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Abstract
A technique for coupling an intrusive and non-intrusive uncertainty quantification
method is proposed. The intrusive approach uses a combination of polynomial chaos
and stochastic Galerkin projection. The non-intrusive method uses numerical inte-
gration by combining quadrature rules and the probability density functions of the
prescribed uncertainties. A stable coupling procedure between the two methods at
an interface is constructed. The efficiency of the hybrid method is exemplified using
hyperbolic systems of equations, and verified by numerical experiments.

Keywords Uncertainty quantification · Numerical integration · Stochastic Galerkin ·
Polynomial chaos · Projection operator · Coupling

Mathematics Subject Classification 65M06 · 35R60 · 35L04 · 65D30

1 Introduction

Natural interfaces exist in many situations, for example between the ocean and atmo-
sphere and when different materials are combined. In addition, the use of artificial
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interfaces is standard practice in many fields of computational mechanics and com-
putational physics. Practical examples include the introduction of mesh-refinement
or coarsening to increase accuracy and/or efficiency. By also considering uncertain
external data in the boundary conditions and forcing functions, the question arises:
can we use different uncertainty quantification (UQ) methods in different regions of
the computational domain separated by interfaces?

In [18] it was shown that intrusive polynomial chaos with stochastic Galerkin pro-
jection (PC) is more efficient than non-intrusive numerical integration (NI) for slowly
varying (in stochastic space) stochastic problems, while NI ismore efficient for rapidly
varying problems. This result suggests that a combination of the two techniques could
be efficient. These methods must of course be coupled in an accurate and stable way,
and this is the topic of this paper.

We aim for a method which couples an intrusive and non-intrusive UQ method.
The intrusive method combines a polynomial chaos basis with stochastic Galerkin
projection [4,10,19]. The non-intrusive method uses the combination of a quadrature
rule and the probability density functions of the uncertainties prescribed [1,3,15].
The proposed interface coupling for the different UQ methods is proven to be stable,
by extending the work in [5], for non-conforming spatial finite difference methods
[2,16,17]. Our intention is to exploit the different properties of intrusive and non-
intrusive UQ methods and obtain a higher efficiency by combining them.

The rest of the paper proceeds as follows. The hyperbolic system of equations
is introduced in Sect. 2. Section 3 presents the intrusive method and Sect. 4, the
non-intrusive one. Section 5 describes the interface coupling treatment. A stable and
accurate finite difference formulation is presented in Sect. 6. The theoretical results
are confirmed using numerical experiments in Sect. 7. Finally, conclusions are drawn
in Sect. 8.

2 The continuous problem

To present the technique it suffices to consider a hyperbolic system of equations posed
on two adjacent spatial domains (ΩL and ΩR)

ut + Aux = 0, x ∈ΩL , t > 0, (2.1a)

LLu = gL(x, t, ξ), x ∈∂ΩL\Γ , t > 0, (2.1b)

u = fL(x, ξ), x ∈ΩL , t = 0, (2.1c)

vt + Avx = 0, x ∈ΩR, t > 0, (2.1d)

LRv = gR(x, t, ξ), x ∈∂ΩR\Γ , t > 0, (2.1e)

v = fR(x, ξ), x ∈ΩR, t = 0, (2.1f)

u = v, x ∈Γ , t > 0. (2.1g)

The solutions on the left and right domains are denoted by u = [u1(x, t, ξ), . . . ,

uM (x, t, ξ)] and v = [v1(x, t, ξ), . . . , vM (x, t, ξ)], respectively. Moreover, the ran-
dom variable ξ models the uncertainty. The boundary operators defined on the
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An efficient hybrid method… 609

boundaries ∂ΩL and ∂ΩR are denoted LL and LR , while fL(x, ξ), fR(x, ξ) and
gL(x, t, ξ), gR(x, t, ξ) are the stochastic initial and boundary data, respectively. The
data is assumed to be fully compatible at the boundaries and interface. Further, we let
ΩL , ΩR and Γ represent the left and right domains, and interface boundary, respec-
tively, see Fig. 1. Further, we consider the M × M matrix A to be

A =
[
�+

A 0
0 �−

A

]
, (2.2)

where �+
A and �−

A are positive and negative definite diagonal matrices (In the case
where the matrix A is not diagonal, we assume that it can be symmetrized and diago-
nalized).

2.1 Well-posedness

Applying the energy method to (2.1) (that is multiply (2.1a) and (2.1d) by u and
v, respectively, and integrate over the particular spatial domain and adding them
together), considering only the terms at the interface (x = 0) and using the inter-
face condition u

∣∣
x=0 = v

∣∣
x=0, yields

d

dt

(
‖u‖2 + ‖v‖2

)
= 0, (2.3)

where ‖u‖2 = ∫
ΩL

uT u dx and ‖v‖2 = ∫
ΩR

vT v dx . We can conclude that the energy
in (2.3) is preserved and that proper outer boundary conditions leads towell-posedness.

3 Polynomial chaos

In the polynomial chaos method, the solution is expanded in a polynomial basis,

Fig. 1 An illustration of the
computational domains, where u
and v are defined in ΩL and ΩR
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610 M. Wahlsten et al.

u(t, x, ξ) =
∞∑
i=0

ui (t, x)ψi (ξ). (3.1)

In (3.1), uk denotes a vector of expansion coefficients.We choose the polynomial basis
functions {ψ(ξ)}∞i=0 to be orthonormal with respect to the inner product

〈 f (ξ), g(ξ)〉 =
∫

Ωξ

f (ξ)g(ξ) dP(ξ). (3.2)

In (3.2), P(ξ) is the probability measure of ξ defined on the stochastic domain Ωξ .
The coefficients uk in (3.1) are given by the projection

uk(x, t) = 〈u(x, t, ξ), ψk(ξ)〉. (3.3)

The mean can be expressed in terms of the coefficients as

E[u] =
∫

Ωξ

u dP(ξ) = u0, (3.4)

since E[ψ0] = 1 and E[ψk] = 0,∀k > 0. Moreover, the variance is given by

Var [u] =
∫

Ωξ

[u − E[u]]2 dP(ξ) =
∞∑
k=1

u2k . (3.5)

Further details of the PC framework can be found in [14].

3.1 Stochastic Galerkin projection

In order to apply the stochastic Galerkin projection method in the left domain ΩL , we
start by truncating the series (3.1) as

u =
MPC∑
k=0

uk(x, t)ψk(ξ), (3.6)
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where a slight abuse of notation has been used. Inserting (3.6) into the problem in the
left domain ΩL in (2.1) yields

M∑
k=0

(uk)tψk +
M∑
k=0

A(uk)xψk = 0, x ∈ ΩL , t > 0,

M∑
k=0

Lukψk = g(x, t, ξ), x ∈ ∂ΩL\Γ , t > 0,

M∑
k=0

ukψk = f (x, ξ), x ∈ ΩL , t = 0,

M∑
k=0

ukψk = v, x ∈ Γ , t > 0,

(3.7)

where v is the solution from the right domain (ΩR). By multiplying (3.7) with ψl , for
l = 0, 1, . . . , MPC and integrating over the stochastic domain Ωξ , we obtain

(ul)t + A(ul)x = 0, x ∈ ΩL , t > 0,
Lul = 〈g(x, t, ξ), ψl〉, x ∈ ∂ΩL\Γ t > 0,
ul = 〈 f (x, ξ), ψl〉, x ∈ ΩL , t = 0,
ul = 〈v,ψl〉, x ∈ Γ , t > 0,

(3.8)

for l = 0, . . . , MPC . The deterministic coefficients ul(x, t) and all relevant statistics
can now be computed by solving (3.8).

4 Numerical integration

Numerical integration in one dimension is formulated as

∫ b

a
f (ξ)ρ(ξ) dξ ≈

MN I∑
m=1

f (ξm)wm, (4.1)

where f is the function being integrated and ρ is the density function. The integer
MN I denotes the number of quadrature points ξm , and wm denotes the quadrature
weights.

Extending (4.1) to higher dimensions can be done in a straightforward manner as

∫
Ωξ

f (ξ̃ )ρ(ξ̃ ) d ξ̃ ≈
M1∑

m1=1

· · ·
Mp∑

mp=1

f (ξm1
1 , . . . , ξ

mp
p )wm1 · · ·wmp , (4.2)

where Ωξ is the p-dimensional domain and ξ̃ = (ξ1, . . . , ξp). The quadrature points
and weights for dimension i are denoted ξmi and wmi respectively. Adaptive sparse
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612 M. Wahlsten et al.

grid techniques for high-dimensional problems [1] can be used to improve efficiency
and ease the “curse of dimensionality” of the quadrature rule. In this work however,
the 4th-order accurate Simpson’s rule [3] is used for all computations.

Remark 4.1 When computing statistical quantities using NI, the functions f and ρ are
replaced by a functional (depending on which statistical quantity is beting computed)
of the numerical solutions u(or v) and the probability density function of ξ . The
quadrature (4.1) is then evaluated using the computed solution u (or v) for different
values of ξ , for all time and space coordinates.

Remark 4.2 The extension to higher dimensions (4.2) in the stochastic setting requires
the random variables to be independent.

5 Interface treatment

To couple the problem (2.1) in the stochastic dimension at an interface in space, a
stable interface treatment is required. The specific interface treatment we consider
applies and extends the work done in [5]. In this technique, an intermediate so-called
glue grid Gh (with a corresponding glue space G ), together with a set of projection
operators is introduced. The solutions at the interface are projected onto the glue grid
where their difference is penalized, leading to a provably stable method.

The glue space consists of piecewise polynomials of a sufficiently high degree. We
choose Legendre polynomials since they form an orthogonal basis with respect to the
uniform density function on the interval (−1, 1). Further, we let F̃l2g and F̃g2l be
the projection operators between the left grid l and the glue grid G and vice verse,
respectively. The operators projecting values on the right grid to the glue grid and back
are denoted F̃r2g and F̃g2r . The projection operators are constructed to satisfy the
following inner product preserving relation [5,11]

F̃ T
g2l PξL = F̃l2gM, F̃ T

g2r PξR = F̃r2gM, (5.1)

where M = ∫
γ

ψ(ξ)ψT (ξ) dξ is a symmetric positive semi-definite matrix and the
ψ’s are basis functions of the glue grid. The matrices PξL and PξR represent suitable
quadrature rules on the left and right side of the interface. Further, the projection
operators are required to satisfy a set of accuracy conditions, namely that the glue grid
can represent qth order polynomials exactly. This means that a polynomial (in ξ ) of
order q projected onto a grid is mapped exactly onto the glue grid by F̃l2g (or F̃r2g).
The order q is chosen based on the order of accuracy of the uncertainty quantification
methods used on the left and right domain, see below for details.

Remark 5.1 Note that we do not require F̃l2gF̃g2l = I or F̃r2gF̃g2r = I . This means
that a projection from the left (or right) to the glue grid and back is not required to be
exact.

The reader is referred to [5] for a detailed description of the projection operators. Next,
we briefly describe the cases that we will consider.
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An efficient hybrid method… 613

– Coupling: NI to NI
The glue grid and projection operators are analogous to the ones in [5]. A brief
presentation of these operators and the corresponding glue grid technique can be
found in Appendix A.1.

– Coupling: PC to PC
When coupling PC to PC, the glue grid consists of a polynomial basis of the same
degree as the maximum degree on the left and right domain (in order to satisfy the
accuracy conditions). The projection operators are constructed in a straightforward
manner, projecting a set of polynomials to another set (see Appendix A.2 for a
simple example).

– Coupling: NI to PC
The coupling between NI and PC is done in a similar way as in the coupling
between NI and NI. The number of polynomial basis functions per subinterval
in the glue grid is chosen to be same as the number of basis functions of the PC
grid to maintain the accuracy conditions in the coupling. For more details, see
Appendix 3.

6 The semi-discrete formulation

The numerical approximation of (2.1) based on summation-by-parts (SBP) operators
with simultaneous approximation terms (SAT) [2,8,12,17] is

Ut + DLALU = (E0)L(
̃0)L(LLU − (e0)L ⊗ g−1)

+(EN )L(
̃N )LFg2l(Fl2gU − Fr2gV )

+(EN )L(
̃I )L(Fg2lFl2gU −U )

Vt + DRARV = z(EN )R(
̃N )R(LRV − (eN )R ⊗ g1)

+(E0)R(
̃0)RFg2r (Fr2gV − Fl2gU )

+(E0)R(
̃I )R(Fg2rFr2gV − V )

U (0) = fL
V (0) = fR (6.1)

where

(E0)L,R = (P−1
L,R(E0)L,R ⊗ IξL,R ⊗ IM ),

(EN )L,R = (P−1
L,R(EN )L,R ⊗ IξL,R ⊗ IM ),

DL,R = (DL,R ⊗ IξL,R ⊗ IM ),

AL,R = (IL,R ⊗ IξL,R ⊗ A),

LL,R = (IL,R ⊗ IξL,R ⊗ LL,R),

Fg2l = (IL ⊗ F̃g2l), Fl2g = (IL ⊗ F̃l2g),

Fg2r = (IR ⊗ F̃g2r ), Fr2g = (IR ⊗ F̃r2g),

F̃·g· = (F·g· ⊗ IM ), (
̃0,I ,N )L,R = (IL,R ⊗ (
0,I ,N )L,R).

(6.2)
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In (6.1), DL,R = P−1
L,RQL,R are SBP operators approximating the derivatives in the

x-direction on the left and right domain, respectively. The matrices PL,R are positive
definite and diagonal and QL,R are almost skew-symmetric satisfying QT

L,R+QL,R =
(EN )L,R−(E0)L,R = BL,R = diag(−1, 0, . . . , 0, 1).Moreover, the identitymatrices
IξL,R , IL,R and IM are of dimension ML + 1, MR + 1, NL + 1, NR + 1 and M ,
respectively. The integers NL,R and ML,R are the number of spatial and stochastic
grid points (or coefficients in PC) on the left and right domain, respectively while M
denotes the size of the system. Further, (EN )L,R and (E0)L,R are zero matrices except
for the element (1, 1) and (NL,R + 1, NL,R + 1) which are one, respectively. Finally,
(e0)L and (eN )R are zero vectors of size NL + 1 and NR + 1 except for the elements
1 and NR + 1 which are one, respectively.

To impose the boundary and interface conditions the so-called SAT technique is
used. The terms that contains the
’s are the so-called SATpenalty terms, which forces
the solution to satisfy the boundary and interface conditionsweakly. The penaltymatri-
ces (
0)L and (
N )R will be chosen such that a stable spatial boundary treatment
in the left and right domain is obtained. Furthermore, (
N )L and (
0)R are used
to enforce continuity of the solution at the interface. Finally, (
I )L,R are correction
penalty matrices used to cancel the interface contributions in stochastic space coming
from the operators DL,R . To clarify: the indices (0, I , N ) represent the first, the inter-
face, and the last grid points in space, respectively. Similarly, L and R represent the
right and left domain.

The numerical solution on the left sub-domain U is arranged as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0
U1
...

Ui
...

UNL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ui =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ui0
Ui1
...

Ui j
...

UiML

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ui j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ui j1
Ui j2

...

Ui jm
...

Ui jM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the numerical solution V in the right sub-domain is organized in the same way.
NumericallyUi jm and Vi jm approximate um(xi , t, ξ j ) and vm(xi , t, ξ j ) for NI, where

ξ j denotes the j th grid point in ξ . For PC, Ui jm and Vi jm approximate u j
m(xi , t) and

v
j
m(xi , t), where m denotes the vector component and j the PC coefficient. The data
is organized depending on the stochastic method as

g =
⎡
⎢⎣

〈ḡ(t, ξ), ψ0(ξ)〉
...

〈ḡ(t, ξ), ψML,R (ξ)〉

⎤
⎥⎦ , fL,R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈 f̄ (x0, ξ), ψ0(ξ)〉
...

〈 f̄ (x0, ξ), ψML,R (ξ)〉
...

〈 f̄ (xNL,R , ξ), ψ0(ξ)〉
...

〈 f̄ (xNL,R , ξ), ψML,R (ξ)〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.3)
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for PC and

g =
⎡
⎢⎣

ḡ(t, ξ0)
...

ḡ(t, ξML,R )

⎤
⎥⎦ , fL,R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄ (x0, ξ0)
...

f̄ (x0, ξML,R )
...

f̄ (xNL,R , ξ0)
...

f̄ (xNL,R , ξML,R )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.4)

for NI. In (6.3) and (6.4), f̄ and ḡ are the initial and boundary vectors as a function
of ξ , respectively.

6.1 Stability

The discrete energy method is applied to (6.1) (we multiply the equations in (6.1) by
UT (PL ⊗ PξL ⊗ IM ) and V T (PR ⊗ PξR ⊗ IM ), respectively, add them together, and
use the SBP property (QL,R are almost skew-symmetric)). This yields

d

dt
(‖U‖2PL + ‖V ‖2PR ) = −UT (BL ⊗ PξL ⊗ A)U − V T (BR ⊗ PξR ⊗ A)V

+ 2UT
I PξL F̃g2l(
N )LF̃l2gUI −UT

I PξL F̃g2l(
N )LF̃r2gVI

− V T
I (PξL F̃g2l(
N )LF̃r2g)

TUI + 2UT
I PξL F̃g2l(
I )LF̃l2gUI

+ 2V T
I PξRF̃g2r (
0)RF̃r2gVI − V T

I PξRF̃g2r (
0)RF̃l2gUI

− UT
I (PξRF̃g2r (
0)RF̃l2g)

T VI + 2V T
I PξRF̃g2r (
0)RF̃r2gUI

+ 2UT
I PξL (
I )LUI + 2V T

I PξR (
I )RVI ,

(6.5)

when letting PξL,R = (PξL,R ⊗ IM ) and ignoring the outer boundary terms as in
Sect. 2.1. The norms used in (6.5) are ‖U‖2PL = UT (PL ⊗ PξL ⊗ IM )U and ‖V ‖2PR =
V T (PR ⊗ PξR ⊗ IM )V .

Further, using (5.1) in (6.5), (for example the term 2UT
I PξL F̃g2l(
N )LF̃l2gUI =

2(F̃l2gUI )
T M(
N )L(F̃l2gUI )), gives

d

dt
(‖U‖2PL + ‖V ‖2PR ) = − UT

I (PξL ⊗ (A + 2(
̄I )L))UI

+ V T
I (PξR ⊗ (A − 2(
̄I )R))VI

+
[
F̃l2gUI

F̃r2gVI

]T

(M ⊗ K)

[
F̃l2gUI

F̃r2gVI

]
,

(6.6)

where

K =
[
2((
̄N )L + (
̄I )L) −((
̄N )L + (
̄0)R)

−((
̄N )TL + (
̄0)
T
R) 2((
̄0)R + (
̄I )R)

]
, (6.7)
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and we have decomposed the SAT penalty terms as

(
0,I ,N )L,R = (IξL,R ⊗ (
̄0,I ,N )L,R). (6.8)

In (6.6), the first two terms on the right-hand side come from the correction terms (the
difference betweenU or V and its projection to the glue grid and back) in (6.1), while
the third term contains the interface terms on the glue grid.

To cancel the interface terms not involving the operators F̃·2· we let (
̄I )L = −A/2
and (
̄I )R = A/2, (other choices are also possible, see for example [13])which results
in

d

dt
(‖U‖2PL + ‖V ‖2PR ) =

[
F̃l2gUI

F̃r2gVI

]T

(M ⊗ K)

[
F̃l2gUI

F̃r2gVI

]
, (6.9)

where now

K =
[

2((
̄N )L − A/2) −((
̄N )L + (
̄0)R)

−((
̄N )TL + (
̄0)
T
R) 2((
̄0)R + A/2)

]
. (6.10)

The choices (
̄N )L = A/2, (
̄0)R = −A/2 now yields

d

dt
(‖U‖2PR + ‖V ‖2PL ) = 0, (6.11)

which implies that the energy is preserved (ignoring the outer boundary treatment)
just as in (2.3).

Remark 6.1 Thequadratures PξL and PξR can be replaced by any other positive definite
matrix without loss of stability, however, to ensure accuracy, the operators F·2g and
Fg2· have to satisfy certain accuracy conditions. These accuracy conditions involve
projecting polynomials of a specific degree. In all our computations, we have, as in
[5] used SBP quadratures of the same accuracy as the number of polynomial basis
functions of the glue space.

7 Numerical experiments

In this section we will illustrate the coupling technique by considering applications in
one and two dimensions.

7.1 Advection in one dimension

We consider (2.1) with

A =
[
2 0
0 −3

]
, LL =

[
1 0
0 0

]
, LR =

[
0 0
0 1

]
. (7.1)
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Table 1 The order of accuracy for NI for different number of grid points

(ML , MR ) (44, 28) (66, 42) (88, 56) (110, 70) (132, 84) (154, 98)

pN I 3.543 3.699 3.784 3.860 3.967 3.974

As a measure of comparison, the quantity

VarU =
∫ T

0
‖Var[U ] − Var[Ua]‖2 dt (7.2)

is used. In (7.2), U is the computed numerical solution (on both domains) and Ua a
high resolution (in ξ ) numerical solution on the same spatial deterministic grid asU . In
the computations below, 5th order SBP-operators with 50 grid points in each domain
and the classical 4th order Runge-Kutta as time integrator are used when computing
U and Ua . The uncertainty ξ is uniformly distributed between −1 and 1. Finally, the
spatial domains we consider are ΩL = (−1, 0) and ΩR = (0, 1), hence the interface
is located at x = 0.

7.1.1 Accuracy and efficiency

The order of accuracy pN I when computing the variance (7.2) numerically, for the
case of coupling NI with NI is measured as

pN I = log

(
VarUML ,MR

VarU(mML ),(mMR )

)
/ log

(
1

m

)
. (7.3)

The variance in VarUX ,Y is computed using NI with X and Y number of stochastic grid
points in the left domain and right domain, respectively. The constant m denotes the
refinement factor of the stochastic grids. To reduce the influence of the deterministic
errors, a high resolution solution using 200 stochastic grid points on a single determin-
istic domain using the same number of deterministic grid points was used. Initial and
boundary data and a forcing function was extracted from the following manufactured
solution

u(x, t, ξ) =
[
sin(2π(x − t)) + ξ sin(ξ/2 − t) cos(x − ξ)

sin(2π(x − t)) + ξ sin(ξ/2 − t) cos(x − ξ)

]
. (7.4)

The order of accuracy is computed and shown in the one dimensional case, results in
multiple dimensions are analogous. As can be seen from Table 1, the order of accuracy
converges to 4, in line with the accuracy of the 4th order Simpson’s rule. The spatial
operators and time integrator are 5th and 4th order accurate, respectively.

The gains in efficiency and accuracy that we will show computationally below,
rely on the cost of the glue grid procedure being cheap. The glue grid is only applied
at the interface, hence contributes linearly to the total computational cost (which
overall is quadratic) with respect to the number of stochastic quadrature points and PC
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coefficients. The computational cost of the interface treatment is hence small compared
to the overall computational cost.

7.1.2 Numerical restults: coupling NI to NI

To exemplify the potential efficiency gain in the coupling procedure, the problem
(2.1) using a manufactured solution is constructed in such a way that the uncertainty
is varying slowly in the left domain compared to the right. We choose

u(x, t, ξ) =
[
e−100(x−1/2)2/(1 + e−0.1ξ ) + sin(ξ/2 − t) cos(x − ξ)

e−100(x−1/2)2/(1 + e−0.1ξ ) + sin(ξ/2 − t) cos(x − ξ)

]
. (7.5)

The manufactured solution (7.5) contains the term 1/(1+ e−0.1ξ )which is a S-shaped
function ranging from 0 to 1 or as in this particular case between 0 and the factor
e−100(x−1/2)2 . A sine function is then added to produce variations. A smaller factor
(as in the left domain (−1 < x < 0)) gives a slower varying solution and larger factor
gives a faster varying solution (as in the right domain (0 < x < 1)). As before we use
200 stochastic grid points for our reference solution.

Figure 2 shows the error of the variance as a functionof the total number of stochastic
grid points. As can be seen, a higher number of grid points in the right (more rapidly
varying) domain reduces the error in the variance compared to the other cases. Since
all cases have the same total number of grid points, we can conclude that having a
higher number of grid points in the right (more rapidly varying) part of the domain is
also more efficient.

7.1.3 Numerical results: coupling PC to PC

The coupling between PC and PC is exemplified using themanufactured solution (7.5).
As a reference, a solution using 25 PC coefficients in each domain is used. Figure 3
illustrates the error as a function of the total number of basis functions. Similarly to
the NI-NI case above, a higher number of PC coefficients in the right (more rapidly
varying) domain results in a lower error in the variance. Similarly to the case above,
we can conclude that having a higher number of PC coefficients in the right (more
rapidly varying) part of the domain is the most efficient.

7.1.4 Numerical results: coupling NI to PC

To illustrate the coupling between NI and PC, the manufactured solution (7.5) is used.
Figure 4 shows the error in the variance as a function of the number of stochastic
grid points (for NI) and basis functions (for PC). In the comparison, we increase
the number of stochastic grid points MN I with the number of basis functions as
MN I (MPC ) = 30(MPC − 3), e.g. if MPC = 5, then MN I = 60. As can be seen, the
combination of usingNI on the rapidly varying part (in terms of ξ ) andPCon the slowly
varying part of the domain performs better than the reverse combination. This is an
indication that combining NI and PC could outperform the use of the sameUQmethod
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Fig. 2 The error in the variance as a function of the total number of stochastic grid points when coupling
NI with NI for different number of stochastic grid points on the left and right domain
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Fig. 3 The error in the variance as a function of the total number of basis functions when coupling PC with
PC for different number of basis functions on the left and right domain
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NI-PC: ML = 30(M-3), MR = M

Fig. 4 The error in the variance as a function of the number of PC basis functions when coupling NI with
PC

in the whole domain. The results in Fig. 4 shows an error reduction by approximately
one order of magnitude, which show that choosing a suitable UQ method in certain
regions is important. The most efficient choice is having NI in the rapidly varying part
and PC in the slowly varying part of the domain.

7.2 Maxwell’s equations

To exemplify the technique in multiple dimensions, we consider Maxwell’s equations
in two dimensions [17].

The equations relating the electric and magnetic fields are

μ
∂H

∂t
= −∇ × E, ε

∂E

∂t
= ∇ × H − J ,

∇ · εE = ρ, ∇ · μH = 0,
(7.6)

where, E = [Ex , Ey, Ez]T , H = [Hx , Hy, Hz]T , J , ρ, ε and μ correspond to the
electric field, magnetic field, electric current density and charge density, permittivity
and permeability. We simplify (7.6) by letting J = 0 and ρ = 0 and rewrite it on
matrix form as

Sut + Aux + Buy = 0. (7.7)
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The matrices in (7.7) are

S =
⎡
⎣μ 0 0
0 ε 0
0 0 ε

⎤
⎦ , A =

⎡
⎣0 0 1
0 0 0
1 0 0

⎤
⎦ , B =

⎡
⎣ 0 −1 0

−1 0 0
0 0 0

⎤
⎦ .

with the solution u = [
Hz, Ex , Ey

]T . Similar to the one dimensional case, we have
an interface at x = 0, 0 ≤ y ≤ 1.

For simplicity, the boundary conditions are chosen to be the characteristic ones, i.e.
we specify

West(x = −1) : Ex − Hz = gW ,

East(x = 1) : Ex + Hz = gE ,

Sout(y = 0) : Hz + Ey = gS,
North(y = 1) : Hz − Ey = gN .

(7.8)

In the numerical experiments we let ε = 1 andμ = 1 be defined on the spatial domains
ΩL = (−1, 0) × (0, 1) and ΩR = (0, 1) × (0, 1). The coupling is exemplified using
the manufactured solution

u(x, y, t, ξ) =
⎡
⎣sin(ξπ(x − 0.5)2 − t) + sin(y − t)
sin(ξπ(x − 0.5)2 − t) + sin(y − t)
sin(ξπ(x − 0.5)2 − t) + sin(y − t)

⎤
⎦ , (7.9)

which varies more stochastically in the left domain compared to the right.

7.2.1 Coupling NI to NI

Numerical results when couplingNIwithNIwere computed using a reference solution
calculated using 150 stochastic grid points in the left and right domain using NI in
both domains. The reference solution is computed using an interface in order to reduce
the deterministic errors in the comparison.

Figure 5 illustrates the error in the variance with respect to the total number of
stochastic grid points. As in the one dimensional case, we note that a higher number
of grid points in the more rapidly varying (left) part of the domain gives the smallest
total error in the variance, as well as a higher efficiency.
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Fig. 5 The error in the variance as a function of the total number of stochastic grid points when coupling
NI with NI for different number of stochastic grid points on the left and right domain

7.2.2 Coupling PC to PC

Coupling PCwith PCwas exemplified using a reference solution computedwith 25 PC
coefficients in both domains. The numerical results are depicted in Fig. 6, where the

Fig. 6 The error in the variance as a function of the total number of basis functions when coupling PC with
PC for different number of basis functions on the left and right domain

123



An efficient hybrid method… 623

Fig. 7 The error in the variance as a function of the number of PC basis functions when coupling NI with
PC

error in the variance is shown as a function of the number of PC coefficients. Again, we
note that a higher number of points in the more rapidly varying (left) domain reduces
the error in the variance the most. As before we can conclude that the above mentioned
case is the most efficient one.

7.2.3 Coupling NI to PC

The numerical results when coupling NI with PC were performed with a reference
solution computed using 150 stochastic grid points in the left and right domain using
NI in both domains. Figure 7 shows the error in the variance as a function of stochastic
grid points (in NI) and PC coefficients (in PC). Results when combining PC on the
left with NI on the right domain and vice verse are illustrated. We note that, as in the
one dimensional case, having NI in the rapidly varying domain and PC in the slowly
varying domain outperforms the reverse combination. The reduction of errors in the
variance is approximately two orders of magnitude. Finally, we can conclude that the
most efficient case coincides with the results in the one dimensional setting, i.e. having
NI in the rapidly varying domain and PC in the slowly varying domain.

8 Conclusions

A stable, accurate interface coupling between the uncertainty quantification methods
NI-NI, PC-PC and NI-PC has been constructed. The coupling procedure consisted
of constructing an intermediate so-called glue grid, onto where the solutions at the
interface were projected and penalized using corresponding projection operators. The
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coupling procedure was exemplified using hyperbolic systems of equations in one and
two dimensions.

Numerical results when coupling NI-NI and PC-PC clearly showed that a higher
proportion of grid points/coefficients in a more rapidly varying part of the domain
gives the smallest error in the variance. Coupling NI-PC gave better results when
having NI in the more rapidly varying domain, resulting in a reduction of the errors
in the variance of 1-2 orders of magnitude compared to the reverse combination. The
performance benefits shown by the numerical experiments when using different UQ
methods in different regions, gives a strong indication that combining different UQ
techniques can be efficient for certain types of problems.

To extend the technique to multiple stochastic dimensions, is in principle straight-
forward, but some technical problems requires further research. One has to construct
stable interface couplings in multiple dimensions, which can be done following the
guidelines in [6,7,9].
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A projection operators

This section gives a more detailed description of the various projection operators.

A.1 Description of projection operators coupling NI with NI

The order of the polynomial basis (number of basis functions per subinterval) of
Legendre polynomials (i.e. the basis of the glue grid) is set to equal the accuracy
order of the NI method (denoted qN I ) in order to satisfy the accuracy condition. As an
example, Fig. 8 shows a simple illustration when coupling NI with NI using six and
four stochastic grid points on the left and right domain, respectively. The intervals of
the glue grid is depicted in Fig. 8. The projection operators from the left grid to the
glue grid and vice versa in this example (using qN I = 2), are
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Fig. 8 An illustration showing an example of the coupling between NI and NI with six and four stochastic
grid points respectively with an intermediate glue grid

Fl2g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7 0.3 0 0
−0.3 0.3 0 0
0.2 0.8 0 0

−0.2 0.2 0 0
0 0.9 0.1 0
0 −0.1 0.1 0
0 0.5 0.5 0
0 −0.3 0.3 0
0 0.1 0.9 0
0 −0.1 0.1 0
0 0 0.8 0.2
0 0 −0.2 0.2
0 0 0.3 0.7
0 0 −0.3 0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fg2l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.84 0.18 0 0
−0.12 0.06 0 0
0.16 0.32 0 0

−0.0533 0.0267 0 0
0 0.18 0.02 0
0 −0.0067 0.0067 0
0 0.3 0.3 0
0 −0.06 0.06 0
0 0.02 0.18 0
0 −0.0067 0.0067 0
0 0 0.32 0.16
0 0 −0.0267 0.0533
0 0 0.18 0.84
0 0 −0.06 0.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(A.1)
Projection operators from the right grid to glue grid have similar structures as the ones
in (A.1), hence will not be shown here.

A.2 Example of projection operators coupling PC with PC

As an example, we consider a coupling between four (on the left domain) respectively
two (on the right domain) basis functions, see Fig. 9. The glue space is in this case a
space of polynomials of degree 4−1 = 3 (the maximum degree of the PC expansions
on the left and right domain). The projection operators are in this example

Fl2g =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Fg2l =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

Fr2g =

⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ , Fg2r =

[
1 0 0 0
0 1 0 0

]
.

(A.2)
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Fig. 9 The coupling between PC and PCwith four and two basis functions respectively with an intermediate
glue grid

Note that the operators in (A.2) satisfy Fg2lFl2g = I4 and Fg2rFr2g = I2, where
I2,4 are identity matrices of dimension two and four respectively.

A.3 Description of projection operators coupling NI with PC

The number of polynomial basis functions per subinterval in the glue space is chosen
to be same as the number of PC coefficients (or the order of the NI method (qN I ) if it is
greater), in order to maintain the accuracy conditions of the coupling. The projection
operators from the NI grid to the glue grid are hence identical to the ones described
in the section Coupling: NI to NI. The projection operators between PC and the glue
grid and back are transformations between a set of basis functions (polynomials) to
another on different intervals (the intervals are determined by the NI grid). This means
that coefficients corresponding to basis functions on the whole interval are simply
mapped to coefficients corresponding to basis functions on the different intervals
(which constitutes the glue grid). As an example of the transformation between the
PC grid and glue grid, Fig. 11 illustrates a basis function on the PC grid and Fig. 12
the corresponding function projected on the different intervals in the glue grid. The
polynomial basis used in this work are the Legendre polynomials due to the uniform
distribution of the uncertainty. As an illustrative example, Fig. 10 shows the coupling
between NI and PC using five and four stochastic grid points/basis functions on the
left (NI) and right (PC), respectively.
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Fig. 10 An example of the coupling between NI and PC with five and four stochastic grid points/basis
functions respectively with an intermediate glue grid

Fig. 11 An illustration of the
basis function ψ1 of the PC grid
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(a) (b)

(c) (d)

Fig. 12 An example of the transformation of basis function ψ1 from the PC-grid to the glue grid intervals
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