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Abstract
We study the dynamics of a parabolic and a hyperbolic equation coupled on a common
interface. We develop time-stepping schemes that can use different time-step sizes for
each of the subproblems. The problem is formulated in a strongly coupled (monolithic)
space-time framework. Coupling two different step sizes monolithically gives rise to
large algebraic systems of equations. There, multiple states of the subproblems must
be solved at once. For efficiently solving these algebraic systems, we inherit ideas
from the partitioned regime. Therefore we present two decoupling methods, namely a
partitioned relaxation scheme and a shooting method. Furthermore, we develop an a
posteriori error estimator serving as a mean for an adaptive time-stepping procedure.
The goal is to optimally balance the time-step sizes of the two subproblems. The error
estimator is based on the dual weighted residual method and relies on the space-time
Galerkin formulation of the coupled problem. As an example, we take a linear set-up
with the heat equation coupled to the wave equation. We formulate the problem in
a monolithic manner using the space-time framework. In numerical test cases, we
demonstrate the efficiency of the solution process and we also validate the accuracy
of the a posteriori error estimator and its use for controlling the time-step sizes.
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1 Introduction

In this work, we are going to examine surface coupled multiphysics problems that are
inspired byfluid-structure interaction (FSI) problems [24].We couple the heat equation
with thewave equation through an interface, where the typical FSI coupling conditions
orDirichlet-Neumann type act. Despite its simplicity, each of the subproblems exhibits
different temporal dynamics which is also found in FSI. The solution of the heat
equation, as a parabolic problem, manifests smoothing properties. Thus, it can be
characterized as a problem with slow temporal dynamics. The wave equation, on the
other hand, is an example of a hyperbolic equation with highly oscillatory properties.

FSI problems are characterized by two specific difficulties: the coupling of an equa-
tion of parabolic type with one of hyperbolic type gives rise to regularity problems at
the interface. Further, the added mass effect [6] is present for problems coupling mate-
rials of a similar density which calls for strongly coupled discretization and solution
schemes. This is the monolithic approach for modeling FSI, in contrast to partitioned
approaches, where each of the subproblems is treated and solved as a separate system.
The monolithic approach allows for a more rigorous mathematical setting and the
use of large time-steps. The partitioned approach allows using fully optimized sep-
arate techniques for both of the subproblems. Most realizations for FSI, such as the
technique described here, have to be regarded as a blend of both philosophies: while
the formulation and discretization are monolithic, ideas of partitioned approaches are
borrowed for solving the algebraic problems.

Since FSI problems feature distinct time scales in the two subproblems the use of
multirate time-stepping schemes with adapted step sizes for fluid and solid is obvious.
For parabolic problems, the concept of multirate time-stepping was discussed in [4,
9,17]. In the hyperbolic setting, it was considered in [3,7,8,23]. In the context of
fluid-structure interactions, such subcycling methods are used in aeroelasticity [22].
There, explicit time integration schemes are used for the flow problem and implicit
schemes for the solid problem [10]. In the low Reynolds number regime, common in
hemodynamics, the situation is different. Here, implicit and strongly coupled schemes
are required by the added mass effect. Hence, large time steps can be applied for the
flow problem, but smaller time-steps might be required within the solid. A study on
benchmark problems in fluid dynamics (Schäfer, Turek ’96 [26]) and FSI presented
in [18] shows that FSI problems demand a much smaller step size. However, the
problem configuration and the resulting nonstationary dynamics are very similar to
oscillating solutions with nearly the same period [25].

We will derive a monolithic variational formulation for FSI like problems that can
handle different time-step sizes in the two subproblems. Implicit coupling of two
problems with different step sizes will give rise to very large systems where multiple
states must be solved at once. In Sect. 3 we will study different approaches for an
efficient solution of these coupled systems, a simple partitioned relaxation scheme
and a shooting like approach.

Next, in Sect. 4 we present a posteriori error estimators based on the dual weighted
residual method [2] for automatically identifying optimal step sizes for the two sub-
problems. Numerical studies on the efficiency of the time adaptation procedure are
presented in Sect. 5.
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Fig. 1 View of the domain Ω = (0, 4) × (−1, 1) split into fluid Ω f and solid Ωs along the common

interface Γ . On the outer boundary, homogenous Dirichlet values are given on Γ
f
D and Γ s

D , whereas

Neumann conditions are set on Γ
f
N and Γ s

N

2 Presentation of themodel problem

Let us consider the time interval I = [0, T ] and two rectangular domains

Ω f := (0, 4) × (0, 1), Ωs := (0, 4) × (0,−1)

The interface is defined asΓ := Ω
f ∩Ω

s = (0, 4)×{0} and the remaining boundaries
are shown in Fig. 1. Since our example might be treated as a simplified case of an
FSI problem, in the text we will use the corresponding nomenclature. We will refer
to the domain Ω f as the fluid domain and the problem defined there as the fluid
problem. Similarly, we will use solid domain and solid problem phrases. In this sense,
the superscript “f” will always refer to entities connected to the fluid problem and “s”
denotes the solid problem.

In the domain Ω f we pose the heat equation

∂tv
f − νΔv f + β · ∇v f = g f in I × Ω f , (2.1)

and in the domain Ωs we set the wave equation

∂tv
s − λΔus − δΔvs = gs, ∂t u

s = vs in I × Ωs, (2.2)

written as a first order system. By v f and vs we denote the velocities of fluid and
solid and by us the solid’s displacement. ν > 0 is heat diffusion parameter,

√
λ

is the wave propagation speed and δ ≥ 0 a damping parameter. By β ∈ R2 we
introduce a transport direction. The two problems are coupled on the interface Γ by
the transmission conditions

v f = vs, λ∂ns u
s + ν∂n f v

f = 0 on I × Γ (2.3)

which are similar to the kinematic and dynamic coupling conditions from fluid-
structure interactions, compare [24, Sec. 3.1].We use symbols n f and ns to distinguish
between normal vectors for different space domains. On the interface it holds n f =
−ns . To mimic the similarity to fluid-structure interaction formulations in Arbitrary
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1370 M. Soszyńska, T. Richter

Eulerian Lagrangian (ALE) coordinates, see [12], we harmonically extend the solid
deformation us to the fluid domain where we call it u f

− Δu f = 0 in I × Ω f , u f = us on I × Γ . (2.4)

Usually, this artificial deformation defines the ALE domain map used to transfer the
fluid problem to ALE coordinates, see [24, Sec. 5.3.5]. In the fluid domain, the left and
right boundaries model free inflow and outflow, whereas the upper boundary models a
no-slip condition. In the solid domain, the left and right boundary model a fixed solid,
whereas the solid is free to move on the lower boundary, resulting in

u f = v f = 0 on I × Γ
f
D , ∂n f v

f = ∂n f u
f = 0 on I × Γ

f
N

us = vs = 0 on I × Γ s
D, λ∂ns u

f + δ∂nsv
s = 0 on I × Γ s

N .
(2.5)

At time t = 0, all initial values are zero, i.e. u f (0) = us(0) = v f (0) = vs(0) = 0.
The exact values of the parameters read as

ν = 0.001, β =
(
2
0

)
, λ = 1000, δ = 0.1,

and they are chosen similar to the configuration of the fluid-structure interaction bench-
mark problems by Hron and Turek [18], to resemble a similar coupling structure.
However, we consider a softer “solid”. The external forces are set to be products of
functions of space and time g f (x, t) := h f (x) f (t) and gs(x, t) := hs(x) f (t) where
h f (x), hs(x) are space components and f (t) is a time component which models a
periodic pulse

f (t) =
{
1 z ≤ t ≤ z + 0.1

0 z + 0.1 < t ≤ z + 1,
∀z ∈ Z.

Wewill consider twodifferent configurations of the right hand side. InConfiguration
2.1, the right hand side is concentrated in Ω f where the space component consists
of an exponential function centered around

( 1
2 ,

1
2

)
. For Configuration 2.2 we take a

space component concentrated in Ωs with an exponential function centered around( 1
2 ,− 1

2

)
.

Configuration 2.1

h f (x) := e
−

(
(x1− 1

2 )2+(x2− 1
2 )2

)
, hs(x) := 0,

Configuration 2.2

h f (x) := 0, hs(x) := e
−

(
(x1− 1

2 )2+(x2+ 1
2 )2

)
.
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2.1 Continuous variational formulation

By H1(Ω) we denote the space of L2-functions with the first weak derivative in
L2(Ω). To incorporate the Dirichlet boundary conditions on parts of the boundary
into trial and test spaces we further define

H1
0 (Ω;Υ ) =

{
v ∈ H1(Ω)| v|Υ = 0

}
,

where H−1(Ω) = H1
0 (Ω;Υ )∗ is the dual space. To incorporate the Dirichlet data

in the fluid domain we introduce V f := H1
0 (Ω f ;Γ

f
D ) and, in the case of the solid

domain, V s := H1
0 (Ωs;Γ s

D). In the space-time domain I × Ω we define the family
of Hilbert spaces

X(V ) =
{
v ∈ L2(I , V )| ∂tv ∈ L2(I , V ∗)

}
.

For the fluid problem it will hold (v f , u f ) ∈ X f := (
X(V f )

)2 and for the solid

(vs, us) ∈ Xs := (
X(V s)

)2.
For any given domain G, which can take the place of the entire domain Ω , the fluid

domain Ω f or the solid domain Ωs we denote by (u, v)G := ∫
G u · v dx the usual

L2-inner product. Given an element of the dual space f ∈ H−1(G), we denote by

〈 f , φ〉H−1(G)×H1(Ω) = f (φ) the duality pairing. For f ∈ H− 1
2 (Γ ) we denote by

〈 f , φ〉Γ := 〈 f , φ〉
H− 1

2 (Γ )×H
1
2 (Γ )

= f (φ)

the duality pairing on the interface. Finally, we introduce the abbreviations (·, ·) f :=
(·, ·)Ω f and 〈·, ·〉 f := 〈·, ·〉H−1(Ω f )×H1(Ω f ) as well as the corresponding notation
within the solid domain Ωs .

We acquire the continuous variational formulation by multiplication of (2.1)
and (2.4). Afterwards, we integrate in space and time using (2.5). The trial function is
given by U = (U f ,Us) ∈ X := X f × Xs , which is further split to U f = (v f , u f )

and Us = (vs, us). Similarly, we set the test function as Φ = (Φ f ,Φs) and split it to
Φ f = (ϕ f , ψ f ) and Φs = (ϕs, ψ s). Given that, we define the space-time variational
forms

B f (U)(Φ f ) :=
∫
I
〈∂tv f , ϕ f 〉 f dt +

∫
I
a f (U)(Φ f ) dt + (v f (0), ϕ f (0)) f , (2.6a)

Bs(U)(Φs) :=
∫
I
〈∂tvs, ϕs〉s dt +

∫
I
〈∂t us, ψ s〉s dt +

∫
I
as(U)(Φs) dt

+ (vs(0), ϕs(0))s + (us(0), ψ s(0))s, (2.6b)

F f (Φ f ) :=
∫
I
(g f , ϕ f ) f dt,

Fs(Φs) :=
∫
I
(gs, ϕs)s dt
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1372 M. Soszyńska, T. Richter

with

a f (U)(Φ f ) := (ν∇v f ,∇ϕ f ) f + (β · ∇v f , ϕ f ) f + (∇u f ,∇ψ f ) f

− 〈∂n f u
f , ψ f 〉Γ + γ

h
〈u f − us, ψ f 〉Γ

− 〈ν∂n f v
f , ϕ f 〉Γ + γ

h
〈ν(v f − vs), ϕ f 〉Γ , (2.7a)

as(U)(Φs) := (λ∇us,∇ϕs)s + (δ∇vs,∇ϕs)s − (vs, ψ s)s

+ 〈ν∂n f v
f , ϕs〉Γ − 〈δ∂nsvs, ϕs〉Γ . (2.7b)

All the Laplacian terms were integrated by parts and the dynamic coupling condition
was added. The kinematic coupling condition was incorporated into the fluid problem,
while the dynamic condition became a part of the solid problem. The Dirichlet bound-
ary conditions over the interface Γ were formulated in a weak sense using Nitsche’s
method [21]. The parameter γ can be seen as a penalization parameter enforcing
u f = us and v f = vs weakly. The parameter γ > 0 should be large enough to
counter-balance different constants, like the one from the inverse estimate. We set
γ = 10, while h is the mesh size. Too small values for γ might cause a discrepancy
from the Dirichlet condition, too large values worsen the conditioning of the resulting
system. We refer to [5] for the analysis of a full fluid-structure interaction system with
Nitsche coupling on the interface.

The compact version of the variational problem presents itself as:

Problem 2.1 Find U ∈ X such that

B f (U)(Φ f ) = F f (Φ f )

Bs(U)(Φs) = Fs(Φs)

for all Φ f ∈ X f and Φs ∈ Xs .

This coupled heat-wave system carries some similarities to fluid-structure interac-
tions [24] in terms of the parabolic / hyperbolic type of the equations and also in the
set of interface coupling conditions of Dirichlet / Neuman type. It can be considered
as a further simplification of a linear fluid-structure interaction system coupling the
Stokes equations with the Navier-Lame equations, which has been extensively stud-
ied [1,13,14]. Here, the existence and regularity of the solution is shown, compare [16]
for an overview of the results. Zhang and Zuazua [29] analyze the long time behavior
of the coupled scalar heat andwave system, similar to our set of equations. However, as
further simplification, our model problem contains a strong damping term within the
heat equation. Given a sufficiently smooth domain, e.g. C2-parametrizable or convex
polygonal boundary, right hand side g f , gs in L2 and initial values us ∈ H1(Ωs) and
vs ∈ L2(Ωs), v f ∈ L2(Ωs), v f ∈ L2(Ω f ), the solution has at least the regularity
v f ∈ L2(I , H1(Ω f )) and us ∈ W 1,∞(I , H1(Ωs)).
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Fig. 2 Visualization of the temporal mesh: macro mesh with steps tn−1, tn and tn+1 and subdivision into

two distinct partitionings for fluid and solid, t fi and tsj , respectively

2.2 Semi-discrete Petrov–Galerkin formulation

One of the main challenges emerging from the discretization of Problem 2.1 is the
construction of a satisfactory time interval partitioning. Our main objectives include:

1. Allowing for different time-step sizes (possibly non-uniform) in both subprob-
lems
We introduce two distinct subdivisions I f and I s of the interface I = [0, T ]

0 = t f0 < t f1 < · · · < t f
N f = T , 0 = t s0 < t s1 < · · · < t sNs = T .

with N f , Ns ∈ N. We will refer to these meshes as micro time meshes and we
will denote them by I f and I s , respectively. Their step sizes k f

n := t fn − t fn−1
and ksn := t sn − t sn−1 can be non-uniform and fluid- and solid-steps do not have to
match.

2. Handling coupling conditions
Based on the micro partitionings I f and I s we introduce the coarse time mesh of
the interval I = [0, T ] that consists of all discrete points in time which are shared
by both of the subproblems, i.e.

0 = t0 < t1 < ... < tN = T ,

with N ≤ min{N f , Ns}. For each n = 0 . . . , N there exist two indices i ∈
{0, . . . , N f } and j ∈ {0, . . . Ns} such that tn = t fi = t sj . We will refer to this
mesh as the macro time mesh and denote it by IN .

In practice, this mesh structure is generated in a top-down design: we start with a
sharedmacromesh I f = I s = IN and generate finermeshes by successive refinement
of the single steps. After each refinement cycle we identify common nodes t fi = t sj to
generate the new macro mesh. We define the grid sizes as:

k f := max
n=1,...,N f

k f
n , ks := max

n=1,...,Ns
ksn, k := max{k f , ks}.

Figure 2 visualizes this construction.
As trial spaces, we choose functions that are continuous in time on the complete

interval I = [0, T ] and piecewise linear on the subdivisions. In space, they take values
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1374 M. Soszyńska, T. Richter

in the corresponding Sobolev spaces V f and V s which have been introduced above:

X f ,1
k = {

v ∈ C( Ī , L2(Ω f ))| v|
(t fn−1,t

f
n ] ∈ P1(V

f ) for all n = 1, . . . , N f },
Xs,1
k = {

v ∈ C( Ī , L2(Ωs))| v|(t sn−1,t
s
n ] ∈ P1(V

s) for all n = 1, . . . , Ns}.
We set X f

k := (
X f ,1
k

)2 and Xs
k := (

Xs,1
k

)2. The test spaces Y f
k and Y s

k are defined
likewise, however, these functions are not necessarily continuous on I = [0, T ] and
they are piecewise constant on each of the micro steps

Y f ,0
k ={

v ∈ L2( Ī , L2(Ω f ))| v|
(t fn−1,t

f
n ] ∈ P0(V

f ) for all n = 1, . . . , N f },
Y s,0
k ={

v ∈ L2( Ī , L2(Ωs))| v|(t sn−1,t
s
n ] ∈ P0(V

s) for all n = 1, . . . , Ns}.
with Y f

k := (
Y f ,0
k

)2 and Y s
k := (

Y s,0
k

)2. By Pr (H) we denote the space of piecewise
polynomials with degree r and values in H .

With that at hand, we can pose a semi-discrete variational problem:

Problem 2.2 Find Uk ∈ Xk := X f
k × Xs

k such that:

B f (Uk)(Φ
f
k ) = F f (Φ

f
k )

Bs(Uk)(Φ
s
k) = Fs(Φs

k)

for all Φ f
k ∈ Y f

k and Φs
k ∈ Y s

k .

Since the operators B f and Bs are linear, the resulting scheme is equivalent to the
Crank-Nicolson scheme up to the numerical quadrature of the right hand sides F f

and Fs , see also [15,28]. Operator B f depends on the solid solution (vsk, u
s
k) and, vice

versa the solid operator Bs depends on the fluid solution v
f
k , see (2.6a), (2.7a) and

(2.6b), (2.7b). Hence, we have to integrate discrete (so, piecewise linear or piecewise
constant) functions from the one micro mesh on the other. To be precise, on the macro
step In = (tn−1, tn] it will be necessary to evaluate integrals which couple functions
on both discrete and non-matching meshes, like

∫ tn

tn−1

〈ν∂n f v
f , ϕs〉Γ . (2.8)

This will ask for a costly interpolation of the fluid velocity v f to the solid mesh on
each macro step, compare Fig. 2. To simplify this coupling, we will transfer discrete
functions by means of a simple interpolation into the space of linear functions on the
macro mesh, i.e. for v ∈ X f

k or v ∈ Xs
k we define

t ∈ (tn−1, tn] Ikv(t) := tn − t

kn
v(tn−1) + t − tn−1

kn
v(tn) (2.9)
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which can be easily evaluated on both submeshes. Hereby, (2.8) is approximated by

∫ tn

tn−1

〈ν∂n f v
f , ϕs〉Γ ≈

∫ tn

tn−1

〈ν∂n f Ikv
f , ϕs〉Γ . (2.10)

3 Decouplingmethods

Even though Problem 2.2 is discretized in time, it is still coupled across the interface.
That makes solving the subproblems independently impossible. To deal with this
obstacle, we chose to use an iterative approach on each of the subintervals In and
introduce decoupling strategies. Throughout this section, we only consider the semi-
discrete problem. Hence, for better readability, we will skip the index “k”. For a fixed
time interval In the i-th iteration of a decoupling method consists of the following
steps:

1. Using the solution of the solid subproblem from the previous iterationUs,(i−1), we
set the boundary conditions on the interface at the time tn , solve the fluid problem
and get the solution U f ,(i).

2. Similarly, we use the solution U f ,(i) for setting the boundary conditions of the
solid problem and obtain an intermediate solution Ũs,(i).

3. We apply a decoupling function to the intermediate solution Ũ
s,(i)

and acquire
Us,(i).

This procedure is visualized by

Us,(i−1) fluid−−−−−−→
subproblem

U f ,(i) solid−−−−−−→
subproblem

Ũ
s,(i) decoupling−−−−−−→

function
Us,(i).

The main challenge emerges from the transition between Ũ
s,(i)

and Us,(i). In the next
subsections, we will present two techniques. The first one is the relaxation method
described in Sect. 3.1. The second one, in Sect. 3.2, is the shooting method. We clarify

how the intermediate solution Ũ
s,(i)

is obtained from Us,(i−1) by the definition of
Problem 3.1.

Problem 3.1 For a given Us,(i−1) ∈ Xs
k , find U f ,(i) ∈ X f

k and Ũ
s,(i) ∈ Xs

k such that:

B f
n

(
U f ,(i)

Us,(i−1)

)
(Φ f ) = F f

n (Φ f )

Bs
n

(
U f ,(i)

Ũ
s,(i)

)
(Φs) = Fs

n (Φs)

for all Φ f ∈ Y f
k and Φs ∈ Y s

k . By B f
n and Bs

n we denote restrictions of forms B f and

Bs to In . Forms F f
n and Fs

n are defined accordingly.
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3.1 Relaxationmethod

The first of the presented methods consists of a simple interpolation operator being an
example of a fixed pointmethod. It contains the iterated solution of each of the two sub-
problems, taking the interface values from the last iteration of the other problem. For
reasons of stability, such explicit partitioned iteration usually requires the introduction
of a damping parameter. Here, we only consider fixed damping parameters.

Definition 3.1 (Relaxation Function) Let Us,(i−1) ∈ Xs
k and Ũ

s,(i) ∈ Xs
k be the solid

solution of Problem 3.1. Then for τ ∈ [0, 1] the relaxation function R : Xs
k → Xs

k is
defined as:

R(Us,(i−1)) := τ Ũ
s,(i) + (1 − τ)Us,(i−1)

Assuming that we already know the value Us(tn−1), we pose

Us,(0)(tn) := Us(tn−1), Us,(i)(tn) := R(Us,(i−1))(tn) for i = 1, 2, . . . .

The stopping criterion is based on checking how far the computed solution is from
the fixed point. We evaluate the L∞ norm on the interface degrees of freedom. If for a

given tolerance tol > 0 we have ‖Ũs,(i+1)
(tn) − Us,(i)(tn)‖L∞(Γ ) < tol, we stop the

iteration and accept the last approximation.

3.2 Shootingmethod

Here we present another iterative method where we define a root-finding problem
on the interface. We use the Newton method with a matrix-free GMRES method for
approximation of the inverse of the Jacobian.

Definition 3.2 (Shooting Function) Let Us,(i−1) ∈ Xs
k and Ũ

s,(i) ∈ Xs
k be the solid

solution of Problem 3.1. Then the shooting function S : Xs
k → (L2(Γ ))2 is defined

as:
S(Us,(i−1)) :=

(
Us,(i−1)(tn) − Ũ

s,(i)
(tn)

) ∣∣∣
Γ

(3.1)

We aim to find the root of function (3.1). To do so, we employ the Netwon method

S′(Us,(i−1))d(i) = −S(Us,(i−1)).

In each iteration of the Newton method, the greatest difficulty causes computing
and inverting the Jacobian S′(Us,(i−1)). Instead of approximating all entries of the
Jacobian matrix, we consider an approximation of the matrix-vector product only.
Since the Jacobian matrix-vector product can be interpreted as a directional derivative,
one can assume

S′(Us,(i−1))d(i) ≈ S(Us,(i−1) + εd(i)) − S(Us,(i−1))

ε
. (3.2)
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In principle, the vector d(i) is not known. Thus, the formula above can not be used for
solving the system directly. However, it is possible to use this technique with iterative
solvers which only require the computation of matrix-vector products. Because we
did not want to assume much structure of the operator (3.2), we chose the matrix-free
GMRESmethod. Such matrix-free Newton-Krylov methods are frequently used if the
Jacobian is not available or too costly for evaluation [19]. Once d(i) is computed, we
set

Us,(0)(tn)
∣∣
Γ

:= Us(tn−1)
∣∣
Γ

, Us,(i)(tn)
∣∣
Γ

:= Us,(i−1)(tn)
∣∣
Γ

+d(i) for i = 1, 2, . . .

Here, we stop iterating when the L∞ norm of S(Us,(i)) is sufficiently small and then
we accept the last available approximation.

We note that the method presented here is similar to the one presented in [11],
where the authors also introduced a root-finding problem on the interface and solved
it with a quasi-Newton method. The main difference lies in the approximation of the
inverse of the Jacobian. Instead of using a matrix-free linear solver, there the Jacobian
is approximated by solving a least-squares problem.

3.3 Numerical comparison of the performance

In Figs. 3 and 4 we present the comparison of the performance of both methods
based on the number of micro time-steps. We assumed that both micro and macro
time-steps have uniform sizes. We performed the simulations in the case of no micro
time-stepping (N f = Ns = N ), micro time-stepping in the fluid subdomain (N f =
10N , Ns = N ) and the solid subdomain (N f = N , Ns = 10N ). Figure 3 shows
results for the right hand side according to Configuration 2.1. Figure 4 corresponds
to Configuration 2.2. We investigated one macro time-step I2 = [0.02, 0.04]. We
set the relaxation parameter to τ = 0.7. Both methods are very robust concerning
the number of micro time-steps. The relaxation method, as expected, has a linear
convergence rate. In both cases, despite the nested GMRES method, the performance
of the shooting method is much better. For Configuration 2.1, the relaxation method
needs 13 iterations to converge. The shooting method needs only 2 iterations of the
Newtonmethod (which is the reasonwhy each of the graphs in Fig. 3 displays only two
evaluations of the error) and overall requires 6 evaluations of the decoupling function.
In the case of Configuration 2.2, both methods need more iterations to reach the same
level of accuracy. The number of iterations of the relaxation method increases to 20
while the shootingmethod needs 3 iterations of the Newtonmethod and 11 evaluations
of the decoupling function.

In Figs. 5 and 6 we show the number of evaluations of the decoupling function
needed to reach the stopping criteria throughout the complete time interval I = [0, 1]
for N = 50. Similarly, we performed the simulations in the case of no micro time-
stepping,micro time-stepping in the fluid and the solid subdomain.We considered both
Configuration 2.1 and 2.2. In the case of Configuration 2.1, the number of evaluations
of the decoupling function using the relaxation method varied between 14 and 15. For
the shooting function, this value was mostly equal to 6 with a few exceptions when
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Fig. 3 Performance of decoupling methods for Configuration 2.1 in one macro time-step in the case of
N f = Ns = N (top), N f = 10N and Ns = N (left), N f = N and Ns = 10N (right)

only 5 evaluations were needed. For Configuration 2.2, the relaxation method needed
between 18 and 21 iterations while for the shooting method it was almost always
equal to 11. For each configuration, graphs corresponding to no micro time-stepping
and micro time-stepping in the fluid subdomain are the same, while introducing micro
time-stepping in the solid subdomain resulted in slight variations. For both decoupling
methods, the independence of the performance from the number of micro time-steps
extends to the whole time interval I = [0, 1].

4 Goal oriented estimation

In Section 1we formulated the semi-discrete problem enabling usage of different time-
step sizes in fluid and solid subdomains, whereas in Section 2 we presented methods
designed to efficiently solve such problems. However, so far the choice of the step
sizes was purely arbitrary. In this section, we are going to present an easily localized
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Fig. 4 Performance of decoupling methods for Configuration 2.2 in one macro time-step in the case of
N f = Ns = N (top), N f = 10N and Ns = N (left), N f = N and Ns = 10N (right)

error estimator, which can be used as a criterion for the adaptive choice of the time-step
size.

For the construction of the error estimator, we used the dual weighted residual
(DWR) method [2]. Given a differentiable goal functional J : X → R, our aim is
finding a way to approximate J (U) − J (Uk), where U is the exact solution (Prob-
lem 2.1) and Uk is the semi-discrete solution (Problem 2.2). The goal functional is
split into two parts J f : X f → R and J s : Xs → R which refer to the fluid and solid
subdomains, respectively

J (U) := J f (U f ) + J s(Us).

The DWR method is based on the following constrained optimization problem

J (U) = min! such that B(U)(Φ) = F(Φ) for all Φ ∈ X ,
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Fig. 5 Number of evaluations of the decoupling functions for Configuration 2.1 needed for convergence
on the time interval I = [0, 1] for N = 50 in the case of N f = Ns = N (top), N f = 10N and Ns = N
(left), N f = N and Ns = 10N (right)

where

B(U)(Φ) := B f (U)(Φ f ) + Bs(U)(Φs),

F(Φ) := F f (Φ f ) + Fs(Φs).

Solving this problem corresponds to finding stationary points of a Lagrangian L

L(U,Z) := J (U) + F(Z) − B(U)(Z).

Because form B describes a linear problem, finding stationary points ofL is equivalent
to solving the following problem:

Problem 4.1 For a given U ∈ X being the solution of Problem 2.1, find Z ∈ X such
that:

B(Ψ ,Z) = J ′
U(Ψ )
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Fig. 6 Number of evaluations of the decoupling functions for Configuration 2.2 needed for convergence
on the time interval I = [0, 1] for N = 50 in the case of N f = Ns = N (top), N f = 10N and Ns = N
(left), N f = N and Ns = 10N (right)

for all Ψ ∈ X .

The solution Z is called an adjoint solution. By J ′
U(Ψ ) we denote the Gateaux deriva-

tive of J (·) at U in direction of the test function Ψ .

4.1 Adjoint problem

4.1.1 Continuous variational formulation

As the first step in decoupling the Problem 4.1, we would like to split the form B
into forms corresponding to fluid and solid subproblems. However, we can not fully
reuse the forms (2.7a) and (2.7b) because of the interface terms—the forms have to be
sorted regarding test functions. The adjoint solution is written as Z = (Z f ,Zs), each
split to Z f = (z f , y f ) ∈ X f and Zs = (zs, ys) ∈ Xs . Likewise, for the test function,
we set Ψ = (Ψ f ,Ψ s) with Ψ f = (η f , ξ f ) ∈ X f and Ψ s = (ηs, ξ s) ∈ Xs . Then we
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introduce the adjoint forms, sorted by the test functions

B(Ψ )(Z) := B̃ f (Ψ f )(Z) + B̃s(Ψ s)(Z),

we have

B̃ f (Ψ f )(Z) := −
∫
I
〈∂t z f , η f 〉 f dt +

∫
I
ã f (Ψ f )(Z) dt + (η f (T ), z f (T )) f ,

B̃s(Ψ s)(Z) := −
∫
I
〈∂t zs, ηs〉s dt −

∫
I
〈∂t ys, ξ s〉s dt +

∫
I
ãs(Ψ s)(Z) dt

+ (ηs(T ), zs(T ))s + (ξ s(T ), ys(T ))s

and

ã f (Ψ f )(Z) := (ν∇η f ,∇z f ) f + (β · ∇η f , z f ) f + (∇ξ f ,∇ y f ) f

− 〈∂n f ξ
f , y f 〉Γ + γ

h
〈ξ f , y f 〉Γ − 〈ν∂n f η

f , z f 〉Γ
+ γ

h
〈νη f , z f 〉Γ + 〈ν∂n f η

f , zs〉Γ ,

ãs(Ψ s)(Z) := (λ∇ξ s,∇zs)s + (δ∇ηs,∇zs)s − (ηs, ys)s

− γ

h
〈ξ s, y f 〉Γ − γ

h
〈νηs, z f 〉Γ − 〈δ∂nsηs, zs〉Γ .

We have applied integration by parts in time which reveals that the adjoint problem
runs backward in time. That leads to the formulation of a continuous adjoint variational
problem:

Problem 4.2 For a given U ∈ X being the solution of Problem 2.1, find Z ∈ X such
that:

B̃ f (Ψ f )(Z) = (J f )′U(Ψ f )

B̃s(Ψ s)(Z) = (J s)′U(Ψ s)

for all Ψ f ∈ X f and Ψ s ∈ Xs .

4.1.2 Semi-discrete Petrov–Galerkin formulation

The semi-discrete formulation for the adjoint problem is similar to the one of the
primal problem. The main difference lies in the fact that this time trial functions are
piecewise constant in time Zk ∈ Yk := Y f

k × Y s
k , while test functions are piecewise

linear in time Ψ
f
k ∈ X f

k , Ψ s
k ∈ Xs

k . With that at our disposal, we can formulate a
semi-discrete adjoint variational problem:
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Problem 4.3 For a given U ∈ X being the solution of Problem 2.1, find Zk ∈ Yk such
that:

B̃ f (Ψ
f
k )(Zk) = (J f )′U(Ψ

f
k ),

B̃s(Ψ s
k)(Zk) = (J s)′U(Ψ s

k)

for all Ψ f
k ∈ X f

k and Ψ s
k ∈ Xs

k .

After formulating the problem in a semi-discrete manner, the decoupling methods
from Sect. 3 can be applied.

4.2 A posteriori error estimate

We define the primal residual, split into parts corresponding to the fluid and solid
subproblems

ρ(U)(Φ) := ρ f (U)(Φ f ) + ρs(U)(Φs),

where

ρ f (U)(Φ f ) := F f (Φ f ) − B f (U)(Φ f ),

ρs(U)(Φs) := Fs(Φs) − Bs(U)(Φs).

Similarly, we establish the adjoint residual resulting from the adjoint problem

ρ∗(Z)(Ψ ) := ρ f ,∗(Z)(Ψ f ) + ρs,∗(Z)(Ψ s)

with

ρ f ,∗(Z)(Ψ f ) := (J f )′U(Ψ f ) − B̃ f (Ψ f )(Z),

ρs,∗(Z)(Ψ s) := (J s)′U(Ψ s) − B̃s(Ψ s)(Z)

Becker and Rannacher [2] introduced the a posteriori error representation:

J (U) − J (Uk) = 1

2
min

Φk∈Yk
ρ(Uk)(Z − Ψ k) + 1

2
min

Ψ k∈Xk
ρ∗(Zk)(U − Φk)

+O(|U − Uk |3, |Z − Zk |3) (4.3)

This identity can be used to derive an a posteriori error estimate. Two steps of approx-
imation are required: first, the third order remainder is neglected and second, the
approximation errors Z− Ψ k and U − Φk , the weights, are replaced by interpolation
errorsZ− ikZ andU− ikU. These errors are then replaced by discrete reconstructions,
since the exact solutions U,Z ∈ X are not available. See [20,27] for a discussion of
different reconstruction schemes. Due to these approximation steps, this estimator is
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Fig. 7 Reconstruction of the primal solution U(2)
k (left) and the adjoint solution Z(1)

k (right)

not precise and it does not result in rigorous bounds. The estimator consists of a primal
and adjoint component. Each of them is split again into a fluid and a solid counterpart

σk := θ f + θ s + ϑ f + ϑ s . (4.4)

The primal estimators are derived from the primal residuals using Uk and Zk being
the solutions to Problems 2.2 and 4.3, respectively

θ f := 1

2
ρ f (Uk)(Z

f ,(1)
k − Z f

k ), θ s := 1

2
ρs(Uk)(Z

s,(1)
k − Zs

k).

The adjoint reconstructions Z f ,(1)
k and Zs,(1)

k approximating the exact solution are
constructed from Zk using linear extrapolation (see Fig. 7, right)

Z(1)
k (t)

∣∣
In

:= t − t̄n+1

t̄n−1 − t̄n+1
Zk(tn−1) + t − t̄n−1

t̄n+1 − t̄n−1
Zk(tn+1)

with the interval midpoints t̄n := tn+tn−1
2 . To simplify the notation, we defined the

reconstruction on the macro time-mesh level. However, we use this idea in the same
spirit on each of the micro meshes I f

n and I sn . The adjoint estimators are based on the
adjoint residuals

ϑ f := 1

2
ρ f ,∗(Zk)(U

f ,(2)
k − U f

k ), ϑ s := 1

2
ρs,∗(Zk)(U

s,(2)
k − Us

k).

The primal reconstructions U f ,(2)
k and Us,(2)

k are extracted from Uk using quadratic
reconstruction (see Fig. 7, left).We perform the reconstruction on themicro time-mesh
level on local patches consisting of two neighboring micro time-steps. In general,
the patch structure does not have to coincide with the micro and macro time-mesh
structure—two micro time-steps being in the same local patch do not have to be in the
same macro time-step. Additionally, we demand two micro time-steps from the same
local patch to have the same length.

We compute the effectivity of the error estimate using

effk := σk

J (Uexact) − J (Uk)
,
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Fig. 8 An example of preserving the local patch structure during the marking procedure: if the time-step is
refined, the other time-step belonging to the same patch will also be refined

where J (Uexact) can be approximated by extrapolation in time.

4.3 Adaptivity

The residuals (4.4) can be easily localized by restricting them to a specific subinterval,
e.g., the primal fluid-residuals θ f , restricted to I f

n := [t fn−1, t
f
n ) is denoted as θ

f
n , see

Sect. 2.2 and Fig. 2. All further residuals θ s, ϑ f and ϑ s are restricted in the same
fashion. We then can compute an average for each of the components

σ̄k := 1

2N f

N f∑
n=1

(
|θ f
n | + |ϑ f

n |
)

+ 1

2Ns

Ns∑
n=1

(|θ sn | + |ϑ s
n |

)
. (4.5)

This way we can obtain satisfactory refining criteria as

(∣∣∣θ f
n

∣∣∣ ≥ σ̄k or
∣∣∣ϑ f

n

∣∣∣ ≥ σ̄k

)
�⇒ refine I f

n = [t fn−1, t
f
n ),(∣∣θ sn ∣∣ ≥ σ̄k or

∣∣ϑ s
n

∣∣ ≥ σ̄k
) �⇒ refine I sn = [t sn−1, t

s
n).

(4.6)

Taking into account the time interval partitioning structure, we arrive with the fol-
lowing algorithm:

1. Mark subintervals using the refining criteria (4.6).
2. Adjust the local patch structure—in case only one subinterval from a specific patch

is marked, mark the other one as well (see Fig. 8).
3. Perform time refining.
4. Adjust the macro time-step structure—in case within one macro time-step there

exist a fluid and a solid micro time-step that coincide, split the macro time-step
into two macro time-steps at this point (see Fig. 9).
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Fig. 9 An example of a splitting mechanism of macro time-steps. On the left, we show the mesh before
refinement: middle (in black) the macro nodes, top (in blue) the fluid nodes and bottom (in red) the solid
nodes with subcycling. In the center sketch, we refine the first macro interval once within the fluid domain.
Since one node is shared between fluid and solid, we refine the macro mesh to resolve subcycling. This
final configuration is shown on the right

5 Numerical results

5.1 Fluid subdomain functional

For the first example, we chose to test the derived error estimator on a goal functional
concentrated in the fluid subproblem

J f (U) :=
∫ T

0
ν‖∇v f ‖2f dt, J s(U) := 0.

The functional is integrated only over the right half of the fluid subdomain, that is
Ω̃ f = (2, 4)× (0, 1). For this example, we also took the right hand side concentrated
in the fluid subdomain, presented in Configuration 2.1. As the time interval, we choose
I = [0, 1]. Then we have

(J f )′U(Ψ f ) =
∫ T

0
2ν

(
∇v f ,∇η f

)
f
dt .

Since the functional is nonlinear, we use a 2-point Gaussian quadrature for integra-
tion in time. In Table 1 we show the results of the a posteriori error estimator on a
sequence of uniform time-meshes. Here, we considered the case without any micro
time-stepping, that is the time-step sizes in both fluid and solid subdomains are uni-
formly equal. That gives a total number of time-steps in the fluid domain equal to
N f = N and Ns = N in the solid domain. Table 1 consists of partial residuals
θ
f
k , θ sk , ϑ

f
k and ϑ s

k , overall estimate σk , extrapolated errors J̃ − J (Uk) and effectiv-
ities effk . The values of the goal functional on the three finest meshes were used for
extrapolation in time. As a result, we got the reference value J̃ = 6.029469 × 10−5.
Except for the coarsest mesh, the estimator is very accurate and the effectivities are
almost 1. On finer meshes, values of θ

f
k and ϑ

f
k are very close to each other which

is due to the linearity of the coupled problem [2]. A similar phenomenon happens for
θ sk and ϑ s

k . The residuals are concentrated in the fluid subdomain, which suggests the
usage of smaller time-step sizes in this space domain.

Table 2 collects the results for another sequence of uniform time-meshes. In this
case, each of themacro time-steps in the fluid domain is split into twomicro time-steps
of the same size. That results in N f = 2N time-steps in the fluid domain and Ns = N
in the solid domain. The performance is still highly satisfactory. The residuals remain
mostly concentrated in the fluid subdomain. Additionally, after comparing Tables 1
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and 2, one can see that corresponding values of θ
f
k and ϑ

f
k are the same (value for

N = 800 in Table 1 and N = 400 in Table 2, etc.). Overall, introducing micro
time-stepping improves performance and reduces extrapolated error J̃ − J (Uk) more
efficiently.

In Table 3 we present findings in the case of adaptive time mesh refinement. We
chose an initial configuration of uniform time-stepping without micro time-stepping
for N = 50 and applied a sequence of adaptive refinements. On every level of
refinement, the total number of time-steps is N f + Ns . One can see that since the
error is concentrated in the fluid domain, only time-steps corresponding to this space
domain were refined. Again, effectivity gives very good results. The extrapolated error
J̃ − J (Uk) is even more efficiently reduced.

5.2 Solid subdomain functional

For the sake of symmetry, for the second example, we chose a functional concentrated
on the solid subdomain

J f (U) = 0, J s(U) =
∫ T

0
λ‖∇us‖2s dt .

Also here the functional is integrated only over the right half of the solid subdomain
Ω̃s = (2, 4) × (−1, 0). This time we set the right hand side according to Configura-
tion 2.2. Again, Ī = [0, 1]. The derivative reads as

(J s)′U(Ψ s) =
∫ T

0
2λ

(∇us,∇ξ s
)
s dt .

A third test case with functional evaluations in both domains gave comparable results
without additional information, such that we refrain from adding it to this manuscript.
Similarly, Table 4 gathers results for a sequence of uniform meshes without any micro
time-stepping (N f = Ns = N ). The last three solutions are used for extrapolation in
time which gives J̃ = 3.458826× 10−4. Also for this example, the effectivity is very
satisfactory. On the finest discretization, the effectivity slightly declines. This might
come from the limited accuracy of the reference value. Once more, on finer meshes,
fluid residuals θ

f
k , ϑ

f
k and solid residuals θ sk , ϑ

s
k have similar values. This time, the

residuals are concentrated in the solid subdomain and, in this case, the discrepancy is
a bit bigger.

In Table 5 we display outcomes for a sequence of uniform meshes where each of
the macro time-steps in the solid subdomain is split into two micro time-steps. That
gives N + 2N time-steps. Introducing micro time-stepping does not have a negative
impact on the effectivity and significantly saves computational effort. Corresponding
values of θ sk and ϑ s

k in Tables 4 and 5 are almost the same. Residuals remain mostly
concentrated in the solid subdomain.

Following the fluid example, in Table 6 we show calculation results in the case
of adaptive time-mesh refinement. Here as well we took the uniform time-stepping
without micro time-stepping for N = 50 as the initial configuration and the total
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Fig. 10 Adaptive meshes for the solid functional. Top: uniform initial mesh; middle: 2 steps of adaptive
refinement; bottom: 4 steps. Each plot shows the macro mesh (middle), the fluid mesh (top, in blue) and
the solid mesh (bottom, in red)

number of time-steps is N f + Ns . Except for the last entry, only the time-steps
corresponding to the solid domain were refined. On the finest mesh, the effectivity
deteriorates. However, adaptive time-stepping is still the most effective in reducing
the extrapolated error J̃ − J (Uk).

Finally, we show in Fig. 10 a sequence of adaptive meshes that result from this
adaptive refinement strategy. In the top row, we show the initial mesh with 50 macro
steps and no further splitting in fluid and solid. For a better presentation, we only
show a small subset of the temporal interval [0.1, 0.4]. In the middle plot, we show
the mesh after 2 steps of adaptive refinement and in the bottom line after 4 steps of
adaptive refinement. Each plot shows the macro mesh, the fluid mesh (above) and
the solid mesh (below). As expected, this example leads to a sub-cycling within the
solid domain. For a finer approximation, the fluid problem also requires some local
refinement. Whenever possible we avoid excessive subcycling by refining the macro
mesh as described in Sect. 4.3.

6 Conclusion

In this paper, we have developed amultirate scheme and a temporal error estimate for a
coupled problem that is inspired by fluid-structure interactions. The two subproblems,
the heat equation and the wave equation feature different temporal dynamics. In this
example, balanced approximation properties and stability demands ask for different
step sizes.

We introduced a monolithic variational Galerkin formulation for the coupled prob-
lem and then used a partitioned framework for solving the algebraic systems. Having
different time-step sizes for each of the subproblems couples multiple states in each
time-step. That would require an enormous computational effort. To solve this, we
discussed two different decoupling methods: first, a simple relaxation scheme that
alternates between fluid and solid problem. In the second one, similar to the shoot-
ing method, we defined a root-finding problem on the interface and used matrix-free
Newton-Krylov method for quickly approximating the zero. Both of the methods
were able to successfully decouple our specific example and showed good robustness
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concerning different subcycling of the multirate scheme in fluid- or solid-domain.
However, the convergence of the shooting method was faster and it required fewer
evaluations of the variational formulation.

As the next step, we introduced a goal-oriented error estimate based on the dual
weighted residual method to estimate errors with regard to functional evaluations. The
monolithic space-time Galerkin formulation allowed to split the residual errors into
contributions from the fluid and solid problems. Finally,we established the localization
of the error estimator. That let us derive an adaptive refinement scheme for choosing
optimal distinct time-meshes for each problem. Several numerical results for two
different goal functionals showed very good effectivity of the error estimate.

In future work, it remains to extend the methodology to nonlinear problems, in
particular, to fully coupled fluid-structure interactions.
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