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Abstract
This paper concerns the spectral analysis of matrix-sequences that are generated by the
discretization and numerical approximation of partial differential equations, in case
the domain is a generic Peano–Jordan measurable set. It is observed that such matrix-
sequences often present a spectral symbol, that is a measurable function describing the
asymptotic behaviour of the eigenvalues.When the domain is a hypercube, the analysis
can be conducted using the theory of generalized locally Toeplitz (GLT) sequences,
but in case of generic domains, a different kind of matrix-sequences and theory has
to be formalized. We thus develop in full detail the theory of reduced GLT sequences
and symbols, presenting some application to finite differences and finite elements
discretization for linear convection–diffusion–reaction differential equations.

Keywords Multilevel generalized locally Toeplitz sequence · Asymptotic
distribution of singular values and eigenvalues · Algebra of sequences ·
Discretization of PDE on general domain · Finite differences · Finite elements

Mathematics Subject Classification Primary 15A18 · 15B05 · 47B06 · 65N06 ·
65N30; Secondary 15A69

1 Introduction

Partial differential equations (PDEs) are extensively used in physics, engineering and
applied sciences in order to model real-world problems. A closed form for the ana-
lytical solution of such PDEs is normally not available. It is therefore of fundamental
importance to approximate the solution u of a PDE by means of some numerical
method.
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682 G. Barbarino

Despite the differences that allow one to distinguish among the various numerical
methods, the principle on which most of them are based is essentially the same: they
first discretize the continuous PDE by introducing a mesh, characterized by some dis-
cretization parameter n, and then they compute the corresponding numerical solution
un , which will (hopefully) converge in some topology to the solution u of the PDE as
n → ∞, i.e., as the mesh is progressively refined. If we consider a linear PDE

L u = f ,

and a linear numerical method, then the actual computation of the numerical solution
reduces to solving a linear system

Anun = fn

whose size dn diverges with n.
Solving high-dimensional linear systems in an efficient way is fundamental to

compute accurate solutions in a reasonable time. In this direction, it is known that the
convergence properties of mainstream iterative solvers, such as multigrid and precon-
ditioned Krylov methods, strongly depend on the spectral features of the matrices to
which they are applied. The knowledge of the asymptotic distribution of the sequence
{An}n is therefore a useful tool we can use to choose or to design the best solver and
method of discretization.

The discretizationmethods for linear PDEs often lead to sequences of linear systems
admitting a so-called spectral symbol. It is an entity associated with a matrix-sequence
of increasing size, and it represents the asymptotic distribution of the spectra of the
matrices. More specifically, given a matrix-sequence {An}n , where An ∈ C

dn×dn , with

dn
n→∞−−−→ ∞, then we say that {An}n possesses a spectral symbol f : D ⊆ R

q → C,
q ≥ 1, when it satisfies

lim
n→∞

1

dn

dn∑

i=1

F(λi (An)) = 1

μ(D)

∫

D
F( f (x))dx

for every continuous function F : C → C with compact support. Here D is a mea-
surable set with finite Lebesgue measure μ(D) > 0 and λi (An) are the eigenvalues
of An . In this case we write

{An}n ∼λ f .

In case of Toeplitz or Toeplitz-like matrices, this topic has been the subject of several
studies and research, starting from Szegö [22], Avram [2], Parter [26], and followed
by various other authors [11,13–16,31,33,34,36,37]. Asymptotic distributions also
naturally arise in the theory of orthogonal polynomials, in which case the zeros of the
polynomials are seen as the eigenvalues of appropriate Jacobi matrices [18,21,23,24,
35].
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A systematic approach to reduced GLT 683

A powerful set of tools to compute and analyse the symbols comes from the the-
ory of generalized locally Toeplitz (GLT) sequences. It stems from Tilli’s work on
locally Toeplitz (LT) sequences [32] and from the spectral theory of Toeplitz matrices.
Nowadays, the main and most comprehensive sources in the literature for theory and
applications of GLT spaces are the books [9,10,19,20], in which we can find a careful
and complete description of GLT sequences, block GLT sequences, and their respec-
tive multivariate versions. For more information, check also the articles [4–8,27,28].
In short, the GLT theory enables us to derive the symbol for large families of matrix-
sequences, from simple components. Since the relation linking the sequences to the
so-built symbols turns out to be an isomorphism of spaces, we can denominate the
chosen symbol for {An}n as its GLT symbol, and we write

{An}n ∼GLT f .

When dealing with Linear PDE such as

{
L (u)(x) = f (x) x ∈ [0, 1]d
B.C . x ∈ ∂([0, 1]d)

the discretization methods often lead to sequences of linear systems admitting a GLT
symbolwith domain ([0, 1]×[−π, π ])d . Interestingly enough, in this paperweobserve
that when a regular enough domain � of u is considered, instead of [0, 1]d , a similar
analysis can be conducted.

There are already well-known cases of linear PDE on non-rectangular domains. In
[25], for example, the authors first show how to define a new class ofGLT sequences on
triangles, and then deal with polygonal domains through a decomposition of the space
into a finite numbers of triangles. This approach indeed is a simple way to analyse
systems and find the respective symbols on polygonal domains.

In the context of Finite Elements methods with constant coefficients, the domains
of the basis functions can be arbitrary since the main focus is on the values of the
bilinear form evaluated on couples of basis functions, so the resulting symbols have
domain [−π, π ]d . The case of FE or collocationmethodswith variable coefficients has
been studied on the condition that the physical domain � can be described by a global
geometry function G : [0, 1]d → �, which is invertible and satisfies G(∂([0, 1]d)) =
∂� (see Section 7.5 in [20]).

Now we want to explore a more general case, starting from a domain � with few
properties. We consider a bounded �, so that we can operate an affine invertible
transformation l : R

d → R
d , consisting in the composition of a translation and a

dilation, such that l−1(�) = �′ ⊆ [0, 1]d . Notice that if v = u ◦ l : �′ → C, then

{
L (u)(x) = f (x) x ∈ �

B.C . x ∈ ∂�
→
{
L (u)(l(y)) = f (l(y)) y ∈ �′

B̃.C . y ∈ ∂�′

→
{
L̃ (v)(y) = g(y) y ∈ �′

B̃.C . y ∈ ∂�′
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684 G. Barbarino

so we can solve the problem on �′ for v, and then compute u = v ◦ l−1. From now on
we will only consider domains � contained in [0, 1]d , and we work in the restricted
euclidean topology and Lebesgue measure μ of [0, 1]d , unless specified differently.

The analysis will lead us to introduce a variation of the classical GLT sequences,
that we call reduced GLT sequences. The name “reduced GLT” appears in [28] where
some ideas on its construction is given. More attempts following the same arguments
can be found in [1,3,27,29], where the class of sequences in use has never been fully
formalized. Here we furnish a systematic and rigorous approach to the definition and
construction of reduced GLT sequences, finally providing a solid background for all
the previous documents.

The paper is organized as follows. In Sect. 2 we recall first the multidimensional
notation we will be using throughout all the document, and then we report the main
concepts and results already present in previous literature, that we will need to develop
our new theory. In particular, we remind the concepts of symbol, approximating classes
of sequences and multilevel GLT sequences. Section 3 is devoted to discussions on
the domain � and the grids we use to discretize our problems. In Sect. 4 we introduce
the restriction and expansion operators that we need to generate the reduced GLT
sequences from classical GLT sequences. Thanks to the properties of these operators,
we will be able to derive a number of preliminary results, that will lead in Sect. 5
to the full formalization of the theory of reduced GLT sequences. The following two
Sects. 6 and 7 show how the theory of reduced GLT can be applied to discretisation
of linear PDEs on a generic domain �, in case of, respectively, a finite differences
discretization, and a finite elements discretization. In the final Sect. 8, we report further
studies that are currently been conducted on other applications for the reduced GLT
sequences, and also a possible generalization.

2 Generalized locally Toeplitz sequences

Here we recall the basic notions, results and concepts of multilevel GLT sequences
and linked subjects, without going too much into technical details. All the results we
report in this section can be found more in detail in [20, Chapter 6], altogether with
an extensive and complete discussion about the GLT sequences.

2.1 Multidimensional notation

When dealing with multilevel sequences, matrices and vectors, we will use the multi-
index notation. A multi-index i ∈ N

d , also called a d-index, is simply a vector in N
d ;

its components are denoted by i1, . . . , id .

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be
clear from the context).

• For any d-index n, N (n) = ∏d
j=1 n j and n → ∞ means that min(n) =

min j=1,...,d n j → ∞.
• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d, while h �≤ k
means that hr > kr for at least one r ∈ {1, . . . , d}.
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A systematic approach to reduced GLT 685

• If h, k ∈ N
d are multi-indices, h � k means that h precedes (or equals) k in the

lexicographic ordering (which is a total ordering on N
d ).

• The multi-index range h, . . . , k is the set { j ∈ Z
d : h ≤ j ≤ k}. We assume for

the multi-index range h, . . . , k the standard lexicographic ordering:

[
. . .

[
[ ( j1, . . . , jd) ] jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1
. (1)

For instance, in the case d = 2 the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2), (h1 + 1, h2 + 1), . . . ,

(h1 + 1, k2), . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

• When a d-index j varies over a multi-index range h, . . . , k (this is sometimes
written as j = h, . . . , k), it is understood that j varies from h to k following the
specific ordering (1). For instance, if n ∈ N

d and ifwewrite x = [xi ]ni=1, then x is a
vector of size N (n)whose components xi , i = 1, . . . , n, are ordered in accordance
with (1): the first component is x1 = x(1,...,1,1), the second component is x(1,...,1,2),
and so on until the last component, which is xn = x(m1,...,md ). Similarly, if X =
[xi j ]ni, j=1, then X is a N (n)×N (n)matrix whose components are indexed by two
d-indices i, j , both varying from 1 to n according to the lexicographic ordering
(1).

• Given h, k ∈ N
d with h ≤ k, the notation

∑k
j=h indicates the summation over

all j in h, . . . , k.
• If h is a d-index in the range 1, . . . , n, then |h| is

hd + nd(hd−1 − 1+ nd−1(hd−2 − 1+ · · · + n3(h2 − 1+ n2(h1 − 1))) . . . )

= hd +
d−1∑

i=1

⎛

⎝(hi − 1)
d∏

j=i+1

n j

⎞

⎠

maps the d-indices to the set {1, 2, . . . , N (n)}, and the map is increasing with
respect to the lexicographic ordering, since h 
 k ⇐⇒ |h| ≥ |k|.

• Operations involving d-indices that have no meaning in the vector space Z
d

must always be interpreted in the componentwise sense. For instance, i j =
(i1 j1, . . . , id jd), i/ j = (i1/ j1, . . . , id/ jd), etc.

In this context, by a sequence of matrices (or matrix-sequence) wemean a sequence
of the form {An}n , where n = (n1, . . . , nd) depends on n and n → ∞ as n → ∞.
In many cases, it is natural to assume that n + 1 = nν, where ν is a vector of
rational constants and n diverges to infinity. It is always understood that a matrix An
parameterized by a d-index n has dimension N (n) = n1 · · · · · nd ; its entries will be
indexed by two d-indices i, j .
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686 G. Barbarino

2.2 Singular value symbol and approximating classes of sequences

Along with the concept of spectral symbol already introduced, we need to recall
the notion of singular value symbol, that is, a measurable function describing the
asymptotic distribution of the singular values of a matrix-sequence. Given a multi-
level sequence {An}n , a singular value symbol associated with {An}n is a measurable
function f : D ⊆ R

q → C satisfying

lim
n→∞

1

N (n)

N (n)∑

i=1

F(σi (An)) = 1

μ(D)

∫

D
F(| f (x)|)dx

for every continuous function F : R → C with compact support, where D is a
measurable set with finite Lebesgue measure μ(D) > 0 and σi (An) are the singular
values of An . In this case we write

{An}n ∼σ f .

A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is referred to as a zero-
distributed sequence. In other words, {Zn}n is zero-distributed iff

lim
n→∞

1

N (n)

N (n)∑

i=1

F(σi (Zn)) = F(0), ∀ F ∈ Cc(R),

where N (n) is the size of Zn. Given a sequence of matrices {Zn}n , with Zn of size
N (n), the following properties hold. In what follows, we use the natural convention
C/∞ = 0 for all numbers C .

Z1. {Zn}n ∼σ 0 iff Zn = Rn + Nn with

lim
n→∞(N (n))−1rank(Rn) = lim

n→∞‖Nn‖ = 0.

Z2. {Zn}n ∼σ 0 if there exists a p ∈ [1,∞] such that

lim
n→∞(N (n))−1/p‖Zn‖p = 0,

where ‖ · ‖p is the p-Schatten norm.

The space of matrix-sequences also presents a metric structure, induced by a dis-
tance inspired from the concept of Approximating Class of Sequences (a.c.s.). In fact,
a sequence of matrix-sequences {Bn,m}n is said to be an a.c.s. for {An}n if there exist
{Nn,m}n and {Rn,m}n such that for every m there exists nm with

An = Bn,m + Nn,m + Rn,m, ‖Nn,m‖ ≤ ω(m), rk(Rn,m) ≤ N (n)c(m)
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A systematic approach to reduced GLT 687

for every n > nm , and

ω(m)
m→∞−−−−→ 0, c(m)

m→∞−−−−→ 0.

In this case, we say that {Bn,m}n is a.c.s. convergent to {An}n , and we use the notation

{Bn,m}n
a.c.s.−−−→ {An}n . In other words, {Bn,m}n converges to {An}n if the difference

{An− Bn,m}n can be decomposed into {Nn,m}n of ’small norm’ and {Rn,m}n of ’small
rank’.

We say that a sequence {An}n is sparsely unbounded (s.u.), whenever the rate
of diverging singular values goes to zero. This happens, for example, whenever the
sequence admits a singular value symbol. Using this notion, we can enunciate the
property of the a.c.s. we will need in the following.

ACS1. {An}n ∼σ f iff there exist sequences of matrices {Bn,m}n ∼σ fm such

that {Bn,m}n
a.c.s.−→ {An}n and fm → f in measure.

ACS2. Suppose each An is Hermitian. Then, {An}n ∼λ f iff there exist sequences
of Hermitian matrices {Bn,m}n ∼λ fm such that {Bn,m}n

a.c.s.−→ {An}n and fm → f
in measure.
ACS3. If {Bn,m}n

a.c.s.−→ {An}n and {B ′
n,m}n

a.c.s.−→ {A′
n}n , with An and A′

n of the
same size N (n), then

• {B∗
n,m}n

a.c.s.−→ {A∗
n}n ,

• {αBn,m + βB ′
n,m}n

a.c.s.−→ {αAn + β A′
n}n for all α, β ∈ C,

• {Bn,m B ′
n,m}n

a.c.s.−→ {AnA′
n}n whenever {An}n, {A′

n}n are s.u.,

• {Bn,mCn}n
a.c.s.−→ {AnCn}n whenever {Cn}n is s.u.

ACS4. Let p ∈ [1,∞] and assume for each m there is nm such that, for n ≥ nm ,

‖An − Bn,m‖p ≤ ε(m, n)(N (n))1/p, lim
m→∞ lim sup

n→∞
ε(m, n) = 0.

Then {Bn,m}n
a.c.s.−→ {An}n .

It turns out that the notion of a.c.s. begets ametric structure on the space of sequences
E . The distance

da.c.s. ({An}n, {Bn}n) = lim sup
n→∞

p(An − Bn),

p(Cn) = min
i=1,...,N (n)+1

{
i − 1

N (n)
+ σi (Cn)

}

where, by convention, σN (n)+1(Cn) = 0, has been proved to induce the a.c.s. con-
vergence between sequences. Moreover, da.c.s.({An}n, {Bn}n) = 0 iff {An − Bn}n is
zero-distributed, and da.c.s. turns E into a complete pseudometric space (E , da.c.s.)
where the statement “{{Bn,m}n}m converges to {An}n” is equivalent to “{{Bn,m}n}m

is an a.c.s. for {An}n”. In particular, we can reformulate the definition of a.c.s. in
the following way: a sequence of sequences of matrices {{Bn,m}n}m is said to be
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688 G. Barbarino

an a.c.s. for {An}n if {Bn,m}n converges to {An}n in (E , da.c.s.) as m → ∞, i.e., if
da.c.s.({Bn,m}n, {An}n) → 0 as m → ∞. The theory of a.c.s. may then be interpreted
as an approximation theory for sequences of matrices, and for this reason we will use
the convergence notation {Bn,m}n

a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s.
for {An}n .

In view of what follows, let D ⊂ R
k be a measurable set such that 0 < μ(D) < ∞

and define MD the space of measurable functions over D. If

pmea( f ) := inf
L≥0

{
μ{x ∈ D|| f | > L}

μ(D)
+ L

}
,

dmea( f , g) = pmea( f − g),

then dmea is a distance on MD such that dmea( f , g) = 0 iff f = g a.e.; moreover,
dmea turnsMD into a complete pseudometric space (MD, dmea) where the statement
“ fm converges to f ” is equivalent to “ fm converges to f in measure”.

2.3 Multilevel GLT

We now recall the theory of the multilevel generalized locally Toeplitz (GLT)
sequences and symbols. A d-level GLT sequence {An}n is a special d-level matrix-
sequence equipped with a measurable function κ : [0, 1]d × [−π, π ]d → C, the
so-called GLT symbol. Unless otherwise specified, the notation

{An}n ∼GLT κ

means that {An}n is a d-level GLT sequence with symbol κ . The symbol of a d-level
GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ then
κ = ξ a.e. in [0, 1]d × [−π, π ]d ; conversely, if {An}n ∼GLT κ and κ = ξ a.e. in
[0, 1]d × [−π, π ]d then {An}n ∼GLT ξ . We report all the main properties of the GLT
space summarized in 9 points.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ . If {An}n ∼GLT κ and each An is
normal, then {An}n ∼λ κ .
GLT 2. If {An}n ∼GLT κ and An = Xn + Yn, where

• every Xn is Hermitian,
• N (n)−1/2‖Yn‖2 → 0,

then {An}n ∼λ κ .
GLT 3. Here we list three important examples of GLT sequences.

• Given a function f in L1([−π, π ]q), its associated Toeplitz sequence is
{Tn( f )}n , where the elements are multidimensional Fourier coefficients of
f :

Tn( f ) = [ f i− j ]ni, j=1, fk = 1

(2π)q

∫ π

−π

f (θ)e−ik·θdθ.
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A systematic approach to reduced GLT 689

{Tn( f )}n is a GLT sequence with symbol κ(x, θ) = f (θ).
• Given an almost everywhere continuous function, a : [0, 1]q → C, its associ-
ated diagonal sampling sequence {Dn(a)}n is defined as

Dn(a) = diag

({
a

(
i
n

)}n

i=1

)
.

{Dn(a)}n is a GLT sequence with symbol κ(x, θ) = a(x).
• Any zero-distributed sequence {Zn}n ∼σ 0 is a GLT sequence with symbol

κ(x, θ) = 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ , then

• {AH
n }n ∼GLT κ , where AH

n is the conjugate transpose of An,
• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ .

GLT 5. If {An}n ∼GLT κ and κ �= 0 a.e., then {A†
n}n ∼GLT κ−1, where A†

n is the
Moore–Penrose pseudoinverse of An.
GLT 6. If {An}n ∼GLT κ and each An is normal, then { f (An)}n ∼GLT f (κ) for
all continuous functions f : C → C.
GLT 7. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm

such that κm converges to κ in measure and {Bn,m}n
a.c.s.−−→ {An}n as m → ∞.

GLT 8. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then da.c.s.({An}n, {Bn}n) =
dmea(κ, ξ).
GLT 9. For any measurable function κ : [0, 1]d × [−π, π ]d → C there exists a
d-level sequence {An}n and functions ai,m, fi,m, i = 1, . . . , Nm , such that

• {An}n ∼GLT κ ,
• ai,m ∈ C∞([0, 1]q) and fi,m is a trigonometric polynomial in q variables,
• ∑Nm

i=1 ai,m(x) fi,m(θ) converges to κ(x, θ) a.e.,

• {∑Nm
i=1 Dn(ai,m)Tn( fi,m)

}
n

a.c.s.−−→ {An}n as m → ∞.

A similar scheme can be found in [20], where all the points are the same, except for
GLT1, GLT2 and GLT6, that can be deduced from the results in [6,8]. Moreover,
GLT8 has been substituted with its more powerful version from [10] and GLT9 has
been expanded to include the fact that every measurable function is a GLT symbol for
some sequence.

In the applications, one usually identifies thematrix-sequence at hand as a combina-
tion or limit of the simpler sequences in GLT3, for which a symbol is already known.
Using the algebraic properties of GLT4, GLT5 and GLT6, or the metric property
of GLT7, one can compute the GLT symbol of the sequence, that is automatically a
singular value symbol by GLT1. Eventually, using the perturbation result in GLT2,
one can prove that the GLT symbol is also a spectral symbol.
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690 G. Barbarino

3 Characteristic sequences

We know byGLT9 that every measurable function with support in ([0, 1]×[−π, π ])d

is a GLT symbol for a sequence of matrices. Using this connection, we can associate
to each measurable set� ⊆ [0, 1]d a diagonal sequence {Dn}n such that {Dn}n ∼GLT
χ

�.
An important remark to be noted here is that we do not have a single choice of

domain, functions and sequence. In fact two measurable sets �,�′ are identified
whenever they differ for a negligible set, and it happens if and only if χ

� and χ
�′

differ on the same negligible set. Moreover, two sequences have the same GLT symbol
if and only if they differ by a zero-distributed sequence by GLT3 and GLT4.

In the case of characteristic function, though, it is always possible to choose {Dn}n

to be diagonal sequences with binary entries. This is easy to see in the case the char-
acteristic function χ

� is continuous almost everywhere, since we know from GLT3
that

{Dn(χ�)}n ∼GLT χ
�.

In the remaining cases, one can obtain χ
� as limit of characteristic functions of regular

domains, so it is possible to reach the same conclusion using a diagonal argument.
Let us focus on the case χ

� is continuous a.e., that is a condition common to almost
every domain used in linear PDE. Given a measurable set �, the following assertions
are equivalent:

• the function χ
� is continuous a.e.,

• the function χ
� is Riemann integrable,

• μ(∂�) = 0,
• the set � is Peano–Jordan measurable,

where ∂� is the boundary of the set �. Moreover, every measurable set � respecting
the condition, is equal, up to a negligible set, to its interior �◦ and to its closure �.
The matrices Dn(χ�) give us a natural way to link its rows and columns to the points
of type z i := i

n with 1 ≤ i ≤ n inside and outside of �. A Peano–Jordan measurable
set � is also well described by the diagonal matrices Dn(χ�), and consequently by
the points z i , in the sense described by the following result.

Lemma 3.1 If � is a Peano–Jordan measurable set, then

lim
n→∞

rk(Dn(χ�))

N (n)
= μ(�).

Proof We know from GLT1 that

{Dn(χ�)}n ∼σ
χ

�
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A systematic approach to reduced GLT 691

so in particular, if we consider a continuous function F : R → C with compact
support and such that F(1) = 1, F(0) = 0, then

lim
n→∞

rk(Dn(χ�))

N (n)
= lim

n→∞
1

N (n)

N (n)∑

i=1

F(σi (Dn(χ�)))

=
∫

[0,1]d
F(χ�(x))dx = μ(�).

��
Actually, when � is Peano–Jordan measurable, we can show also that the number of
points z i arbitrarily close to the boundary is negligible with respect to N (n). Call

Kc = {p ∈ [0, 1]d |d(p, ∂�) ≤ c}

the set of points whose distance from ∂� is at most c ≥ 0. In the next result, we prove
that Kc contains few points z i when c tends to zero, so that in the applications we can
ignore the conditions that arise from grid points that are close enough to the boundary.

Lemma 3.2 Given a sequence hn of real nonnegative numbers converging to zero, and
a Peano–Jordan measurable set �, then

lim
n→∞

rk(Dn(χ Khn
))

N (n)
= 0.

Proof Remember that ∂� is always a closed set contained into [0, 1]d . Notice that Kc

converge to K0 = ∂� as c tends to zero, so we know that

lim
c→0

μ(Kc) = μ(∂�) = 0.

Kc is a closed subset of [0, 1]d for every c since

p /∈ Kc �⇒ p /∈ [0, 1]d ∨ d(p, ∂�) > c

and in both case there’s an open neighbourhood of p disjoint from Kc. Moreover, if
c > 0 then

p ∈ ∂Kc �⇒ p ∈ ∂[0, 1]d ∨ d(p, ∂�) = c

and it is known that the set of points at fixed positive distance from a closed set is
negligible [17], so we can conclude that μ(∂Kc) = 0. This is actually true also for K0
since

∂K0 = ∂∂� ⊆ ∂� �⇒ μ(∂K0) ≤ μ(∂�) = 0.

123



692 G. Barbarino

We can thus use Lemma 3.1 to infer that for every c ≥ 0

lim
n→∞

rk(Dn(χ Kc ))

N (n)
= μ(Kc).

Notice that if hn < hm then Khn ⊆ Khm and consequently rk(Dn(χ Khn
)) ≤

rk(Dn(χ Khm
)). When we fix an index m > 0, we know that definitively hn < hm

since hn are converging to zero, so the following relation holds

lim sup
n→∞

rk(Dn(χ Khn
))

N (n)
≤ lim sup

n→∞
rk(Dn(χ Khm

))

N (n)
= μ(Khm ) ∀m

�⇒ lim sup
n→∞

rk(Dn(χ Khn
))

N (n)
≤ inf

m∈Nμ(Khm ) = 0.

��
The points z i form an uniform grid on [0, 1]d , but in applications the most used

grid, denoted as �n , is composed by points of the form

i
n+ 1

=
(

i1
n1 + 1

,
i2

n2 + 1
, . . . ,

id

nd + 1

)
,

i j = 0, 1, 2, . . . , n j , n j + 1, j = 1, 2, . . . , d.

Consequentially we define a new diagonal matrix associated to �

In(χ�) := diag

(
χ

�

(
i

n+ 1

))

i=1,...,n

that has dimension N (n) × N (n), the same as Dn(χ�). More in general, for any
continuous a.e. function a : [0, 1]d → C we denote

In(a) := diag

(
a

(
i

n+ 1

))

i=1,...,n

so that In(a) and Dn(a) have the same dimension, and can actually be proved that
they enjoy the same GLT and spectral symbol.

Lemma 3.3 If a : [0, 1]d → C is a continuous a.e. function, then

{In(a)}n ∼GLT a.

Proof Notice thata : [0, 1]d → C is a continuous a.e. if andonly ifwhenwe split it into
real and imaginary part a = a1+ ia2, both the real functions a1 and a2 are continuous
a.e.. In the same way, we can split a1 and a2 in their positive and negative parts, and
they are still continuous a.e.. By GLT4, we can thus suppose that a : [0, 1]d → R

+,
since it is sufficient to prove the general thesis.
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The proof is divided into 3 steps, where we prove that the statement holds first
when a is continuous, then when a is Riemann-integrable and eventually when a is
continuous a.e..

Step 1. Suppose a is continuous and call ωa its continuity module. Notice that

∥∥∥∥
i
n
− i

n+ 1

∥∥∥∥
2

2
≤

d∑

k=1

(
ik

nk(nk + 1)

)2

≤
d∑

k=1

1

n2
k

=: h2
n

n→∞−−−→ 0,

so we can obtain a bound on the norm of In(a) − Dn(a) as

‖In(a) − Dn(a)‖ = max
i=1,...,n

∣∣∣∣a
(

i
n+ 1

)
− a

(
i
n

)∣∣∣∣ ≤ ωa(hn)
n→∞−−−→ 0.

By Z1, {In(a) − Dn(a)}n is zero-distributed and consequentially GLT4 tells us that
{In(a)}n ∼GLT a.

Step 2. Suppose a is Riemann-integrable, and consider a sequence of continu-
ous function am converging to a in L1 norm. A continuous function is in particular
Riemann-integrable, so am − a is also Riemann-integrable and we can compute

N (n)−1‖In(am) − In(a)‖1 = 1

N (n)

n∑

i=1

∣∣∣∣am

(
i

n+ 1

)
− a

(
i

n+ 1

)∣∣∣∣

n→∞−−−→ ‖a − am‖1 m→∞−−−−→ 0.

We can thus write the difference as ‖In(am) − In(a)‖1 = N (n)ε(n, m) where
limm→∞ limn→∞ ε(n, m) = 0 and using ACS 4, we discover that

{In(am)}n
a.c.s.−−−→ {In(a)}n .

We know from Step 1 that {In(am)}n ∼GLT am for every m, and am
m→∞−−−−→ a in

measure, so we conclude that {In(a)}n ∼GLT a by GLT 7.
Step 3. Suppose a is continuous a.e and call am(x) := max{a(x), m} its truncated

function for every m ∈ N. Notice that am are still continuous a.e. and also bounded,
thus Riemann-integrable. Moreover, since a is measurable we know that

μ{x |a(x) > m} =: hm
m→∞−−−−→ 0.

We know from Step 2 that {In(am)}n ∼GLT am for every m, so we can fix 1 > ε > 0
and considerGm(x) continuous and compact supported functions such thatχ [0,m−ε] ≤
Gm ≤ χ [−ε,m] to obtain

rk(In(am) − In(a))

N (n)
= N (n)−1#

{
i |a
(

i
n+ 1

)
> m, 1 ≤ i ≤ n

}
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= 1− N (n)−1#

{
i |a
(

i
n+ 1

)
≤ m, 1 ≤ i ≤ n

}

≤ 1− N (n)−1
n∑

i=1

Gm(σi (Dn(Am))).

Note that Gm(m) = 0, so Gm(am) = Gm(a) and taking the limits of the preceding
relations, one can see that

lim sup
n→∞

rk(In(am) − In(a))

N (n)
≤ 1− 1

(2π)d

∫

[0,1]d×[−π,π ]d
Gm(am(x))dx

= 1− 1

(2π)d

∫

[0,1]d×[−π,π ]d
Gm(a(x))dx

≤ 1− 1

(2π)d

∫

[0,1]d×[−π,π ]d
χ [0,m−ε](a(x))dx

≤ 1− (2π)d − hm−1

(2π)d
=: c(m)

m→∞−−−−→ 0.

Consequently, for every m we can find nm such that for every n > nm , rk(In(am) −
In(a)) ≤ c(m)N (n) with c(m)

m→∞−−−−→ 0, and it leads to

{In(am)}n
a.c.s.−−−→ {In(a)}n .

We know that am
m→∞−−−−→ a in measure, so we conclude again by GLT7 that

{In(a)}n ∼GLT a. ��
This result shows that for every a : [0, 1]d → C continuous a.e. function, the
sequences {In(a)}n and {Dn(a)}n have the same GLT (and consequently, spectral)
symbol. In particular, if � is Peano–Jordan measurable, χ

� is continuous a.e., so
{In(χ�)}n ∼GLT χ

�. In this case, it is also possible show that the difference
In(χ�) − Dn(χ�) has rank negligible when compared to N (n).

Lemma 3.4 If � is Peano–Jordan measurable, then

rk (In(χ�) − Dn(χ�)) = o(N (n)).

Proof It is enough to show that

En :=
{
i |χ�

(
i
n

)
�= χ

�

(
i

n+ 1

)
, 1 ≤ i ≤ n

}

has cardinality negligible when compared to N (n), since

#En = rk (In(χ�) − Dn(χ�)) .
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A systematic approach to reduced GLT 695

Note that if i ∈ En then there’s a point of the boundary ∂� on the segment connecting
the points i/n and i/(n+ 1). The distance between the two points is always bounded
and tends to zero when n goes to infinity

∥∥∥∥
i
n
− i

n+ 1

∥∥∥∥
2

2
≤

d∑

k=1

(
ik

nk(nk + 1)

)2

≤
d∑

k=1

1

n2
k

=: h2
n

n→∞−−−→ 0.

It means that for every i ∈ En we have d(i/n, ∂�) ≤ hn , so Lemma 3.2 let us
conclude that

lim sup
n→∞

#En

N (n)
= lim sup

n→∞

#
{

i
n |χ�

(
i
n

)
�= χ

�

(
i

n+1

)
, 1 ≤ i ≤ n

}

N (n)

≤ lim sup
n→∞

#
{

i
n |d

(
i
n , ∂�

)
≤ hn, 1 ≤ i ≤ n

}

N (n)

= lim sup
n→∞

rk(Dn(χ Khn
))

N (n)
= 0

��
The latest result shows that the two diagonal sequences {In(χ�)}n and {Dn(χ�)}n

hold essentially the same information about the domain �. The first one will be
fundamental to operate on the grid�n through diagonalmatrices, and also the quantity

d�
n := rk(In(χ�))

counts the number of grid points inside �. As a corollary, we find again the same
results of Lemmas 3.1 and 3.2, referred to the sequence {In(χ�)}n . We will not prove
them, since the arguments are the same we used in the proofs of Lemmas 3.1 and 3.2.

Corollary 3.1 If � is a Peano–Jordan measurable set, then

lim
n→∞

d�
n

N (n)
= μ(�).

Corollary 3.2 Given a sequence hn of real nonnegative numbers converging to zero,
and a Peano–Jordan measurable set �, then

lim
n→∞

d
Khn
n

N (n)
= 0.

In particular, if μ(�) > 0, then

lim
n→∞

d
Khn
n

d�
n

= 0.
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Note that if hn = 0 for every n, we have Khn = K0 = ∂� for every n, so

d∂�
n = o(d�

n ) = o(N (n)). As a corollary, we can also derive the limits of d�
n (N (n))−1

and d�◦
n (N (n))−1, since we know that � and �◦ differ from � for a negligible set

inside ∂�.

� ∪ ∂� = � ⊇ � �⇒ d�
n + d∂�

n ≥ d�
n ≥ d�

n �⇒ lim
n→∞

d�
n

N (n)
= μ(�),

� \ ∂� = �◦ ⊆ � �⇒ d�
n − d∂�

n ≤ d�◦
n ≤ d�

n �⇒ lim
n→∞

d�◦
n

N (n)
= μ(�).

Notice that Corollary 3.1 shows limn→∞ d�
n = +∞ whenever the measure of � is

not zero, so from now on, we suppose that μ(�) > 0.

4 Restriction and expansion operators

If we fix a Peano–Jordan measurable set �, then we can build the map

Z� : {An}n �→ {In(χ�)An In(χ�)}n .

Fromnowon,weabuse thenotation andwrite Z�(An) for thematrix In(χ�)An In(χ�).
If we call Gd the set of d-dimensional GLT sequences, notice that Z�(Gd) ⊆ Gd by
GLT4, since it multiplies a GLT sequence with other GLT sequences, as shown in
Lemma 3.4. Some properties of this operation are

• Z� is linear,
• Z� is idempotent,
• if {An}n ∼GLT k(x, θ), then Z�({An}n) ∼GLT k(x, θ)χ�(x),
• if {An}n is a real sequence, then Z�({An}n) is still real,
• if {An}n is a Hermitian sequence, then Z�({An}n) is still Hermitian.

If we associate each multi-index i in the matrix An to the point i
n+1 ∈ �n , then Z�

sets to zero every row and column corresponding to a point not in �. We can thus
try to delete the zero rows and columns in the matrices, and obtain a matrix with size
d�

n × d�
n .

Given a set � with negligible boundary, we consider In(χ�) and we enumerate the
non-zero rows and the zero rows through two strictly increasing functions

φn : {1, 2, . . . , d�
n } → {1, . . . , n}

ψn : {d�
n + 1, d�

n + 2, . . . , N (n)} → {1, . . . , n}

such that the φn( j)-th row of In(χ�) is non-zero for every j , and the ψn( j)-th row of
In(χ�) is zero for every j . In particular, the images of φn and ψn correspond to the
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A systematic approach to reduced GLT 697

set of points i/(n + 1) in �n respectively belonging and not belonging to �. Notice
that φn and ψn are uniquely determined by their properties.

For every n, we define a rectangular matrix �n,� of size d�
n × N (n) as

(�n,�)i, j := (In(χ�))φn(i), j

so that, for any matrix An of size N (n)× N (n), we can delete the rows and columns
corresponding to points not belonging to � through the restriction map

R� : {An}n �→ {�n,� An(�n,�)T }n

and add zero rows and columns corresponding to points not belonging to � to any
matrix S�

n of size d�
n × d�

n through the expansion map

E� : {S�
n }n �→ {(�n,�)T S�

n �n,�}n .

We will use the notation R�(An) for �n,� An(�n,�)T and the notation E�(S�
n ) for

(�n,�)T S�
n �n,�. Moreover, unless differently specified, we use the exponent � to

distinguish the sequences {S�
n }n of size d�

n × d�
n from classical sequences {An}n of

size N (n) × N (n).

Remark 4.1 Note that the operators E�, R�, Z�, the matrices �n,�, In(χ�) and the
quantity d�

n can be defined for any measurable set �, even if not Peano–Jordan mea-
surable.

4.1 Effects on the sequences

Let us check some basic properties of the matrices �n,�, In(χ�) and the operators
E�, R�, Z�.

Lemma 4.1 For every index n, we have

1. (�n,�)T �n,� = In(χ�),
2. �n,�(�n,�)T = I �

n .

In particular, given any matrix An of size N (n) × N (n), and any matrix S�
n of size

d�
n × d�

n , we have

3. R�(An) = R� ◦ Z�(An),
4. R�(E�(S�

n )) = S�
n ,

5. E�(R�(An)) = Z�(An),
6. Z�(E�(S�

n )) = E�(S�
n ).

Moreover (E�(S�
n ))∗ = E�((S�

n )∗) and (R�(An))
∗ = R�(A∗

n), so

7. S�
n Hermitian �⇒ E�(S�

n ) Hermitian,
8. An Hermitian �⇒ R�(An) Hermitian.
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Proof For items 1. and 2. we need to prove that the matrix multiplications returns
diagonal matrices, with 0 or 1 diagonal elements.

((�n,�)T �n,�)i, j =
d�

n∑

k=1

(�n,�)k,i (�n,�)k, j

=
d�

n∑

k=1

(In(χ�))φn(k),i (In(χ�))φn(k), j

=
{
1 i = j ∈ Range(φn)

0 otherwise
= (In(χ�))i, j ,

(�n,�(�n,�)T )i, j =
n∑

k=1

(�n,�)i,k(�n,�) j,k

=
n∑

k=1

(In(χ�))φn(i),k(In(χ�))φn( j),k

= δφn(i),φn( j) = δi, j .

Using now 1. and 2., let us prove items 3., 4. and 5. as follows.

R�(An) = �n,� An(�n,�)T

= I �
n �n,� An(�n,�)T I �

n

= �n,�(�n,�)T �n,� An(�n,�)T �n,�(�n,�)T

= �n,� In(χ�)An In(χ�)(�n,�)T

= R� ◦ Z�(An),

R�(E�(S�
n )) = �n,�(�n,�)T S�

n �n,�(�n,�)T

= I �
n S�

n I �
n

= S�
n ,

E�(R�(An)) = (�n,�)T �n,� An(�n,�)T �n,�

= In(χ�)An In(χ�)

= Z�(An).

Item 6. is now a consequence of items 4. and 5. as

R�(E�(S�
n )) = S�

n �⇒ E�(S�
n ) = E�(R�(E�(S�

n ))) = Z�(E�(S�
n )),

and eventually the last two items are straightforward computations of the Hermitian
transpose of the respective matrices.

(E�(S�
n ))∗ = ((�n,�)T S�

n �n,�)∗ = (�n,�)T (S�
n )∗�n,� = E�((S�

n )∗),
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(R�(An))
∗ = (�n,� An(�n,�)T )∗ = �n,� A∗

n(�n,�)T = R�(A∗
n).

��
The operator R� has the job to extract a principal minor from the matrices, so it is

easy to see that it makes the norm drop.

Lemma 4.2 For every 1 ≤ p ≤ ∞,

‖R�(A)‖p ≤ ‖A‖p,

where ‖ · ‖p is the p-Schatten norm.

Proof The matrices�n,� are unitary, so we can apply the Cauchy interlacing theorem
and find that

σi (R�(A)) ≤ σi (A) ∀1 ≤ i ≤ d�
n .

The thesis easily follows from the definition of p-Schatten norm. ��
The map R� applied to Z�(An) has the effect to delete only rows and columns

that are already zero, and we can easily tell the behaviour of their singular values and
eigenvalues.

Lemma 4.3 There exists a permutation matrix P of size N (n) × N (n) such that for
every matrix An of size N (n) × N (n),

P Z�(An)PT =
(

R�(An) 0
0 0

)
.

In particular, Z�(An) has the same eigenvalues and singular values of the matrix
R�(An) except for N (n) − d�

n null eigenvalues and singular values.

Proof Let Bn = Z�(An) and S�
n = R�(An). If we define the permutation matrix P

as

Pi, j =
{

δ j ,φn(|i |) |i | ≤ d�
n ,

δ j ,ψn(|i |) |i | > d�
n ,

then the matrix P BnPT can be written as

P BnPT =
(

S�
n 0
0 0

)
.

In fact
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(P BnPT )i, j = (P In(χ�)An In(χ�)PT )i, j

=
n∑

k=1

n∑

h=1

Pi,k(In(χ�))k,k(An)k,h(In(χ�))h,hP j ,h,

whose expression depends on whether |i |, | j | are grater or less than d�
n . In fact, if

|i | ≤ d�
n , | j | ≤ d�

n , then

(P BnPT )i, j = (In(χ�))φn(|i |),φn(|i |)(An)φn(|i |),φn(| j |)(In(χ�))φn(| j |),φn(| j |)
= (An)φn(|i |),φn(| j |),

if |i | > d�
n , | j | ≤ d�

n , then

(P BnPT )i, j = (In(χ�))ψn(|i |),ψn(|i |)(An)ψn(|i |),φn(| j |)(In(χ�))φn(| j |),φn(| j |)
= 0,

if |i | ≤ d�
n , | j | > d�

n , then

(P BnPT )i, j = (In(χ�))φn(|i |),φn(|i |)(An)φn(|i |),ψn(| j |)(In(χ�))ψn(| j |),ψn(| j |)
= 0,

and if |i | > d�
n , | j | > d�

n , then

(P BnPT )i, j = (In(χ�))ψn(|i |),ψn(|i |)(An)ψn(|i |),ψn(| j |)(In(χ�))ψn(| j |),ψn(| j |)
= 0.

Moreover,

(S�
n )i, j = R�(An) = (�n,� An(�n,�)T )i, j

=
n∑

k=1

n∑

h=1

(�n,�)i,k(An)k,h(�n,�) j,h

=
n∑

k=1

n∑

h=1

(In(χ�))φn(i),k(An)k,h(In(χ�))φn( j),h

= (An)φn(i),φn( j).

The proof is thus concluded, since S�
n has the same eigenvalues and singular values

of Bn except for N (n) − d�
n zeros. ��
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Corollary 4.1 There exists a permutation matrix P of size N (n)× N (n) such that for
every matrix S�

n of size d�
n × d�

n ,

P E�(S�
n )PT =

(
S�
n 0
0 0

)
.

In particular, E�(S�
n ) has the same eigenvalues and singular values of the matrix S�

n
except for N (n) − d�

n null eigenvalues and singular values.

Proof Let An = E�(S�
n ). Using items 4. and 6. of Lemma 4.1, we get

S�
n = R�(E�(S�

n )) = R�(An), Z�(An) = Z�(E�(S�
n )) = E�(S�

n ) = An.

As a consequence, we can apply Lemma 4.3 on An to find a permutation matrix P
such that

P AnPT =
(

S�
n 0
0 0

)

so S�
n has the same eigenvalues and singular values of An except for N (n)−d�

n zeros.
��

Corollary 4.2 There exists a permutation matrix P of size N (n)× N (n) such that for
every matrix An of size N (n) × N (n),

P AnPT =
(

R�(An) ∗
∗ ∗

)
.

Proof Using items 1. and 2. of Lemma 4.1,

Z�(In(χ�)) = In(χ�)In(χ�)In(χ�) = In(χ�),

R�(In(χ�)) = �n,� In(χ�)(�n,�)T

= �n,�(�n,�)T �n,�(�n,�)T

= I �
n I �

n = I �
n ,

so Lemma 4.3 shows that there exists P such that

P In(χ�)PT = P Z�(In(χ�))PT =
(

R�(In(χ�)) 0
0 0

)
=
(

I �
n 0
0 0

)
.

As a consequence, we have that

(
R�(An) 0

0 0

)
= P Z�(An)PT

= P In(χ�)An In(χ�)PT

123



702 G. Barbarino

= P In(χ�)PT P AnPT P In(χ�)PT

=
(

I �
n 0
0 0

)
P AnPT

(
I �
n 0
0 0

)

�⇒
(

R�(An) ∗
∗ ∗

)
= P AnPT

��

4.2 Effects on the symbols

We have seen how R�, E� modify the sequences of matrices. Now we focus on how
the symbols change though these operators. Let us start with the reduction operator
R�.

Lemma 4.4 Let {An}n be a sequence with An of size N (n)× N (n) that is a fixed point
for the operator Z�, and let k : [0, 1]d × [−π, π ]d → C be a measurable function
with k(x, θ)|x /∈� = 0. If {An}n ∼σ k, then

R�({An}n) ∼σ k(x, θ)|x∈�.

If {An}n ∼λ k, then

R�({An}n) ∼λ k(x, θ)|x∈�.

Proof Suppose that {An}n ∼σ k. Consider any continuous function F : R → C with
compact support, and call S�

n = R�(An). By hypothesis An = Z�(An), so we can
use Lemma 4.3 and obtain

1

d�
n

d�
n∑

i=1

F(σi (S�
n )) = N (n)

d�
n

1

N (n)

N (n)∑

i=1

F(σi (An)) − N (n) − d�
n

d�
n

F(0).

Notice that {An}n ∼σ k(x, θ) = k(x, θ)χ�(x), so Corollary 3.1 shows that

lim
n→∞

1

d�
n

d�
n∑

i=1

F(σi (S�
n )) = lim

n→∞
N (n)

d�
n

1

N (n)

N (n)∑

i=1

F(σi (An))

− lim
n→∞

N (n) − d�
n

d�
n

F(0)

= 1

μ(�)

1

(2π)d

∫

[0,1]d×[−π,π ]d
F(|k(x, θ)|)d(x, θ)

− 1− μ(�)

μ(�)
F(0)

= 1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|k(x, θ)|)d(x, θ)
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+ μ(�C )

μ(�)
F(0) − 1− μ(�)

μ(�)
F(0)

= 1

μ(� × [−π, π ]d)

∫

�×[−π,π ]d
F(|k(x, θ)|)d(x, θ).

The last formula holds for every continuous function F with compact support, so

R�({An}n) = {S�
n }n ∼σ k(x, θ)|x∈�.

If we suppose {An}n ∼λ k, the proof is analogous. Consider any continuous and
compact supported function F : C → C and use Lemma 4.3 to show that

1

d�
n

d�
n∑

i=1

F(λi (S�
n )) = N (n)

d�
n

1

N (n)

N (n)∑

i=1

F(λi (An))) − N (n) − d�
n

d�
n

F(0),

and exploiting {Bn}n ∼λ k(x, θ) = k(x, θ)χ�(x) and Corollary 3.1, we conclude
that

lim
n→∞

1

d�
n

d�
n∑

i=1

F(λi (S�
n )) = lim

n→∞
N (n)

d�
n

1

N (n)

N (n)∑

i=1

F(λi (An))

− lim
n→∞

N (n) − d�
n

d�
n

F(0)

= 1

μ(�)

1

(2π)d

∫

[0,1]d×[−π,π ]d
F(k(x, θ))d(x, θ)

− 1− μ(�)

μ(�)
F(0)

= 1

μ(�)(2π)d

∫

�×[−π,π ]d
F(k(x, θ))d(x, θ)

+ μ(�C )

μ(�)
F(0) − 1− μ(�)

μ(�)
F(0)

= 1

μ(� × [−π, π ]d)

∫

�×[−π,π ]d
F(k(x, θ))d(x, θ).

The last formula holds for every continuous function F with compact support, so

R�({An}n) = {S�
n }n ∼λ k(x, θ)|x∈�.

��
On the contrary let us analyse the effects of the extension operator E�.
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Lemma 4.5 Let {S�
n }n be a sequence with S�

n of size d�
n ×d�

n , let κ : �×[−π, π ]d →
C be a measurable function, and define

κ ′(x, θ) =
{

κ(x, θ) x ∈ �,

0 x ∈ [0, 1]d \ �.

If {S�
n }n ∼σ k, then

E�({S�
n }n) ∼σ κ ′(x, θ).

If {S�
n }n ∼λ κ , then

E�({S�
n }n) ∼λ κ ′(x, θ).

Proof Suppose that {S�
n }n ∼σ κ , and denote {An}n = E�({S�

n }n). If we consider any
continuous function F : R → C with compact support, then we can use Corollary 4.1
on {S�

n }n to obtain

1

N (n)

N (n)∑

i=1

F(σi (An)) = d�
n

N (n)

1

d�
n

d�
n∑

i=1

F(σi (S�
n )) + N (n) − d�

n

N (n)
F(0).

As a consequence of Corollary 3.1, we can show that

lim
n→∞

1

N (n)

N (n)∑

i=1

F(σi (An)) = lim
n→∞

d�
n

N (n)

1

d�
n

d�
n∑

i=1

F(σi (S�
n ))

+ lim
n→∞

N (n) − d�
n

N (n)
F(0)

= μ(�)

μ(� × [−π, π ]d)

∫

�×[−π,π ]d
F(|κ(x, θ)|)d(x, θ)

+ (1− μ(�))F(0)

= 1

(2π)d

∫

[0,1]d×[−π,π ]d
F(|κ ′(x, θ)|)d(x, θ)

− μ(�C × [−π, π ]d)

(2π)d
F(0) + (1− μ(�))F(0)

= 1

(2π)d
F(|κ ′(x, θ)|)d(x, θ),

where (2π)d = μ([0, 1]d × [−π, π ]d). The last formula holds for every continuous
function F with compact support, so

E�({S�
n }n) = {An}n ∼σ κ ′(x, θ).

123



A systematic approach to reduced GLT 705

If we suppose {S�
n }n ∼λ κ , the proof is analogous. If we consider any continuous

function F : C → C with compact support, then we can use Corollary 4.1 on {S�
n }n

to obtain

1

N (n)

N (n)∑

i=1

F(λi (An)) = d�
n

N (n)

1

d�
n

d�
n∑

i=1

F(λi (S�
n )) + N (n) − d�

n

N (n)
F(0).

As a consequence of Corollary 3.1, we can show that

lim
n→∞

1

N (n)

N (n)∑

i=1

F(λi (An)) = lim
n→∞

d�
n

N (n)

1

d�
n

d�
n∑

i=1

F(λi (S�
n ))

+ lim
n→∞

N (n) − d�
n

N (n)
F(0)

= μ(�)

μ(� × [−π, π ]d)

∫

�×[−π,π ]d
F(κ(x, θ))d(x, θ)

+ (1− μ(�))F(0)

= 1

(2π)d

∫

[0,1]d×[−π,π ]d
F(κ ′(x, θ))d(x, θ)

− μ(�C × [−π, π ]d)

(2π)d
F(0) + (1− μ(�))F(0)

= 1

(2π)d

∫

�×[−π,π ]d
F(κ ′(x, θ))d(x, θ).

The last formula holds for every continuous function F with compact support, so

E�({S�
n }n) = {An}n ∼λ κ ′(x, θ).

��

4.3 Effects on the convergence

When dealingwith the space ofmatrix sequences, we already know that it is a complete
pseudometric space, equipped with the a.c.s. convergence and the distance

da.c.s. ({An}n, {Bn}n) = lim sup
n→∞

p(An − Bn),

p(Cn) = min
i=1,...,N (n)+1

{
i − 1

N (n)
+ σi (Cn)

}
.

The operators R� and E� link two different matrix sequence spaces, sowe can analyse
how they affect the metrics and the convergences.
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Lemma 4.6 Given a sequence {S�
n }n with S�

n of size d�
n × d�

n and a sequence {An}n

with An of size N (n) × N (n), we have

{S�
n }n ∼σ 0 �⇒ E�({S�

n }n) ∼σ 0, {S�
n }n ∼λ 0 �⇒ E�({S�

n }n) ∼λ 0,

{An}n ∼σ 0 �⇒ R�({An}n) ∼σ 0, {An}n ∼λ 0 �⇒ R�({An}n) ∼λ 0.

Proof Easy corollary of Lemmas 4.5 and 4.4. ��
Lemma 4.7 Given two sequences {An}n and {Bn}n with matrices of size N (n)×N (n),

da.c.s. ({An}n, {Bn}n) ≥ μ(�)da.c.s. (R�({An}n), R�({Bn}n)) .

In particular,

{Bn,m}n
a.c.s.−−−→ {An}n �⇒ R�({Bn,m}n)

a.c.s.−−−→ R�({An}n).

Proof Let P be the permutation matrix in Corollary 4.2, so that

P(An − Bn)PT =
(

R�(An − Bn) ∗
∗ ∗

)
.

Using the Cauchy interlacing theorem for singular values, we get that

σi (R�(An − Bn)) ≤ σi (P(An − Bn)PT ) = σi (An − Bn)

for every 1 ≤ i ≤ d�
n . We can thus use the definition of dacs and Corollary 3.1 to

obtain that da.c.s. ({An}n, {Bn}n) is equal to

lim sup
n→∞

min
i=1,...,N (n)+1

{
i − 1

N (n)
+ σi (An − Bn)

}

= lim sup
n→∞

min
i=1,...,N (n)+1

{
i − 1

d�
n

d�
n

N (n)
+ σi (An − Bn)

}

≥ lim sup
n→∞

d�
n

N (n)
min

i=1,...,N (n)+1

{
i − 1

d�
n

+ σi (An − Bn)

}

≥ μ(�) lim sup
n→∞

min

{
min

i=1,...,d�
n

{
i − 1

d�
n

+ σi (An − Bn)

}
, 1

}

≥ μ(�) lim sup
n→∞

min

{
min

i=1,...,d�
n

{
i − 1

d�
n

+ σi (R�(An − Bn))

}
, 1

}

= μ(�) lim sup
n→∞

min
i=1,...,d�

n +1

{
i − 1

d�
n

+ σi (R�(An − Bn))

}

= μ(�)da.c.s. (R�({An}n), R�({Bn}n)) .
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Consequentially,

{Bn,m}n
a.c.s.−−−→ {An}n ⇐⇒ da.c.s.

({Bn,m}n, {An}n
)→ 0

�⇒ da.c.s.
(
R�({Bn,m}n), R�({An}n)

)→ 0

⇐⇒ R�({Bn,m}n)
a.c.s.−−−→ R�({An}n).

��
Lemma 4.8 Given two sequences {A�

n }n and {B�
n }n with matrices of size d�

n × d�
n ,

da.c.s.
({A�

n }n, {B�
n }n

) ≥ da.c.s.
(
E�({A�

n }n), E�({B�
n }n)

)

≥ μ(�)da.c.s.
({A�

n }n, {B�
n }n

)
.

In particular,

{B�
n,m}n

a.c.s.−−−→ {A�
n }n ⇐⇒ E�({B�

n,m}n)
a.c.s.−−−→ E�({A�

n }n).

Proof Thanks to item 4. of Lemma 4.1, we know that R�(E�({A�
n }n)) = {A�

n }n , and
the same happens to {B�

n }n , so we can apply Lemma 4.7 and obtain

da.c.s.
(
E�({A�

n }n), E�({B�
n }n)

) ≥ μ(�)da.c.s.
({A�

n }n, {B�
n }n

)
.

On the other hand, since Z�(E�({A�
n }n − {B�

n }n)) = E�({A�
n }n − {B�

n }n), Corol-
lary 4.1 assures us that the singular values of {A�

n }n − {B�
n }n are the same of

the singular values of E�({A�
n }n − {B�

n }n) except N (n) − d�
n for zeros. Hence,

da.c.s.
(
E�({A�

n }n), E�({B�
n }n)

)
is equal to

lim sup
n→∞

min
i=1,...,N (n)+1

{
i − 1

N (n)
+ σi (E�(A�

n − B�
n ))

}

= lim sup
n→∞

min
i=1,...,d�

n +1

{
i − 1

N (n)
+ σi (E�(A�

n − B�
n ))

}

= lim sup
n→∞

min
i=1,...,d�

n +1

{
i − 1

N (n)
+ σi (A�

n − B�
n )

}

≤ lim sup
n→∞

min
i=1,...,d�

n +1

{
i − 1

d�
n

+ σi (A�
n − B�

n )

}

= da.c.s.
({A�

n }n, {B�
n }n

)
.
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Consequentially,

{B�
n,m}n

a.c.s.−−−→ {A�
n }n ⇐⇒ da.c.s.

({B�
n,m}n, {A�

n }n
)→ 0

⇐⇒ da.c.s.
(
E�({B�

n,m}n), E�({A�
n }n)

)→ 0

⇐⇒ E�({B�
n,m}n)

a.c.s.−−−→ E�({A�
n }n).

��

4.4 Different grids

The operators Z�, R�, E� are always referred to ameasurable set� that tells uswhich
rows and columns to add or remove from the matrices depending on the points of the
regular grid �n inside �. Suppose now that we want to choose a slight different set of
points for every n, and we ask whether the resulting sequence of matrices still enjoys
a symbol. Remember that the symmetric difference � between two sets is the set of
elements belonging to only one of the two sets. In symbols, A�B = (A\B)∪(B \ A).

Lemma 4.9 Let �n be a measurable set in [0, 1]d (not necessarily Peano–Jordan
measurable) and let � be a Peano–Jordan measurable set with positive measure in
[0, 1]d . Suppose that

d���n
n = o(N (n)).

Given a sequence {An}n with An of size N (n)× N (n), and a measurable function k,
we have that

R�({An}n) ∼σ k ⇐⇒ {R�n (An)}n ∼σ k.

Moreover, if An are Hermitian, then

R�({An}n) ∼λ k ⇐⇒ {R�n (An)}n ∼λ k.

Proof Consider the difference

R�∪�n (Z�∩�n (An)) − R�∪�n (E�(R�(An))) = R�∪�n (Z�∩�n (An) − Z�(An)).

The matrix has at most d�\�n
n ≤ d���n

n = o(N (n)) non-zero rows and columns,
and from Corollary 3.1, we infer also that d�\�n

n = o(d�
n ). Consequently, d�\�n

n =
o(d�∪�n

n ), so the sequence is zero-distributed. Moreover, the matrix B�∪�n
n :=

R�∪�n (E�(R�(An))) is actually R�(An)with additionald
�n\�
n ≤ d���n

n = o(N (n))

zero columns and rows, sowe just added fewzero singular values, forwhichholds again
d�n\�

n = o(d�∪�n
n ). In particular, if we consider any continuous function F : C → C

with compact support, then
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1

d�n∪�
n

d�n∪�
n∑

i=1

F(σi (B�∪�n
n ))

= d�n\�
n

d�n∪�
n

F(0) + d�n∪�
n − d�n\�

n

d�n∪�
n

1

d�
n

d�
n∑

i=1

F(σi (R�(An)))

and asymptotically we have

lim
n→∞

1

d�n∪�
n

d�n∪�
n∑

i=1

F(σi (B�∪�n
n )) = lim

n→∞
1

d�
n

d�
n∑

i=1

F(σi (R�(An))).

It leads to

R�({An}n) ∼σ k ⇐⇒ {R�∪�n (E�(R�(An)))}n ∼σ k

⇐⇒ {R�∪�n (Z�∩�n (An))}n ∼σ k

and the same argument can be applied to R�n (An), so we can conclude that

R�({An}n) ∼σ k ⇐⇒ {R�n (An)}n ∼σ k.

If An are hermitian, then all the matrices considered until now are also Hermitian, so
the same results apply to the spectral symbols and

R�({An}n) ∼λ k ⇐⇒ {R�n (An)}n ∼λ k.

��
This result is quite powerful since it tells us that we can add and remove a small

number of rows and columns without changing the symbol of the sequence. It will be
useful in applications when dealing with near-boundary conditions.

5 Reduced GLT

In the following propositions, we denote the image of R� when applied to GLT
sequences as G�

d := R�(Gd), and we call it the space of reduced GLT with respect to
�.

5.1 Reduced GLT symbol

Lemma 5.1 Given a GLT sequence {An}n ∼GLT k(x, θ) with k : [0, 1]d ×
[−π, π ]d → C, then

R�({An}n) ∼σ k(x, θ)|x∈�.
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710 G. Barbarino

If An are also Hermitian matrices, then

R�({An}n) ∼λ k(x, θ)|x∈�.

Proof Thanks to item 3. of Lemma 4.1, we have R�({An}n) = R�(Z�({An}n)) and
if we call {Bn}n = Z�({An}n), then Z�({Bn}n) = {Bn}n since Z� is an idem-
potent operator. Moreover, {Bn}n ∼GLT k(x, θ)χ�(x), so in particular {Bn}n ∼σ

k(x, θ)χ�(x) due to GLT1. We can thus use Lemma 4.4 and obtain that

R�({An}n) = R�({Bn}n) ∼σ k(x, θ)χ�(x)|x∈� = k(x, θ)|x∈�.

If An are Hermitian matrices, then also {Bn}n = Z�({An}n) is a Hermitian sequence,
since Z� preserves the Hermitianity, so

{Bn}n ∼GLT k(x, θ)χ�(x) �⇒ {Bn}n ∼λ k(x, θ)χ�(x)

due to GLT1. As before, Z�({Bn}n) = {Bn}n and Lemma 4.4 assure us that

R�({An}n) = R�({Bn}n) ∼λ k(x, θ)χ�(x)|x∈� = k(x, θ)|x∈�.

��
Notice that themap R� is not injective, but one can prove that all theGLT sequences

with the same image have symbols that coincide on � × [−π, π ].
Lemma 5.2 Given {An}n ∼GLT k, {Bn}n ∼GLT h such that R�({An}n) =
R�({Bn}n) = {S�

n }n ∈ G�
d , the symbols k, h coincide on � × [−π, π ]d .

Proof Since R� is linear, we can use Lemma 5.1 and GLT4 and say that {An}n −
{Bn}n ∼GLT k − h implies

R�({An}n − {Bn}n) = {S�
n }n − {S�

n }n = {0�
n }n ∼σ (k − h)|x∈� = κ.

Notice that if the set where 0 < L < |κ| < M has non-zero measure, then we can
consider a nonnegative continuous function F : R → C with compact support such
that F(0) = 0 and F(x) > δ > 0 for every x ∈ (L, M) to get an absurd

0 = lim
n→∞

1

d�
n

F(σi (0n)) = 1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|κ(x, θ)|)d(x, θ)

≥ 1

μ(�)(2π)d
δμ{|κ| > 0} > 0.

We conclude that κ = 0, and so k, h coincide on � × [−π, π ]d . ��
As a corollary, every GLT sequence mapped into {S�

n }n possesses a symbol with a
fixed value on � × [−π, π ]d , so we can associate to each reduced GLT sequence
{S�

n }n an unique symbol, called reduced GLT symbol, obtained as the restriction of
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any GLT symbol of the sequences in the counter-image R−1
� ({S�

n }n)∩ Gd . From now
on, we will use the notation {S�

n }n ∼�
GLT s to indicate that s : �× [−π, π ]d → C is

the restriction of a symbol k : [0, 1]d × [−π, π ]d → C such that {An}n ∼GLT k and
R�({An}n) = {S�

n }n .
Given any reduced GLT sequence {S�

n }n , it is easy to produce a GLT sequence
{An}n such that R�({An}n) = {S�

n }n using the operator E�. We can thus reverse
Lemma 5.1.

Lemma 5.3 If {S�
n }n ∼�

GLT κ , then

E�({S�
n }n) ∼GLT k(x, θ) =

{
κ(x, θ) x ∈ �,

0 x /∈ �,

and R�(E�({S�
n }n)) = {S�

n }n.

Proof Since {S�
n }n ∈ G�

d = R�(Gd), there exists a GLT sequence {An}n with symbol
h such that R�({An}n) = {S�

n }n , but thanks to item 3. of Lemma 4.1 we know that
also R�(Z�({An}n)) = {S�

n }n and

Z�({An}n) ∼GLT h(x, θ)χ�(x) = k(x, θ) =
{

κ(x, θ) x ∈ �,

0 x /∈ �.

Using now item 5. of Lemma 4.1, we can conclude, since

Z�({An}n) = E�(R�({An}n)) = E�({S�
n }n).

��

5.2 Axioms of reduced GLT

Using the connection between Gd and G�
d , we can prove that many properties of the

first space transfer to the second.

Theorem 5.1 Suppose {A�
n }n, {B�

n }n are reduced GLT sequences and {X�
n }n {Y �

n }n

are sequences with X�
n , Y �

n ∈ C
d�

n ×d�
n .

GLT� 1. If {A�
n }n ∼�

GLT κ then {A�
n }n ∼σ κ . If {A�

n }n ∼�
GLT κ and each A�

n is
Hermitian then {A�

n }n ∼λ κ .
GLT� 2. If {A�

n }n ∼�
GLT κ and {A�

n }n = {X�
n }n + {Y �

n }n, where

• every X�
n is Hermitian,

• (d�
n )−1‖Y �

n ‖22 → 0,

then {A�
n }n ∼λ κ .

GLT� 3. Here we list three important examples of reduced GLT sequences.
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• Given a function f in L1([−π, π ]d), its associated reduced
Toeplitz sequence is {T �

n ( f )}n = R�({Tn( f )}n), where the elements are mul-
tidimensional Fourier coefficients of f :

Tn( f ) = [ f i− j ]ni, j=1, fk = 1

(2π)d

∫ π

−π

f (θ)e−ik·θdθ.

{T �
n ( f )}n is a reduced GLT sequence with symbol κ(x, θ) = f (θ).

• Given an almost everywhere continuous function, ã : [0, 1]d → C and its
restriction a = ã|�, its associated diagonal sampling sequence {D�

n (a)}n is
defined as

D�
n (a) = diag

({
a

(
φ(i)

n+ 1

)}d�
n

i=1

)
.

{D�
n (a)}n is a reduced GLT sequence with symbol κ(x, θ) = a(x).

• Any zero-distributed sequence {Y �
n }n ∼σ 0 is a reduced GLT sequence with

symbol κ(x, θ) = 0.

GLT� 4. If {A�
n }n ∼�

GLT κ and {B�
n }n ∼�

GLT ξ , then

• {(A�
n )∗}n ∼�

GLT κ , where (A�
n )∗ is the conjugate transpose of A�

n ,
• {αA�

n + βB�
n }n ∼�

GLT ακ + βξ for all α, β ∈ C,
• {A�

n B�
n }n ∼�

GLT κξ .

GLT� 5. If {A�
n }n ∼�

GLT κ and κ �= 0 a.e., then {(A�
n )†}n ∼�

GLT κ−1, where
(A�

n )† is the Moore–Penrose pseudoinverse of A�
n .

GLT� 6. If {A�
n }n ∼�

GLT κ and each A�
n is Hermitian, then { f (A�

n )}n ∼�
GLT f (κ)

for all continuous functions f : C → C.
GLT� 7. {A�

n }n ∼�
GLT κ if and only if there exist GLT sequences {Bn,m}n with

reduced symbols κm such that κm converges to κ in measure and {Bn,m}n
a.c.s.−−→

{A�
n }n as m → ∞.

GLT� 8. Suppose {A�
n }n ∼�

GLT κ and {B�
n,m}n ∼�

GLT κm, where both A�
n and

B�
n,m have the same size d�

n × d�
n . Then, {B�

n,m}n
a.c.s.−−→ {A�

n }n as m → ∞ if and
only if κm converges to κ in measure.
GLT� 9. If {A�

n }n ∼�
GLT κ then there exist functions ai,m, fi,m, with i =

1, . . . , Nm, such that

• ai,m ∈ C∞(�) and fi,m is a trigonometric polynomial,
• ∑Nm

i=1 ai,m(x) fi,m(θ) converges to κ(x, θ) a.e.,

• {∑Nm
i=1 D�

n (ai,m)T �
n ( fi,m)

}
n

a.c.s.−−→ {A�
n }n as m → ∞.

Proof Given {A�
n }n ∼�

GLT κ , {B�
n }n ∼�

GLT ξ , call

{An}n = E�({A�
n }n) ∼GLT κ ′, {Bn}n = E�({B�

n }n) ∼GLT ξ ′,
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where κ ′ and ξ ′ are the extension of κ and ξ as specified in Lemma 5.3. We know that
κ ′|x∈� = κ , ξ ′|x∈� = ξ and R�({An}n) = {A�

n }n , R�({Bn}n) = {B�
n }n . Notice that

in every proof we use the axioms GLT1-9 referred to the regular multilevel GLT.

GLT� 1. Using Lemma 5.1, we know that {A�
n }n ∼σ κ ′|x∈� = κ . If {A�

n }n is
Hermitian, then {An}n is Hermitian by item 7. of Lemma 4.1, so Lemma 5.1 let
us conclude that {A�

n }n ∼λ κ ′|x∈� = κ .
GLT � 2. Let {Xn}n = E�({X�

n }n) and {Yn}n = E�({Y �
n }n). The operator E� is

linear, so {An}n = {Xn}n + {Yn}n , where {An}n ∼GLT κ ′. Using Corollary 4.1,
we know that the singular values of Yn are the same of Y �

n except for zero singular
values. As a consequence,

lim
n→∞(N (n))−1‖Yn‖22 = lim

n→∞
d�

n

N (n)
(d�

n )−1‖Y �
n ‖22 = μ(�) · 0 = 0.

We can thus assert that {An}n ∼λ κ ′. Since we know that κ ′|x /∈� = 0 and
R�({An}n) = {A�

n }n , we can apply Lemma 4.4 and conclude that

{A�
n }n = R�({An}n) ∼λ κ ′|x∈� = κ.

GLT� 3. We know that {Tn( f )}n ∼GLT f , so Lemma 5.1 assures us that

{T �
n ( f )}n = R�({Tn( f )}n) ∼�

GLT f (θ).

Analogously, Lemma 3.3 shows that {In (̃a)}n ∼GLT ã and it is easy to check that
{D�

n (a)}n = R�({In (̃a)}n), so

{D�
n (a)}n ∼�

GLT a.

Moreover, Lemma 4.6, shows that

{Y �
n }n ∼σ 0 �⇒ E�({Y �

n }n) ∼σ 0 �⇒ E�({Y �
n }n) ∼GLT 0

�⇒ {Y �
n }n = R�(E�({Y �

n }n)) ∼�
GLT 0.

GLT� 4. Using Lemmas 4.1 and 5.1, we know that

{(A�
n )∗}n = (R�({An}n))

∗ = R�({A∗
n}n) ∼�

GLT κ ′|x∈� = κ.

Moreover, R� is linear, so we can apply Lemma 5.1 on α{An}n + β{Bn}n ∼GLT

ακ ′ + βξ ′ and obtain

{αA�
n + βB�

n }n = R�(α{An}n + β{Bn}n) ∼�
GLT ακ ′ + βξ ′|x∈� = ακ + βξ.

In order to prove the last point, remember that Z�(An) = An, so we can use item
1. of Lemma 4.1 and obtain the relation
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R�(AnBn) = �n,� AnBn(�n,�)T

= �n,� In(χ�)An In(χ�)Bn(�n,�)T

= �n,� In(χ�)An(In(χ�))2Bn(�n,�)T

= �n,� An In(χ�)Bn(�n,�)T

= �n,� An(�n,�)T �n,� Bn(�n,�)T

= R�(An)R�(Bn).

Using Lemma 5.1, we conclude that

{A�
n }n{B�

n }n = R�({An}n)R�({Bn}n)

= R�({An}n{Bn}n)

∼�
GLT κ ′ξ ′|x∈� = κξ.

GLT� 5. Notice that ∂� = ∂(�C ), so {In(χ�C )}n ∼GLT χ
�C by Lemma 3.3. If

we define {Cn}n = {An}n + {In(χ�C )}n , then

{Cn}n ∼GLT κ ′(x, θ) + χ
�C (x) =

{
κ x ∈ �,

1 x /∈ �,

so κ ′(x, θ)+ χ
�C (x) = 0 if and only if x ∈ � and κ(x, θ) = 0. In particular it is

different from zero a.e., so

{C†
n}n ∼GLT (κ ′(x, θ) + χ

�C (x))−1 =
{

κ−1 x ∈ �,

1 x /∈ �.

We know that Z�({An}n) = {An}n and using items 1. and 2. of Lemma 4.1,

Z�(In(χ�)) = In(χ�)In(χ�)In(χ�) = In(χ�),

R�(In(χ�)) = �n,� In(χ�)(�n,�)T

= �n,�(�n,�)T �n,�(�n,�)T

= I �
n I �

n = I �
n .

Let P be the permutation matrix in Lemma 4.3, so that

P AnPT =
(

A�
n 0
0 0

)
,

P In(χ�C )PT = P(In − In(χ�))PT = In −
(

I �
n 0
0 0

)
=
(
0 0

0 I �C

n

)
,

PCnPT = P(An + In(χ�C ))PT =
(

A�
n 0

0 I �C

n

)
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�⇒ PC†
nPT =

(
(A�

n )† 0

0 I �C

n

)
.

Consequentially,

(
R�(C†

n) 0
0 0

)
= P Z�(C†

n)PT

= P In(χ�)C†
n In(χ�)PT

= P In(χ�)PT
(

(A�
n )† 0

0 I �C

n

)
P In(χ�)PT

=
(

I �
n 0
0 0

)(
(A�

n )† 0

0 I �C

n

)(
I �
n 0
0 0

)

=
(

(A�
n )† 0
0 0

)

and Lemma 5.1 let us conclude that

{(A�
n )†}n = R�({C†

n}n) ∼�
GLT (κ ′(x, θ) + χ

�C (x))−1|x∈� = κ−1.

GLT� 6. If A�
n is Hermitian, then An = E�(A�

n ) is also Hermitian and
{An}n ∼GLT κ ′, so

{ f (An)}n ∼GLT f (κ ′) =
{

f (κ(x, θ)) x ∈ �,

f (0) x /∈ �.

Notice that, using Lemma 4.3,

P f (An)PT = f (P AnPT ) =
(

f (A�
n ) 0

0 f (0)I �C

n

)
,

so one can prove that

(
R�( f (An)) 0

0 0

)
= P Z�( f (An))PT

= P In(χ�) f (An)In(χ�)PT

= P In(χ�)PT
(

f (A�
n ) 0

0 f (0)I �C

n

)
P In(χ�)PT

=
(

I �
n 0
0 0

)(
f (A�

n ) 0

0 f (0)I �C

n

)(
I �
n 0
0 0

)

=
(

f (A�
n ) 0

0 0

)
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and consequentially Lemma 5.1 let us conclude

{ f (A�
n )}n = R�({ f (An)}n) ∼�

GLT f (κ ′)|x∈� = f (κ).

GLT� 7. Notice that if {A�
n }n ∼�

GLT κ and A�
n = B�

n,m for every m, then

{B�
n,m}n ∼�

GLT κm = κ , κm converges to κ and {B�
n,m}n

a.c.s.−−→ {A�
n }n .

On the opposite, assume there exist reduced GLT sequences {B�
n,m}n ∼�

GLT κm

such that κm converges to κ in measure and {B�
n,m}n

a.c.s.−−→ {A�
n }n . In this case, let

Bn,m = E�(B�
n,m) and let κ ′m be the extension of κ given by Lemma 5.3, so that

{Bn,m}n ∼GLT κ ′m . Using Lemma 4.8, we know that {Bn,m}n
a.c.s.−−→ E�({A�

n }n),
and moreover

κ ′m =
{

κm(x, θ) x ∈ �,

0 x /∈ �,
→ κ ′ =

{
κ(x, θ) x ∈ �,

0 x /∈ �,

so E�({A�
n }n) ∼GLT κ ′ and Lemma 5.1 let us conclude that

R�(E�({A�
n }n)) = {A�

n }n ∼�
GLT κ ′|x∈� = κ.

GLT� 8. Let Bn,m = E�(B�
n,m) and let κ ′m be the extension of κ given by Lemma

5.3, so that {Bn,m}n ∼GLT κ ′m . Using Lemma 4.8, we know that

{B�
n,m}n

a.c.s.−−→ {A�
n }n ⇐⇒ {Bn,m}n

a.c.s.−−→ E�({A�
n }n) ⇐⇒ κ ′m → κ ′.

All the functions κ ′m and κ ′ are zero outside �, and � has positive measure, so

κ ′m − κ ′ → 0 ⇐⇒ κ ′m − κ ′|x∈� → 0 ⇐⇒ κm − κ → 0 ⇐⇒ κm → κ.

GLT� 9. The functions in C∞(�) are restrictions of functions in C∞([0, 1]d),
so, given κ , we can consider E�({A�

n }n) ∼GLT κ ′ and find smooth a′i,m and
trigonometric polynomials fi,m such that

Nm∑

i=1

a′i,m(x) fi,m(θ) → κ ′(x, θ)

a.e., and if a′i,m |x∈� = ai,m , then

Nm∑

i=1

a′i,m(x) fi,m(θ)|x∈� =
Nm∑

i=1

ai,m(x) fi,m(θ)

converges to κ ′|x∈� = κ almost everywhere. Thanks to GLT� 3 we know that
{D�

n (ai,m)}n ∼�
GLT ai,m and {T �

n ( fi,m)}n ∼�
GLT fi,m , so we can apply GLT� 4
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A systematic approach to reduced GLT 717

and obtain

{ Nm∑

i=1

D�
n (ai,m)T �

n ( fi,m)

}

n

∼�
GLT

Nm∑

i=1

ai,m(x) fi,m(θ) → κ,

so that GLT� 8 let us conclude that

{ Nm∑

i=1

D�
n (ai,m)T �

n ( fi,m)

}

n

a.c.s.−−→ {A�
n }n .

��

5.3 Isometry withmeasurable functions

It has been proved that the space of GLT sequences, up to zero-distributed sequences,
is actually isomorphic as an algebra and isometric as a complete pseudometric space to
the space of measurable functions on an opportune domain. In particular, every mea-
surable function with domain [0, 1]d ×[−π, π ]d is a GLT symbol for some multilevel
GLT sequence. The same can be said for the space of reduced GLT sequences.

Let Ŝ � be the map connecting each reduced GLT sequence with its symbol

Ŝ � : G�
d → M�

whereM� is the space ofmeasurable functions from�×[−π, π ]d toC, equippedwith
the metric of the convergence in measure dm . GLT� 4 assures us that Ŝ � is a linear
map, and GLT� 1,3 identify the kernel as the set Z of zero-distributed sequences.
We can thus define the map

S � : G�
d /Z → M�

and prove it is an isomorphism and an isometry.

Lemma 5.4 The map S � is an isomorphism of algebras.

Proof By construction, we already know thatS � is a linear injective map. Given now
any κ ∈ M�, let κ ′ be the extension of κ to [0, 1]d obtained by setting κ ′ = 0 outside
�. Let {An}n ∼GLT κ ′, and notice thatS �(R�({An}n)) is κ , proving that S� is also
surjective. ��
Theorem 5.2 The map S � is an isometry of pseudometric spaces.

Proof Let {S�
n }n ∼�

GLT κ and notice that

da.c.s.
({S�

n }n, {0�
n }n

) = ρ({S�
n }n) = lim sup

n→∞
min

i=1,...,d�
n +1

{
i − 1

d�
n

+ σi (S�
n )

}
,
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dmea(κ, 0) = ρmea(κ) = inf
E⊆�×[−π,π ]d

{
μ(EC )

μ(�)(2π)d
+ ess sup

E
|κ|
}

.

Call L := ρmea(κ). By the definition of the infimum, if we set ε > 0, we can always
find a measurable set H such that

μ(HC )

μ(�)(2π)d
+ ess sup

H
|κ| ≤ L + ε.

From now on, let us call M = ess supH |κ|. Let F : R → R be a continuous and
compact supported function such that χ [−ε,M+ε] ≥ F ≥ χ [0,M].

1

d�
n

d�
n∑

i=1

F(σi (S�
n )) ≤ #

{
i : σi (S�

n ) ≤ M + ε
}

d�
n

,

1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|κ(x)|)dx ≥ μ(|κ| ≤ M)

μ(�)(2π)d
≥ μ(H)

μ(�)(2π)d
.

Since {S�
n }n ∼σ κ , we know that

lim inf
n→∞

#
{
i : σi (S�

n ) ≤ M + ε
}

d�
n

≥ lim
n→∞

1

d�
n

d�
n∑

i=1

F(σi (S�
n ))

= 1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|κ(x)|)dx

≥ μ(H)

μ(�)(2π)d

�⇒ lim sup
n→∞

#
{
i : σi (S�

n ) > M + ε
}

d�
n

≤ μ(HC )

μ(�)(2π)d
≤ L + ε − M,

but

min
i=1,...,d�

n +1

{
i − 1

d�
n

+ σi (S�
n )

}
≤ #

{
i : σi (S�

n ) > M + ε
}

d�
n

+ M + ε

�⇒ ρ({S�
n }n) = lim sup min

i=1,...,d�
n +1

{
i − 1

d�
n

+ σi (S�
n )

}

≤ lim sup
#
{
i : σi (S�

n ) > M + ε
}

d�
n

+ M + ε

≤ L + 2ε = ρmea(κ) + 2ε.

For the converse, let jn be the sequence of indices that satisfies

rn := min
i=1,...,d�

n +1

{
i − 1

d�
n

+ σi (S�
n )

}
= jn − 1

d�
n

+ σ jn (S�
n ).
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The sequence rn is bounded by L + ε definitively, and jn−1
d�

n
≤ 1, so σ jn (S�

n ) is also

bounded and admits a subsequence jnk that converges to a value N . Consequently,

ρ({S�
n }n) = lim sup

n→∞
jn − 1

d�
n

+ σ jn (S�
n ) ≥ N + lim sup

n→∞
jnk − 1

d�
nk

.

Let F : R → R be a continuous and compact supported function such that
χ [−ε,N+2ε] ≥ F ≥ χ [0,N+ε].

1

d�
n

d�
n∑

i=1

F(σi (S�
n )) ≥ #

{
i : σi (S�

n ) ≤ N + ε
}

d�
n

,

1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|κ(x)|)dx ≤ μ(|κ| ≤ N + 2ε)

μ(�)(2π)d
.

Since {S�
n }n ∼σ κ , we know that

lim sup
n→∞

#
{
i : σi (S�

n ) ≤ N + ε
}

d�
n

≤ lim
n→∞

1

d�
n

d�
n∑

i=1

F(σi (S�
n ))

= 1

μ(�)(2π)d

∫

�×[−π,π ]d
F(|κ(x)|)dx

≤ μ(|κ| ≤ N + 2ε)

μ(�)(2π)d

�⇒ lim inf
n→∞

#
{
i : σi (S�

n ) > N + ε
}

d�
n

≥ μ(|κ| > N + 2ε)

μ(�)(2π)d
,

Notice that definitively in k,

#
{
i : σi (S�

n ) > N + ε
} ≤ #

{
i : σi (S�

n ) > σ jk (S�
n )
} ≤ jnk − 1,

so

ρ({S�
n }n) ≥ N + lim sup

n→∞
jnk − 1

d�
nk

≥ N + lim inf
n→∞

jnk − 1

d�
nk

≥ N + lim inf
k→∞

#
{
i : σi (S�

n ) > N + ε
}

d�
nk

≥ N + 2ε + μ(|κ| > N + 2ε)

μ(�)(2π)d
− 2ε

≥ ρmea(κ) − 2ε.
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Since we proved that ρmea(κ) + 2ε ≥ ρ({S�
n }n) ≥ ρmea(κ) − 2ε for every ε >

0, we conclude that ρ({S�
n }n) = ρmea(κ). Now the proof is finished, since if we

take {A�
n }n ∼�

GLT κ and {B�
n }n ∼�

GLT ξ , then we have by GLT� 4 that {A�
n }n −

{B�
n }n ∼�

GLT κ − ξ , so

da.c.s.
({A�

n }n, {B�
n }n

) = ρ({A�
n }n − {B�

n }n) = ρmea(κ − ξ) = dmea(κ, ξ).

��
Corollary 5.1 The space G�

d is a complete pseudometric space when equipped with
the acs distance.

Proof Suppose that {B�
n,m}n is a Cauchy sequence in the acsmetric and {B�

n,m}n ∼�
GLT

κm . By Theorem Theorem 5.2, also κm is a Cauchy sequence for the convergence in
measure. Both the spaces of matrix sequences and measurable functions are com-
plete spaces, so {B�

n,m}n
a.c.s.−−−→ {A�

n }n and κm → κ . GLT� 7 let us conclude that
{A�

n }n ∼�
GLT κ , so any Cauchy sequence in G�

d converges in G�
d . ��

Let us now show how the theory of reduced GLT is useful in the context of linear
PDE and their discretization.

6 Application to finite difference discretizations

Consider a linear partial differential equation

L (u)(x) = b(x) x ∈ �◦

equipped with some boundary conditions (Dirichlet, Neumann, etc.) when x ∈ ∂�.
Suppose that � ⊆ [0, 1]d is a closed Peano–Jordan measurable set and b is a function
defined over �.

We can try to discretize the equation by considering the d-dimensional grid �n

over [0, 1]d and by applying a Finite Difference method only on the points of the grid
inside �. Notice that the union of �n for every n is the set Q

d ∩ [0, 1]d , that is dense
in [0, 1]d , and consequently even the set

⋃

n∈N
(�n ∩ �◦) = Q

d ∩ [0, 1]d ∩ �◦

is dense in �◦. The grids are hence bound to describe well the interior of �, but the
same cannot be said about the border. In fact, it may happen that

Q
d ∩ δ� = ∅

and in this case no point from �n belongs to ∂�, hence the discretization does not
take in account the boundary conditions of the problem. When dealing with hyper-
tetrahedrons, one can build regular grids whose points on the border are dense through
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an affinity. Otherwise, we need to use non regular grids shaped accordingly to the
boundary, like the ones that arise from the Shortley–Weller Approximation for a
convection–diffusion–reaction linear PDE, that we analyse in the following section.
Another way to deal with FD discretization over general domain � that still uses
reduced GLT sequences can be found for example in [1].

6.1 Convection–diffusion–reaction PDE

Let us consider the problem

⎧
⎪⎨

⎪⎩
−

d∑

i=1

∂

∂xi

(
ai

∂u

∂xi

)
+

d∑

i=1

bi
∂u

∂xi
+ cu = f , in �◦,

u = 0, on ∂(�).

(2)

where ai , bi , c and f are given real-valued continuous functions defined on � and
ai ∈ C1(�). Moreover, suppose that� is a closed Peano–Jordanmeasurable set inside
[0, 1]d with positive measure. We set h = 1

n+1 , so that x j = j h for j = 0, . . . , n+ 1
are the points of the grid �n . It is also natural to assume that n + 1 = nc, where c is
a vector of rational constants. Let ei be the vectors of the canonical basis of R

d and
notice that x j + shi ei = x j+sei . Then, for j = 1, . . . , n, we try to approximate the
terms appearing in (2) according to the classical central FD discretizations on [0, 1]d
as follows:

∂

∂xi

(
ai

∂u

∂xi

)∣∣∣∣
x=x j

≈
ai

∂u

∂xi
(x j+ei /2) − ai

∂u

∂xi
(x j−ei /2)

hi

≈ ai (x j+ei /2)
u(x j+ei ) − u(x j )

h2
i

− ai (x j−ei /2)
u(x j ) − u(x j−ei )

h2
i

(3)

bi
∂u

∂xi

∣∣∣∣
x=x j

≈ bi (x j )
u(x j+ei ) − u(x j−ei )

2hi
, (4)

cu|x=x j = c(x j )u(x j ), (5)

for i = 1, . . . , d. This approach requires that all the segments connecting the points
x j with j = 1, . . . , n, to their neighbours x j±ei still lie inside the domain of the
problem. It always happens if the domain is [0, 1]d , but when we consider �, we need
to modify the scheme by adding some points. In particular, we define a new set of
neighbours for every point in �′

n := �◦ ∩ �n . Given x j ∈ �′
n and a direction ei , we

can set the numbers s+i ( j), s−i ( j) as

s±i ( j) = sup
{
t ∈ [0, 1]|x j ± rhi ei ∈ �◦ ∀ 0 ≤ r ≤ t

}
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Fig. 1 Points of the grid�n over two different domains�. The points in�′
n are black, and their neighbours

on the boundary are red (color figure online)

that is the size of the biggest connected line contained in the segment connecting x j to
x j+ei and containing x j . We can thus call x j + s±i ( j)hi ei = x j+s±i ( j)ei

the right/left

neighbour of x j along the direction ei . The values s±i ( j) depend on the point x j , but
when it is evident, we can omit the index and write simply s±i .

As we can see in Fig. 1, even if x j and x j+ei belong to �′
n , it doesn’t mean that

s+i ( j) = 1, because the segment connecting x j to x j+ei may not be contained entirely
in �◦ (this happens often, for example, when � is not convex).

Notice that every neighbour is a point of �, so when one of the neighbours is not
included in �′

n , it surely belongs the boundary ∂�, and in any case we have s±i > 0.
Adding these boundary points to�′

n , we obtain the discretization grid��
n over�, and

we can rewrite the formulas (3)–(5) for x j ∈ �′
n as

∂

∂xi

(
ai

∂u

∂xi

)∣∣∣∣
x=x j

≈
ai

∂u

∂xi
(x j+s+i ei /2

) − ai
∂u

∂xi
(x j−s−i ei /2

)

1
2 (s

+
i + s−i )hi

≈ ai (x j+s+i ei /2
)
u(x j+s+i ei

) − u(x j )

1
2 s+i (s+i + s−i )h2

i

− ai (x j−s−i ei /2
)
u(x j ) − u(x j−s−i ei

)

1
2 s−i (s+i + s−i )h2

i

(6)

bi
∂u

∂xi

∣∣∣∣
x=x j

≈ bi (x j )
u(x j+s+i ei

) − u(x j−s−i ei
)

(s+i + s−i )hi
, (7)

cu|x=x j = c(x j )u(x j ), (8)

called the difference scheme of Shortley and Weller [30]. Notice that when s±j = 1
for every j and sign ±, we fall again in the classical scheme of central differences.

123
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The evaluations u(x j ) of the solution at the grid points x j ∈ ��
n are approximated

by the values u j , where u j = 0 for x j ∈ ∂�, and the vector u = (u j )
T
x j∈�◦ is the

solution of the linear system

−
d∑

i=1

ai (x j+s+i ei /2
)

u j+s+i ei
− u j

1
2 s+i (s+i + s−i )h2

i

− ai (x j−s−i ei /2
)

u j − u j−s−i ei

1
2 s−i (s+i + s−i )h2

i

+
d∑

i=1

bi (x j )
u j+s+i ei

− u j−s−i ei

(s+i + s−i )hi
+ c(x j )u j = f (x j ), j : x j ∈ �◦. (9)

If we order the indices j in �′
n by lexicographic order, then we can write the system

in compact form as

A�◦
n u = f ,

where A�◦
n ∈ C

d�◦
n ×d�◦

n and f ∈ C
d�◦

n . The coefficients are

(A�◦
n ) j ,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑d
i=1

[
ai (x j+s+i ei /2

)

1
2 s+i (s+i +s−i )h2i

+
ai (x j−s−i ei /2

)

1
2 s−i (s+i +s−i )h2i

]
+ c(x j ), i = j ,

−ai (x j±ei /2)
1
2 (s+i +s−i )h2i

+ ±bi (x j )

(s+i +s−i )hi
, i = j ± ei , s±i = 1,

0, otherwise.

Notice that one can rewrite the nonzero off-diagonal coefficients as

(A�◦
n ) j , j±ei =

−ai (x j±ei /2)

1
2 (s

+
i + s−i )h2

i

+ ±bi (x j )

(s+i + s−i )hi

= 2

s+i + s−i

(
−ai (x j±ei /2)

h2
i

+ ±bi (x j )

2hi

)
.

6.2 Spectral analysis

As already noted, if all s±i are equal to 1, then the relations (6)–(8) reduces to the classic
finite difference scheme (3)–(5), so we may ask how many are the points x j ∈ �◦
such that one of the s±i is not equal to 1. By the definition of s±i , this is equivalent
to say that the segment (x j − hi ei , x j + hi ei ) does not lie completely inside �◦. In
the next result, we will prove that given any positive integer number k, the number of
points x j ∈ �′

n for which there exists a direction ei such that (x j − khi ei , x j + khi ei )

does not lie completely inside �◦ is negligible when compared with the number of
points in �′

n .

Lemma 6.1 Let

D(n, k) := {x j ∈ �′
n|∃i, t ∈ (−k, k) : x j + thi ei /∈ �◦}.
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724 G. Barbarino

For every k > 0, we have

#D(n, k) = o(N (n)).

Proof Notice that if x j ∈ D(n, k), then there exists a direction ei and a value t ∈
(−k, k) such that x j + thi ei ∈ ∂� and t �= 0. In particular, we infer that d(x j , ∂�) <

khi and if we denote h = maxi hi , then d(x j , ∂�) < kh.
Using notations and results of Corollary 3.2, we know that x j ∈ Kkh ∩ �′

n , but
kh → 0 as n goes to infinity, so

#D(n, k) ≤ d Kkh
n = o(d�◦

n ) �⇒ #D(n, k) = o(N (n)).

��
We just proved that, except for few relations, the system (9) mimics a classical FD

scheme. We can thus consider the extended problem

⎧
⎪⎨

⎪⎩
−

d∑

i=1

∂

∂xi

(
a′i

∂u

∂x j

)
+

d∑

i=1

b′i
∂u

∂xi
+ c′u = f ′, in (0, 1)d ,

u = 0, on ∂([0, 1]d).

(10)

where a′i , b′i , c′, f ′ are functions that extend ai , bi , c, f

a′i (x) =
{

ai (x), x ∈ �,

0, x /∈ �,
b′i (x) =

{
bi (x), x ∈ �,

0, x /∈ �,

c′(x) =
{

c(x), x ∈ �,

0, x /∈ �,
f ′(x) =

{
f (x), x ∈ �,

0, x /∈ �.

Notice that b′i , c′ are bounded functions since � is a compact set, and moreover a′i
are bounded and continuous a.e. functions. In [8], it is showed that these conditions
on the coefficients are enough to prove that the matrices An induced by the relations
(3)–(5) build a GLT sequence with symbol

{n−2An}n ∼GLT k(x, θ) =
d∑

i=1

ν2i a′i (x)(2− 2 cos(θi )),

where n + 1 = nν. This is also enough to let us conclude that {n−2A�◦
n }n is actually

a reduced GLT sequence.

Theorem 6.1

{n−2A�◦
n }n ∼�◦

GLT κ(x, θ) =
d∑

i=1

ν2i ai (x)(2− 2 cos(θi )).
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Proof Denote with B�◦
n and Z�◦

n the matrices

B�◦
n = R�◦(An), Z�◦

n = B�◦
n − A�◦

n ,

where the rows and columns are associated to the points x j ∈ �′
n . If x j ∈ �′

n\D(n, 2),
then x j is a point of the grid �n inside �◦ such that all its neighbours still belong to
�◦. In this case, (A�◦

n ) j ,i is the same as (B�◦
n ) j ,i and (An) j ,i , so

(A�◦
n ) j ,i =

⎧
⎪⎪⎨

⎪⎪⎩

c(x j ) +∑d
i=1

ai (x j+ei /2)+ai (x j−ei /2)

h2i
i = j ,

− ai (x j±ei /2)

h2i
± bi (x j )

2hi
i = j ± ei ,

0, otherwise,

hence the row corresponding to x j in Z�◦
n is zero. From Lemma 6.1, we conclude

that the number of non-zero rows in Z�◦
n is o(N (n)), so {Z�◦

n }n is a zero-distributed
sequence, since Corollary 3.1 assures us that

rk(Z�◦
n ) = o(N (n)) �⇒ rk(Z�◦

n ) = o(d�◦
n ).

From GLT� 3 and GLT� 4, we conclude that

{n−2Zn}n ∼�◦
GLT 0, {n−2B�◦

n }n = R�◦({n−2An}n) ∼�◦
GLT κ

�⇒ {n−2A�◦
n }n = {n−2Zn}n + {n−2B�◦

n }n ∼�◦
GLT κ.

��

A more involved analysis is needed to conclude that {n−2A�◦
n }n ∼λ κ . If A�◦

n were
Hermitian matrices, the result would follow from GLT� 1, but it is almost never
the case. Notice that κ is a real valued function, so we can decompose A�◦

n into its
Hermitian and skew-Hermitian part. Using GLT� 1, 4, we have

!(n−2A�◦
n ) = n−2A�◦

n + n−2(A�◦
n )∗

2
�⇒ {!(n−2A�◦

n )}n ∼�◦
GLT κ, {!(n−2A�◦

n )}n ∼λ κ.

On the other hand, the skew-Hermitian part is zero-distributed, but in order to write
the expression for its coefficients, we need to remind that the values s±i depend on the
point x j . To avoid confusion, in this case we will denote them by s±i ( j).

"(n−2A�◦
n ) = n−2A�◦

n − (n−2A�◦
n )∗

2
�⇒ {n−2"(A�◦

n )}n ∼�◦
GLT 0.
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Notice that the only non-zero entries ("(n−2A�◦
n )) j ,i are for i = j+ ei or i = j− ei .

In fact, if i = j + ei , then ("(n−2A�◦
n )) j ,i is

n−2

1+ s−i ( j)

(
−ai (x j+ei /2)

h2
i

+ bi (x j )

2hi

)
− n−2

s+i (i) + 1

(
−ai (xi−ei /2)

h2
i

+ −bi (xi )

2hi

)

and if i = j − ei , then ("(n−2A�◦
n )) j ,i is

n−2

s+i ( j) + 1

(
−ai (x j−ei /2)

h2
i

+ −bi (x j )

2hi

)
− n−2

1+ s−i (i)

(
−ai (xi+ei /2)

h2
i

+ bi (xi )

2hi

)

Notice that s±i ∈ (0, 1], so we can bound every entry by

∣∣∣("(n−2A�◦
n )) j ,i

∣∣∣ ≤ ν(2ν‖a‖∞ + n−1‖b‖∞), (11)

where ν = maxi νi . Moreover, suppose x j is a grid point in�′
n \D(n, 3). In particular,

we have s±i ( j) = s±i ( j + ei ) = s±i ( j − ei ) = 1 for every i . In this case, the row j is
easier to write

("(n−2A�◦
n )) j ,i =

⎧
⎪⎪⎨

⎪⎪⎩

n−2

hi

(
bi (x j )+bi (xi )

4

)
, i = j + ei ,

− n−2

hi

(
bi (x j )+bi (xi )

4

)
, i = j − ei ,

0, otherwise,

and we can bound the entries by

∣∣∣("(n−2A�◦
n )) j ,i

∣∣∣ ≤ 2νn−1‖b‖∞. (12)

Lemma 6.1 assures us that almost all points in �′
n respect these conditions. Now we

are ready to prove that {n−2A�◦
n }n ∼λ κ .

Theorem 6.2

{n−2A�◦
n }n ∼λ κ(x, θ) =

d∑

i=1

ν2i ai (x)(2− 2 cos(θi )).

Proof Using the decomposition into Hermitian and skew-Hermitian part, we write

n−2A�◦
n = !(n−2A�◦

n ) + "(n−2A�◦
n )

where !(n−2A�◦
n ) are Hermitian and {!(n−2A�◦

n )}n ∼λ κ . Notice that every row of
"(An) has at most 2d non-zero elements. Using Lemma 6.1 and the relations (11, 12)
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0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Fig. 2 On the left, the domain � is the union of a quarter of circle and a square in [0, 1]2. An example of
grid is reported. On the right, eigenvalues of n−2A�◦

n for n = 10, 20, 40, 80 compared with the increasing
rearrangement of the symbol κ(x, θ)

we can compute

‖"(n−2A�◦
n )‖22 =

∑

j

∑

i

|("(n−2A�◦
n )) j ,i |2

=
∑

j :x j∈�′
n\D(n,3)

∑

i

|("(n−2A�◦
n )) j ,i |2 +

∑

j :x j∈D(n,3)

∑

i

|("(n−2A�◦
n )) j ,i |2

≤
∑

j :x j∈�′
n\D(n,3)

∑

i

4ν2n−2‖b‖2∞ +
∑

j :x j∈D(n,3)

∑

i

ν2(2ν‖a‖∞ + n−1‖b‖∞)2

≤
∑

j :x j∈�′
n\D(n,3)

8dν2n−2‖b‖2∞ +
∑

j :x j∈D(n,3)

2dν2(2ν‖a‖∞ + n−1‖b‖∞)2

≤ 8dν2n−2‖b‖2∞d�◦
n + 2dν2(2ν‖a‖∞ + n−1‖b‖∞)2o(d�◦

n ) = o(d�◦
n ).

GLT� 2 let us conclude that

{n−2A�◦
n }n ∼λ κ.

��
For example, let � be the union of a quarter of circle with centre in zero and radius

1/2 and the square [1/2, 1]2. Consider the coefficients a1(x, y) = 1/(x2−2x+1+y2)
and a2(x, y) = 1/(x2 + y2 − 2y + 1), that are in C1(�), and b1(x, y) = |x − y|,
b2(x, y) = √

x + √
y, c(x, y) = 1/(2xy − x − y + 1) that are continuous on �.

Also, suppose that ˚ = 1, so that κ(x, θ) =∑2
i=1 ai (x)(2− 2 cos(θi )). When we take

the eigenvalues of n−2A�◦
n for n = 10, 20, 40, 80, we notice that their imaginary part

is never greater than 10−3, so we can plot their real parts, sorted in increasing order,
and compare them with the increasing rearrangement of the symbol κ(x, θ). We can
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Fig. 3 Superimposition of �n
onto the triangle T

(1, 0)

(0, 1)

(0, 0)

notice that up to a number of outliers whose rate goes to zero, the plots converge to
the symbol (Fig. 2).

Remark 6.1 The Shortley–Weller approximation just described is actually so general
it comprehends classical finite differences methods used on regular domains. For
example, in 2 dimensions, every triangular domain can be transformed by affine
maps into the isosceles right triangle T described by the vertices with coordinates
(0, 0), (0, 1), (1, 0) (Fig. 3). If we superimpose the regular grid �n onto the triangle,
we find that the union of the points on the border for every n is a dense set in δT .

Operating a classical second order method to discretize Problem 2 in 2 dimensions,
we fall again in the Shortley–Weller method, so we already know the symbol of the
resulting linear system.

7 Application to finite element discretizations

Consider a linear partial differential equation

L (u)(x) = f (x) x ∈ �◦

equipped with some boundary conditions (Dirichlet, Neumann, etc.) when x ∈ ∂�,
where � ⊆ [0, 1]d is a closed Peano–Jordan measurable set with positive measure
and f is a function defined over �.

A common way to discretize the problem is to use a finite elements method, that is
based on the choice of a basis for the functions on the domain �. The basis does not
necessarily depend on a grid of points inside �, but usually they do, so on a generic
� there’s again the problem to describe the boundary. For this reason, usually the
domains are polyhedral or with a regular enough boundary. When we deal with more
general shapes, we may need to map the domain into a regular one, or to modify the
grids of discretization, and a more involved analysis is required.
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Fig. 4 triangles and neighbours
associated to the point p

p
T1,p

T2,p

T3,p

T4,p

T6,p

T5,p

Let us consider the problem

⎧
⎪⎨

⎪⎩
−

2∑

i, j=1

∂

∂x j

(
ai, j

∂u

∂xi

)
+

2∑

i=1

bi
∂u

∂xi
+ cu = f , in �◦,

u = 0, on ∂�,

(13)

where � is a closed set inside [0, 1]2 with negligible boundary and positive measure.
Moreover ai, j , bi , c and f are given complex-valued continuous functions defined on
� and ai, j ∈ C1(�). If A = (ai, j )

2
i, j=1 is a matrix of functions and b = (b1, b2)T ,

then the equivalent weak form of (13) reads as

∫

�◦
(∇u)T A∇w + (∇u)T bw + cuw =

∫

�◦
f w, ∀w ∈ H1

0 (�). (14)

The space [0, 1]2 is divided into triangles as shown in Fig. 6, whose vertices are
the nodes of �n . The P1 finite elements method, studied in [3,25], uses base functions
supported on the grid triangles that fall inside �. We say that the adjacent nodes of
a point p ∈ �n are its neighbours, and we call N (p) the set composed of p and its
neighbours. Each point p is a vertex for at most 6 triangles, that we call Ti,p as shown
in Fig. 4, and we denote their union as Tp (notice that they depend also on n, but for
brevity we omit the index). The collection of all the triangles in the scheme associated
to the grid �n is

Tn = {Ti,p|p ∈ �n, i = 1, . . . , 6}.

For every point p ∈ �n such that Tp ⊆ [0, 1]2, we define a functionψp,n that is linear
on each triangle, whose value is 1 at p and 0 on every other point of �n .
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We can explicitly write ψp,n and its partial derivatives. If p = (x p, yp) and x̃ =
x − x p, ỹ = y − yp, then

ψp,n(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− x̃+ỹ
h , (x, y) ∈ T1,p,

1− x̃
h , (x, y) ∈ T2,p,

1+ ỹ
h , (x, y) ∈ T3,p,

1+ x̃+ỹ
h , (x, y) ∈ T4,p,

1+ x̃
h , (x, y) ∈ T5,p,

1− ỹ
h , (x, y) ∈ T6,p,

0, otherwise,

∂

∂x
ψp,n(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
h , (x, y) ∈ T1,p,

− 1
h , (x, y) ∈ T2,p,

0, (x, y) ∈ T3,p,
1
h , (x, y) ∈ T4,p,
1
h , (x, y) ∈ T5,p,

0, (x, y) ∈ T6,p,

0, otherwise,

∂

∂ y
ψp,n(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
h , (x, y) ∈ T1,p,

0, (x, y) ∈ T2,p,
1
h , (x, y) ∈ T3,p,
1
h , (x, y) ∈ T4,p,

0, (x, y) ∈ T5,p,

− 1
h , (x, y) ∈ T6,p,

0, otherwise,

where h = 1/(n + 1). P1 elements usually arises when the domain is not a square,
but it is polyhedral or regular enough. For example, as we can see in Fig. 5, the
subdivision scheme adopted has the property to describe also the boundary of the
triangle, in opposition to the classical tensor-product hat-functions considered in [20,
Section 7.4].

This does not happen when dealing with more complicated domains �, as shown
in Fig. 6. In fact we can see that, for example, on a curvilinear shape, the points of �n

are not enough to approximate the boundary ∂�. This is why Lemma 4.9 is important:
we can always modify a small number of points to better approximate the boundary,
without changing the relative symbol. Regular grids for non-polyhedral shapes and
FE methods can be found in the context of Fictitious Domains (also called Immersed
Boundary Methods) for fluid mechanics problems, see for example [12]. Often with
curvilinear shape, though, a non-regular polygonal or isoparametric mesh is adopted,
and in these cases Theorem 7.2 is a fundamental tool to have, but it needs to be
combined with the results of Sect. 7.3, or in [25], to reach the wanted spectral symbol.
Since different grids require dedicated analysis, they are worth of a separate study.
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(1, 0)

(0, 1)

(0, 0)
(1, 0)

(1, 1)

(0, 0)

Fig. 5 Superimposition of �n onto the triangle T and an L shape for the P1 finite elements method

Fig. 6 Example of a general
domain � and induced mesh

(1, 0)

(0, 0)

(0, 1)

When we work on a closed set� ⊆ [0, 1]2 withμ(∂�) = 0, we focus on the points
p such that Tp is contained in �, so we call

�n(�) := {p ∈ �n|Tp ⊆ �}.

We look for a function u that is a linear combination of the ψp,n such that (14) is
satisfied for every w = ψp,n . If we substitute u = ∑

p∈�n(�) u pψp,n and w = ψq,n

into (14), then we obtain the system

∑

p∈�n(�)

sq,pu p = fq ,

sq,p =
∫

�◦
(∇ψp,n)T A∇ψq,n + (∇ψp,n)T bψq,n + cψp,nψq,n,

fq =
∫

�◦
f ψq,n (15)

for every q ∈ �n(�). We call Sn the resulting matrix with entries sp,q for every
p, q ∈ �n(�), where the nodes are sorted in lexicographic order. We can notice that
p ∈ �n(�) �⇒ p ∈ �◦ ∩ �n , even if the converse is not always true, so

|�n(�)| ≤ d�◦
n = O(n2)
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where |�n(�)| is the size of the matrix Sn. It leads to solve the system

Snu = f .

Remark 7.1 A different boundary condition does not change the stiffness matrix, so
the analysis is the same if we impose, for example, u = g on TD and ∂u/∂n = h on
TN where ∂T = TD

∐
TN .

7.1 Case on the square

When � = [0, 1]2, we already know that, under suitable hypotheses on the regularity
of the coefficients, the sequence of stiffnessmatrices {Sn}n described in (15) is actually
a multilevel GLT sequence, for which we can compute GLT and spectral symbol. Here
we prove that the same holds when A, b, c are just L1 functions.

Theorem 7.1 We call B the 3× 2 matrix

B =
⎛

⎝
1 1
1 0
0 1

⎞

⎠

and we indicate with B1, B2, B3 its rows. Given L1 functions A : (0, 1)2 → C
2×2,

b : (0, 1)2 → C
2 and c : (0, 1)2 → C, we have that the sequence {Sn}n is a multilevel

GLT sequence with symbol k(x, θ), where

k(x, θ) = r0,0(x) + r0,1(x) exp(−iθ2) + r1,0(x) exp(−iθ1) + r−1,0(x) exp(iθ1)

+ r0,−1(x) exp(iθ2) + r1,−1(x) exp(−iθ1 + iθ2) + r−1,1(x) exp(iθ1 − iθ2),
(16)

r0,0 = B1A(B1)
T + B2A(B2)

T + B3A(B3)
T ,

r0,1 = − 1

2
B3A(B1)

T − 1

2
B1A(B3)

T , r0,−1 = −1

2
B3A(B1)

T − 1

2
B1A(B3)

T ,

r1,−1 = 1

2
B2A(B3)

T + 1

2
B3A(B2)

T , r−1,1 = 1

2
B2A(B3)

T + 1

2
B3A(B2)

T ,

r1,0 = − 1

2
B1A(B2)

T − 1

2
B2A(B1)

T , r−1,0 = −1

2
B1A(B2)

T − 1

2
B2A(B1)

T .

(17)

If A is also Hermitian for every x ∈ (0, 1)2, then the sequence {Sn}n has k(x, θ) as
spectral symbol.

Proof We split the matrix Sn into Pn + Zn, where

(Pn)p,q =
∫

(0,1)2
(∇ψp,n)T A∇ψq,n,
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(Zn)p,q =
∫

(0,1)2
(∇ψp,n)T bψq,n + cψp,nψq,n

and we prove that {Pn}n ∼GLT k(x, θ) and {Zn}n is zero distributed.
Notice that ψp is supported on Tp, so (Sn)p,q , (Pn)p,q , (Zn)p,q are different from

zero only when q is one of the 6 neighbours of p or p itself, that is q ∈ N (p).
Moreover, every ψp,n is nonnegative and less than 1, and each component of ∇ψp,n

is bounded by 1/h in absolute value.
Notice that the area of Tp is 3h2 for every p. Moreover, the functions b1, b2, c are

L1, so for every ε > 0 there exists a δ > 0 such that

μ(U ) ≤ δ �⇒
∫

U
|b1| + |b2| + |c| ≤ ε.

Notice that every triangle T(i) of the triangulationTn is inside Tp for at most 3 different
points p, that are its vertices, and if 3h2 ≤ δ, we get

‖Zn‖22 =
∑

p,q∈(0,1)2∩�n

|(Zn)p,q |2

=
∑

p,q∈(0,1)2∩�n

∣∣∣∣
∫

(0,1)2
(∇ψp,n)T bψq,n + cψp,nψq,n

∣∣∣∣
2

≤
∑

p∈(0,1)2∩�n

∑

q∈N (p)

[∫

Tp

|(∇ψp,n)T b|ψq,n + |c|ψp,nψq,n

]2

≤
∑

p∈(0,1)2∩�n

∑

q∈N (p)

[∫

Tp

|b1| + |b2|
h

+ |c|
]2

≤ 1

h2

∑

p∈(0,1)2∩�n

∑

q∈N (p)

[∫

Tp

|b1| + |b2| + |c|
]2

≤ 7

h2

∑

p∈(0,1)2∩�n

[∫

Tp

|b1| + |b2| + |c|
]

ε

≤ 7

h2 ε
∑

T(i)∈Tn

3

[∫

T(i)

|b1| + |b2| + |c|
]

≤ 21
ε

h2 (‖b1‖1 + ‖b2‖1 + ‖c‖1). (18)

Sincewe can take ε arbitrarily small as n tends to infinity,we infer that n−1‖Zn‖2 → 0,
so we can use Z2 and conclude that {Zn}n is zero-distributed.

Let us analyse now the matrix Pn.
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734 G. Barbarino

The elements of Pn on the row associated to p = x j are different from zero only
when q ∈ N (p). Call tp,a,b = (Pn)p,p+ae1+be2 , and a computation shows that

h2tp,0,0 =
∫

T1,p∪T4,p

B1A(B1)
T +

∫

T2,p∪T5,p

B2A(B2)
T +

∫

T3,p∪T6,p

B3A(B3)
T ,

h2tp,0,1 = −
∫

T6,p

B3A(B1)
T −

∫

T1,p

B1A(B3)
T ,

h2tp,1,0 = −
∫

T1,p

B1A(B2)
T −

∫

T2,p

B2A(B1)
T ,

h2tp,1,−1 =
∫

T2,p

B2A(B3)
T +

∫

T3,p

B3A(B2)
T ,

h2tp,0,−1 = −
∫

T3,p

B3A(B1)
T −

∫

T4,p

B1A(B3)
T ,

h2tp,−1,0 = −
∫

T4,p

B1A(B2)
T −

∫

T5,p

B2A(B1)
T ,

h2tp,−1,1 =
∫

T5,p

B2A(B3)
T +

∫

T6,p

B3A(B2)
T ,

and tp,a,b = 0 for every other a, b.
Assume that A is a continuous function, so that there exists a modulus of continuity

ωA defined as

ωA(δ) = max
i, j

sup
p,q:|p−q|≤δ

∣∣(A(p) − A(q))i, j
∣∣

and such that limδ→0 ωA(δ) = 0. Let us define a 2-level GLT sequence {Gn}n as

Gn = Dn(r0,0)Tn(1) + Dn(r0,1)Tn(exp(−iθ2)) + Dn(r1,0)Tn(exp(−iθ1))

+ Dn(r−1,0)Tn(exp(iθ1)) + Dn(r0,−1)Tn(exp(iθ2))

+ Dn(r1,−1)Tn(exp(−iθ1 + iθ2)) + Dn(r−1,1)Tn(exp(iθ1 − iθ2)),

with symbol k(x, θ). The elements of Pn − Gn on the row associated to p = x j
are different from zero only when q ∈ N (p). If we call z p,a,b = (Pn)p,p+e1+be2 −
(Qn)p,p+e1+be2 , then we can bound the values of |z p,0,0| with 6ωA(h

√
2) and |z p,0,1|

with 2ωA(h
√
2) as follows.

|z p,0,0| ≤
∣∣∣∣∣B1A(p)(B1)

T − 1

h2

∫

T1,p∪T4,p

B1A(B1)
T

∣∣∣∣∣

+
∣∣∣∣∣B2A(p)(B2)

T − 1

h2

∫

T2,p∪T5,p

B2A(B2)
T

∣∣∣∣∣
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+
∣∣∣∣∣B3A(p)(B3)

T − 1

h2

∫

T3,p∪T6,p

B3A(B3)
T

∣∣∣∣∣

=
∣∣∣∣∣
1

h2

∫

T1,p∪T4,p

B1(A(p) − A(x))(B1)
T dx

∣∣∣∣∣

+
∣∣∣∣∣
1

h2

∫

T2,p∪T5,p

B2(A(p) − A(x))(B2)
T dx

∣∣∣∣∣

+
∣∣∣∣∣
1

h2

∫

T3,p∪T6,p

B3(A(p) − A(x))(B3)
T dx

∣∣∣∣∣

≤ 4ωA(h
√
2) + ωA(h

√
2) + ωA(h

√
2) = 6ωA(h

√
2),

|z p,0,1| ≤
∣∣∣∣∣
1

2
B3A(p)(B1)

T − 1

h2

∫

T6,p

B3A(B1)
T

∣∣∣∣∣

+
∣∣∣∣∣
1

2
B1A(p)(B3)

T − 1

h2

∫

T1,p

B1A(B3)
T

∣∣∣∣∣

=
∣∣∣∣∣
1

h2

∫

T6,p

B3(A(p) − A(x))(B1)
T dx

∣∣∣∣∣

+
∣∣∣∣∣
1

h2

∫

T1,p

B1(A(p) − A(x))(B3)
T dx

∣∣∣∣∣

≤ωA(h
√
2) + ωA(h

√
2) = 2ωA(h

√
2),

Analogous computations show that |z p,1,0|, |z p,0,−1|, |z p,−1,0| are also bounded by
2ωA(h

√
2). Moreover, we can bound |z p,1,−1| with ωA(h

√
2) as follows.

|z p,1,−1| ≤
∣∣∣∣∣
1

2
B2A(p)(B3)

T − 1

h2

∫

T2,p

B2A(B3)
T

∣∣∣∣∣

+
∣∣∣∣∣
1

2
B3A(p)(B2)

T − 1

h2

∫

T3,p

B3A(B2)
T

∣∣∣∣∣

=
∣∣∣∣∣
1

h2

∫

T2,p

B2(A(p) − A(x))(B3)
T dx

∣∣∣∣∣

+
∣∣∣∣∣
1

h2

∫

T3,p

B3(A(p) − A(x))(B2)
T dx

∣∣∣∣∣

≤ 1

2
ωA(h

√
2) + 1

2
ωA(h

√
2) = ωA(h

√
2),

A similar argument shows that |z p,−1,1| is also bounded by ωA(h
√
2). Since every

row of Pn − Gn has at most 7 non-zero elements and they are all bounded in absolute
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736 G. Barbarino

value by 6ωA(h
√
2), then

‖Pn − Gn‖2 ≤
√
7n2 · 36ωA(h

√
2)2 ≤ 18nωA(h

√
2)2 = o(n)

and using again Z2, we obtain that Pn−Gn is zero-distributed. Since {Gn}n has GLT
symbol k(x, θ), we conclude that

{Sn}n = {Gn}n + {Pn − Gn}n + {Zn}n ∼GLT k(x, θ).

If we now assume that A is an L1 function, then we can find a sequence Am of
continuous functions such that ‖A − Am‖1 ≤ 2−m , where

‖C‖1 =
∑

i, j

‖ci, j‖1 =
∫

(0,1)2
B1|C |(B1)

T .

If we define ra,b,m like in (17) with Am instead of A, and km(x, θ) like in (16) with
ra,b,m instead of ra,b, then we get km → k in L1. Moreover, if {S(m)

n }n is defined
as above, but with Am instead of A, then from the previous analysis, we know that
{S(m)

n }n ∼GLT km . The difference

{S(m)
n }n − {Sn}n = {P(m)

n }n − {Pn}n + {Z (m)
n }n − {Zn}n

presents two zero-distributed sequences {Z (m)
n }n and {Zn}n , so we need to analyse

the other two sequences. Notice that for every measurable set U ⊆ [0, 1]2 and every
indices i, j we know that

∣∣∣∣
∫

U
Bi A(B j )

T −
∫

U
Bi Am(B j )

T
∣∣∣∣ ≤ B1

[∫

U
|A − Am |

]
(B1)

T ,

but A − Am is also L1, so given ε there exists a δ such that μ(U ) < δ implies that

B1

∫

U
|A − Am | (B1)

T ≤ ε.

If μ(Tp) = 3h2 ≤ δ, then we can bound the 1 Schatten norm of P(m)
n − Pn by the

sum of the absolute values of their elements, so

‖P(m)
n − Pn‖1 ≤

∑

p,q∈(0,1)2∩�n

|(P(m)
n − Pn)p,q |

≤
∑

p∈(0,1)2∩�n

∑

q∈N (p)

|(P(m)
n − Pn)p,q |

≤ 1

h2

∑

p∈(0,1)2∩�n

∑

q∈N (p)

6B1

∫

Tp

|A − Am | (B1)
T
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≤ 42

h2

∑

p∈(0,1)2∩�n

B1

∫

Tp

|A − Am | (B1)
T

≤ 3
42

h2 ‖A − Am‖1.
Using ACS 4, we obtain that {P(m)

n }n
a.c.s.−−−→ {Pn}n and {S(m)

n }n
a.c.s.−−−→ {Sn}n . We

conclude that {Sn}n ∼GLT k.

When A is Hermitian, we can prove that Pn is Hermitian. In fact

(Pn)p,q =
∫

(0,1)2
(∇ψp,n)T A∇ψq,n =

∫

(0,1)2
(∇ψp,n)T A∇ψq,n

=
∫

(0,1)2
(∇ψq,n)T A∇ψp,n = (Pn)q,p.

Since {Sn}n = {Pn}n + {Zn}n and from (18), we know that ‖Z̃n‖2 = o(n), we can
apply GLT 2 and conclude that {Sn}n ∼λ k. ��

7.2 Problem on sub-domains

Let us now consider a closed Peano–Jordan measurable set � ⊆ [0, 1]2 with positive
measure. Consider the problem (14) on�, where now A, b, c are L1 functions defined
on �. When we apply a P1 discretization. The resulting matrices form a sequence
equivalent to a reducedGLT sequence that descends from the square case. In particular,
we can prove the following theorem.

Theorem 7.2 Given a closed Peano–Jordan measurable set � ⊆ [0, 1]2 with positive
measure. Let Ã, b̃ and c̃ be extensions of A, b and c to (0, 1)2, obtained by setting
ãi, j (z) = b̃ j (z) = c̃(z) = 0 outside � for every i, j . Moreover, let k̃ be the symbol
described in Theorem 7.1 referred to the problem with coefficients Ã, b̃, c̃, and denote
k = k̃|�◦ . If S�

n is the matrix resulting from the P1 discretization using the grid �n(�),
then

{S�
n }n ∼σ k

and if A is Hermitian for every x ∈ �, then k is also a spectral symbol for {S�
n }n.

Proof Let Sn be the matrix resulting from the P1 discretization of the problem with
coefficients Ã, b̃, c̃ on the square [0, 1]2 using the grid �n . We want to show that
R�n(�)(Sn) = S�

n , that is, for every pair of points (p, q) in�n(�), we prove (Sn)p,q =
(S�

n )p,q . From (15), the equations for the two quantities are

(Sn)p,q =
∫

(0,1)2
(∇ψp,n)T Ã∇ψq,n + (∇ψp,n)T b̃ψq,n + c̃ψp,nψq,n,

(S�
n )p,q =

∫

�◦
(∇ψp,n)T A∇ψq,n + (∇ψp,n)T bψq,n + cψp,nψq,n,
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738 G. Barbarino

but p ∈ �n(�) so T ◦
p ⊆ �◦ and therefore the two quantities are the same since A, b

and c coincide with Ã, b̃ and c̃ on�. In this case, it may happen that�n(�) � �n∩�◦
since � may not be convex, but the two sets are actually almost the same. In fact,

En := (�n ∩ �◦) \ �n(�) = {p ∈ �n ∩ �◦|Tp �⊆ �},

so any point p ∈ En is at distance at most hn = 1/(n + 1) from the boundary ∂�,
and using Corollary 3.2, we conclude

En ⊆ {p ∈ �n|d(p, ∂�) ≤ hn} �⇒ |En| ≤ s
Khn
n = o(N (n)).

As a consequence,

s�◦��n(�)
n = |{p ∈ �n ∩ �◦|p /∈ �n(�)}| = |En| = o(N (n))

and Lemma 4.9 assures us that it is sufficient to prove the thesis for R�◦(Sn).
Using the definition of reduced GLT, we can affirm that

{R�◦(Sn)}n ∼�◦
GLT k �⇒ {R�◦(Sn)}n ∼σ k.

If we now assume that A is an Hermitianmatrix for every x ∈ �, then automatically
also Ã is Hermitian for every x , since it is equal to A or it is the zero matrix. From
the proof of Theorem 7.1, we know that Sn = Pn + Zn, where Pn is Hermitian and
‖Zn‖2 = o(n). If we call P�◦

n = R�◦(Pn) and Z�◦
n = R�◦(Zn) then we find that

R�◦(Sn) = P�◦
n + Z�◦

n , P�◦
n is Hermitian and for Lemmas 4.3, 4.2 and 3.1,

‖Z�◦
n ‖2 = ‖R�◦(Zn)‖2 ≤ ‖Zn‖2 = o(n) �⇒ ‖Z�◦

n ‖2 = o

(√
s�

n

)
.

Notice that {P�◦
n }k ∼λ k, so we can use GLT� 2, and conclude that

{R�◦(Sn)}k ∼λ k.

��
Notice that k(x, θ) has the same form described in (16), (17), where A is now defined
only on �.

7.3 P1 onmapped grids

When the domain � is compact, but presents an irregular boundary, or when we want
to focus the discretization to particular points in the domain, the adopted grids are
usually adapted to the problem geometry. We can find examples of such grids and
relative spectral analyses already in [20] for � = [0, 1]d and in [3] for more general
domains. In both cases, the grids taken into account were produced starting from a
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A systematic approach to reduced GLT 739

ϕ

φ

Fig. 7 Compact irregular domain � and relative grid mapped into a regular grid in D ⊆ [0, 1]d through a
C1 map ϕ and its inverse φ

regular grid and by applying an invertible function φ. For clarity sake, we start from a
smooth (C1) embedding ϕ that maps� into [0, 1]d , and if D = ϕ(�), then we call the
inverse φ := ϕ−1 : D → �. Notice that ϕ is in particular a closed locally Lipschitz
map, so D is a compact set in [0, 1]d and it is still Peano–Jordan measurable. We can
thus induce a discretization grid on � given by φ(D ∩ �n) for every n (Fig. 7).

We now discretize the diffusion problem (13) using modified P1 finite elements on
a compact domain � ⊆ R

2 with positive measure, μ(∂�) = 0 and grids described by
the function φ.

⎧
⎪⎨

⎪⎩
−

2∑

i, j=1

∂

∂x j

(
ai, j

∂u

∂xi

)
+

2∑

i=1

bi
∂u

∂xi
+ cu = f , in �◦,

u = 0, on ∂�,

(13)

where ai, j , bi , c and f are given complex-valued L1 functions defined on �.
The basis function we consider on � are produced from the classical P1 elements

by composition with the map ϕ. In fact, if p ∈ �n(D) ⊆ �n ∩ D and p′ = φ(p) we
can define the basis function associated to p′ as

ξp′,n := ψp,n ◦ ϕ.

Note that the support of ξp′,n is Tp′ := φ(Tp) and Tp ⊆ D ⇐⇒ Tp′ ⊆ �. In the
classical P1 setting, we consider a basis function for each point in �(D), so here we
will produce a function ξp′,n only for the points p′ ∈ φ(�(D)), and we call the set of
such points

�(�) := φ(�(D)) = φ
({p ∈ �n|Tp ⊆ D}) = {p′ ∈ φ(�n ∩ D)|Tp′ ⊆ �}.

The weak form of the problem (14) leads us to a linear system similar to the ones
already considered. In fact, if we substitute u = ∑

p′∈�n(�) u p′ξp′,n and w = ξq ′,n
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into problem (14), then we obtain the relation

∑

p′∈�n(�)

s�
q ′,p′u p′ = fq ′ ,

s�
q ′,p′ =

∫

�◦
(∇ξp′,n)T A∇ξq ′,n + (∇ξp′,n)T bξq ′,n + cξp′,nξq ′,n,

fq ′ =
∫

�◦
f ξq ′,n (19)

for every q ′ in �n(�). Sorting the relations in lexicographical order with respect to
the appearance of ϕ(q ′) in the grid �n , we obtain a linear system S�

n un = fn of size
|�n(�)| = |�n(D)|.

The analysis of this particular instance descends from the fact that we can find
opportune coefficients for the problem (14) on the domain D so that the linear system
arising from the P1 elements applied to the regular grid �n(D) coincides with S�

n .
Consider in fact the problem

⎧
⎪⎨

⎪⎩
−

2∑

i, j=1

∂

∂x j

(
ãi, j

∂u

∂xi

)
+

2∑

i=1

b̃i
∂u

∂xi
+ c̃u = f , in D◦,

u = 0, on ∂ D,

(20)

and its weak form

∫

D◦
(∇u)T Ã∇w + (∇u)T b̃w + uc̃w =

∫

D◦
f w, ∀w ∈ H1

0 (D). (21)

where

Ã(x) := J−1
φ (x)A(φ(x))J−T

φ (x)| det Jφ(x)|,
b̃(x) := J−1

φ (x)b(φ(x))| det Jφ(x)|, c̃(x) := c(φ(x))| det Jφ(x)|

are L1 functions on D. Using the P1 elements we obtain the relations

∑

p∈�n(D)

s D
q,pũ p = f̃q ,

s D
q,p =

∫

D◦
(∇ψp,n)T Ã∇ψq,n + (∇ψp,n)T b̃ψq,n + ψp,nc̃ψq,n,

f̃q =
∫

D◦
f ψq,n (22)

123



A systematic approach to reduced GLT 741

for every q ∈ �n(D), that give rise to the system SD
n ũ = f̃n of size |�n(D)|. Notice

that if p′, q ′ ∈ �n(�) such that p′ = φ(p) and q ′ = φ(q), then

∫

�◦
(∇ξp′,n)T A∇ξq ′,n

=
∫

D◦
(∇xψp(x))T Jφ(x)−1A(φ(x))Jφ(x)−T∇xψq(x)| det Jφ(x)|dx

=
∫

D◦
(∇xψp(x))T Ã(x)∇xψq(x)dx,

∫

�◦
(∇ξp′,n)T bξq ′,n

=
∫

D◦
(∇xψp(x))T Jφ(x)−1b(φ(x))ψq(x)| det Jφ(x)|dx

=
∫

D◦
(∇xψp(x))T b̃(x)ψq(x)dx,

∫

�◦
ξp′,ncξq ′,n

=
∫

D◦
ψp(x)c(φ(x))ψq(x)| det Jφ(x)|dx

=
∫

D◦
ψp(x)̃c(x)ψq(x)dx,

so comparing Eqs. 22 and 19 we conclude that s D
p,q = s�

p′,q ′ for every p, q ∈ �(D)

and therefore S�
n = SD

n . The symbols of the sequence can be easily computed from
Theorem 7.2.

8 Future work

We have introduced and thoroughly analysed the space of reduced GLT, showing how
they can prove useful in applications. Reduced GLT sequences have already been
applied on discretizations of fractional PDEs on generic domains, and they can also
be applied straightforwardly on graph structures, as showed in [1]. More applications
are straightforward to analyse by generalizing the ones of classical GLT, like fractional
PDE, multigrid techniques, isogeometric analysis, preconditioned methods and many
others.

Following the lead of the classical GLT sequences, the next step is to generalize
the space of reduced GLT to the case of block sequences, studied in [9,10], in order
to tackle also systems of PDEs and high-order approximations on generic domains.
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