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Abstract
We discuss a pointwise numerical differentiation formula on multivariate scattered
data, based on the coefficients of local polynomial interpolation atDiscrete Leja Points,
written in Taylor’s formula monomial basis. Error bounds for the approximation of
partial derivatives of any order compatible with the function regularity are provided,
as well as sensitivity estimates to functional perturbations, in terms of the inverse Van-
dermonde coefficients that are active in the differentiation process. Several numerical
tests are presented showing the accuracy of the approximation.

Keywords Multivariate lagrange interpolation · Discrete leja points · Numerical
differentiation · Multivariate taylor polynomial · Error bounds

1 Introduction

Let Πd (Rs) be the space of polynomials of total degree at most d in the variable
x = (ξ1, . . . , ξs). A basis for this space, in the multi-index notation, is given by the
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monomials xα=ξ
α1
1 . . . ξ

αs
s , where α = (α1, . . . , αs) ∈ N

s
0, |α| = α1 + · · · + αs ≤ d

and therefore dimΠd (Rs) = (d+s
s

)
. We introduce a total order in the set of all multi-

indices α. More precisely, we assume α < β if |α| < |β|, otherwise, if |α| = |β| we
follow the lexicographic order of the dictionary of words of |α| letters from the ordered
alphabet {ξ1, . . . , ξs} with the possibility to repeat each letter ξi only consecutively
many times. For instance, if |α| = 3 , we have (3, 0, 0) < (2, 1, 0) < (2, 0, 1) <

(1, 2, 0) < (1, 1, 1) < (1, 0, 2) < (0, 3, 0) < (0, 2, 1) < (0, 1, 2) < (0, 0, 3) .
Further details on multivariate polynomials and related multi-index notations can be
found in [6, Ch. 4].

Let us consider a set

σ = {x1, . . . , xm} (1)

of m = (d+s
s

)
pairwise distinct points in Rs and let us assume that they are unisolvent

for Lagrange interpolation in Πd (Rs), that is for any choice of y1, . . . , ym ∈ R, there
exists and it is unique p ∈ Πd (Rs) satisfying

p(xi ) = yi , i = 1, . . . ,m. (2)

An equivalent result [6, Ch. 1] is the non singularity of the Vandermonde matrix

V (σ ) = [
xα
i

]
i=1,...,m

|α|≤d
,

where the index i , related to the points, varies along the rows while the index α, related
to the powers, increaseswith the column indexby following the above introducedorder.
By denoting with x any point in Rs and by fixing the basis

(x − x)α :=
s∏

i=1

(ξi − xi )
αi = (ξ1 − x1)

α1 (ξ2 − x2)
α2 . . . (ξs − xs)

αs , (3)

the Vandermonde matrix centered at x

Vx (σ ) = [
(xi − x)α

]
i=1,...,m

|α|≤d
(4)

is non singular as well [6, Theorem 3, Ch. 5]. Therefore, for any choice of the vector

y = [ f (xi )]i=1,...,m ∈ R
m, (5)

the solution p
[
y, σ

]
(x) of the interpolation problem (2) in the basis (3), can be

obtained by solving the linear system

Vx (σ ) c = y (6)
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Numerical differentiation on scattered data through… 775

and by setting, using matrix notation,

p
[
y, σ

]
(x) = [

(x − x)α
]
|α|≤d c, (7)

where c = [cα]T|α|≤d ∈ R
m is the solution of the system (6). This approach, for s = 2

and x the barycenter of the node set σ , has been recently proposed in [12] in connection
with the use of the PA = LU factorization of the matrix Vx (σ ).

The main goal of the paper is to provide a pointwise numerical differentiation
method of a target function f sampled at scattered points, by locally using the inter-
polation formula (7). The key tools are the connection to Taylor’s formula via the
shifted monomial basis (3), suitably preconditioned by local scaling to reduce the
conditioning of the Vandermonde matrix, together with the extraction of Leja-like
local interpolation subsets from the scattered sampling set via basic numerical lin-
ear algebra. Our approach is complementary to other existing techniques, based on
least-square approximation or on different function spaces, see for example [2,7,8,16]
and the references cited therein. In Sect. 2 we provide error bounds in approximat-
ing function and derivative values at a given point x, as well as sensitivity estimates
to perturbations of the function values, and in Sect. 3 we conduct some numerical
experiments to show the accuracy of the proposed method.

2 Error bounds and sensitivity estimates

In the following we assume that Ω ⊂ R
s is a convex body containing σ and that the

sampled function f : Ω → R is of class Cd,1 (Ω), that is f ∈ Cd (Ω) and all its
partial derivatives of order d

Dα f =
(

s∏

i=1

∂αi

∂ξ
αi
i

)

f = ∂ |α| f
∂ξ

α1
1 ∂ξ

α2
2 . . . ∂ξ

αs
s

, |α| = d, (8)

are Lipschitz continuous in Ω . Let K ⊆ Ω compact convex: we equip the space
Cd,1 (K ) with the semi-norm [13]

‖ f ‖Kd,1 = sup

{ |Dα f (u) − Dα f (v)|
‖u − v‖2 : u, v ∈ K , u �= v, |α| = d

}
(9)

and we denote by Td [ f , x] (x) the truncated Taylor expansion of f of order d centered
at x ∈ Ω

Td [ f , x] (x) =
d∑

l=0

Dl
x−x f (x)

l! (10)
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776 F. Dell’Accio et al.

and by RT [ f , x] (x) the corresponding remainder term in integral form [19]

RT [ f , x] (x) =
∫ 1

0

Dd+1
x−x f (x + t (x−x))

d! (1 − t)d dt, (11)

where [6, Ch. 4]

Dl
x−x f (·) :=

([
Dβ f (·)]|β|=1 · (x−x)

)l =
∑

|β|=l

l!
β!D

β f (·) (x−x)β , l ∈ N, (12)

with the multi-indices β following the order specified in Sect. 1.
Let us denote by 	i (x) the i th bivariate fundamental Lagrange polynomial. Since

	i
(
x j

) = δi j =
{
1, i = j,
0, otherwise,

by setting for each i = 1, . . . ,m,

δi = [
0 . . . 0 1 0 . . . 0

]T

↑
i th column

and by solving the linear system Vx (σ ) ai = δi , we get the expression of 	i (x) in the
translated canonical basis (3), that is

	i (x) =
∑

|α|≤d

aiα (x − x)α , (13)

where ai = [
aiα

]T
|α|≤d .

Remark 1 Denoting by

h = max
i=1,...,m

‖xi − x‖2 , (14)

in order to control the conditioning, it is useful to consider the scaled canonical
polynomial basis centered at x

[(
x − x
h

)α]

|α|≤d
, (15)

so that (x − x) /h belongs to the unit disk (cf. [12]), and (13), in the scaled basis (15),
becomes

	i (x) =
∑

|α|≤d

aiα,h

(
x − x
h

)α

, (16)
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where aiα,h = aiαh
|α|. The interpolation polynomial p

[
y, σ

]
(7) can also be expressed

in the basis (15) as

p
[
y, σ

]
(x) =

[(
x − x
h

)α]

|α|≤d
ch, (17)

where ch = [
cα,h

]T
|α|≤d , with cα,h = cαh|α|.

In the following we denote by Vx,h(σ ) the Vandermonde matrix in the scaled basis
(15)

Vx,h(σ ) =
[(

xi − x
h

)α]

i=1,...,m
|α|≤d

, (18)

and by Bh (x) the ball of radius h centered at x.

Proposition 1 Let x ∈ Ω and f ∈ Cd,1 (Ω). Then for any x ∈ K = Bh(x) ∩ Ω and
for any ν ∈ N

s
0 such that |ν| ≤ d, we have

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ kd−|ν| ‖x − x‖d−|ν|+1
2 ‖ f ‖Kd,1

+
∣
∣∣∣∣
Dν

(
m∑

i=1

	i (x) RT [ f , x] (xi )

)∣∣∣∣∣
, (19)

where k j = s j
( j−1)! for j > 0, k0 = 1. In particular, for x = x, we have

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤
∣∣∣
∣∣
Dν

(
m∑

i=1

	i (x) RT [ f , x] (xi )

)∣∣∣
∣∣
.

Proof Since

p
[
y, σ

]
(x) =

m∑

i=1

	i (x) yi , (20)

by (16), we have

f (x) − p
[
y, σ

]
(x) = f (x) −

m∑

i=1

	i (x) yi .

In line with [1, Equation (1-5)] we represent f (x) and f (xi ) = yi in truncated Taylor
series of order d centered at x (10) with integral remainder (11) and we obtain

123



778 F. Dell’Accio et al.

f (x) − p
[
y, σ

]
(x) =

d∑

l=0

1

l!D
l
x−x f (x) + RT [ f , x] (x) −

m∑

i=1

	i (x) (21)

×
(

d∑

l=0

1

l!D
l
xi−x f (x) + RT [ f , x] (xi )

)

.

On the other hand

m∑

i=1

	i (x) (xi − x)β = (x − x)β , |β| ≤ d,

since interpolation of degree d at the nodes in σ reproduces exactly polynomials of
total degree less than or equal to d. Therefore by (12) we have

m∑

i=1

	i (x)
d∑

l=0

1

l!D
l
xi−x f (x) =

m∑

i=1

	i (x)
d∑

l=0

1

l!
∑

|β|=l

l!
β!D

β f (x) (xi−x)β

=
d∑

l=0

1

l!
∑

|β|=l

l!
β!D

β f (x)
m∑

i=1

	i (x) (xi−x)β

=
d∑

l=0

1

l!
∑

|β|=l

l!
β!D

β f (x) (x − x)β

=
d∑

l=0

1

l!D
l
x−x f (x) . (22)

Consequently, by substituting (22) in (21), we get

f (x) − p
[
y, σ

]
(x) = RT [ f , x] (x) −

m∑

i=1

	i (x) RT [ f , x] (xi ) . (23)

By applying the differentiation operator Dν to the expression (23) and by using the
triangular inequality, we obtain

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ∣∣DνRT [ f , x] (x)
∣∣ +

∣∣∣∣
∣
Dν

(
m∑

i=1

	i (x) RT [ f , x] (xi )

)∣∣∣∣
∣
,

where [13, Lemma 2.1]

∣∣DνRT [ f , x] (x)
∣∣ ≤ kd−|ν| ‖x − x‖d−|ν|+1

2 ‖ f ‖Kd,1 . (24)

Consequently,
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∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ kd−|ν| ‖x − x‖d−|ν|+1
2 ‖ f ‖Kd,1

+
∣∣∣∣
∣
Dν

(
m∑

i=1

	i (x) RT [ f , x] (xi )

)∣∣∣∣
∣
.

�

The estimates in Proposition 1 can be written in terms of the Lebesgue constant of
interpolation at the node set σ , defined by

Λd (σ ) = max
x∈Ω

m∑

i=1

|	i (x)| .

Proposition 2 Let f ∈ Cd,1 (Ω) and Bh (x) ⊂ Ω . Then for any x ∈ K = Bh (x) and
for any ν ∈ N

s
0 such that |ν| ≤ d, we have

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ‖ f ‖Kd,1

(
kd−|ν| + kd Md,ν Λd (σ )

)
hd−|ν|+1, (25)

where k j = s j
( j−1)! for j > 0, k0 = 1, and

Md,ν =
|ν|−1∏

j=0

(d − j)2 . (26)

In particular, for x = x, the following inequality holds

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ‖ f ‖Kd,1 kd Md,ν Λd(σ ) hd−|ν|+1. (27)

Proof Since
m∑

i=1
RT [ f , x] (xi ) 	i (x) is a polynomial of total degree less than or equal

to d, by repeatedly applying the Markov inequality [20] for a ball with radius h in the
form

∥∥
∥∥

∂q

∂ξi

∥∥
∥∥∞

≤ n2

h
‖q‖∞, ∀q ∈ Πn(Bh(x)), n = d, d − 1, . . . , d − |ν| + 1,

whereΠn(Bh(x)) denotes the space of polynomials of degree n in s variables restricted
to the ball Bh(x), and recalling that each partial derivative lowers the degree by one,
we easily obtain

∣∣∣∣
∣
Dν

(
m∑

i=1

RT [ f , x] (xi ) 	i (x)

)∣∣∣∣
∣
≤ Md,ν

h|ν|

∥∥∥∥
∥

m∑

i=1

RT [ f , x] (xi ) 	i

∥∥∥∥
∥

∞

≤ Md,ν

h|ν| max
x∈Bh(x)

m∑

i=1

|RT [ f , x] (xi )| |	i (x)|
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≤ Md,ν

h|ν| max
i=1,...,m

|RT [ f , x] (xi )| max
x∈Bh(x)

m∑

i=1

|	i (x)|

≤ Md,ν

h|ν| max
i=1,...,m

|RT [ f , x] (xi )| Λd (σ ) ,

by using [13, Lemma 2.1] we get

|RT [ f , x] (xi )| ≤ kd ‖xi − x‖d+1
2 ‖ f ‖Kd,1 , for all i = 1, . . . ,m. (28)

Consequently

∣∣∣
∣∣
Dν

(
m∑

i=1

	i (x) RT [ f , x] (xi )

)∣∣∣
∣∣
≤ kd Md,ν ‖ f ‖Kd,1 h

d−|ν|+1Λd (σ ) . (29)

Based on the inequality (19) in Theorem 1, we have

∣
∣(Dν f − Dν p

[
y, σ

])
(x)

∣
∣ ≤ kd−|ν| ‖x − x‖d−|ν|+1

2 ‖ f ‖Kd,1

+kd Md,ν ‖ f ‖Kd,1 h
d−|ν|+1Λd (σ ) , (30)

and since x ∈ Bh (x), it follows that

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ‖ f ‖Kd,1 h
d−|ν|+1 (kd−|ν| + kd Md,ν Λd (σ )

)
,

while (27) follows easily by evaluating (30) at x. �

Proposition 3 Let x ∈ Ω and f ∈ Cd,1 (Ω). Then for any x ∈ K = Bh(x) ∩ Ω and
for any ν ∈ N

s
0 such that |ν| ≤ d, we have

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣

≤ ‖ f ‖Kd,1 h
d+1

⎛

⎜⎜
⎝kd−|ν|h−|ν| + kd

m∑

i=1

∣∣
∣∣∣∣∣
∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣∣
∣∣∣∣∣
∣

⎞

⎟⎟
⎠ ,

(31)

where k j = s j
( j−1)! for j > 0, k0 = 1. The inequalities between multi-indices in this

case are interpreted componentwise, that is α ≤ β if and only if αi ≤ βi , i = 1, . . . , s.
In particular, for x = x, the following inequality holds

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ν!kd ‖ f ‖Kd,1 h
d−|ν|+1

m∑

i=1

∣∣∣aiν,h

∣∣∣ . (32)
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Proof By using the expression of the fundamental Lagrange polynomial 	i (x) in the
scaled basis (16) and by applying the differentiation operator Dν to the expression
(23), we obtain

(
Dν f − Dν p

[
y, σ

])
(x) = DνRT [ f , x] (x)

−
m∑

i=1

⎛

⎝
∑

|α|≤d

aiα,hh
−|α|Dν (x − x)α

⎞

⎠ RT [ f , x] (xi ) ,

(33)

where

Dν (x − x)α =
{

α!
(α−ν)! (x − x)α−ν if ν ≤ α,
0 otherwise.

(34)

By taking the modulus of both sides of (33) and by using the triangular inequality, we
get

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ∣∣DνRT [ f , x] (x)
∣∣

+
m∑

i=1

∣∣
∣∣∣∣

∑

|α|≤d

aiα,hh
−|α|Dν (x − x)α

∣∣
∣∣∣∣
|RT [ f , x] (xi )| ,

Therefore, (24), (34) and (28) imply

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ (35)

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1

m∑

i=1

∣∣∣
∣∣∣∣∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣∣∣
∣∣∣∣∣

‖xi − x‖d+1
2 .

Since x ∈ Bh (x), we get

∣
∣(Dν f − Dν p

[
y, σ

])
(x)

∣
∣

≤ ‖ f ‖Kd,1 h
d+1

⎛

⎜⎜
⎝kd−|ν|h−|ν| + kd

m∑

i=1

∣
∣∣∣∣∣
∣∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣
∣∣∣∣∣
∣∣

⎞

⎟⎟
⎠ .

Evaluating (36) at x yields to (32). �

It is worth noting that the analysis developed in [14] in connection with the estimation
of the error of Hermite interpolation in R

s can be used to obtain analogous bounds
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with respect to those obtained in (31) and (32). To do this, in line with [14], given an
integer l ∈ N, we denote with Dl f (x) the l-th derivative of f in a point x ∈ Ω , that
is the l linear operator

Dl f (x) : Rs × · · · × R
s

︸ ︷︷ ︸
l times

−→ R

which acts on the canonical basis element (e1, . . . , e1︸ ︷︷ ︸
ν1 times

, e2, . . . , e2︸ ︷︷ ︸
ν2 times

, . . . , es, . . . , es︸ ︷︷ ︸
νs times

) ,

ν = (ν1, ν2, . . . , νs) ∈ N
s
0, |ν| = l, as follows

Dl f (x) · (e1, . . . , e1︸ ︷︷ ︸
ν1 times

, e2, . . . , e2︸ ︷︷ ︸
ν2 times

, . . . , es, . . . , es︸ ︷︷ ︸
νs times

) = Dν f (x) , (36)

where we use the previously introduced notations for partial derivatives (8). As an l
linear operator, the norm of Dl f (x) is defined in a standard way as follows

∥∥∥Dl f (x)
∥∥∥ = sup

‖ui‖2=1
ui∈Rs ,1≤i≤l

∣∣∣Dl f (x) · (u1, . . . ,ul)
∣∣∣ , (37)

and therefore, for each ν ∈ N
s
0, |ν| = l, we have

∣∣Dν f (x)
∣∣ ≤

∥∥∥Dl f (x)
∥∥∥ . (38)

By introducing the Sobolev semi-norm

| f |l,p,Ω =
(∫

Ω

∥∥∥Dl f (x)
∥∥∥
p
dx

) 1
p

,

which is meaningful for functions f ∈ Wd+1,p (Ω) for each d + 1 ≥ l, from [14,
Theorem 2.1] by taking p = +∞, we get using (38)

∣∣Dν
(
f − p

[
y, σ

])
(x)

∣∣ ≤
∥∥∥Dl ( f − p

[
y, σ

])
(x)

∥∥∥

≤ ∣∣ f − p
[
y, σ

]∣∣
l,∞,K

≤ 1

(d + 1)!

(
m∑

i=1

|	i |l,∞,K

)

| f |d+1,∞,K (2h)d+1 ,

for any x ∈ Ω, x ∈K=Bh (x) ∩ Ω and for any multi-index ν of length |ν| = l ≤ d.
In order to point out links between proof of Proposition 3 and that one given in [14,
Theorem 2.1], we start with the inequality

∥∥∥Dl ( f − p
[
y, σ

])
(x)

∥∥∥ ≤
m∑

i=1

|RT [ f , xi ] (x)|
∥∥∥Dl	i (x)

∥∥∥ , (39)
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which is already stated in the paper [14, Page 414, line 9] for the general case of
Hermite interpolation. By the linearity of the operator Dl with respect to the function
argument, we get by using the expression (16) of Lagrange polynomials

Dl	i (x) =
∑

|α|≤d

aiα,hh
−|α|Dl (x − x)α . (40)

We can explicitly compute the expression of Dl (x − x)α when applied to a vector
(u1, . . . ,ul) ∈ (Rs)l . In order to simplify the notations, in line with [14, Section 2],
we assume that

λ = (λ1, λ2, . . . , λl) ∈ {1, . . . , s}l ,

and, denoting with {ε1, ε2, . . . , εs} the canonical basis of Rs , we set

ελ,l = ελ1 + · · · + ελl ,

and

εlλ = (
ελ1 , . . . , ελl

) ∈ (
R
s)l .

Therefore

Dl (x − x)α · (u1, . . . ,ul) =
∑

|ελ,l |=l
ελ,l≤α

α!
(
α − ελ,l

)! (x − x)α−ελ,l (u1, . . . ,ul)ε
l
λ . (41)

Using (40) and (41), we get

∥
∥
∥Dl	i (x)

∥
∥
∥ = sup

‖ui‖2=1
ui∈Rs ,1≤i≤l

∣
∣
∣Dl	i (x) · (u1, . . . ,ul )

∣
∣
∣

= sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣
∣
∣∣
∣
∣

∑

|α|≤d

aiα,hh
−|α|Dl (x − x)α · (u1, . . . , ul )

∣
∣
∣∣
∣
∣

= sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣
∣
∣
∣
∣∣
∣
∣
∣

∑

|α|≤d

aiα,hh
−|α| ∑

|ελ,l |=l
ελ,l≤α

α!
(
α − ελ,l

)! (x − x)α−ελ,l (u1, . . . , ul )
εlλ

∣
∣
∣
∣
∣∣
∣
∣
∣

.

(42)

From the bound (39), the equality (42) and by recalling that [13, Lemma 2.1]

|RT [ f , xi ] (x)| ≤ sd

(d − 1)! ‖x − xi‖d+1
2 ‖ f ‖Kd,1 ,
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we obtain

∣
∣Dν

(
f − p

[
y, σ

])
(x)

∣
∣

≤
∥∥∥Dl ( f − p

[
y, σ

])
(x)

∥∥∥

≤ ‖ f ‖Kd,1
sd

(d − 1)!
m∑

i=1

‖x − xi‖d+1
2

× sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣
∣∣∣∣∣∣
∣∣

∑

|α|≤d

aiα,hh
−|α| ∑

|ελ,l |=l
ελ,l≤α

α!
(
α − ελ,l

)! (x − x)α−ελ,l (u1, . . . ,ul)ε
l
λ

∣
∣∣∣∣∣∣
∣∣

,

(43)

which is a slight different version of the bound (31) given in Proposition 3. In order
to have an analogous version of the bound (32), we evaluate at x the estimation (43),
and consequently we get

∣
∣Dν

(
f − p

[
y, σ

])
(x)

∣
∣ ≤ ‖ f ‖Kd,1

sd

(d − 1)!
m∑

i=1

‖x − xi‖d+1
2

× sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣
∣
∣
∣∣
∣
∣
∣
∣

∑

|α|≤d

aiα,hh
−|α| ∑

|ελ,l |=l
ελ,l=α

α!
(
α − ελ,l

)! (u1, . . . ,ul )
εlλ

∣
∣
∣
∣∣
∣
∣
∣
∣

.

(44)

We notice that the s-tuple ελ,l in the internal sum depends on α, but its length is equal
to l ≤ d and therefore we get

∣∣Dν
(
f − p

[
y, σ

])
(x)

∣∣ ≤ ‖ f ‖Kd,1
sd

(d − 1)!
m∑

i=1

‖x − xi‖d+1
2

× sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣∣∣∣∣
∣

∑

|α|=l

aiα,hh
−|α|α! (u1, . . . ,ul)εlλ

∣∣∣∣∣
∣

≤ ‖ f ‖Kd,1
sd

(d − 1)!h
d+1

×
m∑

i=1

∣∣∣
∣∣∣

∑

|α|=l

aiα,hh
−|α|α!

∣∣∣
∣∣∣

sup
‖ui‖2=1

ui∈Rs ,1≤i≤l

∣∣
∣(u1, . . . ,ul)ε

l
λ

∣∣
∣
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≤ ‖ f ‖Kd,1
sd

(d − 1)!h
d−l+1

m∑

i=1

∣∣
∣∣∣∣

∑

|α|=l

α!aiα,h

∣∣
∣∣∣∣
. (45)

It is easy to see that, despite the bounds (32) and (45) are similar, their comparison
depends on the sign of the coefficients aiα,h , |α| = l, since the sum

∑

|α|=l
α!aiα,h contains

the term ν!aiν,h .
In line with [12] we can write the bounds (31) and (32) in Proposition 3 in terms of

the 1-norm condition number, say condh (σ ), of the Vandermonde matrix Vx,h (σ ).

Corollary 1 Let x ∈ Ω and f ∈ Cd,1 (Ω). Then for any x ∈ K = Bh (x) ∩ Ω and for
any ν ∈ N

s
0 such that |ν| ≤ d, we have

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣ ≤ ‖ f ‖Kd,1 h
d−|ν|+1

⎛

⎜
⎜⎜
⎜
⎝
kd−|ν| + kd max

|α| ≤ d
α ≥ ν

(
α!

(α − ν)!
)

cond h (σ )

⎞

⎟
⎟⎟
⎟
⎠

,

(46)

where k j = s j
( j−1)! for j > 0, k0 = 1. As in Proposition 3, the inequalities between

multi-indices are interpreted componentwise. In particular, for x = x, the following
inequality holds

∣
∣(Dν f − Dν p

[
y, σ

])
(x)

∣
∣ ≤ ν!kd ‖ f ‖Kd,1 h

d−|ν|+1 condh (σ ) . (47)

Proof By applying the triangular inequality to (36), we get

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1 h
d+1

m∑

i=1

∑

|α|≤d
α≥ν

∣∣
∣aiα,h

∣∣
∣ h−|α| α!

(α − ν)!
∣∣(x − x)α−ν

∣∣

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1 max|α|≤d
α≥ν

(
h−|α| α!

(α − ν)!
∣∣(x − x)α−ν

∣∣
)
hd+1

m∑

i=1

∑

|α|≤d
α≥ν

∣∣∣aiα,h

∣∣∣

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1 max|α|≤d
α≥ν

(
h−|α| α!

(α − ν)!
∣∣(x − x)α−ν

∣∣
)
hd+1

m∑

i=1

∥∥∥aih
∥∥∥
1
,
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where aih =
[
aiα,h

]T

|α|≤d
. Based on the expression of 	i (x) (16), we have [12]

V−1
x,h (σ ) = [

a1h | a2h | · · · | am−1
h | amh

]
,

and then

max
i=1,...m

∥∥
∥aih

∥∥
∥
1

=
∥∥
∥V−1

x,h (σ )

∥∥
∥
1
.

Moreover, since
∥∥Vx,h (σ )

∥∥
1 = m then

m∑

i=1

∥∥aih
∥∥
1 ≤ condh (σ ) and therefore

∣∣(Dν f − Dν p
[
y, σ

])
(x)

∣∣

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1 max|α|≤d
α≥ν

(
h−|α| α!

(α − ν)!
∣∣(x − x)α−ν

∣∣
)
hd+1 condh (σ )

≤ kd−|ν| ‖ f ‖Kd,1 ‖x − x‖d−|ν|+1
2

+kd ‖ f ‖Kd,1 max|α|≤d
α≥ν

(
h−|α| α!

(α − ν)! ‖x − x‖|α|−|ν|
2

)
hd+1 condh (σ ) . (48)

Being x ∈ Bh (x), it follows that

∣
∣(Dν f − Dν p

[
y, σ

])
(x)

∣
∣ ≤ ‖ f ‖Kd,1 h

d−|ν|+1

⎛

⎜⎜
⎜
⎜
⎝
kd−|ν| + kd max

|α| ≤ d
α ≥ ν

(
α!

(α − ν)!
)

cond h (σ )

⎞

⎟⎟
⎟
⎟
⎠

.

By evaluating (48) at x, we obtain (47). �

The results of Table 1 in Sect. 3 show that the bounds (27) and (47) aremuch larger than
(32), which is only based on the “active coefficients” in the differentiation process.
Therefore, in the analysis of the sensitivity to the perturbation of the function values,
we use only the “active coefficients”.

Proposition 4 Let ỹ = y+ Δy, where Δy = [Δyi ]i=1,...,m corresponds to the pertur-
bation on the function values y = [yi ]i=1,...,m. Then for any x ∈ K = Bh (x)∩Ω , for
any ν ∈ N

s
0 such that |ν| ≤ d and for any Δy with |Δy| ≤ ε, we have

∣∣(Dν p
[
y, σ

] − Dν p
[
ỹ, σ

])
(x)

∣∣ ≤ ε

m∑

i=1

∣∣∣
∣∣∣∣∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣∣∣
∣∣∣∣∣

,
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Table 1 Numerical comparison among the mean value of the uncommon terms of the estimates (32), (27)
and (47) with |ν| ≤ 2, for interpolation at a sequence of degrees d on Discrete Leja Points extracted from
the subset of 1000 Halton points in [0, 1]2 contained in the ball of radius r = 1/2 centered at x = (0.5, 0.5)

d = 5 d = 10 d = 15 d = 20 d = 25

|ν| = 0 ν!
m∑

i=1

∣∣∣aiν,h

∣∣∣ 2.31 2.43 6.69 2.41e+1 3.51e+1

Md,νΛd (σ ) 6.22 6.91 2.50e+1 6.07e+1 1.21e+3

ν! condh (σ ) 1.96e+3 1.25e+6 8.89e+8 3.38e+11 2.05e+14

|ν| = 1 ν!
m∑

i=1

∣∣
∣aiν,h

∣∣
∣ 1.32e+1 3.63e+1 2.27e+2 4.53e+2 3.87e+2

Md,νΛd (σ ) 1.55e+2 6.91e+2 5.63e+3 2.43e+4 7.57e+5

ν! condh (σ ) 1.96e+3 1.25e+6 8.89e+8 3.38e+11 2.05e+14

|ν| = 2 ν!
m∑

i=1

∣
∣∣aiν,h

∣
∣∣ 2.48e+1 3.53e+2 8.25e+2 4.55e+3 7.62e+3

Md,νΛd (σ ) 2.49e+3 5.60e+4 1.10e+6 8.76e+6 4.36e+8

ν! condh (σ ) 3.27e+3 2.08e+6 1.48e+9 5.63e+11 3.42e+14
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Fig. 1 The interpolation points (in red) in the ball of radius r = 1/4 centered at (0.5, 0.5) selected from1000
(left), 2000 (center) and 4000 (right) Halton points at degrees d = 17, 25, 35, respectively, corresponding
to minimal errors in Fig. 2

where k j = s j
( j−1)! for j > 0, k0 = 1. As above, the inequalities between multi-indices

are interpreted componentwise. In particular, for x = x, the following inequality holds

∣
∣(Dν p

[
y, σ

] − Dν p
[
ỹ, σ

])
(x)

∣
∣ ≤ ε

m∑

i=1

|Dν	i (x)| = ε ν!h−|ν|
m∑

i=1

∣
∣∣aiν,h

∣
∣∣ . (49)

Proof Denoting by ỹ = y + Δy, where Δy = [Δyi ]i=1,...,m corresponds to the per-
turbation on the function values y = [yi ]i=1,...,m , by (20 ) we get

p
[
ỹ, σ

]
(x) =

m∑

i=1

	i (x) ỹi
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Fig. 2 Relative errors (54)-(56) for function f1 by using the subsets of 1000, 2000 and 4000 Halton points
intersecting Br (x), where x = (0.5, 0.5) and r = 1

2 , 3
8 , 1

4 , 1
8 on a sequence of degrees. Note that shorter

sequences (missing marks) are due to a lack of points for interpolation of higher degree

=
m∑

i=1

	i (x) (yi + Δyi )

= p
[
y, σ

]
(x) +

m∑

i=1

	i (x) Δyi .

Then for any Δy such that |Δy| ≤ ε,

∣∣(Dν p
[
y, σ

] − Dν p
[
ỹ, σ

])
(x)

∣∣ =
∣∣
∣∣∣
Dν

(
m∑

i=1

	i (x) Δyi

)∣∣
∣∣∣

=
∣∣∣
∣∣

m∑

i=1

Dν	i (x) Δyi

∣∣∣
∣∣

≤ ε

m∑

i=1

∣∣Dν	i (x)
∣∣

≤ ε

m∑

i=1

∣
∣∣∣∣∣
Dν

⎛

⎝
∑

|α|≤d

aiα,h

(
x − x
h

)α
⎞

⎠

∣
∣∣∣∣∣
.
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Fig. 3 As in Figure 2 starting from uniform random points

Since, using (34), we have

Dν

⎛

⎝
∑

|α|≤d

aiα,h

(
x − x
h

)α
⎞

⎠ =
∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν ,

then

∣∣(Dν p
[
y, σ

] − Dν p
[
ỹ, σ

])
(x)

∣∣ ≤ ε

m∑

i=1

∣
∣∣∣∣∣∣
∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣
∣∣∣∣∣∣
∣

.

(50)

For x = x, it follows that

∣
∣(Dν p

[
y, σ

] − Dν p
[
ỹ, σ

])
(x)

∣
∣ ≤ εν!h−|ν|

m∑

i=1

∣
∣∣aiν,h

∣
∣∣ .

�
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Fig. 4 Relative errors (54)-(56) for function f2 using 2000 Halton points with x = (0.5, 0.5)
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Fig. 5 The interpolation points (in red) in the ball of radius r = 1/4 centered at x = (0.5, 0.5) (left),
(0.95, 0.5) (center), (0.95, 0.95) (right) selected from 4000 Halton points for d = 20

Fig. 6 Plot of the function f3 (left), ∂ f3
∂x (center), ∂ f3

∂ y (right); the surface points corresponding to x =
(0.5, 0.5), (0.95, 0.5), and (0.95, 0.95) are displayed with black circles
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Fig. 7 Relative errors (54)–(56) for function f3 by using 4000 Halton points with x = (0.5, 0.5)

Remark 2 It is worth observing that the quantity defined as

Λd,ν :=
m∑

i=1

|Dν	i (x)| = ν!h−|ν|
m∑

i=1

∣∣∣aiν,h

∣∣∣ (51)

is the “stability constant” of pointwise differentiation via local polynomial interpola-
tion, namely the value at the center of the “stability function” for the ball, that is

m∑

i=1

|Dν	i (x)| =
m∑

i=1

∣
∣∣∣∣∣
∣∣

∑

|α|≤d
α≥ν

aiα,hh
−|α| α!

(α − ν)! (x − x)α−ν

∣
∣∣∣∣∣
∣∣

. (52)

Notice also that in view of (32) and (51) the overall numerical differentiation error, in
the presence of perturbations on the the function values of size not exceeding ε , can
be estimated as

∣∣(Dν f − Dν p
[
ỹ, σ

])
(x)

∣∣ ≤
(
kd‖ f ‖Kd,1h

d+1 + ε
)

Λd,ν . (53)

For the purpose of illustration, in Table 2 and Fig. 14 of Sect. 3 we show the magnitude
of the stability constant (51) relative to some numerical tests.
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Fig. 8 Relative errors (54)–(56) for function f3 by using 4000 Halton points with x = (0.95, 0.5)

Remark 3 The previous results are useful to estimate the error of approximation in
several processes of scattered data interpolation which use polynomials as local inter-
polants, like for example triangular Shepard [4,11], hexagonal Shepard [10] and
tetrahedral Shepard methods [5]. They are also crucial to realize extensions of those
methods to higher dimensions [9].

3 Numerical experiments

In this section we provide some numerical tests to support the above theoretical results
in approximating function, gradient and second order derivative values. We fix s = 2,
Ω = [0, 1]2 and we take different positions for the point x in Ω: at the center, and
near/on a side and a corner of the square. We use different distributions of scattered
points in Ω , namely Halton points [15] and uniform random points. We focus on
the scattered points in the ball Br (x) centered at x for different radii, from which we
extract an interpolation subset σ ofm = (d+2

2

)
Discrete Leja Points computed through

the algorithm proposed in [3] (see Fig. 1).
The reason for adopting Discrete Leja Points is twofold. We recall that they are

extracted from a finite set of points (in this case the scattered points in the ball) by
LU factorization with row pivoting of the corresponding rectangular Vandermonde
matrix. Indeed, Gaussian elimination with row pivoting performs a sort of greedy
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Fig. 9 Relative errors (54)–(56) for function f3 by using 4000 Halton points with x = (1, 0.5)

optimization of the Vandermonde determinant, by searching iteratively the new row
(that is selecting the new interpolation point) in such a way that the modulus of the
augmented determinant is maximized. In addition, if the polynomial basis is lexico-
graphically ordered, the Discrete Leja Points form a sequence, that is the first

(k+s
s

)

are the Discrete Leja Points for interpolation of degree k in s variables, 1 ≤ k ≤ d;
see [3] for a comprehensive discussion.

Then, on one hand Discrete Leja Points provide, with a low computational cost, a
unisolvent interpolation set, since a nonzero Vandermonde determinant is automati-
cally seeked. On the other hand, since they are computed by a greedy maximization,
one can expect, as a qualitative guideline, that the elements of the corresponding
inverse Vandermonde matrix (that are cofactors divided by the Vandermonde determi-
nant), and thus also the relevant sum in the error bound (32) as well as the condition
number, are not allowed to increase rapidly. These results are in line with those shown
in [12, Table 1]. In addition, using Discrete Leja Points has also the effect of trying
to minimize the sup-norm of the fundamental Lagrange polynomials 	i (which, as it
is well-known, can be written as ratio of determinants, cf. [3]) and thus the Lebesgue
constant, which is relevant to estimate (27). Nevertheless, it is clear from Table 1 that
the bounds involving the Lebesgue constant and the condition number are much larger
than (32) which rests only on the “active coefficients” in the differentiation process.
Further numerical experiments show that, while decreasing r , for each value of |ν|,
the first and third rows in Table 1 remain of the same order of magnitude thanks to
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Fig. 10 Relative errors (54)–(56) for function f3 by using 4000 Halton points with x = (0.95, 0.95)

the scaling of the basis, for the feasible degrees (since unisolvence of interpolation of
degree d is possible until there are enough scattered points in the ball).

For simplicity, from now on we set

p := p[y, σ ]

and, to measure the error of approximation, we compute the relative errors

f e = | f (x) − p(x)|
| f (x)| , (54)

ge = ‖∇ f (x) − ∇ p(x)‖2
‖∇ f (x)‖2

, (55)

and

sde =
∥∥( fxx (x), fxy(x), fyy(x)

) − (
pxx (x), pxy(x), pyy(x)

)∥∥
2∥∥( fxx (x), fxy(x), fyy(x)

)∥∥
2

, (56)

using the following bivariate test functions
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Fig. 11 Relative errors (54)–(56) for function f3 by using 4000 Halton points with x = (1, 1)

f1 (x, y) = 0.75 exp
(
− (9x − 2)2 + (9y − 2)2

4

)
+ 0.5 exp

(
− (9x − 7)2 + (9y − 3)2

4

)

+ 0.75 exp
(
− (9x + 1)2

49
− (9y + 1)2

10

)
− 0.2 exp

(
−(9x − 4)2 − (9y − 7)2

)
,

f2 (x, y) = ex+y ,

f3 (x, y) = 2 cos(10x) sin(10y) + sin(10xy),

where f1 is the well known Franke’s function and f3 is an oscillating function (see
Fig. 6) both in Renka’s test set [17], whereas f2 is obtained by a superposition of
the univariate exponential with an inner product and then is constant on the parallel
hyperplanes x+ y = q, q ∈ R (ridge function). For each test function we approximate
Dν f (x) by

Dν f (x) ≈ ν!cν,h

h|ν| , |ν| ≤ 2, (57)

where cν,h , with h ≤ r defined in (14), are the coefficients of the interpolating poly-
nomial (17 ) at the point x. Interpolation is made at Discrete Leja Points in Br (x)
for r = 1

2 ,
3
8 ,

1
4 ,

1
8 at a sequence of degrees d. We stress that for a fixed radius r ,
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Fig. 12 Relative error (55) for the gradient computed with exact (ge) and perturbed (gep) function values
(58) for the functions f1 (top left), f2 (top right) and f3 (bottom) by using 1000 Halton points with
x = (0.5, 0.5).

unisolvence of interpolation is possible only for a finite number of degrees, that is
until there are enough scattered points in the ball.

In the first experiment we start from 1000, 2000 and 4000 Halton and uniform
random points and we set x = (0.5, 0.5) (see Fig. 1). For the test function f1, the
numerical results are displayed in Figs. 2, 3.

In the second experiment, we start from 2000 Halton points for the test function
f2, again with x = (0.5, 0.5). The numerical results are displayed in Fig. 4.
In the third experiment, for the test function f3, we start from 4000 Halton points

choosing x at the center, then close to the right side and finally close to the north-east
corner (see Figures 5, 6). The numerical results are displayed in Figs. 7, 8 and 10. We
repeat the same experiments choosing x on the right side and at the north-east corner
and we report the results in Figs. 9 and 11.

In the last experiment, for each test function fk , k = 1, 2, 3, we include a random
noise in the m function values, namely

ỹ = y +U (−ε, ε), (58)
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Fig. 13 Relative sensitivity (60) for the gradient of p computed with perturbed function values (gs) and its
estimate (61) involving the stability constant of the gradient (gse) for the functions f1 (top left), f2 (top
right) and f3 (bottom) by using 1000 Halton points with x = (0.5, 0.5)

Table 2 Numerical comparison among the mean value of the stability constant (51) with |ν| ≤ 2, for
interpolation at a sequence of degrees d on Discrete Leja points extracted from the subset of 1000 Halton
points in [0, 1]2 contained in the ball Br (x) centered at x = (0.5, 0.5)

d = 5 d = 10 d = 15 d = 20 d = 25

|ν| = 0 r = 1/2 2.31 2.43 6.69 2.41e+1 3.51e+1

r = 3/8 1.75 4.10 1.11e+1 2.91e+1 3.03e+1

r = 1/4 2.14 4.73 7.16 - -

r = 1/8 1.80 - - - -

|ν| = 1 r = 1/2 2.63e+1 7.26e+1 4.53e+2 9.06e+2 7.74e+2

r = 3/8 2.85e+1 1.64e+2 3.51e+2 6.04e+2 9.55e+2

r = 1/4 3.61e+1 1.67e+2 3.84e+2 - -

r = 1/8 1.27e+2 - - - -

|ν| = 2 r = 1/2 9.94e+1 1.41e+3 3.30e+3 1.82e+4 3.05e+4

r = 3/8 1.72e+2 2.80e+3 7.94e+3 3.61e+4 5.15e+4

r = 1/4 4.02e+2 4.54e+3 2.02e+4 - -

r = 1/8 1.73e+3 - - - -
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Fig. 14 The stability constant (51), for degrees d = 5, 10, 15 and |ν| = 0 (left), |ν| = 1 (center) and
|ν| = 2 (right) computed by using 4000 Halton points with r = 1/2 and x being 101 equispaced points on
the horizontal line y = 0.5 (top) and on the diagonal y = x (bottom)
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Fig. 15 Relative errors (54)-(56) for the 3D version of function f2, f (x, y, z) = ex+y+z , using 10000
Halton points in the unit cube with x = (0.5, 0.5, 0.5)
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Fig. 16 As in Figure 15 using 10000 uniform random points

whereU (−ε, ε) denotes themultivariate uniformdistribution in [−ε, ε]m . In Figure 12
we display the relative error

gep = ‖∇ f (x) − ∇ p̃(x)‖2
‖∇ f (x)‖2

(59)

for the gradient at x = (0.5, 0.5), computed using 1000 Halton points with exact
function values (55) and perturbed function values (59) for ε = 10−6. In Figure 13
we display the relative sensitivity in computing the gradient of the interpolating poly-
nomial p under the perturbation of the function values (ε = 10−6)

gs = ‖∇ p(x) − ∇ p̃(x)‖2
‖∇ f (x)‖2

, (60)

together with its estimate involving the stability constant of the gradient (51)

gse =
∥∥(εΛd,(1,0), εΛd,(0,1)

)∥∥
2

‖∇ f (x)‖2
. (61)

Notice that the relative errors gep in Fig. 12 and sensitivity gs in Fig. 13 are of the
same order of magnitude when the errors ge become negligible with respect to gs.
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Moreover, gse turns out to be a slight overestimate of the relative sensitivity gs. This
fact, as we can see in Table 2 where x = (0.5, 0.5), is due to the relative small values
of the stability constant that varies slowly while decreasing the radius r or increasing
the degree of the interpolating polynomial.

Finally, it is worth stressing that the stability constant (51) is a function of x and then
it depends on the position of x in the square. More precisely, for a fixed interpolation
degree d, it slowly varies except for a neighborhood of the boundary where it increases
rapidly, expecially near the vertices, as can be observed in Fig. 14, where for clarity
we restrict the stability constant to lines. On the other hand, it can be noticed that by
increasing the degree, the stability constant tends to increase, muchmore rapidly at the
boundary. Such a behavior, that explains the worsening of the accuracy at the boundary
(see Figs. 8–9) and at the vertex (see Figs. 10–11) of the square, can be ascribed to
the fact that the stability functions (52) increase rapidly near the boundary of the local
interpolation domains Bh(x) ∩ Ω . This phenomenon, that resembles the behavior at
the boundary of Lebesgue functions of univariate interpolation at equispaced points
(cf. e.g. [18]), is worth of further investigation.

We stress that ourmethod is not restricted to dimension 2. Indeed, in Figs. 15–16we
show the accuracy of derivative approximation for the 3D version of the function f2 by
using 10000 Halton and uniform random points, respectively. The error behaviour is
quite similar to the 2D case with Halton points (see Fig. 4). Notice that for the smallest
radius the maximum interpolation degree is smaller than the 2D case since there are
not enough interpolation points in the ball (to reach the same maximum degree we
would need around 56000 points).
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