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Abstract
In the present article we consider a type of matrices stemming in the context of the
numerical approximation of distributed order fractional differential equations (FDEs).
From one side they could look standard, since they are real, symmetric and positive
definite. On the other hand they cause specific difficulties which prevent the successful
use of classical tools. In particular the associated matrix-sequence, with respect to the
matrix-size, is ill-conditioned and it is such that a generating function does not exists,
but we face the problem of dealing with a sequence of generating functions with
an intricate expression. Nevertheless, we obtain a real interval where the smallest
eigenvalue belongs to, showing also its asymptotic behavior. We observe that the
new bounds improve those already present in the literature and give more accurate
pieces of spectral information, which are in fact used in the design of fast numerical
algorithms for the associated large linear systems, approximating the given distributed
order FDEs. Very satisfactory numerical results are presented and critically discussed,
while a section with conclusions and open problems ends the current work.
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1 Introduction

When considering the numerical approximation of fractional differential equations
(FDEs), due to the nonlocal nature of the involved operators, the matrices are intrin-
sically dense, even in the case where the approximation technique is of local nature
(Finite Differences, Finite Elements, Finite Volumes, Isogeometric Analysis etc.);
see [14, 18–20, 22, 25, 34–37] and references therein. The same situation is present
also in the context of distributed order FDEs (see [21] and references therein). When
employing equispaced gridding, the resulting structures have the advantage of being
of Toeplitz nature, so that the cost of a matrix-vector multiplication is almost linear
i.e. of O(n log n) arithmetic operations, where n is the matrix order and the constant
hidden in the big O is very moderate (we refer to [8, 23] and to the references there
reported). These computational features, joint with the usually large dimensions of the
considered linear systems, lead to the search for suitable iterative solvers: typically
the most successful iterative procedures belong to the class of preconditioned Krylov
methods, to the algorithms of multigrid type, or to clever combinations of them [8,
10–12, 23, 29, 31].

A crucial piece of information for an appropriate design of an efficient solver of such
a kind is the precise knowledge of the asymptotic behavior of the minimal eigenvalue,
which in the positive definite case is also related to the asymptotic spectral condition-
ing: in our setting we emphasize that the considered matrices are real, symmetric, and
positive definite.

In this work, starting from [5, 21], we improve the bounds present in the literature.
We take into account the techniques already developed in [4, 6]: the additional diffi-
culty, in the present setting, relies on the fact that the generating function is not fixed
but rather depends on the matrix order n, which is somehow a challenging novelty
with respect to the classical work on the subject [4, 6, 27].

In reality, in technical terms, we consider the real-valued symbol

fn(θ) ≡
n−1∑

j=0

|θ |2− jhh jh,

with h ≡ 1
n . In this article we obtain a real interval where the smallest eigenvalue

of the Toeplitz matrix An ≡ Tn( fn) belongs to. Recall that if f is a complex-valued
function on the unit circle T or, equivalently, on [−π, π ] with Fourier coefficients
f̂ j ( j ∈ Z), then Tn( f ) stands for the matrix ( f̂ j−k)

n
j,k=1. The function f is then

called the generating function or the symbol of Tn( f ). In our case not only the matrix
dimension of An but also the symbol fn depends on n.

Based on the spectral information, few algorithmic proposals are also discussed,
starting from those presented in [12, 13, 21] and being of the type mentioned before:
preconditioned conjugate gradient (PCG) algorithms, multigrid solvers (typically the
V-cycle), and combinations of them, that is, a V-cycle where the smoothing iterations
(one step) incorporate the proposed PCG choices.

The work is organized as follows. Section 2 contains the setting of the problem
regarding theminimal eigenvalue of An and its study and solution. Section 3 is devoted
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Fine spectral estimates with applications to the optimally fast... 1419

to numerical experiments concerning the solution of large linear systems with coef-
ficient matrix An , including few evidences of the spectral clustering at one of the
proposed preconditioned matrix-sequences.

2 The problem and its solution

Let h ≡ 1
n and consider the function fn : [−π, π ] → R given by

fn(θ) ≡ θ2
n−1∑

j=0

|θ |− jhh jh = θ2
1 − 1

n|θ |
1 − ( 1

n|θ |
) 1
n

.

Note that fn coincides with the function F̂n used in [5]. We employ the notation
An ≡ Tn( fn), that is, we consider the n×n Toeplitz matrix with the symbol fn . Using
that

1 −
(

1

n|θ |
) 1

n = 1 − exp

{
− log(n|θ |)

n

}

= log(n|θ |)
n

{
1 + O

( | log(|n|θ |)|
n

)}
as n → ∞,

we obtain

fn(θ) = nθ2

log(n|θ |)
{
1 − 1

n|θ |
}{

1 + O

( | log(n|θ |)|
n

)}

= |θ |(n|θ | − 1)

| log(n|θ |)|
{
1 + O

( | log(n|θ |)|
n

)}

= |θ |(n|θ | − 1)

log(n|θ |) + O

(
θ2 + |θ |

n

)
.

To simplify the previous expression, we consider now the function g given for σ > 0
by

g(σ ) ≡ σ 2 − σ

log(σ )
. (2.1)

Then we infer the relation n fn(θ) = g(n|θ |) + rn(θ) where rn(θ) = O(nθ2 + |θ |) as
n → ∞.

We now establish a connection with the simple-loop method [3, 4]. Consider the
Toeplitz matrix Tn(a) with symbol a : T → R given by

a(t) = −1

t
+ 2 − t = 4 sin2

(
θ

2

)
,
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1420 M. Bogoya et al.

Fig. 1 The constant cn in Eq. (2.2) for different values of n. The horizontal gridlines correspond to the
value of cn for some selected numbers n in order to enhance the convergence

where t = eiθ . For a symbol b, let λ j (Tn(b)) and ψ j (Tn(b)) be its j th eigenvalue and
normalized eigenfunction, respectively. Since a is real-valued, its eigenvalues must be
real and we arrange them in increasing order, that is,

λ1(Tn(a)) ≤ λ2(Tn(a)) ≤ · · · ≤ λn(Tn(a)).

It is well-known that (see, for example, [4, 7]) that

λ1(Tn(a)) = 4 sin2
( s
2

)
,

ψ1(Tn(a))(θ) = cn e
i
2 (n+1)θ

(n + 1)
3
2

· cos
(

(n+1)θ
2

)

sin
(

θ−s
2

)
sin

(
θ+s
2

) , (2.2)

where s ≡ π
n+1 and cn is bounded when n → ∞. The constant cn can be calculated

from the relation ‖ψ1(Tn(a))‖2 = 1, see Fig. 1.

2.1 Upper bound for �1(An)

Theorem 2.1 We have

nλ1(An) ≤ k1 + O
(1
n

)
, as n → ∞,

where the constant k1 is given by

k1 =
{ ∫ ∞

0

u2 − u

(u2 − π2)2
· cos

2( u2 )

log(u)
du

}{∫ π

0

cos2( u2 )

(u2 − π2)2
du

}−1

,

and can be numerically approximated as 12.9301.
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Proof Let 〈·, ·〉 be the inner product of the Hilbert space L2(T). Note that the essential
ranges of the symbols n2a and n fn have a similar behavior in an interval of the type[
0, O

( 1
n

)]
. Hence using the well-known formula

λ1(An) = inf{〈Anψ,ψ〉 : ‖ψ‖2 = 1},

we obtain

λ1(An) ≤ 〈Anψ1(An), ψ1(An)〉
= 1

2π

∫ π

−π

fn(θ)|ψ1(An)(θ)|2dθ
= I1(n) + I2(n), (2.3)

where

I1(n) ≡ 1

2πn

∫ π

−π

g(n|θ |)|ψ1(An)(θ)|2dθ,

I2(n) ≡ 1

2πn

∫ π

−π

rn(θ)|ψ1(An)(θ)|2dθ.

It is easy to see that limn→∞ n I1(n) < ∞. Indeed

n I1(n) = c2n
2π(n + 1)3

∫ π

−π

g(n|θ |) · cos2
(

(n+1)θ
2

)

sin2
(

θ−s
2

)
sin2

(
θ+s
2

)dθ

∼ 16nc2n
π

∫ π

0
g(nθ) · cos2

( nθ
2

)

((nθ)2 − π2)2
dθ

∼ 16c2n
π

∫ ∞

0

u2 − u

(u2 − π2)2
· cos

2
( u
2

)

log(u)
du. (2.4)

Here the notation f ∼ g means limn→∞ f (n)
g(n)

= 1. Using (2.2), a similar calculation
produces

c−2
n ∼16n

π

∫ π

0

cos2
( nθ
2

)

((nθ)2 − π2)2
dθ

∼16

π

∫ ∞

0

cos2
( u
2

)

(u2 − π2)2
du

= 2

π2 .

(2.5)

Note that the last integral does not depend on n. Therefore, the numerical value of cn
is cn = π√

2
≈ 2.2214, which agrees with the Fig. 1. For the second integral in (2.3)
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we recall that rn(θ) = O(nθ2 + |θ |) and write I2(n) = O(�(n)) where

�(n) = 1

n2

∫ π

−π

{(n|θ |)2 − n|θ |}|ψ1(An)(θ)|2dθ

= c2n
n5

∫ π

−π

{(n|θ |)2 − n|θ |} cos2
( n|θ |

2

)

((n|θ |)2 − π2)2
dθ

∼ 16c2n
n2

∫ ∞

0

u2 − u

(u2 − π2)2
cos

(u
2

)
du,

which combined with (2.5) produces

I2(n) = O
( 1

n2

)
. (2.6)

Finally, combining (2.3), (2.4), (2.5), and (2.6) we obtain the thesis. �

2.2 Lower bound for �1(An)

In this part we will implement the trick used in [6] which works as follows. Let
b ∈ C(T) and qn : T → C given by

qn(t) ≡
∞∑

j=n

q j,nt
j +

∞∑

j=n

q− j,nt
− j . (2.7)

Since Tn(qn) is the zero matrix we clearly have Tn(a) = Tn(a + qn). Thus instead of
working with Tn(a) we can use Tn(a + qn) which under a swiftly selected symbol qn
can be advantageous.

Theorem 2.2 We have

nλ1(An) ≥ k2 + O
(1
n

)
, as n → ∞,

where the constant k2 is given by

k2 = 1

π

∫ π

0

σ 2 − σ

log(σ )
dσ,

which can be approximated numerically as 2.2945.

Proof In our case instead of working with the symbol n fn we will use

gn(θ) ≡ n fn(θ) + p(n|θ |),
= g(n|θ |) + p(n|θ |) + rn(θ),

123



Fine spectral estimates with applications to the optimally fast... 1423

where p(σ ) ≡ ∑∞
j=1 p j cos(σ j), p j are real constants, and rn is given in (2.1). Let

t = eiθ . Then we can write

p(n|θ |) = p(nθ) =
∞∑

j=1

p j

2
(tn j + t−nj ),

which clearly shows the form (2.7). Additionally, the function p is 2π -periodic, even,
and satisfies

∫ π

0 p(σ )dσ = 0. We thus deduce Tn(p(n|θ |)) = 0, and hence

Tn(n fn) = Tn(gn)

= Tn(g(n|θ |)) + Tn(p(n|θ |)) + Tn(rn)

= Tn(g(n|θ |)) + Tn(rn).

Keeping in mind that, for any real-valued symbol β, the smallest eigenvalue of Tn(β)

must be greater than or equal to the infimum of β, we obtain

nλ1(An) ≥ inf{gn(θ) : θ ∈ [−π, π ]}
= inf{g(n|θ |) + p(n|θ |) + rn(θ) : θ ∈ [−π, π ]}
= inf

{
g(σ ) + p(σ ) + O

(σ 2 + σ

n

)
: σ ∈ [0, nπ ]

}
,

where in the last line we used the variable change σ = n|θ |. Then we obtain

nλ1(An) ≥ inf
{
g(σ ) + p(σ ) + O

(σ 2 + σ

n

)
: σ ∈ [0, M]

}
,

for a sufficiently large constant M . Thus we have

nλ1(An) ≥ inf{g(σ ) + p(σ ) : σ ∈ [0, M]} + O
(1
n

)
. (2.8)

In order to obtain a neat lower bound for λ1(An), we need to choose the coefficients
p j in such a way that

m ≡ inf
0≤σ≤M

{g(σ ) + p(σ )}

be maximal. Since p is 2π -periodic and g is strictly increasing with g(0) = 0 and
g(∞) = ∞, the infimum of g + p must be in the interval [0, π ], and consequently
we infer that

m = inf
0≤σ≤π

{g(σ ) + p(σ )}.
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1424 M. Bogoya et al.

Consider the integral

k2 ≡ 1

π

∫ π

0
{g(σ ) + p(σ )}dσ = 1

π

∫ π

0
g(σ )dσ,

which satisfies k2 ≥ m, and take p as

p(σ ) =
{
k2 − g(σ ), σ ∈ [−π, π ];
k2 − g(σ − 2π j), σ ∈ [π j, π( j + 2)], j ∈ Z.

It is immediate that the function p is 2π -periodic, [g(σ ) + p(σ )]σ∈[−π,π ] ≡ k2,
g(σ )+ p(σ ) ≥ k2 for σ /∈ [−π, π ], which impliesm = k2. This combined with (2.8)
proves the theorem. �

Finally, combining the Theorems 2.1 and 2.2 we obtain

2.2945 ≈ k2 ≤ nλ1(An) ≤ k1 ≈ 12.9301,

for every sufficiently large n.

Remark 2.1 In [5] the authors proved that λ1(An) = O
( 1
n

)
. The next section will show

that our bounds are more precise.

3 Few selected numerical experiments

The current section is divided into two parts. In the first we discuss our theoretical
results regarding the bounds on the minimal eigenvalue of An as a function of the
matrix order n in comparison with the bounds present in the literature. Regarding
[21], based on [26], the only relevant observation is that the minimal eigenvalue of
T−1
n (|θ |2)hαTn(|θ |2−α) is well separated from zero, for any choice of α ∈ (0, 2), and

this provides a qualitative indication that the minimal eigenvalue of An
n converges to

zero with a speed of 1
n2
. Concerning [5], the latter claim is indeed proved formally, but

the constants are not computed, while in the present article we improve the findings,
by determining quite precise lower and upper bounds (see Fig. 2).

The second part is devoted to exploiting the spectral information for the use and the
design of specialized iterative algorithms, when solving large linear systems having
1
n An as coefficient matrix. In Table 1 we employ the standard conjugate gradient (CG),
since the coefficient matrix is positive definite, but we do not expect optimality due
to the ill-conditioning of the related matrix-sequence. We then use the preconditioned
conjugate gradient (PCG) with Strang and Frobenius optimal preconditioners (see [8,
9, 23, 28] taking the preconditioner in the algebra of the circulant matrices and in
the algebra of sine transforms, containing the Finite Difference discrete Laplacian
Tn(2 − 2 cos θ)). Also in this case it is nontrivial to obtain optimality, due to the ill-
conditioning of the involved matrices, which grows to infinity as the matrix size tends
to infinity.
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Fine spectral estimates with applications to the optimally fast... 1425

Fig. 2 The normalized minimum eigenvalue nλ1(An) of An for different values of n. The left image
includes the lower and upper bounds given by Theorems 2.2 and 2.1, respectively, while the right image
shows a standard data range

Few observations are in order: the considered matrix An is real, symmetric, and
Toeplitz and the τ algebra is again inherently real, symmetric, and with Toeplitz
generator [9]. The latter statement represents a qualitative explanation of the fact that
the τ preconditioners perform substantially better than the analogs in the circulant
algebra (see Table 1): the theoretical ground to the preceding qualitative remark relies
in the notion of good algebras developed in [30].

Notice that the tridiagonal τ discrete Finite Difference Laplacian�n is optimal: the
related linear system solution is extremely cheap both in a sequential model (via the
Thomas algorithm) and in a parallel model of computation (via e.g. classical multigrid
methods [17]). We also notice the remarkable difference between the performance of
the optimal τ preconditioner and of the optimal circulant preconditioner. The reason
is spectral (plus the good algebra argument [30]). The minimal eigenvalue of the
optimal circulant preconditioner is averaged, due to a Cesàro sum effect [9, 28], and
hence it behaves as 1

n (instead of 1
n2
) and this explains the reason why the number

of iterations grows as
√
n, in the light of the classical results on conjugate gradient

methods [1]. On the other hand, the optimal τ preconditioner matches very well the
extremal eigenvalues of An (see e.g. [9]).

Thus, as a conclusion, we deduce that the preconditioners CS,n (Strang-Circulant),
τN ,n (Natural-τ ), τF,n (Frobenius-Optimal τ ), and �n (Discrete FD Laplacian) are
all optimal in the sense that the iteration count is bounded by constants independent
of the matrix size n and the cost per iteration is that of the Fast Fourier Transform,
which amounts to O(n log n) arithmetic operations (for a formal notion of optimality
see [2]). As the data indicate, the preconditioners τN ,n , τF,n are the best, but also �n

is of interest given its sparsity.
In Tables 2, 3 and 4 the minimal and maximal eigenvalues of the considered

preconditioned matrices are reported to highlight the efficiency of the proposed pre-
conditioner. For sure, both the data regarding the preconditioners τN ,n and τF,n deserve
further attention. The outliers analysis reported in Tables 5 and 6, respectively, seems
to show a strong cluster at 1. For sure, a weak clustering is observed, being the outliers
percentage decreasing as long as n increases: we notice that the weak clustering can
be deduced theoretically using the GLT theory [16], while the strong clustering is
nontrivial given the ill-conditioning of An .
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Table 1 Number of PCG’s
iterations to reach convergence
with respect to scaled residual
less than 10−7 with
preconditioner In (no
preconditioning), CS,n
(Strang-Circulant), CF,n
(Frobenius-Optimal Circulant),
τN ,n (Natural-τ ), τF,n
(Frobenius-Optimal τ ), and �n
(Discrete FD Laplacian)

Size In CS,n CF,n τN ,n τF,n �n

32 34 7 11 6 5 8

64 73 8 14 5 5 9

128 154 8 15 5 5 10

256 307 8 18 5 5 10

512 593 8 22 5 5 11

1024 1095 8 27 5 5 11

2048 2112 8 34 5 5 12

Table 2 Minimal and maximal eigenvalues of preconditioned matrices with preconditioner CS,n (Strang-
Circulant) and CF,n (Frobenius-Optimal Circulant)

Size λmin(C
−1
S,n An) λmax(C

−1
S,n An) λmin(C

−1
F,n An) λmax(C

−1
F,n An)

32 5.23 × 10−1 3.43 × 101 1.75 × 10−1 4.12 × 100

64 5.13 × 10−1 5.43 × 101 1.10 × 10−1 5.66 × 100

128 5.07 × 10−1 9.12 × 101 6.68 × 10−2 7.84 × 100

256 5.04 × 10−1 1.58 × 102 3.91 × 10−2 1.09 × 101

512 5.02 × 10−1 2.80 × 102 2.23 × 10−2 1.52 × 101

1024 5.01 × 10−1 5.03 × 102 1.25 × 10−2 2.13 × 101

2048 5.01 × 10−1 9.14 × 102 6.93 × 10−3 2.99 × 101

The last choice is a multigrid method designed with the use of the spectral informa-
tion available. In fact, the projector and the restriction operators are those classically
used when dealing with the standard discrete Laplacian�n = Tn(2−2 cos θ). Indeed,
even if 1

n An is dense and seemingly there are no similarities with �n , from a spectral
point of view both matrix-sequences have minimal eigenvalue collapsing to zero as
1
n2
, up to some moderate constants.
More precisely, the transfer operators are designed, in a very standard way, as the

product of the Toeplitz matrix generated by the symbol 2+2 cos θ and a proper cutting
matrix (see e.g. [15, 17]). A purely algebraic multigrid is considered, so that matrices
at coarser levels are obtained by projection via the transfer operators according to the
Galerkin condition. When setting smoothers, we tested several choices by consider-
ing a standard Gauss-Seidel iteration, or PCG with sine transform preconditioners,
according to the natural approach and the Frobenius optimal choice: νpre steps are
applied for the presmoother and νpost steps for the postsmoother, respectively.

As it can be seen in Table 7, the numerical results with the multigrid choice are fully
satisfactory, as well: the method is optimal [2] in the sense that the iteration count is
bounded by a constant independent of n and the cost per iteration is proportional to
that of the matrix-vector product.

A special mention deserves a last test in which we set as presmoother the PCGwith
FiniteDifference discrete Laplacian preconditionerwith νpre = 1, and as postsmoother
the PCG with Natural-τ or Frobenius-Optimal τ preconditioner with νpost = 1, but
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Table 3 Minimal and maximal eigenvalues of preconditioned matrices with preconditioner τN ,n (Natural-
τ ) and τF,n (Frobenius-Optimal τ )

Size λmin(τ
−1
N ,n An) λmax(τ

−1
N ,n An) λmin(τ

−1
F,n An) λmax(τ

−1
F,n An)

32 8.16 × 10−1 1.15 × 100 9.32 × 10−1 1.14 × 100

64 8.06 × 10−1 1.15 × 100 9.09 × 10−1 1.15 × 100

128 7.99 × 10−1 1.16 × 100 8.90 × 10−1 1.16 × 100

256 7.94 × 10−1 1.16 × 100 8.74 × 10−1 1.16 × 100

512 7.91 × 10−1 1.17 × 100 8.63 × 10−1 1.17 × 100

1024 7.89 × 10−1 1.17 × 100 8.54 × 10−1 1.17 × 100

2048 7.87 × 10−1 1.18 × 100 8.48 × 10−1 1.18 × 100

Table 4 Minimal and maximal
eigenvalues of preconditioned
matrices with preconditioner �n
(discrete FD Laplacian)

Size λmin(�
−1
n An) λmax(�

−1
n An)

32 3.19 × 10−1 5.48 × 10−1

64 2.65 × 10−1 5.35 × 10−1

128 2.27 × 10−1 5.30 × 10−1

256 1.98 × 10−1 5.27 × 10−1

512 1.75 × 10−1 5.26 × 10−1

1024 1.57 × 10−1 5.25 × 10−1

2048 1.43 × 10−1 5.25 × 10−1

Table 5 Number of left (nlout)
and right (nrout) outliers
(eigenvalues not belonging to
(1 − ε, 1 + ε) with ε = 10−1

and 10−2 and their percentage
with respect to the dimension in
the case of Natural-τ
preconditioner τN ,n

Size ε = 10−1 ε = 10−2

nlout nrout % nlout nrout %

32 1 2 9.37% 3 4 21.8%

64 1 2 4.69% 3 4 10.9%

128 1 2 2.34% 4 4 6.25%

256 2 2 1.56% 5 4 3.52%

512 2 2 0.78% 5 4 1.76%

1024 2 2 0.39% 5 4 0.88%

2048 2 2 0.19% 6 4 0.49%

only at the finest level. In all the coarser levels the smoothers are simply chosen as one
iteration of the standard Gauss-Seidel iteration, so further reducing the computational
cost. The number of required iterations is 3 as for the case γ .

Though the efficiency is comparable with those of the preconditioned PCG in
Table 1 in the present unilevel setting, multigrid could become the most promising
choice in the multilevel one, due to the theoretical barriers studied in [24, 32, 33],
regarding the non optimality of the PCG with matrix-algebra preconditioners in the
multilevel context.
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Table 6 Number of left (nlout)
and right (nrout) outliers
(eigenvalues not belonging to
(1 − ε, 1 + ε) with ε = 10−1

and 10−2 and their percentage
with respect the dimension in the
case of Frobenius-Optimal τ
preconditioner τF,n

Size ε = 10−1 ε = 10−2

nlout nrout % nlout nrout %

32 0 2 6.25% 18 4 68.7%

64 0 2 3.13% 2 6 12.5%

128 1 2 2.34% 2 9 8.59%

256 1 2 1.17% 3 10 5.08%

512 2 2 0.78% 4 10 2.73%

1024 2 2 0.39% 4 10 1.36%

2048 2 2 0.19% 4 10 0.68%

Table 7 Number of multigrid iterations to reach convergence with respect to scaled residual less than 10−7:
Case α = Gauss-Seidel (νpre = 1)/Gauss–Seidel (νpost = 1), case β = Gauss–Seidel (νpre = 1) /PCG with
Natural-τ or Frobenius-Optimal τ preconditioner νpost = 1, case γ = PCG with Discrete FD Laplacian
preconditioner (νpre = 1 or 2) /PCG with Natural-τ or Frobenius-Optimal τ preconditioner (νpost = 1),
case δ = PCG with Discrete FD Laplacian preconditioner (νpre = 1) /PCG with Natural-τ or Frobenius-
Optimal τ preconditioner (νpost = 2)Concerning CPU timings, they are consistent with the iteration count,
but they are not reported since our MATLAB implementation of the multigrid is not optimized

Size Case α Case β Case γ Case δ

TGM Vcycle TGM Vcycle TGM Vcycle TGM Vcycle

31 9 9 4 4 3 3 2 2

63 10 10 4 4 3 3 2 2

127 11 11 4 4 3 3 2 2

255 11 11 4 4 3 3 2 2

511 11 11 3 3 3 3 2 2

1023 11 11 4 4 3 3 2 2

2047 11 11 3 3 3 3 2 2

4 Conclusions

In the current article we have considered a type of matrix stemming when considering
the numerical approximations of distributed order FDEs (see [5, 21] for example).
The main contribution relies on explicit bounds for the minimal eigenvalue of the
involved matrices. In fact the new presented bounds improve those already present in
the literature and give a more accurate spectral information. The latter knowledge has
been used in the design of fast numerical algorithms for the associated linear systems
approximating the given distributed order FDEs: an interesting challenge is to consider
a d-dimensional version of the considered FDE (see [21]), in order to show how the
presented techniques and numerical methods can be adapted and extended in d-level
setting with d ≥ 2.
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