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Abstract
Wepropose a robust and efficient augmented Lagrangian-type preconditioner for solv-
ing linearizations of the Oseen–Frank model arising in nematic and cholesteric liquid
crystals. By applying the augmented Lagrangian method, the Schur complement of
the director block can be better approximated by the weighted mass matrix of the
Lagrange multiplier, at the cost of making the augmented director block harder to
solve. In order to solve the augmented director block, we develop a robust multigrid
algorithmwhich includes an additive Schwarz relaxation that captures a pointwise ver-
sion of the kernel of the semi-definite term. Furthermore, we prove that the augmented
Lagrangian term improves the discrete enforcement of the unit-length constraint.
Numerical experiments verify the efficiency of the algorithm and its robustness with
respect to problem-related parameters (Frank constants and cholesteric pitch) and the
mesh size.
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1 Introduction

Liquid crystals (LC), first discovered by Reinitzer in 1888 [46], are materials that can
exist in an intermediate mesophase between isotropic liquids and solid crystals: they
can flow like liquids while also possessing long-range orientational order. Based on
different ordering symmetries, Friedel [25] proposed to classify them into three broad
categories: nematic, smectic and cholesteric. The nematic phase is the simplest and
most extensively studied form of LC, where the molecules locally tend to align in one
preferred direction, described in this work by a director field n : Ω → R

3. In the
smectic phase, the molecules exhibit orientational order but also organize themselves
into well-defined layers that can slide over each other. In the cholesteric phase, also
referred as the chiral nematic phase, themolecules are arranged in layers, each ofwhich
is rotated with a fixed angle relative to the previous one. The distance over which the
layers rotate by 2π is referred to as the cholesteric pitch q0. A nonzero parameter
q0 indicates chirality, while a zero value of q0 represents a nematic phase. Since the
orientational properties of LC can be manipulated by imposing electric fields, they are
often used to control light and have formed the basis of several important technologies
in the area of display devices. Several thorough overviews on LC modeling and its
history can be found in [5,12,52].

There are several models describing LC, e.g., the Oseen–Frank, Ericksen and
Landau–de Gennes theories. The Oseen–Frank model [24,42] is commonly used for
the equilibrium orientation of liquid crystals. It employs a director n : Ω → R

3 as
the state variable and minimizes a free energy functional. By definition, the director
is a unit vector denoting the average orientation of the molecules in a fluid element at
a point and headless in the sense that n and −n are indistinguishable. The free energy
functional depends on Frank constants that describe the relative energetic costs of
various kinds of distortions. We refer to [15,19] for other continuum models such as
the Ericksen and the Landau–de Gennes models. In this work, we will focus on the
continuum Oseen–Frank theory. The key difficulty is that enforcing the unit-length
constraint n · n = 1 with a Lagrange multiplier leads to a saddle-point system, which
poses challenges because of its poor spectral properties. Several classical techniques
regarding the solution of saddle-point problems are reviewed and illustrated in [10].

There are several existingworks concerning preconditioners for Oseen–Frankmod-
els of nematic LC. For the saddle-point structure of harmonic maps (arising when
all Frank constants are equal), Hu et al. [32] propose to use a block-diagonal pre-
conditioner, consisting of a symmetric and spectrally equivalent multigrid operator
and a discrete Laplacian operator. Ramage and Gartland [44] consider the case of
an electrically coupled equal-constant nematic LC and combine a discretize-then-
optimize approach with projection onto the nullspace of the discrete constraint to
reduce the size of the linear system. The projected problem is then preconditioned
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with a block-diagonal preconditioner. Furthermore, a number of other precondition-
ers are discussed and analyzed in [7,8] for double saddle-point systems arising in
both potential fluid flows and electric-field coupled nematic LC. Concerning the dou-
ble saddle-point structure, a class of Uzawa-type methods, which can be interpreted
as generalized Gauss–Seidel methods, and an augmented Lagrangian technique are
studied in [9]. It is shown that the applied augmented Lagrangian form is mesh-
independent and the performance of the iteration can be improved by increasing the
value of γ . These references also apply the discretize-then-optimize approach to tackle
the pointwise unit-length vector constraint. In this paper, we will employ the optimize-
then-discretize strategy and enforce the unit-length constraint on the continuous level.
As an alternative to block preconditioning strategies, monolithic multigrid methods
for the nematic problem have been proposed using Vanka [1] and Braess–Sarazin [3]
relaxation.

There is lesswork onpreconditioning for cholestericLC.AdampedNewtonmethod
with LU decomposition was applied to the bifurcation analysis of cholesteric problem
in [18] with good results, but no discussion of preconditioners is presented.

In this paper, we propose to enforce the unit-length constraint with an augmented
Lagrangian approach to help control the Schur complement arising in the saddle-point
system. When combined with specialized multigrid schemes, augmented Lagrangian
strategies can yield scalable, mesh-independent, and parameter-robust precondition-
ers. A notable success is the development of Reynolds-robust solvers for the two-
[11,41] and three-dimensional [21] stationary Navier–Stokes equations.

This success motivates the investigation of whether similar ideas can underpin
robust solvers in the LC case.

The main contribution of this work is the development of a robust multigrid solver
for the augmented director block and an effective Schur complement approximation
for the linearization of the cholesteric Oseen–Frank equations. The robust multigrid
strategy is motivated by the general theory of Schöberl and Lee et al. [35,49,50]. We
develop a multigrid relaxation scheme that captures an approximation to the kernel of
the semi-definite augmentation term and account for this approximation in the spectral
analysis. Furthermore, a proof of the improvement of the discrete constraint is given
and verified numerically. A key difference to previous applications of these ideas in
linear elasticity and the Navier–Stokes equations is that the constraint to be imposed
on the director is nonlinear.

This paper is organized as follows. The Oseen–Frank model is reviewed in Sect.
2 and the solvability of the discretized Newton linearizations is briefly analyzed. The
augmented Lagrangian strategy for enforcing the unit-length constraint is discussed.
A Picard iteration is proposed for solving the augmented nonlinear equations. We then
give a theoretical justification of the continuous and discrete augmented Lagrangian
stabilizations in Sect. 3. This further leads to our choice of the approximation to the
Schur complementmatrix arising from the Picard iteration. In Sect. 4, we prove that the
augmented Lagrangian strategy improves the discrete enforcement of the constraint.
A robust multigrid algorithm for the augmented top-left block is discussed in Sect. 5
which also includes a formal spectral analysis of our preconditioner with the property
of the approximate kernel. Numerical experiments in two-dimensional domains are
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reported inSect. 6 to verify the effectiveness and robustness of our proposed augmented
Lagrangian preconditioner. Finally, some conclusions are presented in Sect. 7.

2 Oseen–Frankmodel

LetΩ ⊂ R
d , d = {2, 3} be an open, bounded domainwith Lipschitz boundary ∂Ω and

denoteH1
g(Ω) = {v ∈ H1(Ω;R3) : v|∂Ω = g}with a vector field g ∈ H1/2(∂Ω;S2).

Here, S2 represents the surface of the unit ball centered at the origin. Assume that the
cholesteric LC occupying the domainΩ is equipped with a rigid anchoring (Dirichlet)
boundary condition n|∂Ω = g1. The Oseen–Frank model (cf. [24]) considers the
following minimization problem:

min
n∈H1

g(Ω)
J (n) =

∫
Ω

W (n)dx,

subject to n · n = 1 a.e.,

(2.1)

where the Frank energy density W (n) is of the form

W (n) = K1

2
(∇ · n)2 + K2

2
(n · (∇ × n) + q0)

2 + K3

2
|n × (∇ × n)|2

+ K2 + K4

2
[tr((∇n)2) − (∇ · n)2],

(2.2)

where tr(·) denotes the trace of a matrix, Ki ∈ R (i = 1, 2, 3, 4) are elastic constants
(called Frank constants) and q0 ≥ 0 is the preferred pitch for the cholesteric. K1, K2,
K3, and K4 are referred to as the splay, twist, bend, and saddle-splay constants, respec-
tively. Note here ∇n is matrix-valued and (∇n)2 denotes the matrix multiplication of
the matrix ∇n and itself.

If K1 = K2 = K3 = K > 0 and K4 = 0, the energy density (2.2) reduces to the
so-called equal-constant approximation, with energy density

W (n) = K

2

[
|∇n|2 + 2q0n · (∇ × n) + q20

]
,

which is a useful simplification to help us gain qualitative insight into more complex
situations.

Remark 2.1 When q0 = 0, the energy density (2.2) corresponds to the nematic case.
Furthermore, when combined with the equal-constant approximation, (2.2) reduces to

W (n) = K

2
|∇n|2. (2.3)

1 The following theory also applies with mixed periodic and Dirichlet boundary conditions [2,6], which
we shall use in some numerical examples.
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With this free energy density, the solution to the minimization problem (2.1) is unique
and is known as the harmonicmap from a two- or three-dimensional compactmanifold
to S2 [36]. Some fast numerical algorithms for (2.3) have been proposed and tested in
[32].

The last term (the saddle-splay term or the null Lagrangian) in (2.2) can be dropped
as its integral reduces to a surface integral, which is essentially a constant if applying
Dirichlet boundary conditions to the model, via the divergence theorem. For mixed
periodic and Dirichlet boundary conditions considered in Sect. 6.2.1, we can verify
directly that this saddle-splay energy vanishes. Hence, for simplicity, it suffices to
consider the following Frank energy density

W (n) = K1

2
(∇ · n)2 + K2

2
(n · (∇ × n) + q0)

2 + K3

2
|n × (∇ × n)|2.

In this paper, we use a more compact form of the free energy (2.1) as in [2,3] by
introducing a symmetric dimensionless tensor

Z = κn ⊗ n + (I − n ⊗ n) = I + (κ − 1)n ⊗ n,

where κ = K2/K3 and I is the second-order identity tensor. By the classical equality

|∇ × n|2 = (n · (∇ × n))2 + |n × (∇ × n)|2, (2.4)

the original energy functional J (n) can be written as

J (n) = 1

2
[K1〈∇ · n,∇ · n〉0 + K3〈Z∇ × n,∇ × n〉0

+2K2q0〈n,∇ × n〉0 + K2〈q0, q0〉0] .
(2.5)

Here and throughout this work, 〈·, ·〉0 denotes the inner product in L2(Ω) with its
induced norm ‖ · ‖0. It can be observed that the auxiliary tensor Z contributes to the
nonlinearity of J (n) in (2.5).

Remark 2.2 There is another widely used simplification of the energy density (2.2),
where q0 = 0 and K2 = K3 = K1 + K , K4 = −K [29,37]. In this case, (2.2)
becomes

W (n) = 1

2
[K1|∇n|2 + K |∇ × n|2],

and it is expected that as K → ∞, the asymptotic behavior of minimizers provides a
description of the phase transition process of LC from the nematic to the smectic-A
phases [29,37,38].

Furthermore, it is proven in [2, Section 2.3] that Z is uniformly (with respect to
x ∈ Ω) symmetric positive definite (USPD) as long as sufficient control is maintained
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on n ·n−1. This property ofZ plays an essential role in proving the well-posedness of
the saddle-point problem in the nematic case. We restate the result of Z being USPD
in the following, as it is important later:

Lemma 2.1 [2, Section 2.3] Assume α ≤ |n|2 ≤ β ∀x ∈ Ω with 0 < α ≤ 1 ≤ β. If
κ > 1, then Z is USPD on Ω; for 0 < κ < 1, then Z is USPD on Ω if β < 1

1−κ
.

Remark 2.3 Notice that the regularity of n ∈ H1(Ω) is enough for the functional J (n)

of (2.5) to be well defined. In fact, n ∈ H1(Ω) implies ∇ · n and ∇ × n in L2(Ω). By
(2.4), n · (∇ × n) ∈ L2(Ω). This ensures that the term 〈q0,n · (∇ × n)〉0 in (2.5) is
defined. Furthermore, Lemma 2.1 gives the boundedness of Z, which guarantees the
L2-regularity of the term Z∇ × n in (2.5).

Naturally, the values of elastic constants and the cholesteric pitch will be an impor-
tant factor in determining the minimizers. In order to satisfy non-negativity of the
energy density, i.e.,

W (n) ≥ 0 ∀n ∈ H1
g(Ω),

we need additional assumptions on those constants. This gives rise to Ericksen’s
inequalities (see [5,6] and references therein):

K1, K2, K3 ≥ 0, K2 + K4 = 0 if q0 �= 0,

2K1 ≥ K2 + K4, K2 ≥ |K4|, K3 ≥ 0 if q0 = 0.

Remark 2.4 We have included the inequalities with regard to constant K4 here for
generality, though they are not necessary in our work as we have eliminated the K4-
related term in the free energy. In this paper, we will simply consider Ki > 0 (i =
1, 2, 3) to avoid any technical issues.

For the minimization problem (2.1) arising in (nematic or cholesteric) liquid crys-
tals, it has been proven in [36, Theorem 2.1] that there exists a solution.

Theorem 2.1 [36, Theorem 2.1] Let Ω be a bounded Lipschitz domain and assume
the Dirichlet boundary data g ∈ H1/2(∂Ω;S2). If K1, K2, K3 > 0, then there exists
an n ∈ H1

g (Ω;S2) := {n ∈ H1(Ω;S2) : n = g on ∂Ω} such that

J (n) = inf
u∈H1

g (Ω;S2)
J (u).

Themain difficulty in solving theOseen–Frankmodel (2.1) is the enforcement of the
unit-length constraint. There are several existing approaches to handling constraints,
e.g., projection [38], Lagrange multipliers, and penalty methods [39, Section 12.3 &
17].

The projection method is numerically simple but the value of the energy functional
may go up and down dramatically after each projection, making it difficult to control
in the optimization procedure [38]. A Lagrange multiplier is often used to replace
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constrained optimization problems with unconstrained ones, but an important disad-
vantage of this approach is that it introduces another unknown (i.e., the Lagrange
multiplier) and leads to a saddle-point structure which can be difficult to solve [10].
On the other hand, the penalty method has the favorable property that the resulting
system has an energy decay property [37] which may result in an easier theoretical
and numerical study of the solution. However, the penalty parameter has to be very
large for the accuracy of approximating the constraints, leading to an ill-conditioned
system. Some works based on either projection or pure penalty methods for nematic
phases can be found in [28,29,37] and the references therein.

Fortunately, it is possible to amend the ill-conditioning effects with large penalty
parameters that are inherent in the pure penalty method by combining it with a
Lagrange multiplier. This is the augmented Lagrangian (AL) algorithm [23]. This
strategy combines the advantages of both schemes: the penalty parameter can be rela-
tively small due to the presence of the Lagrange multiplier, and the Schur complement
of the saddle-point system is easier to solve due to the presence of the penalty term
[11,21,28,29,40].

We first consider the method of Lagrange multipliers. We then add the augmented
Lagrangian term to control the Schur complement of the system.

2.1 Lagrangemultiplier and Newton linearization

By introducing the Lagrange multiplier λ ∈ L2(Ω), the associated Lagrangian of the
minimization problem (2.1) is then defined as

L (n, λ) = J (n) + 〈λ,n · n − 1〉0, (2.6)

and its first-order optimality conditions are: find (n, λ) ∈ H1
g(Ω) × L2(Ω) such that

Ln[v] = Jn[v] + 〈λ, 2n · v〉0
= K1〈∇ · n,∇ · v〉0 + K3〈Z∇ × n,∇ × v〉0

+ (K2 − K3)〈n · ∇ × n, v · ∇ × n〉0
+ K2q0〈v,∇ × n〉0 + K2q0〈n,∇ × v〉0 + 〈λ, 2n · v〉0

= 0 ∀v ∈ H1
0(Ω),

Lλ[μ] = 〈μ,n · n − 1〉0 = 0 ∀μ ∈ L2(Ω).

(2.7)

As (2.7) is nonlinear, Newton linearization is employed. Letnk andλk be the current
approximations forn andλ, respectively, anddenote the correspondingupdates to these
approximations as δn = nk+1 − nk and δλ = λk+1 − λk . Then the Newton iteration
at (nk, λk) in block form is given by: find (δn, δλ) ∈ H1

0(Ω) × L2(Ω) such that

[
Lnn Lnλ

Lλn 0

] [
δn
δλ

]
= −

[
Ln
Lλ

]
, (2.8)
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where

Lnn[v, δn] = Jnn[v, δn] + 〈λk, 2δn · v〉0
= K1〈∇ · δn,∇ · v〉0 + K3〈Z(nk)∇ × δn,∇ × v〉0

+ (K2 − K3)
(
〈δn · ∇ × nk,nk · ∇ × v〉0 + 〈nk · ∇ × nk, δn · ∇ × v〉0

+ 〈v · ∇ × nk,nk · ∇ × δn〉0 + 〈nk · ∇ × nk, v · ∇ × δn〉0
+ 〈δn · ∇ × nk, v · ∇ × nk〉0

)

+ K2q0〈v,∇ × δn〉0 + K2q0〈δn,∇ × v〉0 + 〈λk, 2δn · v〉0,
(2.9)

and

Lnλ[v, δλ] = 〈δλ, 2nk · v〉0,
Lλn[μ, δn] = 〈μ, 2nk · δn〉0.

Since L (n, λ) is linear in λ, Lλλ = 0. This results in (2.8) being a saddle-point
problem.

With a suitable spatial discretization (we only consider conforming finite elements
in this work, i.e., Vh ⊂ H1

0(Ω), Qh ⊂ L2(Ω)), a symmetric saddle-point systemmust
be solved at each Newton iteration:

[
A B�
B 0

] [
U
P

]
=

[
f
g

]
, (2.10)

where U and P represent the coefficient vectors of δn and δλ in terms of the basis
functions of Vh and Qh , respectively.

We can accordingly write the discrete variational problem as: find δnh ∈ Vh and
δλh ∈ Qh such that

a(δnh, vh) + b(vh, δλh) = F(vh) ∀vh ∈ Vh,

b(δnh, μh) = G(μh) ∀μh ∈ Qh,
(2.11)

where a(·, ·) and b(·, ·) are bilinear forms given by

a(u, v) =K1〈∇ · u,∇ · v〉0 + K3〈Z(nk)∇ × u,∇ × v〉0
+ (K2 − K3)

(
〈u · ∇ × nk,nk · ∇ × v〉0 + 〈nk · ∇ × nk,u · ∇ × v〉0

+ 〈v · ∇ × nk,nk · ∇ × u〉0 + 〈nk · ∇ × nk, v · ∇ × u〉0
+ 〈u · ∇ × nk, v · ∇ × nk〉0

)

+ K2q0〈v,∇ × u〉0 + K2q0〈u,∇ × v〉0 + 〈λk, 2u · v〉0,
and

b(v, p) = 〈p, 2nk · v〉0,
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and F and G are linear functionals in the forms of

F(v) = −
(
K1〈∇ · nk,∇ · v〉0 + K3〈Z(nk)∇ × nk,∇ × v〉0

+ (K2 − K3)〈nk · ∇ × nk, v · ∇ · nk〉0
+ K2q0〈v,∇ × nk〉0 + K2q0〈nk,∇ × v〉0
+ 〈λk, 2nk · v〉0

)
,

and

G(μ) = −〈μ,nk · nk − 1〉0.

Remark 2.5 The well-posedness of the continuous and discretized Newton system
(with the ([Qm]d ⊕ BF )-Q0 finite element pair, m ≥ 1) for a generalized nematic LC
problem is discussed in [2], where BF denotes the space of quadratic bubbles and Qk

represents tensor product piecewiseC0 polynomials of degree k ≥ 0 on a quadrilateral
mesh. Moreover, the authors of [3] considered the pure penalty approach for nematic
LC and obtained a well-posedness result of the penalized Newton iteration through
similar techniques. We will follow these analysis strategies in this section.

In our work, we will denote by Pk the set of piecewise C0 polynomials of degree
k ≥ 0 on a mesh of triangles or tetrahedra.

It is straightforward to deduce the well-posedness of the discrete Newton iteration
(2.11) for cholesteric problems under some proper assumptions on the problem-
dependent constants. In fact, two additional q0-related terms in Lnn from (2.9)
compared to the nematic energy density from [2] are simply L2 inner products, which
can be easily bounded using the Cauchy–Schwarz and triangle inequalities. We state
the results without proof in the following and start with some assumptions.

Assumption 2.1 Assume that there exist constants 0 < α ≤ 1 ≤ β such that α ≤
|nk |2 ≤ β. For 0 < κ < 1, assume further that β < 1

1−κ
. By Lemma 2.1, Z(nk)

remains USPD with lower bound η and upper bound �, i.e.,

η ≤ x�Z(nk)x
x�x

≤ � ∀x ∈ R
d\{0}.

Note that here and hereafter, ‖ · ‖1 denotes the H1 norm: ‖w‖21 = ‖w‖20 + ‖∇w‖20.
Lemma 2.2 (Continuous coercivity)With Assumption 2.1, we assume further that the
current Lagrangemultiplier approximation λk is pointwise non-negative almost every-
where. Let K1 > K2q0C4 and K3η > K2q0(C4 +1) with C4 to be defined. Then there
exists an α0 > 0 such that

α0‖v‖21 ≤ a(v, v) ∀v ∈ H1
0(Ω). (2.12)

Moreover, when κ = 1, i.e., K2 = K3, if K1 > K2q0C4 and 1 > q0(C4 + 1), then the
coercivity result (2.12) also holds.
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Proof With the lower bound η of Z, we compute the bilinear form:

a(v, v) ≥ K1‖∇ · v‖20 + K3η‖∇ × v‖20 + 2K2q0〈v,∇ × v〉0 + 2〈λk, v · v〉0
≥ K1‖∇ · v‖20 + K3η‖∇ × v‖20 − 2K2q0|〈v,∇ × v〉0|
≥ K1‖∇ · v‖20 + K3η‖∇ × v‖20 − 2K2q0‖v‖0‖∇ × v‖0
≥ K1‖∇ · v‖20 + K3η‖∇ × v‖20 − K2q0(‖v‖20 + ‖∇ × v‖20),

where the first inequality comes from the assumption that λk is non-negative pointwise
and the last two inequalities are derived by Cauchy–Schwarz and Hölder inequalities,
respectively.

By Remark 2.7 of [27], for a bounded Lipschitz domain, there exists C1 > 0 such
that

‖∇v‖20 ≤ C1(‖∇ · v‖20 + ‖∇ × v‖20),
for all v ∈ H0(div,Ω) ∩ H0(curl,Ω).2 Here, we denote

H0(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω), ν · v = 0 on ∂Ω},
H0(curl,Ω) = {v ∈ L2(Ω) : ∇ × v ∈ L2(Ω), ν × v = 0 on ∂Ω},

where ν is the outward unit normal on the boundary ∂Ω . Then using the classical
Poincaré inequality, ‖v‖20 ≤ C3‖∇v‖20 for all v ∈ H1

0(Ω), and defining C4 = C1C3 >

0, we have
‖v‖20 ≤ C4(‖∇ · v‖20 + ‖∇ × v‖20).

Furthermore, there exists C2 = C4 + C1 > 0 such that

‖v‖21 ≤ C2(‖∇ · v‖20 + ‖∇ × v‖20).

It follows that

a(v, v) ≥ K1‖∇ · v‖20 + K2‖∇ × v‖20 − K2q0
[
C4

(‖∇ · v‖20 + ‖∇ × v‖20
) − ‖∇ × v‖20

]
= (K1 − K2q0C4)‖∇ · v‖20 + (K3η − K2q0C4 − K2q0)‖∇ × v‖20.

Choosing c = min{K1−K2q0C4, K3η−K2q0C4−K2q0} > 0 (the positivity follows
from the assumptions) and α0 = c/C2, we find that the coercivity (2.12) holds.

In particular, when κ = 1 (i.e., K2 = K3), we have Z = I and thus η = 1. Then,
the bilinear form becomes

a(v, v) = K1‖∇ · v‖20 + K2‖∇ × v‖20 + 2K2q0〈v,∇ × v〉0 + 2〈λk, v · v〉0
≥ K1‖∇ · v‖20 + K2‖∇ × v‖20 − 2K2q0|〈v,∇ × v〉0|
≥ K1‖∇ · v‖20 + K2‖∇ × v‖20 − 2K2q0‖v‖0‖∇ × v‖0
≥ K1‖∇ · v‖20 + K2‖∇ × v‖20 − K2q0(‖v‖20 + ‖∇ × v‖20).

2 In fact, H1
0(Ω) = H0(div,Ω) ∩ H0(curl,Ω) holds for any bounded Lipschitz domain Ω [27, Lemma

2.5].
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By choosing C = min{K1 − K2q0C4, K2(1− q0C4 − q0)} > 0 (the positivity comes
from the assumptions) and α0 = C/C2, we obtain the desired coercivity

a(v, v) ≥ α0‖v‖21 ∀v ∈ H1
0(Ω),

as stated in (2.12). ��

So far, the coercivity of the bilinear form a(·, ·) has been shown for all functions in
H1

0(Ω). The discrete coercivity follows if a conforming finite element for the director
space is chosen.

The boundedness of the bilinear form a(·, ·) and the right hand side functionals
F(·) and G(·) can be obtained directly by following the proofs in [2]. Hence, we omit
the details here.

It remains to consider the discrete inf-sup condition of the bilinear form b(·, ·) for
a finite element pair Vh-Qh , i.e. whether there exists a constant c such that

sup
uh∈Vh\{0}

b(uh, μh)

‖uh‖ ≥ c‖μh‖ ∀μh ∈ Qh .

The continuous inf-sup condition was shown in [17, Appendix B] and [32, Theorem
3.1]. However, the discrete inf-sup condition is not inherited from the continuous
problem. Some previous works have succeeded in obtaining a discrete inf-sup condi-
tion for some specific discretizations. A discrete inf-sup condition was proven for the
([Qm]d ⊕ BF )-Q0 element on quadrilaterals in [17, Lemma 2.5.14] and [2, Lemma
3.12]. The discrete inf-sup condition for the [P1]2-P1 discretization is shown in [32,
Theorem 4.5], where the analysis is only valid for the two-dimensional case due to
the use of some special inverse inequalities. It is straightforward to deduce that an
enrichment of Vh still guarantees the stability of the discretization, and thus [P2]2-P1
is inf-sup stable under the same conditions.

We now consider the matrix form of the saddle-point system (2.10). The coercivity
of the bilinear form a(·, ·) implies the invertibility of the coefficient matrix A and the
discrete inf-sup condition indicates that B has full row rank. We use the full block
factorization preconditioner

P−1 =
[
I − Ã−1B�
0 I

] [
Ã−1 0
0 S̃−1

] [
I 0

−B Ã−1 I

]

with approximate inner solves Ã−1 and S̃−1 for the director block and the Schur com-
plement S = −BA−1B�, respectively, for solving the saddle-point problem (2.10).
With exact inner solves, this is an exact inverse. With this strategy, solving the original
saddle-point problem (2.10) reduces to solving two smaller linear systems involving
A and S. Even though A is sparse, its inverse is generally dense, making it impractical
to store S explicitly. In this situation, developing a fast solver for A is tractable while
approximating S becomes difficult. We will return to this issue in Sects. 3 and 5.
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2.2 Augmented Lagrangian form

Now, we employ the AL stabilization strategy and modify the linearized saddle point
system to control its Schur complement S.

2.2.1 Penalizing the constraint

We penalize the continuous form of the nonlinear constraint n · n = 1 in the AL
algorithm and obtain the Lagrangian

L̃ (n, λ) = L (n, λ) + γ

2
〈n · n − 1,n · n − 1〉0 (2.13)

for γ ≥ 0. The weak form of the associated first-order optimality conditions is to find
(n, λ) ∈ H1

g(Ω) × L2(Ω) such that

L̃n[v] = Ln[v] + 2γ 〈n · n − 1,n · v〉0 = 0 ∀v ∈ H1
0(Ω),

L̃λ[μ] = Lλ[μ] = 〈μ,n · n − 1〉0 = 0 ∀μ ∈ L2(Ω).

The Newton linearization at a given approximation (nk, λk) yields a system of the
form:

[
L̃nn Lnλ

Lλn 0

] [
δn
δλ

]
= −

[
L̃n
Lλ

]
.

Thus, we have to solve the augmented discrete variational problem:

ac(δnh, vh) + b(vh, δλh) = Fc(vh) ∀vh ∈ Vh,

b(δnh, μh) = G(μh) ∀μh ∈ Qh,
(2.14)

where

ac(u, v) = a(u, v) + 4γ 〈nk · u,nk · v〉0 + 2γ 〈nk · nk − 1,u · v〉0,

and
Fc(v) = F(v) − 2γ 〈nk · nk − 1,nk · v〉0.

Comparing (2.14) to the original system (2.11), only the bilinear form a(·, ·) and
the right hand side functional F(·) have changed. The boundedness of Fc(·) follows
straightforwardly via the Cauchy–Schwarz inequality. As for the coercivity of ac(·, ·),
an additional assumption on the penalty parameter γ is needed.

Lemma 2.3 (Continuous coercivity) Let α0 > 0 be the coercivity constant of a(·, ·). If
α0 > 2γ |α − 1| with 0 < α ≤ 1 ≤ β satisfying α ≤ |nk |2 ≤ β, there exists a β0 > 0
such that

ac(v, v) ≥ β0‖v‖21 ∀v ∈ H1
0(Ω).
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Proof Note that

ac(v, v) = a(v, v) + 4γ ‖nk · v‖20 + 2γ 〈nk · nk − 1, v · v〉0
≥ a(v, v) + 2γ 〈nk · nk − 1, v · v〉0.

By the assumption that a(v, v) ≥ α0‖v‖21 for some α0 > 0, we have

ac(v, v) ≥ α0‖v‖21 + 2γ 〈nk · nk − 1, v · v〉0.

Moreover, since nk · nk ≥ α and α − 1 ≤ 0, we get

2γ 〈nk · nk − 1, v · v〉0 ≥ 2γ (α − 1)‖v‖20 ≥ 2γ (α − 1)‖v‖21.

Thus, by taking β0 = α0 − 2γ |α − 1| > 0, we obtain the desired coercivity property.
��

The condition α0 > 2γ |α − 1| in Lemma 2.3 indicates a limit on the value of γ

to ensure the solvability of the augmented system (2.14). However, it is desirable to
use large values of γ to achieve better control of the Schur complement. We therefore
choose to employ a Picard iteration to solve the nonlinear problem, omitting the term
2γ 〈nk ·nk−1, v ·v〉0 from the linearized equations. This yields the linearized problem:
find (δnh, δλh) ∈ Vh × Qh such that

am(δnh, vh) + b(vh, δλh) = Fc(vh) ∀vh ∈ Vh,

b(δnh, μh) = G(μh) ∀μh ∈ Qh,
(2.15)

with the modified bilinear form

am(u, v) = a(u, v) + 4γ 〈nk · u,nk · v〉0 (2.16)

to be solved at each nonlinear iteration. This ensures that the (1, 1)-block is coercive
with a coercivity constant independent of γ . Moreover, in contrast to the situation
with the Navier–Stokes equations, numerical experiments indicate that the use of this
Picard requires fewer nonlinear iterations to converge to a given tolerance than using
the full Newton linearization (see Sect. 6.2.1).

The corresponding matrix form of the variational problem (2.14) becomes

[
A + γ A∗ B�

B 0

] [
U
P

]
=

[
f + γ l
g

]
, (2.17)

where A∗ is the assembly of 4〈nk · u,nk · v〉0 and l denotes the assembly of −2〈nk ·
nk − 1,nk · v〉0. Note that compared to the non-augmented version (2.10), the (1, 1)
block in (2.17) has an additional semi-definite term γ A∗ with a large coefficient γ .
Its sparsity pattern remains unchanged. We will construct a robust multigrid method
to solve this top-left block in Sect. 5.
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Since the unit-length constraint is enforced exactly in (2.13), the continuous solu-
tions to minimizing both (2.13) and (2.6) are the same. However, the unit-length
constraint is not enforced exactly in our finite element discretization, and hence this
stabilization does change the computed discrete solution.

Remark 2.6 Whenapplying the augmentedLagrangian strategy, one can apply it before
discretization or afterwards. In this work we apply the continuous penalization, as it
improves the enforcement of the nonlinear constraint, as shown later in Sect. 4. This
is different to the approach considered in [11,21] for the stationary Navier–Stokes
equations, where the discrete AL stabilization was used to yield a system that has the
same solution but a better Schur complement.

3 Approximation to the Schur complement

The Schur complement of the augmented director block in (2.17) is given by

Sγ = −BA−1
γ B� = −B(A + γ A∗)−1B�.

We now proceed to analyze this Schur complement by following similar techniques
to those of [31, §4]. We will show that A∗ is equal to the matrix arising from the
discrete AL stabilization (which controls the Schur complement) plus a perturbation
that vanishes as the mesh is refined.

Let ΠQh : Q → Qh be the orthogonal L2 projection operator, i.e.,

〈p − ΠQh p, q〉0 = 0 ∀q ∈ Qh .

We define the fluctuation operator κ := I − ΠQh where I : Q → Q is the identity
mapping. Therefore, one has

〈κ(p), q〉0 = 0 ∀q ∈ Qh .

For uh, vh ∈ Vh , one can split the term 4〈nk · uh,nk · v〉0 into the following terms
using the properties of κ and ΠQh :

4〈nk · u,nk · v〉0 = 〈ΠQh (2nk · n), 2nk · v〉0 + 〈κ(2nk · u), 2nk · v〉0
= 〈ΠQh (2nk · n), (ΠQh + κ)(2nk · v)〉0

+ 〈κ(2nk · u), (ΠQh + κ)(2nk · v)〉0
= 〈ΠQh (2nk · u),ΠQh (2nk · v)〉0 + 〈κ(2nk · u), κ(2nk · v)〉0.

Note here that the assembly of the first term is B�M−1
λ B, whereMλ is the mass matrix

associated with the finite element space for the multiplier Qh . This can then be readily
used with the Sherman–Morrison–Woodbury formula to derive an approximation of
the Schur complement. The second term 〈κ(2nk · u), κ(2nk · v)〉0 characterizes the
difference between A∗ and B�M−1

λ B. The next result shows that it vanishes as the

123



Augmented Lagrangian preconditioners for the Oseen–Frank… 621

mesh size h → 0 (see Theorem3.1) and thus, in this limit, the tractable term B�M−1
λ B

dominates A∗.
Theorem 3.1 Let (δnh, δλh) ∈ Vh × Qh be the solution of the augmented discrete
system (2.15) with corresponding degrees of freedom (U , P) ∈ R

n × R
m. Then, for

the Newton linearization at a given approximation (nk, λk) satisfying α ≤ |nk |2 ≤ β

with 0 < α ≤ 1 ≤ β and |∇nk | bounded pointwise a.e., we have

∥∥∥
(
A∗ − B�M−1

λ B
)
U

∥∥∥
Rn

≤ Ch1+
d
2 ‖δnh‖1,

where ‖ · ‖Rn denotes the Euclidean norm.

Proof Assuming vh ∈ Vh and using the basis representations in Vh = span{φi } for
δnh and vh :

δnh =
n∑

i=1

Uiφi , vh =
n∑

i=1

Yiφi ,

we obtain
∥∥∥
(
A∗ − B�M−1

λ B
)
U

∥∥∥
Rn

= sup
‖Y‖Rn=1

Y� (
A∗ − B�M−1

λ B
)
U

= sup
‖Y‖Rn=1

〈κ(2nk · δnh), κ(2nk · vh)〉0
≤ sup

‖Y‖Rn=1
‖κ(2nk · δnh)‖0‖κ(2nk · vh)〉0‖0

≤ ‖κ‖︸︷︷︸
G1

sup
‖Y‖Rn=1

‖2nk · vh‖0
︸ ︷︷ ︸

G2

‖κ(2nk · δnh)‖0︸ ︷︷ ︸
G3

by applying the Cauchy–Schwarz inequality.
One readily sees that G1 ≤ C1 for a certain constant C1 from the continuity of κ .

Furthermore, we write

G2 = sup
vh

‖2nk · vh‖0
‖Y‖Rn

.

Note that [34, Theorem 3.43] as used in [31] gives the relation between the discrete
vector Y and its associated continuous function vh :

‖Y‖Rn ≥ Crh
− d

2 ‖vh‖0,

for some Cr > 0. Then with the fact that nk is bounded we have

G2 ≤ sup
vh

‖2nk · vh‖0
Crh− d

2 ‖vh‖0
≤ C2h

d
2 .

Moreover, [14, Theorem 1] implies

‖κ(p)‖0 = ‖p − ΠQh p‖0 ≤ C4h‖p‖1 for p ∈ H1(Ω),
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we deduce the following L2-projection error estimate

G3 = ‖κ(2nk · δnh)‖0 ≤ C4h‖2nk · δnh‖1 ≤ C3h‖δnh‖1.

Note here we have used the pointwise boundedness of nk,∇nk a.e. and the fact that
δnh ∈ Vh ⊂ H1(Ω).

Combining these estimates regarding G1,G2,G3, we find

∥∥∥
(
A∗ − B�M−1

λ B
)
U

∥∥∥
Rn

≤ Ch1+
d
2 ‖δnh‖1 → 0 as h → 0.

��

This result suggests the use of the algebraic approximation

Sγ ≈ −B
(
A + γ B�M−1

λ B
)−1

B�. (3.1)

The reason for doing so is that we can straightforwardly calculate the inverse of this
approximation (3.1) by the Sherman–Morrison–Woodbury formula as follows:

S−1
γ = −BA−1B� − γ M−1

λ = S−1 − γ M−1
λ .

The solver requires the action of S−1
γ , i.e., solving linear systems involving Sγ . For

large γ , a simple and effective approach is to employ the approximation

S−1
γ ≈ −γ M−1

λ . (3.2)

On the infinite-dimensional level, the effect of the augmented Lagrangian term is to
make −γ −1 I (I the identity operator on the multiplier space) an effective approxima-
tion for the Schur complement [43, Lemma 3]. When discretized, this indicates that
the weighted multiplier mass matrix −γ −1Mλ will be an effective approximation for
Sγ , with the approximation improving as γ → ∞.

In fact, the approximation of the inverse of the discretely augmented Schur comple-
ment (3.2) can be improved further by combining−γ M−1

λ with a good approximation
of the unaugmented Schur complement S [30]. Given an approximation S̃ of S, we
employ

S−1
γ ≈ S̃−1

γ = S̃−1 − γ M−1
λ . (3.3)

It is therefore of interest to consider the Schur complement of the unaugmented
problem. In the context of the Stokes equations, the Schur complement is spec-
trally equivalent to the viscosity-weighted pressure mass matrix [16,51,54]. Following
similar techniques, an approximation can be obtained by proving that BA−1B� is
spectrally equivalent to Mλ for the equal-constant nematic case. This gives us good
insight into the choice of S̃−1.
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Theorem 3.2 For equal-constant nematicLCproblemswithout augmentedLagrangian
stabilization, the matrix BA−1B� arising from the Newton-linearized system is spec-
trally equivalent to the multiplier mass matrix Mλ, under the same assumptions as in
Lemma 2.2.

Proof For the equal-constant model with Dirichlet boundary conditions n = g ∈
H1/2(∂Ω;S2), its corresponding Lagrangian is

L (n, λ) = K

2
〈∇n,∇n〉0 + 〈λ,n · n − 1〉0.

After Newton linearization and introducing conforming finite dimensional spaces
Vh ⊂ H1

0(Ω) and Qh ⊂ L2(Ω), the discrete variational problem is to find δnh ∈ Vh ,
δλh ∈ Qh satisfying

K 〈∇δnh,∇vh〉0 + 2〈λk, δnh · vh〉0 + 2〈δλh,nk · vh〉0
= −K 〈∇nk · ∇vh〉0 − 2〈λk,nk · vh〉0 ∀vh ∈ Vh,

2〈μh,nk · δnh〉0 = −〈μh,nk · nk − 1〉0 ∀μh ∈ Qh,

where nk and λk represent the current approximations to n and λ, respectively. This
can be rewritten in block matrix form as

A

[
U
P

]
:=

[
A B�
B 0

] [
U
P

]
=

[
f
g

]
,

where as before U ∈ R
n and P ∈ R

m are the unknown coefficients of the dis-
crete director update and the discrete Lagrange multiplier update with respect to the
basis functions in Vh and Qh , and A denotes the symmetric form K 〈∇δnh,∇vh〉0 +
2〈λk, δnh ·vh〉0. The coercivity property of the bilinear form from Lemma 2.2 ensures
that A is positive definite.

The coefficient matrix A is symmetric and indefinite (resulting in A possessing
both positive and negative eigenvalues). Moreover,A is non-singular if and only if B
has full row rank, which can be deduced from the discrete inf-sup condition.

Denote
‖uh‖2lc = K 〈∇uh,∇uh〉0 + 〈λk, 2uh · uh〉0,
‖μh‖20 = 〈μh, μh〉0.

Notice that the validity of the first norm follows from the assumed pointwise non-
negativity of λk .

For a stable mixed finite element, from the inf-sup condition, there exists a positive
constant c independent of the mesh size h such that

sup
uh∈Vh\{0}

〈μh, 2nk · uh〉0
‖uh‖lc ≥ c‖μh‖0 ∀μh ∈ Qh,
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leading to its matrix form

max
U∈Rn\{0}

P�BU

[U�AU ]1/2 ≥ c[P�MλP]1/2 ∀P ∈ R
m .

Thus, we have

c[P�MλP]1/2 ≤ max
U∈Rn\{0}

P�BU

[U�AU ]1/2

= max
z=A1/2U �=0

P�BA−1/2z

[z�z]1/2
= (P�BA−1B�P)1/2 ∀P ∈ R

m,

where the maximum is attained at z = (P�BA−1/2)�. It yields

c2
P�MλP

P�P
≤ P�BA−1B�P

P�P
∀P ∈ R

m\{0}. (3.4)

Regardless of the stability of the finite element pair, we can deduce from the bound-
edness of B that there exists a positive constant c1 such that

P�BU ≤ c1[P�MλP]1/2[U�AU ]1/2 ∀U ∈ R
n,∀P ∈ R

m .

Hence,

c1[P�MλP]1/2 ≥ max
U∈Rn\{0}

P�BU

[U�AU ]1/2

= max
z=A1/2U �=0

P�BA−1/2z

[z�z]1/2
= (P�BA−1B�P)1/2 ∀P ∈ R

m,

where again the maximum is attained at z = (P�BA−1/2)�. This gives rise to

P�BA−1B�P

P�MλP
≤ c21 ∀P ∈ R

m\{0}. (3.5)

Therefore for inf-sup stable finite element pairs, we have by (3.4) and (3.5)

c2 ≤ P�BA−1B�P

P�MλP
≤ c21 ∀P ∈ R

m\{0}.

This indicates that BA−1B� is spectrally equivalent to Mλ. ��
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Remark 3.1 It follows from Theorem 3.2 that γ = 0 should show mesh-independence
(i.e., the average number of FGMRES iterations per Newton iteration does not dete-
riorate as one refines the mesh) in the case of equal-constant nematic LC. This can
be observed in subsequent numerical experiments reported in Table 6 (see the column
where γ = 0). One should also notice that such mesh-independence for γ = 0 is also
shown in Table 2 for the non-equal-constant case, suggesting it has use outside the
context of augmented Lagrangian methods also.

Combining Theorem 3.2 with (3.3), our final approximation for S−1
γ is given by

S−1
γ ≈ S̃−1

γ = −(1 + γ )M−1
λ . (3.6)

4 Improvement of the constraint

We have now observed that the continuous AL form introduced in Sect. 2.2.1 can help
control the Schur complement. Another contribution of this AL stabilization is that it
improves the discrete constraint as we increase the value of the penalty parameter γ .
An example of improving the linear divergence-free constraint in the Stokes system
can be found in [33, Section 5.1]. In this section, we will use a similar strategy to show
the improvement of the discrete constraint as γ increases.

We restrict ourselves to the equal-constant case with constant Dirichlet boundary
conditions. That is to say,we consider theOseen–FrankmodelwithDirichlet boundary
condition n|∂Ω = g, where g is a nonzero constant vector satisfying |g| = 1. We use
the [P1]d -P1 finite element pair in this section, so both the director n and the Lagrange
multiplier λ are approximated by continuous piecewise-linear polynomials. For this
section, we denote finite element spaces for the director and the Lagrangemultiplier by
Vh,g := Vh ∩H1

g(Ω) and Qh ⊂ L2(Ω), respectively, and denote Vh,0 = Vh ∩H1
0(Ω).

We restate the associated nonlinear discrete variational problem as follows: find
(nh, λh) ∈ Vh,g × Qh such that

K 〈∇nh,∇vh〉0 + Kq0〈vh,∇ × nh〉0 + Kq0〈nh,∇ × vh〉0
+2〈λh,nh · vh〉0 + 2γ 〈nh · nh − 1,nh · vh〉0 = 0 ∀vh ∈ Vh,0, (4.1a)

〈μh,nh · nh − 1〉0 = 0 ∀μh ∈ Qh . (4.1b)

Take the test function vh = nh − g ∈ Vh,0 in (4.1a) to obtain

K‖∇nh‖20 + 2Kq0〈nh,∇ × nh〉0 + 2〈λh,nh · nh〉0 + 2γ 〈nh · nh − 1,nh · nh〉0
= Kq0〈g,∇ × nh〉0 + 2〈λh,nh · g〉0 + 2γ 〈nh · nh − 1,nh · g〉0.

(4.2)
Note that in this stepwe have used the fact that since g is a constant vector, its derivative
is zero.

As (4.1b) is valid for arbitrary μh ∈ Qh and one can easily verify that nh · g ∈ Qh ,
we have

〈nh · g,nh · nh − 1〉0 = 0.
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Then taking μh = 1 and μh = λh leads to

〈1,nh · nh − 1〉0 = 0 and 〈λh,nh · nh − 1〉0 = 0,

respectively. Thus, (4.2) collapses to

K‖∇nh‖20 + 2Kq0〈nh,∇ × nh〉0 + 2〈λh, 1〉0 + 2γ ‖nh · nh − 1‖20
= Kq0〈g,∇ × nh〉0 + 2〈λh,nh · g〉0.

(4.3)

By the Cauchy–Schwarz and Hölder inequalities, we observe an upper bound for the
right hand side of (4.3):

Kq0〈g,∇ × nh〉0 + 2〈λh,nh · g〉0 ≤ Kq0‖∇ × nh‖0 + 2‖λh‖0‖nh‖0
≤ Kq0

2
+ Kq0

2
‖∇ × nh‖20 + ‖λh‖20 + ‖nh‖20.

(4.4)
Meanwhile, the left hand side of (4.3) can be bounded from below:

K‖∇nh‖20 + 2Kq0〈nh,∇ × nh〉0 + 2〈λh, 1〉0 + 2γ ‖nh · nh − 1‖20
≥ K‖∇nh‖20 − 2Kq0|〈nh,∇ × nh〉0| − 2|〈λh, 1〉0| + 2γ ‖nh · nh − 1‖20
≥ K‖∇nh‖20−Kq0‖nh‖20−Kq0‖∇ × nh‖20−‖λh‖20 − |Ω|+2γ ‖nh · nh − 1‖20,

(4.5)

where |Ω| denotes the measure of the domain Ω .
Hence, by combining (4.4) and (4.5), we have

K‖∇nh‖20 − (Kq0 + 1)‖nh‖20 − 3

2
Kq0‖∇ × nh‖20

− ‖λh‖20 + 2γ ‖nh · nh − 1‖20 ≤ Kq0
2

+ |Ω|.
(4.6)

Since the right hand side of (4.6) is a fixed constant independent of γ , taking γ larger
value forces the constraint approximation error ‖nh · nh − 1‖0 to become smaller. In
fact, (4.6) implies that ‖nh · nh − 1‖0 ≤ O(γ −1/2).

Remark 4.1 The technique shown in this section can be extended in a similar way to
the multi-constant case; we omit the details here for brevity.

5 A robust multigrid method for A�

As discussed in Sect. 3, the addition of the augmented Lagrangian term has the effect
of controlling the Schur complement of the matrix in (2.17). However, the tradeoff is
that it complicates the solution of the top-left block Aγ , as it adds a semi-definite term
with a large coefficient. For the augmented Lagrangian strategy to be successful, we
require a γ -robust solver for the top-left block. Fortunately, a rich literature is available
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to guide the development of multigrid solvers for nearly singular systems [35,49,50].
In this section we develop a parameter-robust multigrid method for Aγ .

Schöberl’s seminal paper on the constructionof parameter-robustmultigrid schemes
[49] lists two requirements that must be satisfied for robustness. The first require-
ment is a parameter-robust relaxation method; this is achieved by developing a space
decomposition that stably captures the kernel of the semi-definite terms. The second
requirement is a parameter-robust prolongation operator, i.e. one whose continuity
constant is independent of the parameters. This is achieved by (approximately) map-
ping kernel functions on coarse grids to kernel functions on fine grids. We discuss
both of these requirements below.

For ease of notation, we consider the two-grid method applied to the equal-
constant nematic case, and use subscripts h and H to distinguish fine and coarse
levels respectively. That is to say, VH represents the coarse-grid function space and
AH ,γ : VH → V ∗

H corresponds to the partial differential equations (PDEs) on VH .
For the domain Ω , we consider a non-overlapping triangulation MH , i.e.,

∪T∈MH T = Ω̄ and int(Ti ) ∩ int(Tj ) = ∅ ∀Ti �= Tj , Ti , Tj ∈ MH .

The fine grid Mh with h = H/2 is obtained by a regular refinement of the simplices
inMH . In what follows we consider both the [P1]d -P1 and [P2]d -P1 discretizations.

5.1 Relaxation

After applying the AL method introduced in Sect. 2.2.1, the discrete linear variational
form corresponding to the top-left block Aγ = A + γ A∗ is given by

am(uh, vh) := K 〈∇uh,∇vh〉0 + 2〈λk,uh · vh〉0
+ 4γ 〈nk · uh,nk · vh〉0, (5.1)

withuh ∈ Vh ⊂ H1
0(Ω) being the trial function and vh ∈ Vh the test function.Note that

nk and λk are the current approximations to the director n and the Lagrange multiplier
λ, respectively, in the Newton iteration. The first two terms of am are symmetric
and coercive because of the uniform non-negativity of λk in the assumption of our
well-posedness result. The kernel of the semi-definite term involving γ is

Nh = {uh ∈ Vh : nk · uh = 0 a.e.}. (5.2)

In the case of γ being very large, the variational problem involving (5.1) is nearly
singular and common relaxation methods like Jacobi and Gauss–Seidel will not yield
effective multigrid cycles, as we explain below.

Relaxation schemes can be devised in a generic way by considering space decom-
positions

Vh =
M∑
i=1

Vi , (5.3)
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where the sum of vector spaces on the right is not necessarily a direct sum [56].
This space decomposition induces a relaxation method by (approximately) solving
the Galerkin projection of the error equation onto each subspace Vi , and combining
the resulting estimates of the error. This can be done in an additive or multiplicative
way. For example, if Vh = span(φ1, . . . , φN ), Jacobi and Gauss–Seidel are induced
by the space decomposition

Vi = span(φi ), (5.4)

where the updates are performed additively for Jacobi and multiplicatively for Gauss–
Seidel. One of the key insights of [35,49] was that the key requirement for parameter-
robustness when applied to nearly singular problems is that the space decomposition
must satisfy the kernel-capturing property

Nh =
M∑
i=1

(Vi ∩ Nh), (5.5)

that is, any kernel function can be written as a sum of kernel functions drawn from
the subspaces. In particular, each subspace Vi must be rich enough to support kernel
functions; in our context, this is not satisfied by the choice (5.4), accounting for its
poor behaviour as γ → ∞.

In the mesh triangulation Mh , we denote the star of a vertex vi as the patch of
elements sharing vi , i.e.,

star(vi ) :=
⋃

T∈Mh :vi∈T
T .

This induces an associated space decomposition, called the star patch, by

Vi := {uh ∈ Vh : supp(uh) ⊂ star(vi )}.

This is illustrated in Fig. 1 (left).We call the induced relaxationmethod a star iteration.
In effect, each subspace solve solves for the degrees of freedom in the interior of the
patch of cells, with homogeneous Dirichlet conditions on the boundary of the patch.
Given a vertex or edge midpoint vi , we denote the point-block patch Vi as the span of
the basis functions associated with degrees of freedom that evaluate a function at vi
(see Fig. 1, middle). The induced relaxation method solves for all colocated degrees of
freedom simultaneously. These two space decompositions coincide for the [P1]d -P1
discretization.

We now briefly explain why these two decompositions approximately satisfy the
kernel-capturing condition (5.5) for the finite element pair [P1]d -P1. First, we define
an approximate kernel

˜Nh = {uh ∈ Vh : nk · uh = 0 on each vertex}. (5.6)
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Fig. 1 Illustrations of the star patch of the center vertex (left) and the point-block patch (middle) for the
finite element pair [P2]2-P1. Note that these two patches (right) are the same for [P1]2-P1 discretization.
Here, black dots represent the degrees of freedom, and the blue lines gather degrees of freedom solved for
simultaneously in the relaxation

Since nk is the current approximation to the director n, we have nk ∈ Vh = ∑
i Vi . We

are therefore able to express nk as nk = ∑
i n

i
k , where n

i
k ∈ Vi describes the function

at the vertex vi . Similarly, we split uh into uh = ∑
i u

i
h with u

i
h ∈ Vi . For each vertex

vi , the requirement uh ∈ ˜Nh yields

nik · uih = 0 ∀i . (5.7)

The definition of Vi ensures that uih and nik are only supported on the interior of the
star of vi . We deduce that on each vertex

n j
k · uih = 0 ∀i �= j,

which yields
∑

j n
j
k · uih = nk · uih = 0. Hence, uih ∈ ˜Nh∀i and we obtain the

kernel-capturing condition (5.5) for the approximate kernel ˜Nh .
For the [P2]d -P1 finite element pair, the satisfaction of the kernel-capturing property

for the approximate kernel follows along similar lines. For the point-block patch, (5.7)
still holds. The star patch uses larger subspaces, each one including multiple point-
block patches, but it can be easily verified that (5.7) is still fulfilled.

5.1.1 Robustness analysis of the approximate kernel

While we are not able to prove the kernel capturing property for the kernel (5.2), we
can still obtain the spectral inequalities

c1Dh,γ ≤ Ah,γ ≤ c2Dh,γ , (5.8)

when using the approximate kernel (5.6). Here, Dh,γ is the preconditioner to be spec-
ified later for the operator Ah,γ and C ≤ D represents ‖u‖C ≤ ‖u‖D for all u. We
prove that c1 depends on γ , but the dependence can be well controlled so that the
preconditioner is not badly affected by varying γ , while c2 is always independent
of γ . For simplicity, we prove the case for the equal-constant nematic case with the
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[P1]d -P1 discretization; extensions to the non-equal-constant cholesteric case and to
the [P2]d -P1 discretization are possible.

We define the operator associated to am , Ah,γ : Vh → V ∗
h , by

〈Ah,γ uh, vh〉0 := am(uh, vh).

For the space decompositionVh = ∑
i Vi , we denote the lifting operator (the natural

inclusion) by Ii : Vi → Vh and choose the Galerkin subspace operator Ai : Vi → Vi
to satisfy

〈Aiui , vi 〉0 := 〈Ah,γ Iiui , Iivi 〉0 ∀ui , vi ∈ Vi .

This implies that Ai = I ∗
i Ah,γ Ii .

The additive Schwarz preconditioner Dh,γ for a problem Ah,γ wh = dh associated
with the space decomposition (5.3) is defined by the action of its inverse [56]:

wh = D−1
h,γ dh

given by

wh =
M∑
i=1

Iiwi ,

with wi ∈ Vi being the unique solution of

〈Aiwi , vi 〉0 = 〈dh, Iivi 〉0 ∀vi ∈ Vi .

Hence, we can rewrite the preconditioning operator D−1
h,γ in operator form as

D−1
h,γ =

M∑
i=1

Ii A
−1
i I ∗

i .

We now state for completeness a classical result in the analysis of additive Schwarz
preconditioners, see e.g. [50, Theorem 3.1] and the references therein.

Theorem 5.1 Define the splitting norm for uh ∈ Vh as

|||uh |||2 := inf
uh=∑

i Iiui
ui∈Vi

M∑
i=1

‖ui‖2Ai
.

This splitting norm is equal to the norm ‖uh‖Dh,γ
:= 〈Dh,γ uh,uh〉1/20 generated by

the additive Schwarz preconditioner, i.e. it holds that

|||uh |||2 = ‖uh‖2Dh,γ
∀uh ∈ Vh .
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To build intuition, let us examinewhy Jacobi relaxation defined by the space decompo-
sition (5.4) is not robust as γ → ∞. With (5.4), the decomposition uh = ∑

i ui ,ui ∈
Vi is unique. It yields that

‖uh‖2Dh,γ
= |||uh |||2 =

∑
i

〈Aiui ,ui 〉0 =
∑
i

〈Ah,γ ui ,ui 〉0

� (1 + γ )
∑
i

‖ui‖21 � 1 + γ

h2
∑
i

‖ui‖20 � 1 + γ

h2
‖uh‖20

� 1 + γ

h2
‖uh‖2Ah,γ

,

(5.9)

where a � b means that there exists a constant c independent of a and b such that
a ≤ cb. Note that the bound in (5.9) is parameter-dependent and deteriorates as
γ → ∞ or h → 0.

In order to deduce the robustness result for our approximate kernel (5.6), we first
derive the following lemma.

Lemma 5.1 Let u0 = ∑
i u

i
0 ∈ ˜Nh and assume nk ∈ [P1]d . Then it holds that

∑
i

‖ui0 · nk‖2L2(Ω)
� h2‖Dnk‖2L∞(Ω)‖u0‖2L2(Ω)

,

where Dnk denotes the Jacobian matrix of nk .

Proof Consider the vertex vi on the boundary of an element T . As nk ∈ [P1]d , we
have

(ui0 · nk)(x) = ui0(x) · nk(vi ) + ui0(x) · [Dnk(vi )(x − vi )] ∀x ∈ T .

Note that ui0 · nk vanishes at the vertex vi as u0 ∈ ˜Nh . Moreover, we know that
ui0(x)/‖ui0(x)‖ is constant on the interior of the patch around vi , and ui0(x) is zero on
the boundary of the patch, since we can write ui0(x) = u0(vi )ψi (x) with ψi denoting
the scalar piecewise linear basis function (vanishing outside the patch) associated
with vi . Therefore, we can deduce ui0(x) · nk(vi ) = 0 on T . In addition, we have
‖x − vi‖ � h on the element T . We thus conclude that

‖ui0 · nk‖L2(T ) � h‖Dnk‖L∞(T )‖ui0‖L2(T ).

From this we are able to show that for both the star and point-block patches around
vi , ∑

i

‖ui0 · nk‖2L2(patch(vi ))
�

∑
i

h2‖Dnk‖2L∞(patch(vi ))‖ui0‖2L2(patch(vi ))

� h2‖Dnk‖2L∞(Ω)

∑
i

‖ui0‖2L2(Ω)

� h2‖Dnk‖2L∞(Ω)‖u0‖2L2(Ω)
.
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Therefore, with the local support of ui0 we have

∑
i

‖ui0 · nk‖2L2(Ω)
=

∑
i

‖ui0 · nk‖2L2(patch(vi ))
� h2‖Dnk‖2L∞(Ω)‖u0‖2L2(Ω)

.

��
We now derive the general form of the spectral bounds in (5.8). This follows a

similar approach to [50, Theorem 4.1], but with a different assumption on the splitting
approximation, to allow for a dependence on γ . For brevity of notation,we respectively
denote the standard L2, H1 and L∞ norms by ‖ · ‖0, ‖ · ‖1 and ‖ · ‖∞. Given a space
decomposition Vh = ∑

i Vi , we define its overlap NO as

NO := max
1≤i≤M

M∑
j=1

gi j ,

where

gi j =
{
1 if ∃vi ∈ Vi , v j ∈ Vj : |supp(vi ) ∩ supp(v j )| > 0,

0 otherwise

measures the interaction between each subspace.

Theorem 5.2 Let {Vi } be a subspace decomposition of Vh with overlap NO. Assume
that the finite element pair Vh-Qh is inf-sup stable for the mixed problem

B((u, λ); (v, μ)) := K 〈∇u,∇v〉0 + 2〈λ,nk · v〉0 + 2〈μ,nk · u〉0
= f (v, μ) ∀(v, μ) ∈ Vh × Qh,

where f is a known functional. Furthermore, assume that the function uh ∈ Vh and
the kernel function u0 ∈ Nh can be split locally with estimates depending on the mesh
size h and possibly on γ if the kernel-capturing property is not satisfied:

inf
uh=∑

i u
i
h

uih∈Vi

∑
i

‖uih‖21 ≤ c1(h)‖uh‖20,

inf
u0=∑

i u
i
0

ui0∈Vi

∑
i

‖ui0‖2Ah,γ
≤ (c2(h) + c3(h, γ )) ‖u0‖20.

Then the additive Schwarz preconditioner Dh,γ built on the decomposition {Vi } sat-
isfies

(c1(h) + c2(h) + c3(h, γ ))−1 Dh,γ ≤ Ah,γ ≤ NODh,γ , (5.10)

with constants c1 and c2 independent of γ .

Proof The upper bound can be directly given by [50, Lemma 3.2] independent of the
form of partial differential equations.
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For the lower bound, choose uh ∈ Vh and split it into uh = u0 + u1, by solving

B((u1, λ1), (vh, μh)) = 2〈μh,nk · uh〉0 ∀(vh, μh) ∈ Vh × Qh . (5.11)

Testing with vh = 0 in (5.11), we obtain that

〈μh,nk · u1〉0 = 〈μh,nk · uh〉0 ∀μh ∈ Qh .

Hence, nk · u0 = 0 a.e., that is to say u0 ∈ Nh .
By stability of the finite element pair Vh-Qh , we have

‖u1‖1 � sup
vh∈Vh
μh∈Qh

B((u1, λ1), (vh, μh))

‖(vh, μh)‖

� sup
vh∈Vh
μh∈Qh

‖nk · uh‖0‖μh‖0
‖(vh, μh)‖

≤ ‖nk · uh‖0.

It implies further that
‖u1‖1 � ‖uh‖0

by the boundedness of nk and

‖u1‖1 � γ −1/2‖uh‖Ah,γ

by the form of the operator Ah,γ , respectively. Usingu0 = uh−u1, we have in addition
that

‖u0‖1 � ‖uh‖1.
We now calculate

‖uh‖2Dh,γ
= |||uh |||2

≤ inf
u1=∑

i u
i
1

ui1∈Vi

∑
i

‖ui1‖2Ah,γ
+ inf

u0=∑
i u

i
0

ui0∈Vi

∑
i

‖ui0‖2Ah,γ

� (1 + γ ) inf
u1=∑

i u
i
1

ui1∈Vi

∑
i

‖ui1‖21 + (c2(h) + c3(h, γ )) ‖u0‖20

� (1 + γ )c1(h)‖u1‖20 + (c2(h) + c3(h, γ )) ‖u0‖21
� (1 + γ )c1(h)‖u1‖21 + (c2(h) + c3(h, γ )) ‖uh‖21
� (c1(h) + c2(h) + c3(h, γ )) ‖uh‖2Ah,γ

,

(5.12)

completing the proof of the spectral estimates (5.10). ��
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Remark 5.1 Note that in Theorem5.2, if the kernel-capturing property (5.5) is satisfied,
then c3 will be zero. Hence, we will instead get a parameter-independent result.

Corollary 5.1 In Theorem 5.2, if we take Vh-Qh to be constructed by the [P1]d-P1
element, it holds that

(
c1(h) + c2(h) + γ h2‖Dnk‖2∞

)−1
Dh,γ ≤ Ah,γ ≤ NODh,γ ,

with constants c1(h), c2(h) ∼ O(h−2).

Proof We follow the main argument of Theorem 5.2. We have only proven the kernel-
capturing property for the approximate kernel (5.6) rather than (5.2), and need to
account for this in the estimates. From Lemma 5.1 we have that

c3(h, γ ) = γ h2‖Dnk‖2∞.

With the choice of Vh = [P1]d , we will use the so-called inverse inequality (its
proof can be found in any finite element book, e.g., [13]) which states that

‖vh‖1 � h−1‖vh‖0 ∀vh ∈ Vh .

Therefore, it is straightforward to obtain that c1 and c2 are actually O(h−2). Notice
here we have also used the form of ‖ · ‖Ah,γ

in estimating c2(h).
Finally, substituting the form of c3 in (5.12), we derive

‖uh‖2Dh,γ
�

(
c1(h) + c2(h) + γ h2‖Dnk‖2∞

)
‖uh‖2Ah,γ

,

with constants c1(h), c2(h) ∼ O(h−2). ��
The above Corollary 5.1 implies that we cannot entirely get rid of parameter γ in

the spectral estimates if the kernel-capturing property for the modified kernel (5.2) is
not satisfied and instead we get an additional factor of γ h2‖Dnk‖2∞. However, this
γ -dependence can be well controlled and does not impinge on the effectiveness of
our smoother; the dependence improves as the mesh becomes finer or as nk becomes
smoother.

5.2 Prolongation

To construct a parameter-robust multigrid method, the prolongation operator is also
required to be continuous (in the energy norm associated with the PDE) with the
continuity constant independent of the penalty parameter γ [50, Theorem 4.2]. In
the context of the Oseen, Navier–Stokes, and linear elasticity equations, the prolon-
gation operator was modified in order to guarantee that the continuity constant is
γ -independent [11,21,50]. However, in our experiments with the Oseen–Frank sys-
tem, we observe robust convergence with respect to γ , even when using the (cheaper)

123



Augmented Lagrangian preconditioners for the Oseen–Frank… 635

standard prolongation (see Sect. 6.2 for specific details). This can be seen in Tables 7
and 8 of Sect. 6, for example. Hence, we will use the standard prolongation with no
modification in this work.

Remark 5.2 Since both discretizations [P1]d -P1 and [P2]d -P1 are nested, i.e., VH ⊂
Vh , the standard prolongation PH is actually a continuous (in the H1-norm) natural
inclusion.

6 Numerical experiments

6.1 Algorithm details

In the following numerical experiments, we use the [P2]3-P1 element pair and use
flexible GMRES [47] as the outermost linear solver, since GMRES [48] is applied
in the multigrid relaxation. An absolute tolerance of 10−8 was used for the nonlinear
solver, except for the convergence rate tests in Fig. 5, which used 10−10. A relative tol-
erance of 10−4 was used for the inner linear solver. We use the full block factorization
preconditioner

P−1 =
[
I − Ã−1

γ B�
0 I

][
Ã−1

γ 0
0 S̃−1

γ

] [
I 0

−B Ã−1
γ I

]
,

where Ã−1
γ represents solving the top-left block Aγ inexactly by our specializedmulti-

grid algorithm and the Schur complement approximation S̃−1
γ is given by (3.6). The

multiplier mass matrix inverse M−1
λ is solved using Cholesky factorization.

For Ã−1
γ , we perform a multigrid V-cycle, where the problem on the coarsest grid

is solved exactly by Cholesky decomposition. On each finer level, as relaxation we
perform 3 GMRES iterations preconditioned by the additive star (denoted as ALMG-
STAR) iteration or additive point-block Jacobi (denoted as ALMG-PBJ) iteration. In
order to achieve convergence results independent of the number of cores used in par-
allel, we only report iteration counts using additive relaxation, although multiplicative
ones generally give better convergence.

The solver described above is implemented in the Firedrake [45] library which
relies on PETSc [4] for solving linear systems. The star and Vanka relaxation methods
are implemented using the PCPATCH preconditioner recently included in PETSc [20].

6.2 Numerical results

All the tests are executed on a computer with an Intel(R) Xeon(R) Silver 4116
CPU@2.10GHz processor. We denote #refs and #dofs as the number of mesh refine-
ments and degrees of freedom, respectively, in the following experiments.
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Fig. 2 A sample solution of the twist configuration. Colors represent the magnitude of directors

6.2.1 Periodic boundary condition in a square slab

Following the nematic benchmarks in [3], we consider a generalized twist equilibrium
configuration in a square Ω = [0, 1] × [0, 1], which is proven to have an analytical
solution [52]. We will investigate the robustness of the solver when applied to unequal
Frank constants and nonzero cholesteric pitch.

The problem has periodic boundary conditions in the x-direction and Dirichlet
boundary conditions in the y-direction, with values

n = [cos θ0, 0,− sin θ0]� on y = 0,

n = [cos θ0, 0, sin θ0]� on y = 1,

where θ0 = π/8.
We first consider parameter values K1 = 1.0, K2 = 1.2, K3 = 1.0, q0 = 0. The

exact solution is given by

n = [cos(θ0(2y − 1)), 0, sin(θ0(2y − 1))]�,

with true free energy 2K2θ
2
0 ≈ 0.37011. An example of the pure twist configuration

is illustrated in Fig. 2.
We use an initial guess of n0 = [1, 0, 0]� in the Newton iteration and a 10 × 10

mesh of triangles of negative slope as the coarse grid.
We first compare in Table 1 the nonlinear convergence of the Newton linearization

(2.14) against that of the Picard iteration (2.15) we propose. For these experiments
we use the augmented Lagrangian preconditioner with ideal inner solvers (denoted as
ALLU), i.e. where the top-left block is solved exactly by LU factorization. The Picard
iteration requires substantially fewer nonlinear iterations for large γ . We expect that
this relates to the degradation of the coercivity estimate given in Lemma 2.3, and will
be analyzed in future work. Similar results were obtained on other test cases and we
adopt the Picard iteration henceforth.

To see the efficiency of the Schur complement approximation (3.6) we used in Sect.
3, we give the number of Krylov iterations for ALLU in Table 2. It can be observed that
as γ increases, the preconditioner becomes a better approximation to the real Jacobian
inverse and that the preconditioner is mesh-independent.
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Table 1 A comparison of the nonlinear convergence of the Newton linearization (2.14) and the Picard
iteration (2.15) using ideal inner solvers for a nematic LC problem in a square slab. The table shows the
average number of outer FGMRES iterations per nonlinear iteration and the total nonlinear iterations in
brackets

#refs #dofs γ

103 104 105 106

Newton 1 5340 2.20 (5) 1.14 (7) 1.00 (10) 1.00 (19)

2 21,080 3.20 (5) 1.14 (7) 1.00 (12) 1.00 (15)

3 83,760 3.83 (6) 1.57 (7) 1.11 (9) 1.00 (14)

4 333,920 4.67 (6) 2.14 (7) 1.00 (7) 1.00 (11)

5 1,333,440 5.17 (6) 2.43 (7) 1.57 (7) 1.00 (10)

Picard 1 5340 2.00 (5) 1.20 (5) 1.14 (7) 1.11 (9)

2 21,080 3.00 (5) 1.40 (5) 1.17 (6) 1.12 (8)

3 83,760 3.83 (6) 2.00 (5) 1.17 (6) 1.14 (7)

4 333,920 4.67 (6) 2.29 (7) 1.14 (7) 1.17 (6)

5 1,333,440 5.17 (6) 2.57 (7) 1.50 (8) 1.17 (6)

Table 2 ALLU: The average number of FGMRES iterations per Newton iteration for a nematic LC problem
in a square slab using [P2]3-P1 discretization

#refs #dofs γ

0 1 10 102 103 104 105 106

1 5340 10.40 9.20 8.00 5.40 2.00 1.20 1.14 1.11

2 21,080 14.20 13.20 9.20 5.80 3.00 1.40 1.17 1.12

3 83,760 4.75 4.75 6.75 6.40 3.83 2.00 1.17 1.14

4 333,920 5.50 4.50 7.25 7.20 4.67 2.29 1.14 1.17

5 1,333,440 5.25 3.75 5.75 7.00 5.17 2.57 1.50 1.17

Table 3 ALMG-STAR: the
average number of FGMRES
iterations per Newton iteration
(total Newton iterations) for the
nematic LC problem in a square
slab

#refs #dofs γ

103 104 105 106

1 5340 2.60 (5) 2.40 (5) 2.29 (7) 2.29 (7)

2 21,080 4.20 (5) 2.20 (5) 2.50 (6) 3.29 (7)

3 83,760 8.00 (5) 3.00 (5) 2.33 (6) 3.33 (6)

4 333,920 11.60 (5) 5.17 (6) 2.17 (6) 2.29 (7)

5 1,333,440 15.20 (5) 8.43 (7) 3.14 (7) 1.78 (9)

The performance of ALMG-STAR and ALMG-PBJ are illustrated in Tables 3 and
4, respectively, where both mesh-independence for γ = 106 and γ -robustness are
observed.

We also test the robustness of ALMG-STAR and ALMG-PBJ on other problem
parameters, the twist elastic constant K2 > 0 and the cholesteric pitch q0. To this end,

123



638 J. Xia et al.

Table 4 ALMG-PBJ: the average number of FGMRES iterations per Newton iteration (total Newton iter-
ations) for the nematic LC problem in a square slab

#refs #dofs γ

103 104 105 106

1 5340 3.20 (5) 2.60 (5) 3.00 (6) 3.57 (7)

2 21,080 5.60 (5) 2.60 (5) 2.83 (6) 3.71 (7)

3 83,760 10.00 (5) 3.80 (5) 2.80 (5) 3.00 (6)

4 333,920 15.40 (5) 7.00 (5) 2.50 (6) 2.83 (6)

5 1,333,440 >100 11.83 (6) 5.00 (5) 2.83 (6)

Fig. 3 Average number of FGMRES iterations per Newton iteration when continuing in K2 for the LC
problem in a square slab

Fig. 4 Average number of FGMRES iterations per Newton iteration when continuing in q0 for the LC
problem in a square slab

we continue K2 ∈ [0.2, 8] and q0 ∈ [0, 8] with step 0.1. We fix γ = 106, since it
gives the best performance in Tables 3 and 4. The numerical results of ALMG-STAR
and ALMG-PBJ in K2- and q0-continuation are shown in Figs. 3 and 4, respectively.
Clearly, a stable number of linear iterations is shown for both continuation experiments.
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Fig. 5 The convergence of the computed director as the mesh is refined for the nematic LC problem in a
square slab

To examine the convergence order of the discretization as a function of γ , we apply
theALMG-PBJ solver for γ = 104, 105 and 106. Note that the convergence result does
not rely on the solver used. Figure 5 shows the L2- and H1-error between the computed
director and the known analytical solution. We observe third order convergence of the
director in the L2 norm and second order convergence in the H1 norm for all values
of γ considered.

To investigate the computational efficiency of the AL approach, we compare
our proposed AL-based solvers (ALMG-PBJ and ALMG-STAR) with a monolithic
multigrid preconditioner using Vanka relaxation [1,53] on each level (denoted as
MGVANKA) in Table 5. Essentially, MGVANKA applies multigrid to the coupled
director-multiplier problem, with an additive Schwarz relaxation organised around
gathering all director dofs coupled to a given multiplier dof. All results are computed
in serial. In our experiments, these two AL-based solvers outperform MGVANKA
even for small problems of about five thousand dofs. In particular, ALMG-PBJ is the
fastest method considered and is approximately five times faster than MGVANKA for
a problem with about five million dofs. We also notice that ALMG-STAR is slower
than ALMG-PBJ, which is caused by the size of the star patch being larger than that
of the point-block patch, requiring more work in the multigrid relaxation.
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Table 5 The computing time of ALMG-PBJ, ALMG-STAR and MGVANKA as a function of mesh refine-
ment for the nematic LC problem in a square slab

Computing time (in min)

#refs 1 2 3 4 5 6

#dofs 5340 21,080 83,760 333,920 1,333,440 5,329,280

ALMG-PBJ 0.02 0.04 0.09 0.32 1.17 5.53

ALMG-STAR 0.02 0.07 0.23 0.79 2.95 12.86

MGVANKA 0.04 0.15 0.38 1.44 5.91 25.09

Fig. 6 The coarse mesh of the
ellipse

6.2.2 Equal-constant nematic case in an ellipse

Consider an ellipse of aspect ratio 3/2 with strong anchoring boundary condition n =
[0, 0, 1]� imposed on the entire boundary. We consider the equal-constant nematic
case K1 = K2 = K3 = 1, q0 = 0 to verify the theoretical results presented in
previous sections with corresponding discretizations. We use the initial guess n0 =
[0, 0, 0.8]� in the nonlinear iteration. The coarsest triangulation, generated in Gmsh
[26], is illustrated in Fig. 6.

To verify our theoretical results on the improvement of the discrete enforcement
of the constraint in Sect. 4, we vary the penalty parameter γ , use one refinement for
the fine mesh, and employ the [P1]3-P1 element. The data is plotted in Fig. 7. The
L2-norm ‖n ·n−1‖0 of the residual of the constraint decreases as γ grows, and scales
like O(γ −1/2) as expected.

The efficiency of the Schur complement approximation of Sect. 3 for the [P2]3-P1
element can be observed in Table 6.

Tables 7 and 8 demonstrate the robustness of ALMG-STAR and ALMG-PBJ with
respect to γ and mesh refinement for the [P2]3-P1 element. It can be seen that both
solvers are robust with respect to the penalty parameter γ , and with respect to themesh
size h for γ = 106. The number of nonlinear iterations and the number of FGMRES
iterations per Newton step remain stable.
Code availability For reproducibility, both the solver code [55] and the exact version
of Firedrake used [22] to produce the numerical results of this paper have been archived
on Zenodo. An installation of Firedrake with components matching those used in this
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Fig. 7 Comparison of the computed constraint ‖n · n − 1‖0 and the reference line O(γ −1/2) using the
[P1]3-P1 finite element pair for equal-constant nematic LC problems in an ellipse

Table 6 ALLU: The average number of FGMRES iterations per Newton iteration for an equal-constant
nematic problem in an ellipse using [P2]3-P1 discretization

#refs #dofs γ

0 1 10 102 103 104 105 106

1 19,933 29.20 25.60 16.40 5.20 2.60 1.60 1.33 1.14

2 78,810 32.50 26.00 14.00 6.80 3.40 1.80 1.33 1.17

3 313,408 12.50 15.50 16.25 7.60 4.20 2.20 1.33 1.17

4 1,249,980 11.00 12.25 14.75 8.40 4.80 2.60 1.40 1.17

5 4,992,628 12.33 13.33 11.75 8.00 5.20 3.00 1.50 1.14

Table 7 ALMG-STAR: the
average number of FGMRES
iterations per Newton iteration
(total Newton iterations) for
equal-constant nematic problem
in an ellipse using [P2]3-P1
discretization

#refs #dofs γ

103 104 105 106

1 19,933 2.60 (5) 1.60 (5) 1.80 (5) 1.67 (6)

2 78,810 4.40 (5) 1.80 (5) 1.60 (5) 1.50 (6)

3 313,408 6.80 (5) 3.20 (5) 1.50 (6) 1.50 (6)

4 1,249,980 10.00 (5) 4.67 (6) 1.80 (5) 1.50 (6)

5 4,992,628 14.40 (5) 7.50 (6) 4.20 (5) 1.33 (6)
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Table 8 ALMG-PBJ: the average number of FGMRES iterations per Newton iteration (total Newton iter-
ations) for equal-constant nematic problem in an ellipse using [P2]3-P1 discretization

#refs #dofs γ

103 104 105 106

1 19,933 3.80 (5) 2.60 (5) 2.60 (5) 2.80 (5)

2 78,810 6.80 (5) 3.20 (5) 2.60 (5) 2.60 (5)

3 313,408 9.00 (5) 5.00 (5) 2.60 (5) 2.60 (5)

4 1,249,980 14.80 (5) 8.20 (5) 3.80 (5) 2.40 (5)

5 4,992,628 19.00 (5) 11.60 (5) 6.80 (5) 2.50 (6)

paper can be obtained by following the instructions at https://www.firedrakeproject.
org/download.html with

python3 firedrake-install---doi 10.5281/zenodo.4249051

7 Conclusions

The results in this paper divide into two categories: results about the Oseen–Frank
model and its discretization, and results about the augmented Lagrangian method for
solving it. For the former, we extended the well-posedness results of [2] for nematic
problems to the cholesteric case. We also showed that the Schur complement of the
discretized system is spectrally equivalent to the Lagrange multiplier mass matrix. For
the latter, we showed that theALmethod improves the discrete enforcement of the con-
straint, and devised a parameter-robust multigrid scheme for the augmented director
block. The key point in this is to capture the kernel of the semi-definite augmenta-
tion term in the multigrid relaxation. Numerical experiments validate the results and
indicate that the proposed scheme outperforms existingmonolithic multigridmethods.
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