more generally in majorisation estimates
from [17]. In this sense our high order greedy adaptivity strategy constructs a subspace
which captures the trace better (not the multiplicity) than a standard approximation
which is oblivious of the regularity of the eigenfunctions associated to the cluster of
eigenvalues forming the trace. The subspace which we constructed is much smaller
than the one which the Theorem 5.1 assumed. Yet, even with such a crude approach
we still had exponential (but slower than optimal) convergence in the number of
the finite element degrees of freedom due to the robust regularity structure of the
approximate operators Xk . The future work will be focused on more singular right
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hand sides (like boundary forcing) and in tighter analysis of the regularity structure of
the eigenfunctions of the solution operator X .
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A Sketch of the result in the general case

In this “Appendix” we will briefly outline the case in which the forcing b ∈ X ′ is such
that ‖A−αb‖ < ∞ for some 0 ≤ α < 1/2. The results of Opmeer from [27] allow
for the treatment of the case of the sectorial, not necessarily self-adjoint, generator A.
The low rank construction in this case depends on the angle of the sector where the
resolvent is analytic, see [27]. In order to be explicit in the presentation of the results,
we will concentrate on the case of the self-adjoint and positive definite A. For every
t > 0 the vector

vs = exp(−t A)(A−αb)

is an A-analytic vector and so in particular for every n ∈ N the vector vs verifies vs ∈
dom(An) ⊂ dom(A) ⊂ dom(Aα) and we conclude ‖Aαvs‖ < ∞. Subsequently,

v = Aαvs = Aα exp(−t A)(A−αb) =: exp(−t A)b

Furthermore, ‖Anv‖ < ∞ for any n ∈ N and so the vector v is an infinite vector for
the operator A.

Now set

h = π

√
α

1 − 2α
, t̃ p = ω̃p := exp(ph) ,

then

Xk = h

� 1
h log

(
1−2α
2λ1

kh
)
+1�∑

p=−k

ω̃p
(
exp(−t̃ p A)b

)
(exp(−t̃ p A)b, ·)
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is a low rank approximation to the unique positive self-adjoint solution X of the
Lyapunov equation and the eigenvectors of Xk are at least infinite vectors for the
operator A. In fact it can be show, using the similar argument as in [30], that the vector
v is A-analytic. We have now outlined the proof of the following corollary

Corollary A.1 Assume A is self-adjoint and positive definite and let τ > 0 be given
and let the forcing b ∈ X ′ be such that A−αb, for 0 ≤ α < 1/2. By X denote the
unique self-adjoint and positive solution of (3.2). Then there exist numbers r and k
such that

| tr(X) −
r∑

i=1

μi (Xk)| ≤ τ tr(X)

and eigenvectors ûi �= 0, Xk ûi = μi (Xk)ûi are A-analytic.

The corollary holds even when A is not self-adjoint, but it is a generator of an
exponentially stable analytic semigroup. We did not go to this generality in this paper,
since we were not planning to present any examples with such a singular forcing b and
non self-adjoint A. Doing so would have only made the paper less readable. However,
all of the subsequent results can be generalised to this level.We plan to take this avenue
in a subsequent paper where we will present appropriate set of examples.
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10. Giani, S., Grubišić, L., Hakula, H., Ovall, J.S.: A posteriori error estimates for elliptic eigenvalue
problems using auxiliary subspace techniques. J. Sci. Comput. 88(3), 55 (2021). https://doi.org/10.
1007/s10915-021-01572-2
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