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Abstract
Many complex applications require the solution of initial-value problems where some
components change fast, while others vary slowly. Multirate schemes apply different
step sizes to resolve different components of the system, according to their dynam-
ics, in order to achieve increased computational efficiency. The stiff components of
the system, fast or slow, are best discretized with implicit base methods in order
to ensure numerical stability. To this end, linearly implicit methods are particularly
attractive as they solve only linear systems of equations at each step. This paper
develops the Multirate GARK-ROS/ROW (MR-GARK-ROS/ROW) framework for
linearly-implicit multirate time integration. The order conditions theory considers both
exact and approximative Jacobians. The effectiveness of implicit multirate methods
depends on the coupling between the slow and fast computations; an array of effi-
cient coupling strategies and the resulting numerical schemes are analyzed. Multirate
infinitesimal step linearly-implicit methods, that allow arbitrarily small micro-steps
and offer extreme computational flexibility, are constructed. The new unifying frame-
work includes existing multirate Rosenbrock(-W) methods as particular cases, and
opens the possibility to develop new classes of highly effective linearly implicit mul-
tirate integrators.
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1 Introduction

Multiphysics applications lead to initial-value problems in additively partitioned form

y′ = f(y) =
N∑

m=1

f {m}(y) , y(t0) = y0 ∈ Rd , (1.1)

where the right-hand side f : Rd → Rd is split into N different components based
on, for example, stiffness (stiff/non-stiff), nonlinearity (linear/non-linear), dynamical
behavior (fast/slow), and evaluation cost (cheap/expensive). Additive partitioning also
includes the special case of component partitioning where the solution vector is split
into disjoint sets [15].

Multimethods are effective numerical solvers formultiphysics andmultiscale appli-
cations (1.1) that treat each componentwith an appropriate time discretization and time
step, which are carefully coordinated such that the overall solution has the desired
accuracy and stability properties. Examples of widely used multimethods include
implicit-explicit [6,7,19,40–42] and multirate schemes [4,12,24].

This paper focuses on partitioned systems (1.1) where some components are fast
varying and have small evaluation costs, while other are slowly varying but their
evaluation is expensive. Multirate schemes exploit this different dynamical behavior
by applying small step sizes to the fast part and large step sizes to the slow part, while
ensuring the order and stability of the overall numerical integration scheme. Significant
computational savings are made possible by the less frequent evaluation of the slow
expensive components. Multirate schemes have been developed using base methods
such as Runge-Kutta [1,2,8,21,22,24], Linear Multistep [12,18,30], Rosenbrock [13,
14,35], and extrapolation [9–11,31].

TheGeneral-structureAdditiveRunge-Kutta (GARK) formalism introduced in [33]
defines a comprehensive framework for studying a large class of partitioned Runge-
Kutta based schemes for solving (1.1). It allows for different stage valueswith different
components of the right hand side. Though in principle equivalent to Additive Runge-
Kutta schemes [5],“the advantage of the GARK formulation is that it clarifies the
coupling between the various methods, in addition to eliminating zero quadrature
weights in the ARK formalism, hence the analysis of special cases” [38]. Examples
of partitioned methods developed in the GARK framework include [15,27,38]. MR-
GARK and MRI-GARK frameworks [15,16,25,26,29,34] define general classes of
multirate Runge-Kutta methods based on the GARK formalism.

The stiff components of the system (1.1) are best discretized with implicit base
methods in order to ensure numerical stability. Linearly implicit methods enjoy the
same stability properties as the implicit schemes, but solve only linear systems of equa-
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tions at each step. Rosenbrock-Wanner (ROS) methods [17,28] are linearly implicit
Runge–Kutta schemes that use the exact Jacobian of the right hand side function in
the computational process; Rosenbrock-W methods [36] allow arbitrary approxima-
tions of the Jacobian. In a recent paper [32] the authors have generalized the GARK
approach to partitioned linearly-implicit schemes based on using exact (GARK-ROS)
and inexact (GARK-ROW) Jacobian information.

This paper proposes the Multirate GARK-ROS/ROW (MR-GARK-ROS/ ROW)
framework for linearly-implicit multirate time integration. The new elements devel-
oped herein are as follows. MR-GARK-ROS/ROW provides a unifying formalism for
linearly-implicit multirate schemes of Runge-Kutta type, that includes as particular
cases existing methods such as [13,14,35]. A general order conditions theory is devel-
oped for methods with exact and with inexact Jacobian information. The effectiveness
of implicit multirate methods hinges upon the manner in which the slow and fast
system computations are coupled; to this end, an array of various efficient coupling
approaches is proposed. Two particular coupling structures, which hold considerable
promise for practical applications, are studied in detail: compound-first-step, where
the macro-step is coupled with the first micro-step only, and step-predictor-corrector,
where a macro-step carried out over the entire system is followed by a recalculation of
the fast components using small steps. Finally,multirate infinitesimal step (MRI)meth-
ods [20,26,29,37] that allow arbitrarily small micro-steps offer extreme computational
flexibility, since the fast subsystem can be solved with any discretization method and
sequence of step sizes. The work develops general MRI-GARK ROS/ROW schemes,
aswell asMRI step-predictor-correctormethods; order condition theories are provided
for both families.

The paper is organized as follows. Section 2 reviews basic aspects of GARK-
ROS/ROWmethods. The newMR-GARKROS/ROW formalism is defined in Sect. 3.
Using the partitioned GARK ROS/ROW framework, general order conditions are
derived in Sect. 4. A linear stability analysis is performed in Sect. 5. Various slow-fast
coupling strategies for an efficient computation are discussed in Sect. 6. Compound-
first-step schemes are analyzed in Sect. 7, and step-predictor-corrector (SPC) methods
in Sect. 8. Multirate infinitesimal step (MRI-GARK ROS/ROW) schemes are devel-
oped in Sect. 9, and multirate infinitesimal step SPCmethods in Sect. 10. Conclusions
and an outlook of future work are given in Sect. 11.

2 Linearly implicit GARK schemes

2.1 GARK-ROS and GARK-ROW schemes

The class of linearly-implicit GARK-ROS and GARK-ROW schemes was developed
in [32] , in analogy to the extension of (explicit) Runge-Kutta schemes to Rosenbrock-
Wanner (ROS) and Rosenbrock-W (ROW) schemes. One GARK-ROS/ROW step
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applied to (1.1) reads:

k{q} = h f {q}
(
1s ⊗ yn−1 +

N∑

m=1

ααα{q,m} ⊗d k{m}
)

(2.1a)

+
(
Is×s ⊗ h L{q})

N∑

m=1

γγγ{q,m} ⊗d k{m}, q = 1, . . . ,N,

yn = yn−1 +
N∑

m=1

b{m}T ⊗d k{m}. (2.1b)

here 1s ∈ Rs is a vector of ones, Is×s ∈ Rs×s is the identitymatrix,⊗ is theKronecker
product, and the following matrix notation is used:

k{q} :=
⎡

⎢⎣
k{q}
1
...

k{q}
s{q}

⎤

⎥⎦ ∈ Rds{q}
,

ααα{m,q} ⊗d k{q} := (ααα{m,q} ⊗ Id×d
)
k{q},

γγγ{m,q} ⊗d k{q} := (γγγ{m,q} ⊗ Id×d
)
k{q}, (2.2a)

with ααα{m,q},γγγ{m,q} ∈ Rs{m}×s{q}
and f {q} (1s⊗yn−1+∑N

m=1 ααα{q,m} ⊗d k{m}) :=
⎡

⎢⎢⎣

f {q}(yn−1+∑N
m=1

∑s{m}
j=1 α

{q,m}
1, j k{m}

j

)

...

f {q}(yn−1+∑N
m=1

∑s{m}
j=1 α

{q,m}
s{q}, j k

{m}
j

)

⎤

⎥⎥⎦ . (2.2b)

The matrices ααα{q,m} are strictly lower triangular and γγγ{q,m} are lower triangular.
Depending on the choice of matrices L{q} ∈ Rd×d one distinguishes several types
of methods, as follows:

– GARK-ROS schemes use the exact Jacobian information, i.e., L{q} := f {q}
y (yn−1)

are the Jacobians of the component functions evaluated at the current solution;
– GARK-ROW schemes allow any approximation of the Jacobian, i.e., L{q} may be
arbitrary;

– In the case of GARK-ROS schemes with time-lagged Jacobians one has L{q} =
f {q}
y (yn−1) + O(h).

The scheme (2.1) is characterized by the extended Butcher tableau (withβββ{q,m} :=
ααα{q,m} + γγγ{q,m})

A G

bT
=

ααα{1,1} · · · ααα{1,N} γγγ{1,1} . . . γγγ{1,N}
...

. . .
...

...
. . .

...

ααα{N,1} · · · ααα{N,N} γγγ{N,1} . . . γγγ{N,N}

b{1}T · · · b{N}T . (2.3)
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Remark 2.1 (GARK-ROS and GARK-ROW scheme structure)

– Similar to GARK, the scheme (2.1) uses only one function f {q} evaluation for
the increment k{q}, and linear combinations of increments k{m} both as function
arguments and as additive terms.

– For all γγγ{q,m} = 0 (2.1) is an explicit GARK scheme.
– If γγγ{q,m} = 0 for all m > q then increments can be computed sequentially in the
following order: k{1}

1 , . . . , k{N}
1 , k{1}

2 , . . . , k{N}
s{N} .

Theorem 2.1 (GARK-ROS order conditions [32]) The GARK-ROS order conditions
Eq. (2.1) are the same as the Rosenbrock order conditions [17], except that the method
coefficients are also labelled according to partition indices. In the order conditions,
in each sequence of matrix multiplies, the partition indices are compatible according
to matrix multiplication rules.

Let 1{n} ∈ Rs{n}
be a vector of ones. For brevity of notation we define:

c{m,n} := ααα{m,n} 1{n}, g{m,n} := γγγ{m,n} 1{n},
e{m,n} := βββ{m,n} 1{n} = c{m,n} + g{m,n}.

(2.4)

The GARK-ROS order four conditions read:

order 1:
{
b{m} T 1{m} = 1, for m = 1, . . . ,N; (2.5a)

order 2:
{
b{m} T e{m,n} = 1

2 , for m, n = 1, . . . ,N; (2.5b)

order 3:

{
b{m} T (c{m,n} × c{m,p}) = 1

3 ,

b{m} T βββ{m,n} e{n,p} = 1
6 ,

for m, n, p = 1, . . . ,N; (2.5c)

order 4:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b{m} T (c{m,n} × c{m,p} × c{m,q}) = 1
4 ,

b{m} T
(
(ααα{m,n} e{n,p}) × c{m,q}

)
= 1

8 ,

b{m} T βββ{m,n} (c{n,p} × c{n,q}) = 1

12
,

b{m} T βββ{m,n} βββ{n,p} e{p,q} = 1

24
,

for m, n, p, q = 1, . . . ,N.

(2.5d)

Theorem 2.2 (GARK-ROW order conditions [32]) The GARK-ROW order conditions
Eq. (2.1) are the same as the Rosenbrock-W order conditions [17], except that the
method coefficients are also labelled according to partition indices. In the order con-
ditions, in each sequence of matrix multiplies, the partition indices are compatible
according to matrix multiplication rules.

The GARK-ROW order four conditions read:

order 1:
{
b{m} T 1{m} = 1, for m = 1, . . . ,N; (2.6a)
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order 2:

{
b{m} T c{m,n} = 1

2
,

b{m} T g{m,n} = 0, for m, n = 1, . . . ,N; (2.6b)

order 3:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b{m} T (c{m,n} × c{m,p}) = 1

3
,

b{m} T ααα{m,n} c{n,p} = 1

6
,

b{m} T γγγ{m,n} c{n,p} = 0,

b{m} T ααα{m,n} g{n,p} = 0,

b{m} T γγγ{m,n} g{n,p} = 0, for m, n, p = 1, . . . ,N;

(2.6c)

order 4:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b{m} T (c{m,n} × c{m,p} × c{m,q}) = 1

4
,

b{m} T ((ααα{m,n} c{n,p})× c{m,q}) = 1

8
,

b{m} T ααα{m,n} (c{n,p} × c{n,q}) = 1

12
,

b{m} T ααα{m,n} ααα{n,p} c{p,q} = 1

24
,

b{m} T ((ααα{m,n} g{n,p})× c{m,q}) = 0,

b{m} T γγγ{m,n} (c{n,p} × c{n,q}) = 0,

b{m} T γγγ{m,n} ααα{n,p} c{p,q} = 0,

b{m} T ααα{m,n} γγγ{n,p} c{p,q} = 0,

b{m} T ααα{m,n} ααα{n,p} g{p,q} = 0,

b{m} T γγγ{m,n} ααα{n,p} g{p,q} = 0,

b{m} T ααα{m,n} γγγ{n,p} g{p,q} = 0,

b{m} T γγγ{m,n} γγγ{n,p} c{p,q} = 0,

b{m} T γγγ{m,n} γγγ{n,p} g{p,q} = 0, for m, n, p, q = 1, . . . ,N.

(2.6d)

Remark 2.2 (Internal consistency [32]) The order conditions (2.5) and (2.6) simplify
considerably for internally consistent GARK-ROS/ROW schemes, for which the vec-
tors (2.4) satisfy:

c{m,n} = c{m}, g{m,n} = g{m}, ∀m, n = 1, . . . ,N. (2.7)

3 Multirate GARK ROS/ROWmethods

We aim at employing the GARK ROS/ROW formalism (2.1) to develop a class of
multirate linearly-implicit schemes.

3.1 Multirate GARK-ROS/ROW for additive splitting

MultirateGARKschemes [15] seek to exploit themultiscale behavior given in different
dynamics. Consider a two-way additively partitioned system (1.1) of the form

y′ = f(y) = f {s}(y) + f {f}(y) , y(t0) = y0 ∈ Rd , (3.1)
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with a slow part f {s} that is computationally expensive and a fast part f {f} that is
inexpensive to evaluate. Solving the slow expensive component with a large macro-
step H , and the fast inexpensive one with M micro-steps h = H/M, allows for
reducing the overall computational cost.

Definition 3.1 (Multirate GARK-ROS/ROW method) One step of a multirate GARK-
ROS/ROW method (MR-GARK-ROS/ROW for short) applied to (3.1) computes the
solution as follows. The slow component is discretized with a ROS/ROW method(
b{s},α{s, s}, γ {s, s}) and macro-step H . The fast component uses M micro-steps
h = H/M, and at each micro-step λ a (possibly different) ROS/ROW method(
b{f, λ},α{f, f, λ}, γ {f, f, λ}) is applied. The computational process reads:

k{f, λ} = h f {f}
(
1s{f} ⊗ yn−1 +

λ−1∑

�=1

1{f} b{f, �}T ⊗d k{f, �} + α{f, f, λ} ⊗d k{f, λ} (3.2a)

+ α{f, s, λ} ⊗d k{s})

+
(
Is{f}×s{f} ⊗ h L{f}) (γ {f, f, λ} ⊗d k{f, λ} + γ {f, s, λ} ⊗d k{s}), for λ = 1, . . . ,M;

k{s} = H f {s}
(
1s{s} ⊗ yn−1 +

M∑

λ=1

α{s, f, λ} ⊗d k{f, λ} + α{s, s} ⊗d k{s}
)

(3.2b)

+ (Is{s}×s{s} ⊗ H L{s})
(

M∑

λ=1

γ {s, f, λ} ⊗d k{f, λ} + γ {s, s} ⊗d k{s}
)

;

yn = yn−1 +
M∑

λ=1

b{f, λ}T ⊗d k{f, λ} + b{s}T ⊗d k{s}. (3.2c)

The matrices L{a}, a ∈ {s, f}, can be chosen as exact Jacobians (ROS schemes)
or as arbitrary approximations to the Jacobians (ROW schemes).1 Method (3.2) is a
GARK ROS/ROW scheme with step H defined by the Butcher tableau (2.3):

α{f, f} α{f, s}

α{s, f} α{s, s}

b{f}T b{s}T :=

1

M
α{f, f, 1} · · · 0 α{f, s, 1}

...
. . .

...
...

1

M
1{f}b{f, 1}T . . .

1

M
α{f, f,M} α{f, s,M}

1

M
α{s, f, 1} · · · 1

M
α{s, f,M} α{s, s}

1

M
b{f, 1}T . . .

1

M
b{f,M}T b{s}T

,
(3.3a)

1 Note that in the GARK-ROS case, all Jacobians are evaluated at the current macro grid point tn−1 for
two reasons: first of all, one saves computational and overhead costs. Secondly, we only aim at achieving
the order of the method in the macro grid points, and not in addition in the micro grid points, as we regard
our scheme as a partitioned scheme on the macro step size. The same point of view was taken in [3].
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876 M. Günther, A. Sandu

γ{f, f} γ{f, s}

γ{s, f} γ{s, s} :=

1

M
γ {f, f, 1} · · · 0 γ {f, s, 1}

...
. . .

...
...

0 . . .
1

M
γ {f, f,M} γ {f, s,M}

1

M
γ {s, f, 1} · · · 1

M
γ {s, f,M} γ {s, s}

, (3.3b)

and β{a,b} := α{a,b} + γ{a,b} for a ∈ {s, f}.
Remark 3.1 (Intermediate micro-step solutions) Define the intermediate solutions at
the end of the fast micro-steps as:

ỹn−1+λ/M := yn−1 +
λ∑

�=1

b{f, �}T ⊗d k{f, �}. (3.4)

From (3.2a) the fast stages are computed as:

k{f, λ} = h f {f}
(
1s{f} ⊗ ỹn−1+(λ−1)/M + α{f, f, λ} ⊗d k{f, λ} + α{f, s, λ} ⊗d k{s})

+
(
Is{f}×s{f} ⊗ h L{f}) (γ {f, f, λ} ⊗d k{f, λ} + γ {f, s, λ} ⊗d k{s}),

and from (3.2c) the next step solution as:

yn = ỹn + b{s}T ⊗d k{s}.

Remark 3.2 (Non-uniform micro-steps) Definition 3.1 can be immediately extended
to accommodate nonuniform micro-steps hλ with

∑M
λ=1 hλ = H by using hλ in each

fast step (3.2a), and scaling columns λ of the Butcher tableaus (3.3a) and (3.3b) by
hλ/H instead of 1/M.

Remark 3.3 (Pure multirate approach) In this paper we focus on “pure” multirate
methods where all micro-steps use the same fast base method, i.e.,

(
b{f, λ},α{f, f, λ}, γ {f, f, λ}) ≡

(
b{f},α{f}, γ {f}) , λ = 1, . . . ,M. (3.5)

Nevertheless, the general structure of Definition 3.1 remains of interest as it allows to
build special types of fast-slow couplings.

3.2 Multirate GARK-ROS/ROW for component-wise splitting

Consider a two-way component partitioned system (3.1) of the form

y′ =
⎡

⎣y
{f}

y{s}

⎤

⎦
′
=
⎡

⎣f
{f} (y{f}, y{s})

f {s}
(
y{f}, y{s})

⎤

⎦ = f(y),
y{f}(t0) = y{f}

0 ∈ Rd{f}
,

y{s}(t0) = y{s}
0 ∈ Rd{s}

,
(3.6)
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again, with a slow part f {s} that is computationally expensive and a fast part f {f} that
is inexpensive to evaluate.

Definition 3.2 (Multirate GARK-ROS/ROW method for component partitioned sys-
tems) One macro-step of a MR-GARK-ROS/ROW method applied to (3.6) with
macro-step H and M equal micro-steps h = H/M reads:

k{f, λ} = h f {f}
(
1s{f} ⊗ y{f}

n−1 +
λ−1∑

�=1

b{f, λ}T ⊗f k{f, �} (3.7a)

+α{f, f, λ} ⊗f k{f, λ}, 1s{f} ⊗ y{s}
n−1 + α{f, s, λ} ⊗s k{s})

+
(
Is{f}×s{f} ⊗ hL{f, f}) (γ {f, f, λ} ⊗f k{f, λ})

+
(
Is{f}×s{f} ⊗ hL{f, s}) (γ {f, s, λ} ⊗s k{s}), for λ = 1, . . . ,M;

k{s} = H f {s}
(
1s{s} ⊗ y{f}

n−1 +
M∑

λ=1

α{s, f, λ} ⊗f k{f, λ}, 1s{s} ⊗ y{s}
n−1 + α{s, s} ⊗s k{s}

)

(3.7b)

+
(
Is{s}×s{s} ⊗ HL{s, f})

(
M∑

λ=1

γ {s, f, λ} ⊗f k{f, λ}
)

+
(
Is{s}×s{s} ⊗ HL{s, s}) (γ {s, s} ⊗s k{s}) ;

y{f}
n = y{f}

n−1 +
M∑

λ=1

b{f, λ}T ⊗f k{f, λ}; (3.7c)

y{s}
n = y{s}

n−1 + b{s}T ⊗s k{s}, (3.7d)

where ⊗f and ⊗s are the notation (2.2a) for d{f} and d{s}, respectively. In case of GARK-
ROS methods we define L{a,b} := ∂f {a}/∂y{b}(y{f}

n−1, y
{s}
n−1), a, b ∈ {f, s}, and in case

of GARK-ROW methods these are arbitrary approximations of the Jacobian blocks.

4 Order conditions for MR-GARK-ROS/ROW schemes

In the previous section we have seen that MR-GARK-ROS/ROW schemes can be
interpreted as partitioned GARK-ROS/ROW schemes. Thus the order conditions of
these multirate schemes can be easily derived form the underlying GARK-ROS/ROW
schemes derived in [32]. In the following we focus on pure multirate methods (3.5).
We consider only order conditions up to order four, as multirate schemes fit better
to lower error tolerances and thus lower order schemes. Lower error tolerances are
sufficient for many real-world applications, if they are in the range of the respective
modeling and measurement errors of model parameters.

For exact Jacobians the order conditions for GARK-ROS schemes are (2.5). For
GARK-ROS schemes with time-lagged Jacobian information, in addition to the order
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878 M. Günther, A. Sandu

conditions (2.5a)–(2.5c), the order conditions

time-lagged order 3: b{m}T c{m,n} = 1

2
for m, n ∈ {f, s}. (4.1)

have to be fulfilled for order three. For general approximations of the Jacobians, the
order conditions of GARK-ROW schemes are given by (2.6).

4.1 Internal consistency of MR-GARK-ROS/ROW schemes

We consider methods (3.2) of pure multirate type (3.5). The internal consistency
conditions (2.7) read:

1

M

M∑

λ=1

c{s, f, λ} = c{s, s}; (4.2a)

c{f, s, λ} = λ − 1

M
1{f} + 1

M
c{f, f}, λ = 1, . . . ,M; (4.2b)

1

M

M∑

λ=1

g{s, f, λ} = g{s, s}; (4.2c)

g{f, s, λ} = 1

M
g{f, f}, λ = 1, . . . ,M. (4.2d)

From here we have that:

1

M

M∑

λ=1

e{s, f, λ} = e{s, s};

e{f, s, λ} = λ − 1

M
1{f} + 1

M
e{f, f}, λ = 1, . . . ,M.

(4.3)

In what follows it is convenient to use the following notation for the coupling coeffi-
cients averaged across all micro-steps 2:

α{f, s, �k} :=
M∑

λ=1

(λ − 1)k α{f, s, λ}, (4.4)

with similar notations used for α{s, f, ·}, γ {f, s, ·}, and γ {s, f, ·}.

4.2 Order four conditions for internally consistent MR-GARK-ROS schemes

We consider internally consistent MR-GARK-ROS schemes (4.2). It is immediate
that, if the base methods are second order ROS schemes, the MR-GARK-ROS has
also second order (2.6b).

2 Here we have used the greek uppercase letter � to denote that we are summing over all greek lowercase
letters λ. The index k in �k denotes that we are using the k-th polynomial of λ − 1 in the sums.

123



Multirate linearly-implicit GARK schemes 879

We turn our attention to theMR-GARK-ROS order three conditions (2.5c). Assume
that each of the base methods is a third order ROS scheme. The remaining order three
coupling conditions are as follows:

b{s}T (β{s, f, �1} 1{f} + β{s, f, �0} e{f, f}) = M2

6
, (4.5a)

b{f}T β{f, s, �0} e{s, s} = M

6
. (4.5b)

Remark 4.1 (Order three conditions for time-lagged Jacobian approach) Consider an
internally consistent MR-GARK-ROS scheme of order three. The additional order
three conditions for time-lagged Jacobians (4.1) reduce to:

b{s}T c{s, s} = 1

2
, b{f}T c{f, f} = 1

2
⇔ b{s}T c{s, s} = 1

2
, b{f}T c{f, f} = 1

2
.

The method maintains order three in the case of time-lagged Jacobians if and only
if each base method satisfies the time-lagged Jacobian conditions above. It can be
shown that equation b{f}T c{f, f} = 1/2 is equivalent to the order three MR-GARK-
ROS condition b{f}T (c{f, f} × c{f, s}) = 1/3 in case of internal consistency; therefore
only one additional condition b{s}T c{s, s} = 1/2 is necessary and sufficient to maintain
order three when time-lagged Jacobians are used.

We consider the MR-GARK-ROS order four conditions (2.5d). Assume that each
of the base methods is a fourth order ROS scheme. The remaining order four coupling
conditions are as follows (with × denoting the compontent wise multiplication of two
vectors):

b{s}T ((α{s, f, �1} 1{f} + α{s, f, �0} e{f, f})× c{s, s}) = M2

8
, (4.6a)

b{f}T (α{f, s, �1} e{s, s} +
(
α{f, s, �0} e{s})× c{f, f}) = M2

8
, (4.6b)

b{s}T (β{s, f, �2} 1{f} + 2β{s, f, �1} c{f, f} + β{s, f, �0} c{f, f}×2
)

= M3

12
, (4.6c)

b{f}T β{f, s, �0} c{s}×2 = M

12
, (4.6d)

b{s}T β{s, s} (β{s, f, �1} 1{f} + β{s, f, �0} e{f, f}) = M2

24
, (4.6e)

b{s}T (β{s, f, �1} e{f, f} + β{s, f, �0} β{f, f} e{f, f}) = M3

24
, (4.6f)

b{s}T
(

M∑

λ=1

β{s, f, λ} β{f, s, λ}
)

e{s, s} = M

24
, (4.6g)

b{f}T β{f, f} β{f, s, �0} e{s, s} = M2

24
, (4.6h)

b{f}T β{f, s, �0} β{s, s} e{s, s} = M

24
, (4.6i)
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b{f}T
M∑

λ=1

(
β{f, s, λ} β{s, f, λ} ((λ − 1) 1{f} + e{f, f})) = M3

24
. (4.6j)

4.3 Order three conditions for internally consistent MR-GARK-ROW schemes

We consider internally consistent MR-GARK-ROW schemes (4.2).
Assume that the base methods are second order ROW schemes. The MR-GARK-

ROW second order conditions (2.6b) are:

b{s}T c{s, f, �0} = M

2
, b{s}T g{s, f, �0} = 0,

b{f}T c{f, s, �0} = M

2
, b{f}T g{f, s, �0} = 0.

These conditions are automatically satisfied for internally consistent methods.
We consider the MR-GARK-ROW order three conditions (2.6c). Assume that each

of the base methods is a third order ROW scheme. There are eight order three coupling
conditions, as follows:

b{s}T (α{s, f, �1} 1{f} + α{s, f, �0} c{f, f}) = M2

6
, (4.7a)

b{f}T α{f, s, �0} c{s, s} = M

6
, (4.7b)

b{s}T (γ {s, f, �1} 1{f} + γ {s, f, �0} c{f, f}) = 0, (4.7c)

b{f}T γ {f, s, �0} c{s, s} = 0, (4.7d)

b{s}T α{s, f, �0} g{f, f} = 0, (4.7e)

b{f}T α{f, s, �0} g{s, s} = 0, (4.7f)

b{s}T γ {s, f, �0} g{f, f} = 0, (4.7g)

b{f}T γ {f, s, �0} g{s, s} = 0. (4.7h)

Remark 4.2 Order four coupling conditions for MR-GARK-ROW schemes can be
derived in an analogous manner from the general order conditions (2.6d).

5 Linear stability

Consider the scalar test problem

y′ = λ{s} y + λ{f} y. (5.1)

Application of the MR-GARK-ROS method (3.2) to (5.1) leads to the same stability
equation as the application of a Multirate GARK scheme. Using the notation (3.3) and
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defining

B :=
[
β{f, f} β{f, s}
β{s, f} β{s, s}

]
∈ Rs×s, bT := [b{f}T b{s}T ] ∈ R1×s,

s := s{s} + M s{f}, z{s} := H λ{s}, z{f} := H λ{f},
Z := diag

{
z{f} Is{f}×s{f} , . . . , z

{f} Is{f}×s{f} , z
{s} Is{s}×s{s}

} ∈ Rs×s,

we obtain:

yn+1 = R(Z) yn,

R(Z) = 1 + bT (Is×s − Z B)−1 Z 1s = 1 + bT Z (Is×s − B Z)−1 1s, (5.2)

which is the same stability function as for a GARK schemewith tableau of coefficients
(b,B). The following definition extends immediately fromGARK toMR-GARK-ROS
schemes.

Definition 5.1 (Stiff accuracy) Let δs ∈ Rs be a vector with the last entry equal to
one, and all other entries equal to zero. The MR-GARK-ROS method (3.2) is called
stiffly accurate if

bT = δTs B ⇔ b{s}T = δT
s{f} β{f, s,M} and b{f,M} = δT

s{f} β{f, f,M}.

For a stiffly accurate MR-GARK-ROS/ROW scheme the stability function (5.2)
becomes:

R(Z) = z{f}−1 eTs
(
Z−1 − B

)−1
1s . (5.3)

If diag
{
0s{f}, . . . , 0s{f} , 1/z

{s} Is{s}×s{s}
} − B is nonsingular, then R(Z) → 0 when

z{f} → ∞.
For component partitioned systemswe consider the followingmodel problem [21]:

[
ẏ{f}
ẏ{s}
]

=
[
λ{f} η{s}
η{f} λ{s}

] [
y{f}
y{s}
]

(5.4)

Let z{f} = Hλ{f}, z{s} = Hλ{s}, w{s} = Hη{s}, and w{f} = Hη{f}. Application of the
MGARK-ROSmethod (2.7), regarded as a partitioned GARK-ROS scheme according
to the Butcher tableau (3.3), advances over one step H via the recurrence:

⎡

⎣y
{f}
n

y{s}
n

⎤

⎦ = M
(
z{f}, z{s}, w{s}, w{f})

⎡

⎣y
{f}
n−1

y{s}
n−1

⎤

⎦ ,
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with the stability matrix:

M
(
z{f}, z{s}, w{s}, w{f}) = I2×2 +

[
b{f} 0Ms{f}
0s{s} b{s}

]T

·
[
IMs{f}×Ms{f} − z{f} β{f, f} −w{s} β{f, s}

−w{f} β{s, f} Is{s}×s{s} − z{s} β{s, s}

]−1

·
[
z{f} 1Ms{f} w{s} 1Ms{f}
w{f} 1s{s} z{s} 1s{s}

]
.

One immediately sees that for one-sided coupled problems with w{s} = 0 or w{f} = 0
the stability of the base schemes guarantees the stability of the multirate schemes.

6 Coupling the fast and slow systems in a computationally-efficient
manner

In traditional Rosenbrock methods the coefficient matrix α is strictly lower triangular,
and the matrix γ lower triangular with equal diagonal entries. Due to this structure the
stages ki are evaluated sequentially in a decoupled manner, each stage computation
is only implicit in the current stage.

Multirate GARK ROS/ROW schemes compute both slow and fast stage vectors.
We call a stage computation “decoupled” if it is implicit in only the current stage k{s}

i or

k{f, λ}
i . We call computations “coupled” if one (or more) slow stages, and one (or more)

fast stages are computed together by solving a single large system of linear equations.
Computational efficiency of multirate methods relies on evaluating less frequently the
expensive slow part. Consequently, an efficient multirate method keeps the coupling
at a minimum.

In this paper we construct multirate GARK ROS/ROW schemes where the base
methods are Rosenbrock(-W) schemes with matrices α{f, f, λ}, α{s, s} strictly lower tri-
angular, and matrices γ {f, f, λ} and γ {s, s} lower triangular. From the Butcher tableau
(3.3) compute the coupling structure matrix

S :=
(
|ααα{s, f}| + |γγγ{s, f}|

)T ×
(
|ααα{f, s}| + |γγγ{f, s}|

)
∈ RMs{f}×s{s} , (6.1)

where | · · · | takes element-wise absolute values, and × is the element-wise product.
We make the following observations:

– In order to compute stages sequentially, in a completely decoupled manner, it must
hold that S = 0.

– The non-zero entries in this matrix S correspond to slow and fast stages that are
computed together, in a coupled manner. Specifically, if element in row (λ, i) and
column j is non-zero then stages k{f, λ}

i and k{s}
j are computed by solving a joint

linear system.
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Multirate linearly-implicit GARK schemes 883

– Note that internal consistency Eq. (2.7) for g requires that at least one slow and
one fast stage are computed together in a coupled manner.

Example 6.1 (Second order, two-rate method) Consider the following example using
M = 2 and two-stage base methods:

0 0 0 0 0 0

1
2 α

{f, f, 1}
2,1 0 0 0 α

{f, s, 1}
2,1 α

{f, s, 1}
2,2

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2 0 0 α

{f, s, 2}
1,1 α

{f, s, 2}
1,2

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2

1
2 α

{f, f, 2}
2,1 0 α

{f, s, 2}
2,1 α

{f, s, 2}
2,2

0 0 0 0 0 0

1
2 α

{s, f, 1}
2,1

1
2 α

{s, f, 1}
2,2

1
2 α

{s, f, 2}
2,1

1
2 α

{s, f, 2}
2,2 α

{s, s}
2,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2

1
2 b

{f, 2}
1

1
2 b

{f, 2}
2 b{s}

1 b{s}
2

,

1
2 γ {f, f, 1} 0 0 0 γ

{f, s, 1}
1,1 γ

{f, s, 1}
1,2

1
2 γ

{f, f, 1}
2,1

1
2 γ {f, f, 1} 0 0 γ

{f, s, 1}
2,1 γ

{f, s, 1}
2,2

0 0 1
2 γ {f, f, 2} 0 γ

{f, s, 2}
1,1 γ

{f, s, 2}
1,2

0 0 1
2 γ

{f, f, 2}
2,1

1
2 γ {f, f, 2} γ

{f, s, 2}
2,1 γ

{f, s, 2}
2,2

1
2 γ

{s, f, 1}
1,1

1
2 γ

{s, f, 1}
1,2

1
2 γ

{s, f, 2}
1,1

1
2 γ

{s, f, 2}
1,2 γ {s, s} 0

1
2 γ

{s, f, 1}
2,1

1
2 γ

{s, f, 1}
2,2

1
2 γ

{s, f, 2}
2,1

1
2 γ

{s, f, 2}
2,2 γ

{s, s}
2,1 γ {s, s}

.

We conveniently choose α
{s, f, λ}
1, j = α

{f, s, λ}
1, j = 0 for all j and λ such as to satisfy the

first internal consistency conditions. The coupling structure matrix (6.1) is:

S = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎣

∣∣∣γ {s, f, 1}
1,1

∣∣∣ ·
∣∣∣γ {f, s, 1}

1,1

∣∣∣
(∣∣∣α{s, f, 1}

2,1

∣∣∣+
∣∣∣γ {s, f, 1}

2,1

∣∣∣
)

·
∣∣∣γ {f, s, 1}

1,2

∣∣∣∣∣∣γ {s, f, 1}
1,2

∣∣∣ ·
(∣∣∣α{f, s, 1}

2,1

∣∣∣+
∣∣∣γ {f, s, 1}

2,1

∣∣∣
) (∣∣∣α{s, f, 1}

2,2

∣∣∣+
∣∣∣γ {s, f, 1}

2,2

∣∣∣
)

·
(∣∣∣α{f, s, 1}

2,2

∣∣∣+
∣∣∣γ {f, s, 1}

2,2

∣∣∣
)

∣∣∣γ {s, f, 2}
1,1

∣∣∣ ·
(∣∣∣α{f, s, 2}

1,1

∣∣∣+
∣∣∣γ {f, s, 2}

1,1

∣∣∣
) (∣∣∣γ {s, f, 2}

2,1

∣∣∣+
∣∣∣α{s, f, 2}

2,1

∣∣∣
)

·
(∣∣∣α{f, s, 2}

1,2

∣∣∣+
∣∣∣γ {f, s, 2}

1,2

∣∣∣
)

∣∣∣γ {s, f, 2}
1,2

∣∣∣ ·
(∣∣∣α{f, s, 2}

2,1

∣∣∣+
∣∣∣γ {f, s, 2}

2,1

∣∣∣
) (∣∣∣γ {s, f, 2}

2,2

∣∣∣+
∣∣∣α{s, f, 2}

2,2

∣∣∣
)

·
(∣∣∣α{f, s, 2}

2,2

∣∣∣+
∣∣∣γ {f, s, 2}

2,2

∣∣∣
)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.2)

6.1 IMEX approach

If one chooses γ {f, f, λ} = 0 and γ {f, s, λ} = 0 then the fast component is integrated with
a Runge-Kutta method; this method is explicit if α{f, f, λ} are strictly lower triangular
matrices. For a decoupled computation one needs to select the coupling coefficients
α{f, s, λ}, α{s, f, λ}, and γ {s, f, λ} such that the matrix S = 0. Using notation (3.4), the fast
stages are computed as:

k{f, λ}
i = h f {f}

⎛

⎝ỹn−1+(λ−1)/M +
s{f}∑

j=1

α
{f, f, λ}
i, j k{f, λ}

j +
s{s}∑

j=1

α
{f, s, λ}
i, j k{s}

j

⎞

⎠ .

The corresponding Butcher tableau (3.3) is:

1

M
α{f, f, 1} 0 · · · 0 α{f, s, 1}

1

M
1b{f, 1}T 1

M
α{f, f, 2} · · · 0 α{f, s, 2}

...
. . .

...

1

M
1b{f, 1}T 1

M
1b{f, 2}T . . .

1

M
α{f, f,M} α{f, s,M}

1

M
α{s, f, 1} 1

M
α{s, f, 2} · · · 1

M
α{s, f,M} α{s, s}

,

0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 . . . 0 0

1

M
γ {s, f, 1} 1

M
γ {s, f, 2} · · · 1

M
γ {s, f,M} γ {s, s}

.

(6.3)
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6.2 Compound-first-step approach: coupling themacro-step with the first
micro-step

We consider base methods with the same number of stages s{f} = s{s} = s. Moreover,
we set the coupling coefficients α{s, f, λ} = γ {s, f, λ} = 0 for λ = 2, . . . ,M.

The resulting Butcher tableau (3.3) is:

1

M
α{f, f, 1} 0 · · · 0 α{f, s, 1}

1

M
1b{f, 1}T 1

M
α{f, f, 2} · · · 0 α{f, s, 2}

...
...

. . .
...

...

1

M
1b{f, 1}T 1

M
1b{f, 2}T . . .

1

M
α{f, f,M} α{f, s,M}

1

M
α{s, f, 1} 0 · · · 0 α{s, s}

,

1

M
γ {f, f, 1} 0 · · · 0 γ {f, s, 1}

0
1

M
γ {f, f, 2} · · · 0 γ {f, s, 2}

...
...

. . .
...

...

0 0 . . .
1

M
γ {f, f,M} γ {f, s,M}

1

M
γ {s, f, 1} 0 · · · 0 γ {s, s}

.

(6.4)

The coefficientmatricesα{f, f, 1},α{f, s, 1},α{s, f, 1},α{s, s} are chosen strictly lower triangu-
lar. The coefficientmatricesγ {f, f, 1},γ {f, s, 1},γ {s, f, 1}, andγ {s, s} are chosen lower triangu-
lar, with equal diagonal entries: γ {s, s}

i,i := γ {s, s}, γ {f, f, 1}
i,i := γ {f, f, 1}, γ {s, f, 1}

i,i := γ {s, f, 1},
γ

{f, s, 1}
i,i := γ {f, s, 1} for i = 1, . . . , s.

In the structure matrix (6.1) the entries Si,i 
= 0 for i = 1, . . . , s{s}. This means that
each slow stage k{s}

i and the corresponding fast stage of the first micro-step k{f, 1}
i are

computed in a coupled manner, by solving a full coupled system of linear equations.
Since all diagonal entries are equal to each other, only one LU decomposition of
the compound matrix is necessary for computing all stage vectors k{s}

i and k{f, 1}
i for

i = 1, . . . , s.
Since all slow stages are known after the first micro-step, α{f, s, λ} and γ {f, s, λ} can be

full matrices for λ = 2, . . . ,M. For all remaining micro steps a single additional LU
decomposition is necessary if γ

{f, f, λ}
i,i := γ {f, f} is constant for all i = 1, . . . , s{f} and

λ = 2, . . . ,M.
A simple choice of coefficients for compound-first-step coupling is α{s, f, 1} =

Mα{s, s}, γ {s, f, 1} = M γ {s, s}, α{f, s, 1} = (1/M) α{f, f, 1}, γ {f, s, 1} = (1/M) γ {f, f, 1}.

Example 6.2 Consider the scheme of Example 6.1 with the following coefficients:

0 0 0 0 0 0

1
2 α

{f, f, 1}
2,1 0 0 0 α

{f, s, 1}
2,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2 0 0 α

{f, s, 2}
1,1 α

{f, s, 2}
1,2

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2

1
2 α

{f, f, 2}
2,1 0 α

{f, s, 2}
2,1 α

{f, s, 2}
2,2

0 0 0 0 0 0

1
2 α

{s, f, 1}
2,1 0 0 0 α

{s, s}
2,1 0

,

1
2 γ {f, f, 1} 0 0 0 γ {f, s, 1} 0

1
2 γ

{f, f, 1}
2,1

1
2 γ {f, f, 1} 0 0 γ

{f, s, 1}
2,1 γ {f, s, 1}

0 0 1
2 γ {f, f, 2} 0 γ

{f, s, 2}
1,1 γ

{f, s, 2}
1,2

0 0 1
2 γ

{f, f, 2}
2,1

1
2 γ {f, f, 2} γ

{f, s, 2}
2,1 γ

{f, s, 2}
2,2

1
2 γ {s, f, 1} 0 0 0 γ {s, s} 0

1
2 γ

{s, f, 1}
2,1

1
2 γ {s, f, 1} 0 0 γ

{s, s}
2,1 γ {s, s}

.
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The coupling matrix (6.2) reads:

S = 1

2

⎡

⎢⎢⎣

|γ {s, f, 1}| · |γ {f, s, 1}| 0
0 |γ {s, f, 1}| · |γ {f, s, 1}|
0 0
0 0

⎤

⎥⎥⎦ ,

which indicates that k{f, 1}
1 and k{s}

1 are computed together, and so are k{f, 1}
2 and k{s}

2 .

Remark 6.1 ThemultirateROWschemes introduced byBartel andGünther [3] fall into
the class of multirate GARK-ROW schemes. They consider the case of time-lagged
Jacobians (which differ by a term of magnitude O(H) from the exact Jacobian). In
addition, the same order p within the micro steps is demanded.

6.3 Coupling only the first fast and the first slow stage computations

The smallest amount of coupling that allows the construction of internally consistent
implicit schemes is a lighter version of the strategy discussed in Sect. 6.2, where only
the first fast stage k{f, 1}

1 and the first slow stage k{s}
1 are computed together. It is possible

to select coefficients such that all subsequent stage computations are implicit in either
fast or slow stages, and are computed in a decoupled manner.

Example 6.3 Consider the scheme from Example 6.1 with the following coefficients:

0 0 0 0 0 0

1
2 α

{f, f, 1}
2,1 0 0 0 α

{f, s, 1}
2,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2 0 0 α

{f, s, 2}
1,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2

1
2 α

{f, f, 2}
2,1 0 α

{f, s, 2}
2,1 α

{f, s, 2}
2,2

0 0 0 0 0 0

1
2 α

{s, f, 1}
2,1

1
2 α

{s, f, 1}
2,2

1
2 α

{s, f, 2}
2,1 0 α

{s, s}
2,1 0

,

1
2 γ {f, f, 1} 0 0 0 γ

{f, s, 1}
1,1 0

1
2 γ

{f, f, 1}
2,1

1
2 γ {f, f, 1} 0 0 γ

{f, s, 1}
2,1 0

0 0 1
2 γ {f, f, 2} 0 γ

{f, s, 2}
1,1 0

0 0 1
2 γ

{f, f, 2}
2,1

1
2 γ {f, f, 2} γ

{f, s, 2}
2,1 γ

{f, s, 2}
2,2

1
2 γ

{s, f, 1}
1,1 0 0 0 γ {s, s} 0

1
2 γ

{s, f, 1}
2,1

1
2 γ

{s, f, 1}
2,2

1
2 γ

{s, f, 2}
2,1 0 γ

{s, s}
2,1 γ {s, s}

.

The coupling matrix (6.2) has single non-zero element, 1
2 |γ {s, f, 1}

1,1 | |γ {f, s, 1}
1,1 |, corre-

sponding to first computing stages k{f, 1}
1 and k{s}

1 in a coupled manner. Next, k{f, 1}
2 and

k{f, 2}
1 are computed in a decoupled manner, since they only depend on the known slow

stage k{s}
1 . After this, k{s}

2 is computed in a decoupled manner as it does not depend

on the (yet unknown) last fast stage k{f, 2}
2 . Finally, k{f, 2}

2 is evaluated using both slow
stages.

Remark 6.2 Note that the coupling approaches in Sects. 6.2 and 6.3 consider only the
influence of the fast scale within the first micro step onto the slow variables. If the
evolution of the fast part changes drastically after the first micro-step, this would only
affect the slow part in the next macro step. However, the order conditions show that
the overall scheme has order p at the macro step grid points. In addition, as a rule of
thumb, the fast part has typically only a weak influence on the slow part, as otherwise
the slow part might incorporate some fast dynamics, and require to be treated as fast,
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too. The compound-step approach idea traces back to Kvaerno and Rentrop [22] in
1999, and to our knowledge, no time-lag effect has been observed since then in any
multirate scheme based on the compound-step approach.

6.4 Fully decoupled approach

In the completely decoupled approach each stage follows a regular Rosenbrock com-
putation, implicit in either the fast or the slow stages, but not in both at the same time.
In this case the second internal consistency conditions γ {f, f, 1} = ∑

j γ
{f, s, 1}
1, j do not

hold unless this first stage is explicit. Consequently, the coupling order conditions for
the entire method become more complex, but such methods are possible to construct.

Example 6.4 Consider the scheme from Example 6.1 with the following coefficients:

0 0 0 0 0 0

1
2 α

{f, f, 1}
2,1 0 0 0 α

{f, s, 1}
2,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2 0 0 α

{f, s, 2}
1,1 0

1
2 b

{f, 1}
1

1
2 b

{f, 1}
2

1
2 α

{f, f, 2}
2,1 0 α

{f, s, 2}
2,1 α

{f, s, 2}
2,2

1
2 α

{s, f, 1}
1,1 0 0 0 0 0

1
2 α

{s, f, 1}
2,1

1
2 α

{s, f, 1}
2,2

1
2 α

{s, f, 2}
2,1 0 α

{s, s}
2,1 0

,

1
2 γ {f, f, 1} 0 0 0 0 0

1
2 γ

{f, f, 1}
2,1

1
2 γ {f, f, 1} 0 0 γ

{f, s, 1}
2,1 0

0 0 1
2 γ {f, f, 2} 0 γ

{f, s, 2}
1,1 0

0 0 1
2 γ

{f, f, 2}
2,1

1
2 γ {f, f, 2} γ

{f, s, 2}
2,1 γ

{f, s, 2}
2,2

1
2 γ

{s, f, 1}
1,1 0 0 0 γ {s, s} 0

1
2 γ

{s, f, 1}
2,1

1
2 γ

{s, f, 1}
2,2

1
2 γ

{s, f, 2}
2,1 0 γ

{s, s}
2,1 γ {s, s}

.

Note the complementary sparsity structure of the off-diagonal coupling blocks. The
first fast stage is that of a classical Rosenbrock method:

(
I − h γ {f, f, 1} L{f}) k{f, 1}

1 = h f {f}
(
yn−1

)
.

Similarly, the first slow stage is computed in a decoupled manner:

(
I − H γ {s, s} L{s})k{s}

1 = H f {s}
(
yn−1 + α

{s, f, 1}
1,1 k{f, 1}

1

)
+ H γ

{s, f, 1}
1,1 L{s} k{f, 1}

1 ,

and the decoupled computations continue alternating fast and slow stages.

6.5 Step-predictor-corrector approach

This approach starts with a “predictor” step where the slow Rosenbrock method is
applied with step size H to the entire system, in a classical fashion. The slow com-
ponents are sufficiently accurate, but the fast components are not; for this reason we
keep only the computed k{s}, but discard k{f}. The “corrector” re-computes k{f, λ} for
all sub-steps λ, with the small steps sizes h, and uses these values to construct the final
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solution. The Butcher tableaus (3.3) read:

α{s, s} 0 · · · 0 α{s, s}

0
1

M
α{f, f} · · · 0 α{f, s, 1}

...
...

. . .
...

...

0
1

M
1b{f}T . . .

1

M
α{f, f} α{f, s,M}

α{s, s} 0 · · · 0 α{s, s}

0
1

M
b{f}T . . .

1

M
b{f}T b{s}T

,

γ {s, s} 0 · · · 0 γ {s, s}

0
1

M
γ {f, f} · · · 0 γ {f, s, 1}

...
...

. . .
...

...

0 0 . . .
1

M
γ {f, f} γ {f, s,M}

γ {s, s} 0 · · · 0 γ {s, s}
.

(6.5)

Step-predictor-corrector methods will be discussed in detail in Sect. 8.

7 Compound-first-stepMR-GARK-ROS/ROW schemes

Consider a telescopic compound-first-step method (6.4) where the fast and the slow
base methods coincide: α{f, f} = α{s, s} = α, γ {f, f} = γ {s, s} = γ , s{f} = s{s} = s, and
b{f} = b{s} = b. Remember that compound-first-step methods are characterized by
the relation α{s, f, λ} = γ {s, f, λ} = 0 for λ > 1, see (6.4).

A natural choice for the fast/slow coupling coefficients is:

γ {f, s, λ} = 1

M
γ + 1

M
γ̃ {f, s, λ}, α{f, s, λ} = 1

M
α + 1

M
α̃{f, s, λ} + 1

M
F(λ), (7.1a)

where we allow the additional coefficient matrices F(λ), α̃{f, s, λ}, and γ̃ {f, s, λ} for more
flexibility. Here α̃{f, s, λ} is assumed to be strictly lower triangular, and γ̃ {f, s, λ} lower
triangular. For internal consistency (4.2) we ask that

F(λ) 1 = (λ − 1) 1, α̃{f, s, λ} 1 = γ̃ {f, s, λ} 1 = 0. (7.1b)

Overall, this choice adds M s (2s − 3) degrees of freedom to coupling coefficients
(7.1a).

A natural choice of slow/fast coupling for a compound first step is:

α{s, f, 1} = Mα + M α̃{s, f, 1}, γ {s, f, 1} = M γ + M γ̃ {s, f, 1}, (7.1c)

with α̃{s, f, 1} strictly lower triangular and γ̃ {s, f, 1} lower triangular, where for internal
consistency we impose

α̃{s, f, 1} 1 = γ̃ {s, f, 1} 1 = 0.

This choice adds s2 − 2s degrees of freedom to the coupling coefficients (7.1c).
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The particular choice of coupling coefficients (7.1) implies that:

α{f, s, �0} = α + 1

M
α̃{f, s, �0} + 1

M
F(�0), γ {f, s, �0} = γ + 1

M
γ̃ {f, s, �0},

α{s, f, �0} = α{s, f, 1}, γ {s, f, �0} = γ {s, f, 1}, α{s, f, �1} = γ {s, f, �1} = 0,

where we have used the abbreviation

F(�k) :=
M∑

λ=1

(λ − 1)k F(λ). (7.2)

Assuming that the base ROS scheme has order three, the remaining MR-GARK-ROS
order three conditions (4.5) read:

bT β{s, f, 1} e = M2

6
,

bT
(
F(�0) + β{f, s, �0}

)
e = M(M − 1)

6
.

Assuming that the baseROWscheme has order three, the remainingMR-GARK-ROW
order three conditions (4.7) are:

bT α{s, f, 1} c = M2

6
, bT

(
F(�0) + α̃{f, s, �0}

)
c = M(M − 1)

6
, bT γ {s, f, 1} c = 0,

bT
(
γ + 1

M
β̃

{f, s, �0}) c = 0, bT α{s, f, 1} g = 0, bT
(
F(�0) + α̃{f, s, �0}

)
g = 0,

bT γ {s, f, 1} g = 0, bT
(
γ + 1

M
β̃

{f, s, �0}) g = 0.

Assuming that the base ROS scheme has order three, the remaining MR-GARK-ROS
order four conditions (4.6) are:

bT
(
α{s, f, 1} e × c

)
= M2

8
,

bT
((

F(�1) + α̃{f, s, �1}
)
e +

((
F(�0) + α̃{f, s, �0}

)
e
)

× c
)

= M(M − 1)

8
·
(
M + 1 − 4bTα e

)
,

bT β{s, f, 1} c×2 = M3

12
,

bT (F(�0) + β̃
{f, s, �0}

)c×2 = M(M − 1)

12
,

bT β β{s, f, 1} e = M2

24
,

bT β{s, f, 1} β e = M3

24
,

bT β{s, f, 1} (F(1) + β̃
{f, s, 1}

)e = M2(1 − M)

24
,
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bT β (F(�0) + β̃
{f, s, �0}

)e = M(M2 − 1)

24
,

bT (F(�0) + β̃
{f, s, �0}

)β e = M(M − 1)

24
,

bT (F(1) + β̃
{f, s, 1})

β{s, f, 1} e = M2(M − 1)

24
.

Remark 7.1 Order four coupling conditions for compound-first-step MR-GARK-
ROW schemes can be derived in an analogous manner from the general order
conditions (2.6d).

Using the framework of compound-first-step schemes we derive embedded MR-
GARK-ROS methods of order (2)3 (main method of order three, with embedded
scheme of order two) which fulfill the time-lagged Jacobian order conditions.

Example 7.1 (Implicit-implicit case)An embedded implicit-implicitMR-GARK-ROS
scheme of order (2)3, which automatically fulfills the time-lagged Jacobian order
conditions (4.1) due Remark 4.1, with γ and β2,1 as free parameters, is given by

b = [ 16 4
6

1
6

]T
, b̂ =

[
1 − 1−2 γ

2 β2,1

1−2 γ
2 β2,1

0

]T
,

α =
⎡

⎣
0 0 0
1
2 0 0

−1 2 0

⎤

⎦ , β =
⎡

⎢⎣
γ 0 0

β2,1 γ 0

3−6γ−4β2,1− 6(γ 2+γ )−1
β2,1

6(γ 2−γ )+1
β2,1

γ

⎤

⎥⎦ ,

α{f, s, λ} = 1

M

(
α + F(λ)

)
, β{f, s, λ} = 1

M

(
β + β̂ + F(λ)

)
,

α{s, f, 1} = Mα, β{s, f, 1} = M
(
β + β̂

)
,

β̂ =
⎡

⎣
0 0 0

0 0 0

−β̂ β̂ 0

⎤

⎦ , β̂ = M − 1

β2,1
,

F(λ) = (λ − 1)

⎡

⎣
α̂ 1−α̂ 0

α̂ 1−α̂ 0

α̂ 1−α̂ 0

⎤

⎦ , α̂ = β2,1 + γ

β2,1
.

Example 7.2 (Implicit-explicit case) For the implicit-explicit case we select β{f, f, λ} =
α{f, f} = α for λ = 2, . . . ,M, i.e., the base scheme for the last M − 1 steps of the
fast part is explicit. To obtain a fully-implicit compound step we set β{f, f, 1} = β. We
choose α,β,b, b̂ and the other coupling coefficients as in Example 7.1 above, but
replace α̂ with:

α̂ = 3(M + 1)(β2,1 + γ ) − β2,1 − M

3M β2,1
.

.
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8 Step-predictor-corrector methods

We consider step predictor-corrector (SPC) methods described in Sect. 6.5. The com-
putations associated with the Butcher tableau (6.5) proceed as follows. First, the
“predictor” applies the slow base scheme (b{s},α{s, s}, γ {s, s}) over a macro-step H
to solve the entire coupled system:

k = H (f {f} + f {s})
(
1s{s} ⊗ yn−1 + α{s, s} ⊗d k

)

+
(
Is×s ⊗ H(L{f} + L{s})

) (
γ {s, s} ⊗d k

)
, (8.1a)

which gives the following values of the slow stages:

k{s} = H f {s}
(
1s{s} ⊗ yn−1α

{s, s} ⊗d k
)

+
+(Is×s ⊗ HL{s})

(
γ {s, s} ⊗d k

)
. (8.1b)

Next, the “corrector” applies the fast base scheme (b{f},α{f, f}, γ {f, f}) over M micro-
steps of size h. The fast stages k{f, λ} are computed using formula (3.2a), and the next
step solution yn using formula (3.2c). Note that the coupling matrices α{f, s, λ} and
γ {f, s, λ} do not need to be triangular, and can have any fill-in structure, since all k{s} are
known before the start of the micro-steps.

8.1 Order conditions

8.1.1 Internal consistency

The internal consistency conditions (2.7) read:

c{f, s, λ} = λ − 1

M
1{f} + 1

M
c{f, f}, λ = 1, . . . ,M,

g{f, s, λ} = 1

M
g{f, f}, λ = 1, . . . ,M. (8.2)

The accuracy analysis in this section assumes internally consistent SPC-MR-
GARK-ROS/ROW methods (8.2), where the slow and fast base methods are
ROS/ROW schemes of the corresponding order. Therefore the analysis below focuses
only on the remaining coupling conditions.

8.1.2 Second order conditions

For internally consistent SPC-MR-GARK-ROS/ROW methods the coupling condi-
tions (2.5b) and (2.6b), respectively, are automatically satisfied.
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8.1.3 Third order conditions

For SPC-MR-GARK-ROS methods there is a single remaining order three coupling
condition (2.5c), as follows:

b{f}T β{f, s, �0} e{s, s} = M

6
. (8.3)

The third order conditions for time-lagged Jacobians (4.1) are automatically satisfied
due to internal consistency.

For SPC-MR-GARK-ROWmethods the order three coupling conditions (2.6c) are:

b{f}T α{f, s, �0} c{s, s} = M

6
, b{f}T γ {f, s, �0} c{s, s} = 0,

b{f}T α{f, s, �0} g{s, s} = 0, b{f}T γ {f, s, �0} g{s, s} = 0. (8.4)

8.1.4 Fourth order conditions

For SPC-MR-GARK-ROSmethods (8.2) there are four remaining order four coupling
ROS conditions (2.5d), as follows:

b{f}T (α{f, s, �1} e{s, s} + (α{f, s, �0} e{s, s}) × c{f, f}) = M2

8
, (8.5a)

b{f}T β{f, s, �0} c{s, s} ×2 = M

12
, (8.5b)

b{f}T
(

M∑

λ=1

λ−1∑

i=1

β{f, s, i} + β{f, f} β{f, s, �0}
)

e{s, s} = M2

24
, (8.5c)

b{f}T β{f, s, �0} β{s, s} e{s, s} = M

24
. (8.5d)

Remark 8.1 Order four coupling conditions for SPC-MR-GARK-ROW schemes can
be derived in an analogous manner from the general order conditions (2.6d).

8.2 Telescopic SPCmethods

Consider a telescopic SPC method (6.5) where the fast and the slow base methods
coincide, and are both equal to (b,α, γ ); the vectors (2.4) are c = α 1, g = γ 1, and
e = c + g.

The internal consistency Eq. (8.2) read for λ = 1, . . . ,M:

c{f, s, λ} = λ − 1

M
1 + 1

M
c, e{f, s, λ} = λ − 1

M
1 + 1

M
e, g{f, s, λ} = 1

M
g.
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We consider the following natural choice for the coupling coefficients:

γ {f, s, λ} = 1

M
γ , α{f, s, λ} = 1

M
α + 1

M
F(λ),

β{f, s, λ} = 1

M
β + 1

M
F(λ),

(8.6a)

where, in order to ensure internal consistency, we ask that

F(λ) 1 = (λ − 1) 1, λ = 1, . . . ,M. (8.6b)

The second order coupling conditions for SPC-MR-GARK-ROS/ROW schemes are
automatically satisfied due to internal consistency.

Using notation (7.2) and the coupling coefficients (8.6a) we have:

γ {f, s, �0} = γ , γ {f, s, �1} = M − 1

2
γ ,

α{f, s, �0} = α + 1

M
F(�0), α{f, s, �1} = M − 1

2
α + 1

M
F(�1).

(8.7)

8.2.1 Third order conditions

The third order SPC-MR-GARK-ROS coupling condition (8.3) reads:

bT F(�0)e = M (M − 1)

6
. (8.8)

The third order SPC-MR-GARK-ROW coupling conditions (8.4) are:

bT F(�0)c = M (M − 1)

6
, bT F(�0)g = 0. (8.9)

The following choice of rank-one coupling matrix ensures third order:

F(λ) = (λ − 1) 1 vT1 ,

where impose the internal consistency (8.6b), the coupling condition (8.8), and the
second condition (8.9) by the following equations, respectively:

vT1 1 = 1, vT1 e = 1

3
, vT1 g = 0.

If the base method is a third order ROS scheme, then vT1 = 2bT β offers a solution
of these equations.
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8.2.2 Fourth order conditions

The SPC-MR-GARK-ROS order four coupling conditions (8.5b) and (8.5d) are auto-
matically satisfied by the choice of coupling coefficients (8.6). The remaining order
four coupling conditions (8.5a) and (8.5c) are:

bT (f(�1) + f(�0) × c) = M (M − 1)
(
M + 1 − 4bT α e

)

8
,

bT

(
M∑

λ=1

λ−1∑

i=1

f(i) + β f(�0)

)
= M (M − 1)2

24
,

(8.10)

where f(λ) := F(λ)e, f(�0) := F(�0)e, f(�1) := F(�1)e.

8.2.3 Polynomial coupling matrix

We build the coupling matrix F(λ) as a polynomial with matrix coefficients:

F(λ) =
K∑

i=1

(λ − 1)i Di .

Let K = 2. For internal consistency (8.6b) we require

D1 1 = 1, D2 1 = 0.

The third order ROS coupling conditions (8.8) are:

bT D1 e = 1

3
, bT D2 e = 0,

and the third order ROW coupling conditions (8.9) read:

bT D1 c = 1

3
, bT D2 c = 0, bT D1 g = 0, bT D2 g = 0.

The fourth order ROS coupling conditions (8.10) are:

bT (D1 e × c) = 3

8
− bTα e, bT (D2 e × c) = 1

24
,

bT β D1 e = 1

8
, bT β D2 e = − 1

24
.
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9 Multirate infinitesimal stepmethods

We now consider MR-GARK-ROS/ROW methods where the micro-steps can be
arbitrarily small.We call thesemethodsmultirate “infinitesimal step”, orMRI-GARK-
ROS/ROW for short; they offer extreme flexibility since they allow to solve the fast
subsystem with any sufficiently accurate discretization method and sequence of step
sizes.

Definition 9.1 (MRI-GARK-ROS/ROW methods) Consider a base slow ROS/ROW
scheme (b{s},α{s, s}, γ {s, s}) with non-decreasing abscissae c{s, s}

1 ≤ c{s, s}
2 ≤ · · · ≤

c{s, s}
s{s} , and denote:

c{s, s}
0 = 0; �c{s, s}

i := c{s, s}
i − c{s, s}

i−1 , i = 1, . . . , s.

A multirate infinitesimal step GARK ROS/ROWmethod advances the solution of the
fast-slow partitioned system (3.1) via the following computational process:

ỹn−1 = yn−1; For λ = 1, . . . , s{s} : (9.1a)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vλ(0) = ỹn−1+(λ−1)/s{s} ,

v′
λ(θ) = �c{s, s}

λ f {f}
(
tn−1 + c{s, s}

λ−1 H + �c{s, s}
λ θ,

vλ(θ) +∑λ−1
j=1 rλ, j (

θ
H )k{s}

j

)
, θ ∈ [0, H ],

ỹn−1+λ/s{s} = vλ(H);

(9.1b)

k{s}
λ = H f {s}

⎛

⎝ỹn−1+λ/s{s} +
λ−1∑

j=1

α
{s, s}
λ, j k

{s}
j

⎞

⎠ (9.1c)

+ H L{s}
⎛

⎝
λ∑

�=1

qλ,� (̃yn−1+�/s{s} − ỹn−1+(�−1)/s{s}) +
λ∑

j=1

γ
{s, s}
λ, j k

{s}
j

⎞

⎠ ;

yn = ỹn + b{s}T ⊗d k{s}. (9.1d)

A modified fast ODE (9.1b) is integrated between consecutive stages of the base slow
method. The slow components influence the fast dynamics via the time dependent
coefficients rλ(·) ∈ Rs{s} , λ = 1, . . . , s{s}. The fast solutions impact the computation
of the slow stages (9.1c) via the coupling coefficients qλ ∈ Rs{s} , λ = 1, . . . , s{s}. The
next step solution (9.1d) combines the fast solution ỹn and the slow solution increment
given by the stages k{s}.
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To analyze the scheme (9.1) we start by discretizing each modified fast ODE (9.1b)
with an explicit Runge-Kutta scheme (b{f},α{f, f}) of arbitrary accuracy:

k{f, λ}
i = H f {f}

(
ỹn−1+(λ−1)/s{s} +

i−1∑

j=1

α
{f, f}
i, j �c{s, s}

λ k{f, λ}
j

+
λ−1∑

j=1

α
{f, s, λ}
i, j k{s}

j

)
, i = 1, . . . , s{f},

ỹn−1+λ/s{s} = ỹn−1+(λ−1)/s{s} +
s{f}∑

i=1

b{f}
i �c{s, s}

λ k{f, λ}
i .

(9.2)

The fast discrete stages (9.2), together with the slow stages (9.1c) and the next step
solution (9.1d), form an IMEX GARK ROS/ROW method (3.2) with M = s{s}, as
described in Sect. 6.1. The slow/fast coupling coefficients have the following particular
structure:

α
{f, s, λ}
i, j := rλ, j (c

{f}
i ),

α{s, f, λ} := pλ b
{f}T , pλ :=

[
0(λ−1)×1

1(s{s}+1−λ)×1

]
,

γ {s, f, λ} := qλ b
{f}T , qλ :=

[
0(λ−1)×1

qλ

]
, qλ ∈ Rs{s}+1−λ.

The Butcher tableau (3.3) of the resulting IMEX GARK ROS/ROW scheme is:

�c{s, s}
1 α{f, f} · · · 0 α{f, s, 1}

...
. . .

...

�c{s, s}
1 1b{f}T . . . �c{s, s}

s{s} α{f, f} α{f, s, s{s}}

�c{s, s}
1 p1b{f}T · · · �c{s, s}

s{s} ps{s}b
{f}T α{s, s}

�c{s, s}
1 b{f}T . . . �c{s, s}

s{s} b
{f}T b{s}T

,

0 · · · 0 0
...

. . .
...

0 . . . 0 0

�c{s, s}
1 q1b{f}T · · · �c{s, s}

s{s} qs{s}b
{f}T γ {s, s}

.

9.1 Internal consistency

The internal consistency conditions (4.2a) and (4.2d) are automatically satisfied. Con-
ditions (4.2b) and (4.2c) read:

c{f, s, λ} = c{s, s}
λ−1 1

{f} + �c{s, s}
λ c{f, f}, λ = 1, . . . , s,

s{s}∑

λ=1

�c{s, s}
λ qλ = g{s, s}.
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The following choice obeys the internal consistency condition:

rλ(θ) =
∑

k≥0

rλ,k θk ∈ Rs{s} , α{f, s, λ} :=
∑

k≥0

c{f}×k rTλ,k,

rTλ,0 1
{s} = c{s, s}

λ−1, rTλ,1 1
{s} = �c{s, s}

λ , rTλ,k 1
{s} = 0, k ≥ 2.

We have that:

b{f}T α{f, s, λ} = r̄Tλ , r̄λ :=
∑

k≥0

1

k + 1
rλ,k, r̂λ :=

∑

k≥0

1

k + 2
rλ,k .

9.2 Third order conditions

The MRI-GARK-ROS coupling conditions (4.5) read:

b{s}T
s{s}∑

λ=1

qλ

(
c{s, s}2

λ − c{s, s}2
λ−1

)
= 0,

s{s}∑

λ=1

�c{s, s}
λ r̄Tλ e{s, s} = 1

6
.

The order three MRI-GARK-ROW coupling conditions (4.7) are:

b{s}T
s∑

λ=1

qλ

(
c{s, s}2

λ − c{s, s}2
λ−1

)
= 0,

s∑

λ=1

�c{s, s}
λ r̄Tλ c{s, s} = 1

6
,

s∑

λ=1

�c{s, s}
λ r̄Tλ g{s, s} = 0.

Remark 9.1 Order four coupling conditions for infinitesimal stepMR-GARK-ROS/ROW
schemes can be derived in an analogous manner from the general order conditions
(2.5d), (2.6d).

10 Infinitesimal step SPCmethods

Consider a step-predictor-corrector method (6.5) with the slow base method
(b{s},α{s, s}, γ {s, s}), and perform the compound step (8.1). Then proceed with the fast
integration, but instead of applying the discrete formula (3.2a), solve the following
modified fast ODE:

v′ = f {f}
(
v + μT ( θ

H )⊗d k{s})+ L{f} (νT ( θ
H )⊗d k{s}),

v(0) = yn−1, 0 ≤ θ ≤ H . (10.1)
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The next step solution, computed using (3.2c), is:

yn = v(H) + b{s}T ⊗d k{s}. (10.2)

Remark 10.1 (Error estimation)Assume that the basemethodhas an embedded scheme

b̂
{s}
for error estimation. Using b̂

{s}
in (10.2) gives an error estimate in the slow compo-

nent, which can be used for macro-step error control. The fast components are solved
with infinite accuracy, and the same fast integration (10.1) is used for both the main
and the embedded solutions.

Solving (10.1) with an arbitrarily accurate fast GARK-ROS/ROW method (2.1)
with coefficients (b{f},α{f, f}, γ {f, f}) gives the discrete solution:

k{f} = H f {f}
(
1s ⊗ yn−1 + α{f, f} ⊗d k{f} + μT (c{f, f})⊗d k{s})

+ (Is{f}×s{f} ⊗ H L{f}) (γ {f, f} ⊗d k{f} + νT (c{f, f})⊗d k{s}) ,

vn = yn−1 + b{f}T ⊗d k{f}.

(10.3)

The Butcher tableau (3.3) of the coupled scheme (8.1) and (10.3) reads:

c{f} α{f, f} α{f, s}
c{s} α{s, f} α{s, s}

b{f}T b{s}T =

c{s, s} α{s, s} 0 α{s, s}
c{f, f} 0 α{f, f} μT (c{f, f})
c{s, s} α{s, s} 0 α{s, s}

0 b{f}T b{s}T , (10.4a)

g{f} γ{f, f} γ{f, s}
g{s} γ{s, f} γ{s, s} =

g{s, s} γ {s, s} 0 γ {s, s}
g{f, f} 0 γ {f, f} νT (c{f, f})
g{s, s} γ {s, s} 0 γ {s, s} . (10.4b)

The internal consistency conditions (2.7) are:

μT
(
c{f, f}) 1{f} = c{f, f}, νT

(
c{f, f}) 1{f} = g{f, f}. (10.5)

Without loss of generality we choose γ {f, f} = 0, i.e., we solve the modified fast
ODEwith an arbitrarily accurate Runge-Kutta scheme. The corresponding continuous
coupling coefficients are chosen accordingly as ν(t) = 0 ∈ Rs{s}×1.

Define the μ(t) ∈ Rs{s}×1 coupling coefficients as polynomials in time:

μ(t) :=
∑

k≥0

μk t
k ⇒ μT (c{f, f}) =

∑

k≥0

c{f, f}×k μT
k , b{f}T μT (c{f, f})

=
∑

k≥0

1

k + 1
μT
k =: μT .
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The internal consistency conditions (10.5) are satisfied with:

μT
1 1{s} = 1; μT

k 1{s} = 0, k 
= 1; ν(t) = 0s{s}×1.

10.1 SPC-MRI-GARK-ROSmethods

The order three ROS condition (2.5c) reads:

μT e{s, s} = 1

6
.

The order four ROS conditions (2.5d) are:

∑

k≥0

μT
k e{s, s}

k + 2
= 1

8
, μT c{s, s}×2 = 1

12
,

∑

k≥0

μT
k e{s, s}

(k + 1)(k + 2)
= 1

24
, μT β{s, s} e{s, s} = 1

24
.

An order four linear-in-time coupling can be constructed as follows:

μ(t) = μ0 + μ1 t, where μ0,μ1 ∈ Rs{s}×1 satisfy:

μT
0 1{s} = 0, μT

1 1{s} = 1, μT
0 e{s, s} = − 1

12
, μT

1 e{s, s} = 1

2
,

(
μT
0 + 1

2
μT
1

)
c×2 = 1

12
,

(
μT
0 + 1

2
μT
1

)
β{s, s} e{s, s} = 1

24
.

(10.6)

Example 10.1 (Multirate Rodas)We build an SPCMRI version ofHairer andWanner’s
Rodas method [17, Chapter VI.4] by constructing a coupling of the form (10.6). The
Rodas method has six stages, and the coupling (10.6) is defined by twelve coefficients
(the entries of the six-dimensional vectors μ0 and μ1). There are six ROS order four
coupling conditions (10.6), and we also impose the order 3 ROW conditions (10.8).
The coefficients depend on four free parameters:

μ0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

θ1
θ2

−1.923968128204745 θ1 + 2.446324727549974e-01 θ2 + 4.509689603795104e-02
1.405229246707428 θ1 − 2.181782847233643 θ2 + 1.289372580090594e-01

−4.812611185026834e-01 θ1 + 9.371503744786454e-01 θ2 − 1.740341540470105e-01 − θ3
θ3

⎤

⎥⎥⎥⎥⎥⎥⎦
,

μ1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 θ1 + 4.061438468864431e-01
−2 θ2 + 5.932358823451654e-01

3.847936256409489 θ1 − 4.892649455099948e-01 θ2 − 3.657016798231872e-01
−2.810458493414855 θ1 + 4.363565694467286 θ2 + 5.003688760525202e-02

9.625222370053667e-01 θ1 − 1.874300748957291 θ2 + 3.162850629863266e-01 − θ4
θ4

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(10.7)
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The free parameters can be used to improve stability. By setting θ3 = θ4 = 0 the last
slow Rodas stage is not used for coupling.

10.2 SPC-MRI-GARK-ROWmethods

The order three ROW conditions (2.6c) are:

μT c{s, s} = 1

6
, μT g{s, s} = 0, (10.8)

and a third order coupling can be constructed as follows:

μ(t) = μ1 t with μT
1 1{s} = 1, μT

1 c{s, s} = 1

3
, μT

1 g{s, s} = 0. (10.9)

Example 10.2 Consider the third order, stiffly accurate ROW method ROS34PW2 of
Rang and Angermann [23, Table 4.3]. The SPC MRI coupling coefficients (10.9) are
defined in terms of one free parameter θ that can be used to improve stability:

μ1 =

⎡

⎢⎢⎣

θ

−4.307016638790922 + 8.289196835086212 θ

4.541816529634874 − 7.686572272599903 θ

0.7652001091560487 − 1.602624562486310 θ

⎤

⎥⎥⎦ .

Remark 10.2 Order four coupling conditions for infinitesimal SPC multirate GARK-
ROW schemes can be derived in an analogous manner from the general order
conditions (2.6d).

11 Discussion

This paper proposes a general framework for linearly-implicit multirate time integra-
tion. Multirate GARK-ROS and GARK-ROW schemes, which make use of the exact
or approximative Jacobian, respectively, are developed and analyzed. Order condi-
tions up to order four are derived, with a focus on internally consistent schemes. We
discuss several slow-fast coupling structures that lead to efficient computational pro-
cesses. Such couplings include compound-first step schemes, step-predictor-corrector
methods, and multirate infinitesimal step approaches. Coefficient sets for new specific
methods are given to illustrate these coupling strategies.

The new MR(I)-GARK-ROS/ROW framework includes all existing multirate
Rosenbrock(-W)methods as particular cases, and opens the possibility to develop new,
high order, highly stable linearly implicit multirate schemes for a myriad of appli-
cations. The development and optimization of practical MR(I)-GARK-ROS/ROW
methods, their efficient implementation [39], and extensive numerical testing in real
applications will be presented in a forthcoming publication.
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