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Abstract

A new class of explicit Milstein schemes, which approximate stochastic differential
equations (SDEs) with superlinearly growing drift and diffusion coefficients, is pro-
posed in this article. It is shown, under very mild conditions, that these explicit schemes
converge in .Z? to the solution of the corresponding SDEs with optimal rate.

Keywords Explicit Milstein-type scheme - Super-linear coefficients - Rate of
convergence

Mathematics Subject Classification 60H35 - 65C30

1 Introduction

Following the approach of Kumar and Sabanis [7], Sabanis [10], we extend the
techniques of constructing explicit approximations to the solutions of SDEs with
super-linear coefficients in order to develop Milstein-type schemes with optimal rate
of (strong) convergence.

Recent advances in the area of numerical approximations of such non-linear SDEs
have produced new Euler-type schemes, e.g. see [3,5,6,9-11], which are explicit in
nature and hence achieve reduced computational time when compared with the cor-
responding implicit schemes. Note that we do not claim that the superiority of the
newly developed explicit schemes over the implicit schemes is absolute. For exam-

Communicated by David Cohen.

B Sotirios Sabanis
S.Sabanis @ed.ac.uk

Chaman Kumar
c.kumarfma@iitr.ac.in

Department of Mathematics, IIT Roorkee, Roorkee, India
2 School of Mathematics, University of Edinburgh, Edinburgh, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-019-00756-5&domain=pdf
http://orcid.org/0000-0002-3991-362X

930 C. Kumar, S. Sabanis

ple, implicit schemes may exhibit better stability properties under different scenarios,
typically when large step sizes are used or initial conditions are introduced with large
numerical values. Nevertheless, we primarily focus on strong convergence of explicit
schemes mainly due to their importance in Multi-level (and/or Markov chain) Monte
Carlo, see for example Giles [4] and Brosse et al. [2]. High-order schemes have also
been developed in this direction. In particular, Milstein-type (order 1.0) schemes for
SDEs with super-linear drift coefficients have been studied in Wang and Gan [12] and
in Kumar and Sabanis [7] with the latter article extending the result to include Lévy
noise, i.e. discontinuous paths. Furthermore, both drift and diffusion coefficients are
allowed to grow super-linearly in Zhang [13] and in Beyn et al. [1]. The latter refer-
ence has significantly relaxed the assumptions on the regularity of SDE coefficients
by using the notions of C-stability and B-consistency. More precisely, the authors in
Beyn et al. [1] produced optimal rate of convergence results in the case where the drift
and diffusion coefficients are only (once) continuously differentiable functions (see
the assumptions A-1 and A-5 precisely stated below). Our results, which were devel-
oped at around the same time as the latter reference by using different methodologies,
are obtained under the same relaxed assumptions with regards to the regularity that
is required of the SDE coefficients. Crucially, we relax further the moments bound
requirement which is essential for practical applications.

We illustrate the above statement by considering an example which appears in Beyn
et al. [1], namely the one-dimensional SDE given by

dx, = x;(1 = x>)dt + o (1 — x)dw,;, ¥t el0, T],

with initial value xo and a positive constant o. Theorem 2.1 below yields that for
po = 14 (note that p = 2) one obtains optimal rate of convergence in #? (when
o2 < % and p; > 2 such that 62(p; — 1) < 1) whereas the corresponding result in
Beyn et al. [1], Table 1 in Section 8, requires pg = 18 for their explicit (projective)
scheme. The same requirement, i.e. po = 14, as in this article is only achieved by the
implicit schemes considered in Beyn et al. [1].

Finally, we note that Theorem 2.1 establishes optimal rate of convergence results
in Z? for p > 2 under the relaxed assumption of once continuously differentiable
coefficients, which is, to the best of the authors” knowledge, the first such results in the
case of SDEs with super-linear coefficients. As an immediate consequence of this, and
for high values of p, one can prove an almost sure convergence result of the proposed
approximation scheme (2.6) to the solution of SDE (2.1). The interested reader may
consult Corollary 1 from Sabanis [10].

We conclude this section by introducing some notations which are used in this
article. The Euclidean norm of a d-dimensional vector b and the Hilbert-Schmidt norm
of a d x m matrix o are denoted by |b| and |o | respectively. The transpose of a matrix
o is denoted by o*. The ith element of b is denoted by b, whereas /) and o (/)
stand for (i, j)-th element and j-th column of o respectively for everyi = 1,...,d
and j = 1, ..., m.Further, xy denotes the inner product of two d-dimensional vectors
x and y. The notation |a ] stands for the integer part of a positive real number a. Let D
denote an operator such that for a function f : R — R?, Df(.) gives a d x d matrix
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0f10)
. 8x} .
A7 be an operator such that for a function g : RY — R AJg(.) gives a matrix of

order d x m whose (i, k)-th entry is given by

whose (i, j)-th entry is

foreveryi,j=1,...,d.Forevery j = 1,...,m,let

d .
. 9@l
[ATg ()]s = Zg("’”“%

u=1

foreveryi =1,...,d,k=1,...,m.

2 Main results

Suppose (£2, {-Z:}1>0, -F, P) is a complete filtered probability space satisfying the
usual conditions, i.e. the filtration is right continuous and .%; contains all P-null
sets. Let T > 0 be a fixed constant and (w;);¢[0,7] denotes an R™-valued standard
Wiener process. Further, suppose that b(-) and o (-) are (]Rd )-measurable functions
with values in RY and R4*™ respectively. Moreover, b(-) and o (-) are continuously
differentiable in x € RY. For the purpose of this article, the following d-dimensional
SDE is considered,

t t
xr =& +f b(x)ds +/ o (xg)dwy, 2.1)
0 0

almost surely for any ¢ € [0, T'], where & is an .%(-measurable random variable in R,
Let pg, p1 = 2and p > 1 (or p = 0) are fixed constants. The following assumptions
are made.

A-1 E|&|P° < 0.

A-2 There exists a constant L > 0 such that
2xb(x) + (po — Dlo(x)* < LA + |x[*)

for any x € RY.

A- 3 There exists a constant L > 0 such that
2(x — B)(b(x) — b(E)) + (p1 — Dlo(x) —o(®)|* < Llx — i|?

for any x, x € R4,

A- 4 There exists a constant L > 0 such that
|Db(x) — Db()| < L(1 + |x| + )"~ |x — X|

for any x, x € R4,
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932 C. Kumar, S. Sabanis

A-5 There exists a constant L > 0 such that, forevery j = 1,...,m,
i - _ L2 -
IDoV(x) — DoV (&) < L+ x|+ )7 |x — X

for any x, x € R4,

Remark 2.1 Assumption A-4 means that there is a constant L > 0 such that

ab'
29 < L1 gy
ox/
forany x € R4 and for everyi, j =1,...,d. As aconsequence, one also obtains that

there exists a constant L > 0 such that
|b(x) = b(X)| < L(1 + |x| + [X)?]x — X|
for any x, x € R4, Moreover, this implies that b(x) satisfies,
()| < L1+ [x)?*!

for any x € R4, Furthermore, due to Assumption A-5, there exists a constant L > 0
such that

‘Ba(i*j)(x)

s | < LA+ 1xD?

for any x € R4 and for everyi,k=1,...,d,j=1,...,m. Also, Assumption A-3
along with the estimate |b(x) — b(x)| < L(1 + |x| + |[x|)”|x — x| obtained above,
implies
jo(x) = (@) < L(L+ x| + [F) ¥ |x — |
for any x, x € R9. Moreover, this means o (x) satisfies,
pt2
lo(x)] < L(1+ |x]) 2
for any x € RY. In addition, one notices that

|AVo(x)] < L(1 + |x])?T!

for any x € R? and forevery j = 1,...,m.

For everyn € Nand x € R9, we define the following functions,
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PN b(x)
P = e
o (x) = — I

1 4+nf9|x|200°

where 6 > % and, similarly, for the purposes of establishing a new, explicit Milstein-
type scheme, forevery j = 1, ..., m, we define

Ao (x)

Ao (x) = ————2 .
R S TN

Throughout this article, 6 is taken to be 1, which corresponds to an order 1.0 Milstein
scheme.

Remark 2.2 The case & = 1/2 is studied in Sabanis [10], without the use of Ao (x),
as the aim is the formulation of a new explicit Euler-type scheme. By taking different
values of @ = 1.5,2,2.5, ... and by appropriately controlling higher order terms, one
can obtain analogous (to the value of 0) rate of convergence results for higher order
schemes by adopting the approach developed in Sabanis [10], Kumar and Sabanis [7]
and in this article. One notes, of course, that further smoothness assumptions are also
required in such cases.

Let us define « (n, t) := |nt]/n for any ¢ € [0, T]. Moreover, let us also define
m t m

ol (t,x) = Z/ A"’ja(x)dwf = ZA”’jo(x)(w,j - w,{(n’t))

j=1 Kk(n,t) =1

and hence set
" (t,x) == 0" (x) + o] (t, x)

almost surely for any x € R?, n € Nand ¢ € [0, T]. The above equality holds true
when x is replaced by an %, ;)-measurable random variables, which is the case
always throughout this article.

Remark 2.3 In the following, K > 0 denotes a generic constant that varies from place
to place, but is always independent of n € N and x € R¢.

Lemma 2.1 Let Assumptions A-3 to A-5 hold, then

16" (x)] < min(Kn? (1 + |x]). [b(x)])
0" ()] < min(Kn2(1+ |x ), |o ()

|A™ g (x)] < min(Kn? (1 + [x]), |A(x)])

foreveryn € N,x € R4 and j = 1, ..., m where the positive constant K does not
depend on n.
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934 C. Kumar, S. Sabanis

Proof Clearly, Assumptions A-3 to A-5 give Remark 2.1 which are used throughout
the proof of this lemma. Recall the definition of " (x),

b(x)
b"(x) i= —————
R P BT

forevery n € N, x € R? and 6 > 1/2. For any & > 1/2, by noticing that the
denominator of b" (x) is greater than 1, one can write

by = (PO b))
(14 n=01x|?9)20 = 1 +n=9|x|?00

forany n € Nand x € R?. Also, notice from Remark 2.1 that |b(x)| < L(1 + |x|)**!
for any x € RY which further gives,

(1 + |x>e*D (1 + x>
bn 20 < L — 6 1 20
@ = L S = b (L )
1 260p
S L229p71n9 +|x| (1 +|x|)29 S L229p71n0(1 + |x|)29

n? + |x|200

for every n € N and x € R?. By raising the power 1/(20) on both the sides, one
obtains

16" (x)| < Kn'2(1 + |x|) (22)

where K = (L229"_1)1/ @9 for everyn € Nandx € R4, Also, since in the definition
of b"(x) above, the denominator is always greater than one, hence,

16" ()| < [b(x)] 2.3)

for every n € N and x € RZ. On combining the estimates in (2.2) and (2.3), one
obtains,

16" ()] < min(Kn2 (1 + [x]). [b()])

for every n € Nand x € R%.

The same proof will work for A"Jg(x) because Ao (x) has same polynomial
growth as b(x) (see Remark 2.1). Also, similar proofs can be constructed for " (x)
by raising the power to 40 instead of 26. Again, recall definition of 0" (x),

o(x)

n Py—
o' (x) = T =020 TR bT]
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for every n € N, x € R4 and 6 > 1/2. For any 6 > 1/2, by noticing that the
denominator of 0" (x) is greater than 1, one can write

PPN ol o (0)[*
(14 n=01x|?9)% = 1 +n=9|x|?r¢

for any n € N and x € R?. Also, notice that due to Remark 2.1, |o”(x)| < L(1 +
Ix)2+! which gives

1 20p
R

o (14 |x)*%
n + |x|?°

nf + |x|209
< L2710 (1 4 |x)¥

lo"()|* < Ln (1 + |xD¥ < L2%0r=1p0

for every n € N and x € R?. By raising the power 1/(40) on both the sides, one
obtains

lo"(x)| < Kn'7*(1 + |x]) (2.4)

where K := (L229p’])1/ 0 for everyn € Nandx € R4 Also, since in the definition
of 0" (x) above, the denominator is always greater than one, hence,

lo" ()] < |o(x)] 2.5

for every n € N and x € R4, On combining the estimates in (2.4) and (2.5), one
obtains,

0" (x)] < min(Kn3 (1 + |x]), |o (x)])

for every n € Nand x € R?. This completes the proof.

We propose below a new variant of the Milstein scheme with coefficients which
vary according to the choice of the time step. The aim is to approximate solutions of
non-linear SDEs such as Eq. (2.1). The new explicit scheme is given below

t t
x; =§+/O b"(x;'(n,s))ds +/O 6”(s,x,t’(nys))dws (2.6)

almost surely for any ¢ € [0, T].
The main result of this article is stated in the following theorem.

Theorem 2.1 Let Assumptions A-1 to A-5 be satisfied with pg > 2(3p+1) and p; > 2.
Then, the explicit Milstein-type scheme (2.6) converges in £7P to the true solution of
SDE (2.1) with a rate of convergence equal to 1.0, i.e. for everyn € N

sup Elx; —x}'|P < Kn™P, 2.7)

0<t<T
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936 C. Kumar, S. Sabanis

Po

when p = 2. Moreover, if po > 4(3p + 1), then (2.7) is true for any p < Tt

provided that p < p1.

Remark 2.4 One observes immediately that for the case p = 0, one recovers, due
to Assumptions A-1 to A-5 and Theorem 2.1, the classical Milstein framework and
results (with some improvement perhaps as the coefficients of (2.1) are required only
to be once continuously differentiable in this article).

Remark 2.5 In order to ease notation, it is chosen not to explicitly present the calcula-
tions for, and thus it is left as an exercise to the reader, the case where the drift and/or
the diffusion coefficients contain parts which are Lipschitz continuous and grow at
most linearly (in x). In such a case, the analysis for these parts follows closely the clas-
sical approach and the main theorem/results of this article remain true. Furthermore,
note that such a statement applies also in the case of non-autonomous coefficients in
which typical assumptions for the smoothness of coefficients in # are considered (as,
for example, in [1]).

The details of the proof of the main result, i.e. Theorem 2.1, and of the required
lemmas are given in the next two sections.

3 Moment bounds

It is a well-known fact that due to Assumptions A-1 to A-3, the po-th moment of the
true solution of (2.1) is bounded uniformly in time.

Lemma 3.1 Let Assumptions A-1 to A-3 be satisfied. Then, there exists a unique solu-
tion (x;)ep0,71 of SDE (2.1) and the following holds,

sup E|x/|” < K.
0<t<T

The proof of the above lemma can be found in many textbooks, e.g. see Mao [8]. The
following lemmas are required in order to allow one to obtain moment bounds for the
new explicit scheme (2.6).

Remark 3.1 Another useful observation is that for every fixed n € N and due to
Remark 2.1, the po-th moment of the new Milstein-type scheme (2.6) is bounded
uniformly in time (as in the case of the classical Milstein scheme/framework with
SDE coefficients which grow at most linearly). Clearly, one cannot claim at this point
that such a bound is independent of n. However, the use of stopping times in the
derivation of moment bounds henceforth can be avoided.

Lemma 3.2 Let Assumption A-5 be satisfied. Then,
Elo7 (1, 50, )P < K(1+ Elxf, ") < KE(+ |xf, )7

Kk(n,t)

foranyt € [0,T]andn € N.
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Proof On using an elementary inequality of stochastic integrals and Holder’s inequal-
ity, one obtains

4 0

m
E|af’(t,x,’(’(n’t))|l’o = KE‘ Z/ A"'fa(x,’(’(n’s))dwf
=1 Kk (n,t)

t
gkn—%o“Ef Ao (X" )|POds

Kk(n,t) k@.5)

which due to Remark 2.1 gives

t
_ro ro
Elof(t, x}, )I7 < Kn™ 2 +‘E/ n (14 |x), o |7)ds

k(n,t)
and hence the proof completes.

The following corollary is an immediate consequence of Lemma 3.2 and
Remark 2.1.

Corollary 3.1 Let Assumption A-5 be satisfied. Then

~ Po Po Po
EIG"(t, x0 o )IP < Kn'® (1 + Elx}, ,17°) < Kn T E(1 + Ix,'j(n’t)|2) 2

foranyn € Nandt € [0, T].

Lemma 3.3 Let Assumptions A-1 to A-5 be satisfied. Then, the explicit Milstein-type
scheme (2.6) satisfies the following,

sup sup E|x/|" < K.
neNO0<t<T

Proof By It6’s formula on the functional (1 + |x|%)P/2 for x € R?, one obtains

t
(L4 [x][HP? = (1 4 &[H)P% + po f A+ PPN (), )ds
0
t
+ po /0 (14 PP G0 s,
—2) [t B
+ PO(P02 ) /(; (1 + |x;1|2)170/2—2|0n*(s, x;t(”’x))x;z'st
po (' 2ypo/2—1 2
v B /0 (14 Ry Gn s, 50 ) Pds,
and then on taking expectation along with Schwarz inequality,
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938 C. Kumar, S. Sabanis

E(1+[x] )™ < E( + €))7 + poE / (L [ P20 = 5D ()
+ poE / (L | POt b (0, o))
0

-1 t -
+ %E/O (14 I PG (5, 3, )P dds

for any + € [0,T] and n € N. Then, one uses |z + w2 = |al? +
2 Z?:l 27:1 z(l Dy (’ D 112512 for 71, 7o € R4*™ to obtain the following estimates,

t
E(1+ | 2)P0/2 < E(1 + )P0/  poE / (L4 PO =t OB (0, )

+fE/ (1 + x| }yPo/2= 1{2)‘( 9" ) + (P — DIo™ (g, S))l bs

(
+ B /<1+|x"\2>"°/2 Hot 5. 5y )P ds

+p0(p0—1)E/ (1+|x ‘ )P0/2 IZZUA L3, /)(x” )gl i.j) (s, xk(” S))db
i=1j=1

=:C1 +Cy+C3+4+C4+Cs. 3.1

Here, C; := E(1 + |& |2)”0/2. For C», one notices that it can be written as
! 2 2—1
Cy = pOE/ (14 |x7 yPo/2= (xf —x,’:(nis))b"(xl’z(nﬁs))ds
= poE/ (1 4 |x3ypo/2=1 f b () )b (x, )ds
Kk(n,s)
+ poE / (1 + [0 yPo/2=1 / &" (s XLy W D" (L, s
k(n,s)
which on the application of Remark 2.1 and Young’s inequality gives,
t t
C, sK/ E(1+ |x§|2)P0/2ds+K/ E(1+ [x}, )7 ds

—|—p()E/ 1+ |xK(n 5 | )P0/2 1/
K

+ POE/ ((1 + |x;’l|2)PO/2*1 _ (1 + |x,’<’l(n,x)|2)p0/27l)
0

o (r, x,:’(n,r))dw,b" (x,i’(n’s))ds
(n,s)

N
X / " (r, x,'(’(n’r))dwrb"(x,'{'(n’s))ds
k(n,s)

for any ¢ € [0, T] and n € N. Further, one observes that the second term of the above

equation is zero and the third term can be estimated by the application of Itd’s formula
as below,
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t t s
C, 51(/ sup E(1+|xf|2)p°/2ds+KE/ f (1 |2 PO2 2B ()T
0 0 Jk(n,s)

0<r<s

N
X / o (r, x,'{’(n,r))dwrb" (xf(nys))ds
K

(n,5)

t s
cKE [0 AP e,

s
X f o (r, xg(n‘r))dw,b"(xlf(n,s))ds
Kk(n,s)

t s
+ KE/ f L+ X [HPPP21E" (r x0, ) Pdr
0 Jk(n,s)

s
x| o (r, x,r(l(n’r))dwr Il bn(x,r(l(n_s)) | ds
Kk(n,s) '

forany ¢ € [0, T] and n € N. Due to Remark 2.1 along with an elementary inequality

of stochastic integrals, the following estimates can be obtained,

t
C) < K/ sup E(1 4 [x"1})P0/2ds
0

0<r<s

t ps
" KnE/ / (a+ |xl?(n,s)|2)(1 + xR P 2,
0 Jk(n,s)

ds

N
| / 5" (r Xy )dw,
k(n,s)

i t ps , B .
+Kn?E /0 / ( )(1+|xZ(n,s)|)(l+|x,’|2)<”° D27 (7, XLy ) Pdrds
Kk(n,s

1 t s _ -
+KniE f f (I e DA+ 1 DY PI216" 2, ) Pdr
0 Jk(n,s)

ds

A
X ‘/ o (r, x,?(n )dwr
Kk(n,s) ’

for any ¢ € [0, T] and n € N. Noticing that when pg < 3, (1 + |)cf|2)(1’°_3)/2 <1,

one can obtain the following estimate,

t
) < K/ sup E(1+ [x!'[})P0/24s
0

0<r<s

t 3 s 1
+KE/ nI/ (1+\x"f(n’wlz+|xf|2)(P0—1)/2drn4
0 Kk (n,s)

s
/ " (r, x
Kk(n,s)

Ydwy|ds

tops 2 12
+ KE/ ./ PO (L4 x4 (x ) Po=D/2y, 2+ 70 6" (r, X/’:(n r))|2drds
0 Ji(n,s) ’

Kk(n,s)

16" 52y )

top s
+KE/ nZ/ A+ 2+ |x P Po—2)/2
0 K(n,s) (n.5) g L4 [x"

K(n,r)l

1
x n4

s
" (r,x"  dw,|ds
/K(n,x) K (n,r) r
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940 C. Kumar, S. Sabanis

and then one uses Young’s inequality to obtain the following estimates,

t
C) < K/ sup E(1+ |x" 2P0/ 2ds
0

0<r<s

t s _Po_
(/ (U [0 12+ L P00 2ar) 0T g
K

(1.5) k(n,s)

3po
+ Kn#*po=D Ef
0

t N
+ KnE/ / (115 5> + X1 1P 2drds
K(n,s) ’

0 t, ps |60, x|
+Kn¥p-DE A+ P+ |xn|2)(p°_2)/2¢dr Po=T 4o
Kk(n,s) r 1
0 K(n,s) + |xl((n s)|
t s
4
+Kn%E'/ / o (r, xK(n r))dwr Ods
Kk(n,s)

+1 n Po
+ Kn— E/ /’;(n Y lo" (r, xK(n r))I drds

forany ¢ € [0, T] and n € N. Further, by the application of Holder’s inequality and
an elementary inequality of stochastic integrals, one obtains the following estimates,

t
C) < K/ sup E(1 4 [x"1})P0/2ds
0 0<r<s
Po

3p0 P t s P
+ Kn*ro-D pml“E/ /( )(1 18 2+ 1 drds
Kkn,s

Po—2)

skE [ [0 @i, P B
k(n,s)

3
e U<M
1+ |x

)mﬁdrds

K(I’l,}’)'

t s
+Kn—%°+115/ / 16" (7, X0 )| Pdrds
k(n,s)

which due to Corollary 3.1 and Young’s inequality yields

t
Cy < K/ sup E(1 4 |x"})P0/2ds
0

0<r<s

t s
P
4 KE/ n [ P e R
Kk(n,s)

Capg gl O (X )|
+KE/ / Eh —K(n r) ) drds
K(nA) 1+|X

K(}’l,}’)'
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forany ¢ € [0, T] and n € N. Now, one only requires the estimates of the last term of
C, which can be done as follows. Due to Remark 2.1, one has

<| G Xl ) |2>p0 e T ) PP | o7 X ) PP
1+ |x/'(z(n,r)| B (1 + |xlr<l(n,r)|)p0 (l + |xlr(l(",r)|)p0
I+ | x? 2po
< kn#p T ewn D
(1 + |x/:,(n,r)|)p0

| Z?:l ./l:(n,r) A”’ja(x,’(l(n’u))dw,f R
(I+ |x,}:(n’r)|)p0

+ KE

and then the application of and an elementary inequality of stochastic integrals,

<| G (r, X ) 2

Po Po
<Kn?2 E(1+ | x" )Po
1+ |x’l;l(n’r)| ) | Kk(n,r) I

oo AN e (", D12 \p
+KE(Z/ ok du) ’
=1 k) L+ |x,((,,1u)|

which again due to Remark 2.1 gives,

(| G, X ) P

po n 2yp0/2
< Kn?2 E(14|x",, ,, )P/
1+ |xk(n,r)| ) emr)

ron(l ", D2 e
+ KE(/ ke du) 0
k(n,r) I+ |xl<(n,u)|
< KnPE(+ | 2y, ,, P2 3.2)

for any ¢ € [0, T] and n € N. By substituting the estimates from (3.2) in C; above,
one obtains the following,

t
G, < K/ sup E(1 + |x" %P0/ %ds (3.3)
0

0<r<s

foranyr € [0, T]andn € N.For C3,one uses Assumption A-2 to obtain the following,

t
Po — 7
Cs = 7Efo (L [ P22 B (e o) + (po = Do (i, )P}

n

2
_ @E ' 1 n2 po/2—12xf’<z(n,3)b(x/’<1(n,S)) + (Po — 1)|G(x/c(n,S))| d
= (I +[x517) ] o 3014 N
0 +n |xK(n,s)|

' 1+ [x2, o
_ (n,s)
< KE/ (1 + [xPypo/2-1 y ds
0 s 1+n—1|x’r(z(n’s)|2p+4
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942 C. Kumar, S. Sabanis

which due to Young’s inequality gives,
t
C3 < K/ sup E(1 4 [x"}H)P0/2ds (3.4)
0 0<r<s
forany ¢ € [0, T'] and n € N. Furthermore, by using Young’s inequality, Cy4 in (3.1)
is estimated as,
popo—1 . (" _
Cy = TE/O (L4 X P o (s, 2, ) Pds
1 t
< KE/O (1+ |x;’|2)170/2ds + KE/O loy' (s, x,t'(n’s))|l70ds
and then on the application of Lemma 3.2, one obtains
1
Cy < K/ sup E(1+ |x"%)P0/2ds (3.5)
0 0<r<s

for any ¢ € [0, T] and n € N. Now, for estimating Cs, one writes

Cs := po(po— 1)E/ (1+ |xI|2yPo/2- ‘ZZG” D ot (s, 20, s

i=1 j=1

< KE [0 g P Y0

i=1 j=1

m s
X Z/ A”’ka"’(””(x,’(’(nyr))dwfds
k=1 YK (n.9)

t
+KE / (A PP — (1 + [, 0 1DPH
0

m

d
x ZZ D ot (5wl g )ds
i=1

forany ¢ € [0, T] and n € N. Clearly, the first term is zero and one uses Itd’s formula
for the second term to obtain the following,

t N
Cs <KE f / (L [x [HPRP 20D (2, o)A
k(n,s)

d m
N n,(i,j)
X Z Za” @ f)()c,’f(n’s))cr1 (s, x,'('(n’s))ds

i=1 j=1

t s
+KE/ / (L4 [xP PP 72x] 6" (r x2 ) )dW,
Kk(n,s)
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N

d m m
E:E: 2: & n, (i, )) k
« NG J)(x/’:(n,s)) /K Ak Gn L (x:(n,r))dwrds
k=1

i=1 j=1 (n.5)

t N
+ KE/ / (L + X P22 (o, x), ) Pdr
0 Jk(n,s)

d m
NN n,(i,j)
X ZZG" @ ])(x,’;(nys))al (s,x;‘(n’s)) ds
i=1j=1

which on using Schwarz inequality and Remark 2.1 along with an elementary inequal-
ity of stochastic integrals yields,

N

3 t
Cs < KnKEf (1+ |x,'(’(nys)|)2/ A+ |xf )P 2dr|of (s, x2, o)lds
0 Kk(n,s)
N

3 ! ~
L KniE / U+ 12 )2 / U+ DY PD2150 e drds
0 K (n,s)
1 ! s -
+Kn*E /0 A+ 1xl . 0D / (L4 [ PD216" (o, xl )
k(n,s)

dr|ofl(s,x,’cl(n,s))|ds

and this can further be estimated as,
Y _
Cs < KE/ n4/ (4 [x2 oI + 1P D2dr ol (s, 5, )lds
0 k(n,s)

t ps po—1
" KE/ / noro (14 |, o + b= D72
0 Jk(n,s)

3_ro—l

xn* |6”(r,x,’f_(n Hldrds

1670, X0 )1

13 1 s _
FKE [ b [ b P 2T
0 Kk(n,s) 1+ |xK("J’)|

drloy (s, x,’(’(n‘s))|ds

for any t+ € [0, T] and n € N. Further, one uses Young’s inequality to obtain the
following estimates,

t s _Po_
Cs < KE/ (ni/ (U [0 2 4 b BP0 2ar) g
0 k(n,s)
t N
AKE [ [ n sl o Py drds
0 Jr(n,s)

t ps 3
+ KE/ / no—potl 16" (r, x,’(l(n »)ldrds
0 Jr(n,s) '
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Loy 167 (ry X2 )P\ 52
+KE/ (nZ/ (l+|x/:l(n S)|2+| | )(PO 2)/2$d’,)m ds
0 k(n,s) ’ 1+ |x/<(n r)|

t
+ KE/ loy' (s, x,'(’(n_s))l”ods
) ,

which on using Holder’s inequality, Lemma 3.2 and Corollary 3.1 gives,

t
Cs < K/ sup E(1+ [x!'[})P/2ds
0

0<r<s

L _3pg __po $
+ KE/ T0-D o111 / 1+ |x’l(1(n S)|2 + |x:’|2)p0/2dr
k(n,s) ’

-2 0
+KE./ / nPo 1(1+|x/<(ns)|2+|x | )2(170 Dp 4po=b ro-l
Kk(n,s)

("’ (. Xem, r))|2> 0 ‘drds

1+ |x”

Kk (n, r)l

and then one again uses Young’s inequality to obtain,

t
Cs < K/ sup E(1 4 [x"})P0/2ds
0

0<r<s

t s
—i—KE/ n/ (A A+ |x] P+ X P 2drds
0 Kk(n,s)

+KE/t ”’°+1/ (l(}n(r’x:(n,r)”z)podrds
0 Kk(n,s) 1+ |xn

K(n,r)|

for any ¢ € [0, T] and n € N. Thus by the estimates obtained in (3.2), one has

t
Cs < K/ sup E(1 4 [x"})P0/2ds (3.6)
0

0<r<s

for any ¢t € [0, T] and n € N. By substituting estimates from (3.3), (3.4), (3.5) and
(3.6) in (3.1), the following estimates are obtained,

t
sup E(1+ [x"))P/? < K + K/ sup E(1 4 |x"[})P/2ds < oo
0<s<t 0 0<r=<s

for any ¢ € [0, T] and n € N. The proof is completed by the Gronwall’s lemma.
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4 Proof of main result

A simple application of the mean value theorem, which appears in the Lemma below,
allows us to simplify substantially the proof of Theorem 2.1. Furthermore, throughout
this section, it is assumed that pg > 2(3p 4+ 1) and p; > 2.

Lemma4.1 Let f : RY — R be a continuously differentiable function which satisfies
the following,

IDf (x) = Df (©)] < L(1 + |x| + [¥)” |x — X| 4.1

forall x, X € R and for a fixed y € R. Then, there exists a constant L such that

af(x)
a i

1f ) = f(D) = Z (" =X < LA+ x| + 12D |x — &

i=1
forany x, % € R%.

Proof By mean value theorem,

d _
1— o
Foo - f =3 14 +3(yf DI (i — &)
i=1

for some g € (0, 1). Hence, for a fixed g € (0, 1),

ad
f () — f (@) — Z g(f)< — i)
i=1

d -
1@+ -H ; 00 i
-y o (x —x)—Z RG]

i=1 i=1

L0 f(gx + (1 = g)F) af(x) g
SZ‘ 5 ‘I -

which on using equation (4.1) completes the proof.

Lemma 4.2 Let Assumptions A-1 to A-5 be satisfied. Then, for everyn € N

sup Elof(z, xk(n t))| < Kn~ 5
0<t<T

forany p < pO
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Proof By the application of an elementary inequality of stochastic integrals, Holder’s
inequality, Lemma 2.1 and Remark 2.1, one obtains

t
/ A"’Jo(x,'('(n’s))dwsj
K

m
Elof'(t. x}u )IP <KDY E
j=1 (n,1)

t

<Kn :tE / |AT0 (x5 ds

Kk(n,t)

t
5Kn—§+1Ef (1+[x", o DPTDPds

Kk(n,t) K @.s)
which due to Lemma 3.3 completes the proof.

As a consequence of the above lemma, one obtains the following corollary.

Corollary 4.1 Let Assumptions A-1 to A-5 be satisfied. Then, for every n € N,

sup E|&"(t,x;’(n,[))|p <K
0<t<T

Po
forany p < oHT

Lemma 4.3 Let Assumptions A-1 to A-5 be satisfied. Then, for everyn € N,

p

n n — 5

sup E|x; —xK(n’t)|p <Kn"2
0<t<T

Po
forany p < oHT

Proof Due to the scheme (2.6),

! p r p
E|x;! — x,'('(n’,)|17 §KE‘ /( ) b"(x,'(’(n’s))ds‘ +KE / o (s, x;'(nys))dws
k(n, K

(n,0)

and then the application of Holder’s inequality along with an elementary inequality of
stochastic integrals gives

t
Bl =l P <Kn PHE [ G

Kk (n,t)

))|pds

n
k(n,s

t

+ Kn_g‘HE/ |6.n(sv‘xl};l(”ﬂs))|pds

Kk (n,t)

which on using Lemma 2.1 and Remark 2.1 yields the following estimates,
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t
|P < Kn_p+1E/ (14 |x"

Kk(n,t)

t
FRnEE [ sl s

k(n,t)

E|xtn - xl/:(n,t) k(n,s) |)(,0+l)pds

forany ¢t € [0, T]. Thus, one uses Lemma 3.3 and Corollary 4.1 to complete the proof.

Lemma 4.4 Let Assumptions A-1 to A-5 be satisfied. Then, for everyn € N,

sup E[b(x)l, ) — b, DIP < Kn™P
0<t<T

forany p < —3p+]

Proof One observes that

2p
M LGyl =i
1 +n-Lx"

B ) = B () =1 Kn '+ x0T

|2
k(n,t)
and hence Lemma 3.3 completes the proof.

Lemma 4.5 Let Assumptions A-1 to A-5 be satisfied. Then, for for everyn € N,

sup E|0(xK(n n) — an(x;’(nyl)ﬂp < Kn7?
0<t<T

p
forany p < 2.5'00“.
Proof The proof follows using same arguments as used in Lemma 4.4.

Lemma 4.6 Let Assumptions A-1 to A-5 be satisfied. Then, for everyn € N,

sup Elo(x}') — U(x,'(’(n,t)) — Ul”(t,x,’(’(n’,))V’ < Kn7?
0<t<T

Po
forany p < TotT"

Proof First, one observes that

d k, d k,
do v)(xwz n) 9o v)(xwz n) o
Yo G Z— Rt
K

/((n t)) = 9yl ) )dS

k(n,s)
u=1

/ Z"" D () w]

k(n, t)

+/ Zoln A ’)(s xK(n S))du)s>
K

("t)l 1
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d (k,v)
do (xK )
(n 1) / bn,u(xn )ds

u=1
do kv (xn
k,
n( U)(t x/((n t))+ 2 : aqu(n 1)

t m i .
/ > o1 (s 2l ) dwd 4.2)
k(n,t) =1

for any ¢ € [0, T]. Also, one can write the following,

k,
G(k*”)(x,") (k v)('x/((n [)) _ Ul n,( U)(t x;((n t))

d (k,v)
do (x" n)
= (T(k’v)(x;l) — U(k’v)('xl’:(n,l)) aqu(Yl ) (x tn,u _ x’r(ziz’[))
u=1
d aa(k v)(x )
Kk(n,t) n,(k,v)
+ oxi (xf xK(n t)) - Ul (t, x/c(n t))
u=1

and hence due to equation (4.2), Remark 2.1 and Lemma 4.1 (with y = (p — 2)/2),
one obtains

|O.(k,v)(xln) (k U)(xl((n t)) _ O." (K, U)(t xk(n t))|

< LA+ x|+ |xg,, ,)l)T|xrn - x;l(n,t)|

d (k,v)
do x" )
‘ Z 8qu(n 1) / bn u(xK(n S))ds‘
Kk(n,t)

u=1

‘ d 80'(k v)(x

)
> T f Z 1 (s, 1 )dw]
Kk(n, t)

u=1

+

for any ¢ € [0, T']. Thus, on the application of Holder’s inequality and an elementary
inequality of stochastic integrals along with Lemma 2.1 and Remarks 2.1, the following
estimates are obtained,

,(k,
Elo®V (x) — U(k’v)(x?(n,z)) —o" ", Xemn)l”

o _ o
< KEQ A+ ]|+ 1 0D 2 137 = x5, 12F + KnTPE(L+ x, ) 2 707

1
_pr
+ Kn— 2t /,;(n , E(+ |xk(n ,)|) |(71 (s, x/c(n S))| ds

for any ¢ € [0, T']. One again uses Holder’s inequality and obtains,
E (k,v)  ..n (k v) __n,(kv) n P
lo (x; ) — (xK(n ;)) ‘71 (t, xx(n,t))|
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2ppg  Po—PP

|Po=rP} PO+ Kn—P

ﬂ
< K{E(L+ x| + X", DT} (Ex) — x

n
k(n, t)| Kk(n,t)

_2ppy  2pg—pP

t
_P
+Kn~ 2! /K(n B+ I, DDV Elof (s, X0, )| 007} 0 ds

for any ¢ € [0, T']. The proof is completed by Lemmas [3.3, 4.3, 4.2].

Let us at this point introduce e} := x; — x;' for any ¢ € [0, T].

Lemma 4.7 Let Assumptions A-1 to A-5 be satisfied. Then, for every n € N and
te[0,T],

t

'
E/ lel |7~ 2 er(b(xy) — b(xl'z(n o)ds < Kf sup Ele!|Pds +Kn™P (4.3)
0 .

0 0<r<s

for p = 2. Furthermore, if po > 4(3p + 1), then (4.3) holds for any p < 3511.

Proof First, one writes the following,
! 2
E / e [P=2el (b(x) — b(xl,, ;))ds
0

d t
— ZE/ led [P72el K (b () — D (xl, 5))ds
A :
k=1

ox!

d 2nk k,.n k d abk(x'?("s)) n,i n,i
=Z /Ie 1P~ (b7 (x) = D" (x5 Z—-’(xs’ = Xein.s))ds

k
b (xK(n 5

+z /iew”kz T =)

! nip—1pkon k,.n d abk(x‘f("?)) i
sZE 11T ) = U ) Y =X )l

i=1
d Bbk(xk(n o)

+Z / e |72 ""Z P /( )bn’i(x?(n,r))d’"
k(n,s

d k
b (x", )
+§ : e’ p—2 nk Kk (n, S) / —n(z 1) xn dw
/ 5] ox! Kk(n,5) 12 ( n r))

=: T1 + 1+ T3 4.4

for any r € [0, T].

Notice that when p = 2, |e}/|” ~2 does not appear in T» and T3 of the above equation.
One keeps this in mind in the following calculations because their estimations require
less computational efforts as compared to the case of p > 4.
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Now, T7 can be estimated by using Lemma 4.1 (with y = p — 1) as below,

d d k
T = E ! np—1 bk n bk n db (x’?("xs)) n,i d
1= e ) — (o) =D g = o)lds
k=1

i=1

t
<E / A e N P I B i B v bt
0

which on the application of Young’s inequality and Holder’s inequality gives

t t
T 5/ E|eg|Pds+f EQ A+ x|+ 150 o DPTVPxf = x2, ) [PPds
0

(p—Dp

/ E|e”|”ds+/ {E(L+ |x{ |+ |xg, o D7} 7o

n n 2ppg po—(p=bp
— po—(p—Dp P
x {E|x; xk(n’s)| 0 } 0o ds

and then by using Lemmas [3.3, 4.3], one obtains

t
T < Kn_”—i—/ sup Elel|Pds 4.5)

0 0<r<s

for any ¢ € [0, T].
For T3, one uses Schwarz, Young’s and Holder’s inequalities and obtains the fol-
lowing estimates,

2 nk bk(x:c(n n) ‘
T —Z /|e P2l Z = / b (x, ) )drds
X k(n,s)
bk (x" ),
< KE/ ey |Pds + Kn~Pt! Z / / 8Kl(" 2
X

k,i=1 (n, S)
< b (x i, )P drds

which on the application of Lemma 2.1 and Remark 2.1 yields
t t N
T, < K/ Elef|Pds + Kn7p+1E/ / a1+ |x;'(n ,)I)(2p+1)pdrds
0 k(n,s) ’

for any ¢t € [0, T]. Furthermore, due to Lemma 3.3, the following estimates are
obtained,

t

T < Kn_”—i—f sup Elel|Pds (4.6)

0 0<r<s
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for any ¢ € [0, T']. One can now proceed to the estimation of 73. For this, one uses
t0’s formula and obtains the following estimates,

nyp—2 nk __
led [P el = el

S

— k —

I Lan T / o [T ) =B
k(n,s

s m .
+ /( ) |e'r1|1)*2 E ((I(k’j)(xr) _ 5n’(k’])(r, x,?(n,r)))dwrj
Kn,s .
) /:1

s
+(p—2) erkler|P=4e) (b(x,) — b (x, )))dr

Kk(n,s)
N
-2 erkler|P~te) (o () — 6" (r X0, ) dw,
(p—=2)(p—4 [° _ .
s/ )e;”"|ef|1’ %l(0 () = 6", Xy ) el dr
k(n,s
+ p_—2 ' e”’k|e”|p 4|cr(x ) —o"(r, x" )|2dr
2 e (.5) r r r Kk (n,r)

L 2>f )Z(o“”(x) KD et
k(n,s

d
X Zef’“(a(”’j)(xr) — & D x,'(’(n’r)))dr

u=1

for any s € [0, T'].

In the above equation, notice that when p = 2, the last five terms are zero,
ey, (1.9) |P—2 is absent from the first term and lef|P ~2 does not appear in the second and
third terms. Hence, this on substituting in 73 and then using Schwarz inequality gives
the following estimates,

d k
m b (xl( — k)’ r))

d '

Ty < Ef|e" "¢ /
X_: 0 k(n,s) K(n s) (. S)l ll ] ax’
+Z / / ) Pl

m d
‘ / 8b ()CK(” r)) P a, l)(r o
. 8)6’ Kk(n,r

@D x,f(nyr))dwids

(n,8) j 1; 1

m
+Z / / €772 (o ® D () — & E D (r, xf, ))dw]
k(n,s)

j=1

m d k
/ I (xg g, "))~n,(i,l)(r O dwlds
(ns) & 1 & 8xl Kk(n,r) r
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+KZ / / ) el kler|P4el (0 (xy) — 6" (r X0, ) dwy
k(n,s

s m d 8bk(x )

k(n,r)’ ~ 1 l

< 22 T o urds
K (n, A)l 1 i=

+I<Z / / €173 o (xp) = 6" (7, XLy ) P
Kk(n,s)

m
‘/ Bb (xK(n ") GG 3 aul|a
k() =1 j= 1 ox! e

=:T31+ T3+ T33 + T34 + T35 4.7

for any ¢ € [0, T]. In order to estimate 731, one writes,

. 2 n,k
T31 =K Z / |eK(VL s)|p K(n s)

s 4 oapk(n )

k(n,r) ~n (il 1

[y T i, autas
K(n.8) 1 =

d '
-2 o k
KZE/O |eﬁ(n,s)|p K(n s)
k=1

s m d 8bk(x" )

Kk (n,r) (il 1

. / 2.0 o )dwids
©€8) =1 =1

72
+KZE/ |el((n v)| K(n s)

s m d Bbk(x )

Kk(n,r) n @i,0 1

x/ E E T (r,x,’f(n’r))dwrds
Kk (n,s) I=1 i=1

for any ¢t € [0, T']. In the above, notice that first term is zero. Then, on using the
Young’s inequality, Holder’s inequality and an elementary inequality of stochastic
integrals, one obtains,

t

T51 <K sup Ele!|Pds

0 O<r<s

m d
o (x" ) 3
" X)) it
+K§ /‘/K Dol D x| ds

(n,8) 7 11 1

§K/ sup Elel|Pds + Kn™ 2+1Ef/ (U [ ) D
0 k(n,s)

0<r<s
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X |a]"(r,x;'(n’r))|pdrds
t » roprs pp
<K sup E|e!|Pds + Kn_7+1/ / {EQ+ [xgg, D7}
0 0<r<s K(n,s)
0—PP

_pPo_ P
))|1’0*PP} 0 drds

x {E|op (x”

K(n,r

and then by using Lemmas [3.3, 4.2], one obtains

t
T5 < Kn7p+K/ sup Ele|Pds 4.8)
0

0<r<s

for any ¢ € [0, T]. Moreover, for estimating 732, one uses the following splitting,

b(x) — B (2, ) = (b(xy) = b)) + (b)) — b, )
+ B ) — B L ) 4.9)

and hence 73, can be estimated by

T3 = Z / / Ieflp_zlb(x,) —l;”(x,’f(n’r)ﬂdr
Kk(n,s)

m d
‘/ 8b (XK(n r)) P (i, l)(r o
K

(’”)111 1 ox!

<KZ ff (n71e )" (1 + | + 7P
Kk(n,s)

NEN mdab(x())~ il !
[ e 0 s

Xn P
(5) =1 i=1

+KZ // (n7 ")) TR I A X DI — P ldr
k(n,s)

s 4 ogpk(xt )
(n,r) ~n,G,l l
[ S e 0t s

1.8) 1=1 i=1

+KZ / /( ) nP|e | |b(x,?(n,r)) —b"(xf(n,r))ldr
Kk(n,s

m
pT / ab (Cm r)) D
K(,8) =1 = 1

_p=2
Xn P

x"

axt
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which on the application of Young’s inequality gives

t N
Ty < KE / . / (2 Pdrds + Kn™ "“Z / / (1 + || + | )PP dr
0 k(n,s) (n,s)

ds

m
ab (xl((l’l r)) “’}’l (l 1)(,- x
. Bxl k(n,r
e Y)111 1

_ b=z PP r
§ :E/ / (1 ]+ 120 D X0 = X0, | 2dr
Kk(n,s)

m d

bk (" ) 2

‘/ Kl(nr) ~n,(i, l)(r x( ,))dw d
r(n,s) | lz ] dx

Z / / |b(xlrcl(n,r)) - bn(xg(n,r))lgdr
Kk(n,s)

m 8b x™ ) 4
/ Kl(l’l r) ~l’l (l l)(r xK(n r))dw dS
Kms)lll 1 ox

forany ¢ € [0, T']. Due to Holder’s inequality and an elementary inequality of stochas-
tic integrals, one obtains

t Po _ pp
T32§K/ sup Ele"|Pds+Kn=PT! Zf / A+]xr| + |xf|)ppdr) pp]po
0 0<r<s Kk(n,s)
m d PPO_ _ PO—PP
E‘/ abk (xKl(n r)) sn.(, l)(r XK(n r))dwl‘po pp] g
Kms)z1z ] dx

_p=2 ! § o r . \212
n_ 2 Z/- [E(/ (L4 1257+ g D 2 1 = x| 2dr) ]
k=1 0 k(n,s)

m d
E‘/‘ 8[7 ()CK(n r)) P @, Z)(r o
K

1
P12
- i]ds
(’”)1111 dx

1

2 ,, noon 2 . \272
Z b, ) — b (xk(n’r))|2dr) ]
k(n,s)

m d ab (.X )

K(n r) 5" @i,0)

E‘/ - r
K(n.s) | 11 1

1
Pt
1 2
r]ds

xl’l
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and this further implies due to Holder’s inequality,

t s PP
Tpn<K f sup Ele}|Pds+Kn ="t / [n g / (1+|xr|+|xf|>"°dr]”°
0 0<r<s 0 K(n,s)
po—prp

~mSa e [ At R S ReEdr] P d
X |n ( )( + XD 10" (ry X 0.y r s
Kn,s

=

S
+Kn _7f _lEf (L x|+ g DPP 1! _xk(nr)wdr]
K(n,s)

_r § - 3
x [ 2+1E/ (U 150 DO 1GNP ds
k(n,s)

_p=2 ! —1 § %
R /(; [n E /c(n s) |b(x”(l(””)) - b"(xl'(’(n’r)”pdr]

=

_r §
x [n 2+1E/ (L4 |x, y DPPIE" (s 20 ) dr] ds
k(n,s)

for any t € [0, T]. Again, by using the Hdolder’s inequality along with Lemmas
[3.1, 3.3, 4.4], one obtains the following estimates,

t t pp
Tsst/ sup EleflpderKn*P/ [n 270~ 2””“/ {EL+ |xg g D70} 0707
0 0<r<s 0 k(n,s)
oo po-20p Po—PP
X (EIG" (7, 300 ) |0} W00 dr | 7 d

2 ('t [F por 22
+Kkn~"7 [ [n CECL+ 18]+ [ D) P
0 k(n,s)

0 o po—pp 1}
x {E|x), — K(n N Po=PP} PO dr]

_r y op
X [n 2+1/ {E(l+|x/,c1(n,r)|)p0}p0
k(n,s)
B _PPo_ PO—PP
x {E|& ”(I’,XK(n r))|p0 op Y Po dr] ds

s
Kt ["‘g“ (B + I, D7)
0 k(n,s) x(@.r)

_poP_ PO—PP
X AEIG" (r, 2y, ) | 70777} 0 dr] ds

for any ¢ € [0, T']. Hence, on using Lemmas [3.3, 4.3] and Corollary 4.1, one obtains,

t
T <Kn?+K [ sup E|e"|Pds (4.10)

0 0<r<s
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for any t € [0, T']. Further, one observes that the estimation of 733 and 734 can be
done together as described below. First, one observes that 733 can be expressed as

m
T33 —Z / / Iefl”_ZZ(G(k“’)(xr) & & (i, Xein, )))dwf
k(n,s)

s m d 8bk(x )

k(n,r)’ ~ il 1

[l D e s
K009 g2y =1

m
_Z / /Km 9 e 1772 3 (0% ) = 5D x, )

j=1
d k
D* (X oy )
" Z 8);C(l(n 1) n.( ])(l’ x! r))drds

which due to Schwartz inequality and Remark 2.1 yields

T < KE/ f 21720 (5, = 67, 50 I+ (X0 D21 o ldrds
k(n,s)

for any ¢ € [0, T']. Similarly, T34 can be estimated as

T34 =K ZE/ /K(n ) MRl P e (o (x,) — &"(r, Xy ) dwy

d
/ m abk(xK(n r))~n (@,
K

l

Z)(r,xk(n r))dw ds
(.8) =1 i= 1

m d
—KZE/ /( ZZe Klen|P=3en (oD () =5 D, 11, )]

1u=1

s o2 d abk(x )

km,r) ~n (il 1

[y e, dutds
w8) =1 =1

m d
—KZ . D3 ettt ep ) =8t )
KnS
u=1

d k
k()
R IURDI™
X E o D (. xK(n ))drds

which on using Remark 2.1 gives

t s
Ty < KE/ / lef 1P ~2 o (x,)
0 Jk(n,s)
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— &l ) 1y D1 L, )| drds

for any ¢ € [0, T']. For estimating T33 + T34, one uses the following splitting,

o(x) —a"(r, xfl:(n,r)) =o0(x) — Un(x,?(n,r)) - Gln(r, x,r(l(n’r))
= (0(x) — (M) + (@) — (L 1)

— 0 (r, X¢ )+ (@ () — 0" (X)) (A1)

and hence obtains the following estimates,
13 N 5
Tt TusKE [ [ 11000 = oG+, ) D160 5l ) ldrds
0 Jk(n,s)
t N 2
+KE / f e 17720 (1)) — 0 (L ) — 1 XL )
0 Jk(n,s)
x (1+|xg, o DPI6" (r, X ) drds

t N
+KE / / €7 177210 (g ) = 0" ()|
0 Ji(n,s)

x (14 Ix,’(l(n,r)l)pl&”(r, xl’:(n’r))|drds
which also gives the following expressions,
t ps 1 = .
Tt Tu<KE [ [ @b T @ b+ '
0 Jk(n,s)
x (14 1xg D2 16" (ry x| drds

rors 1 oy _bp=2
+KE/ / (np|e;l|)p n 7 |0(x;l)_a(x1:l(n,r)) _O'ln(r’xlzl(n,r))|
0 Jk(n,s)

x (14 Ix:(n’r)|)0|5”(r, x,’:(n’r))|drds
LY L p—2 —r=2 n nge.n
+ KE b L )(nl’|e,|) n »r |a(xk(n’r)) -0 (xK(n’r))|
k(n,s
x (1+ Ix,’:(n’r)l)p|&”(r, x,f(nyr))|drds
for any ¢ € [0, T]. Also, on the application of Young’s inequality, one obtains
t N
T33+T34 < KE/ n/ leX|Pds
0 k(n,s)
t s
_ op -
+ KnPHE fo / o A E (il ) D716 3, )1 drds
k(n,s
—E ! * n n n n 4
+Kn~ 2 E/() /( , |G(xr) - o(xk(n,r)) — 0 (r’xf((n,r))| :
k(n,s
o . ?
x (1 + |x,'('(n’r)|) 26" (r, x;'(n,r))|2drds
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_p=2 rre )4
+Kn— 2 E[) /( ) |6(r’x:’(l(n,r)) - Gn(x:(l(n,r))l2
k(n,s

op o 2
x (14 1xg D) 216" (r, X, )1 2drds

for any ¢ € [0, T']. Moreover, one uses Holder’s inequality to get the following esti-
mates,

t

T33 + T34 SKE/ sup Ele!|Pds

0 0<r<s

! S po 2pp
k[ [ B DR UEA + 1, D)
Kk(n,s)

- 2ppo 2po—3pp 2pg—pp
X {Ela"(x,'{'(n_r))|2"0—3/’"}2P0‘/"’} 2r0  drds

t N
_p=2
+Kn~ 2 //( ){Elo(x,")—U(x,'j(ny,))—Uf(”,x,’(l(n,r)ﬂp}
Kkn,s

=

PQ—PP
x {EQ+ 1500 DY (EIG" 0, x| P07} 0 } drds

1
_p2 ’ 2
+Kn™ 2 /0 /( ) {Ela(xg(n,r)) - Un(rvxz(n,r))lp]
Kkn,s

{ pro pPo—PP

1
(EQL+ [x D7) 0 {ELG" (r, 2, )| P07 7o }zdrds

and then Lemmas [3.3, 4.5, 4.6] and Corollary 4.1 yield
t
T35+ Ts4 < Kn™? + K/ sup Eler|Pds 4.12)
0

0<r<s

for any ¢ € [0, T']. For T35, due to (4.11),

T35 =K Z f [((n § |e:’|l7—3|a(xr) — 5" (r, x,’(l(n’r))|2d}’

k
‘ / 8b ('x/((n r)) 5 (i, l)(r o )dw
xk(n,8) i l 1 axt ()

1
<KZ // 7 e DP A+ x| + |x2)Pdr
k(n,s)

NN AR d8b("(>)~ ¥ I
/K zz% D 3l

Xn P
5) =1 i=1

Lo p—3 n n n n 2d
+K Z £)0 ] )(np et Do () = 0 (el ) = o1, Xl )P
Kn,s
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m d k
_p=3 /‘S Z ob ()CK(n r)) & a, l)(r o ( ))dw
k(n,r
K

Xn P 3 7
. X
8) =1 i=1

1 -
K Z / f oy 1D 210 () = 0" (g ) Pdr
Kkn,s

U 3b (xk(nr))

s
~ !
/;( Z Z 8x’ c" o )(I" xK(n r))dw

019) 1=1 =1

_p=3
Xxn P

which on using Young’s inequality yields,

t N
T35 < KE/ n/ le"|Pds + Kn™~ P“ZE/ / (L4 x| + lxp )PP dr
0 k(n,s) (n,s)

m
‘ / 819 (XK(n r)) 5 (. l)(r o
K(n.s) 1 = 1 ox!

= 2p
Z / f lo(x)) — o (xg, ) —of (o X, )13 dr
k(n,s)

p

m d

abk (x" )

‘ / 77 M(nr)’ & @i,0) (r, xK(n r))dw d
r(n.s) 1= 1 i= 0x’

” 3 n ngn 2p
Z |0 X ,ry) = 0" Ky dr
k(n,s)

m d
K" ) 2
‘/ 9" X m,r)) PYRGUr " r))dw 3 s
K

(n.5) |- 1; 1 ox!

and then on applying Holder’s inequality, one obtains

t
Tss SK/ sup Ele}|Pds
0

0<r<s
1 PO +1 § £e
+ Kn™ Pt Z/ {n op / (1+|xr|+|xf|)”°dr]”°
Kk(n,s)
J40) Po—pPp
PO—PP )

E‘/ 8b (XK(n r)) P a, l)(r o )dw
(n.5) & 1 ax, k(n,r)

) 2p
Z/ / |U(x;l) - G(xg(rz,r)) - U{l(r’ x/?(n,r))l ¥ dr)
k(n,s)

ds

3
2

!

2
3
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m d

bk (x" )

L EE
"(’“)1 111

1

}jds

2
3

- n ngn 2 %
Z |U(xlc(n,r)> —a (xf((n,r))l 3 dr) }
Kk(n,s)

m d 1
E‘ / 3b (XKl(n r)) ps (i, l)(r o p}3ds
K (n.s) - 1: 1 ox

foranyt € [0, T]. Further, one uses Remark 2.1, an elementary inequality of stochastic
integrals and Holder’s inequality to obtain the following estimates,

t ! — 2011
T3s = K/ sup Ele;' | ds + Kn_p/ {n 2po—20p
0 0

0<r<s

N PoPQ PPQ Po—Pp
X E/ 1+ |xl’(’(n ) Po=er 6" (r, x,'(’(n ) P0=Pr dr} P ds
K

(n,5)
_p=3 ! 1 s n n n n %
+Kno 3 / {n ZE/ |G(xr)_o(xf<(n,r)) — 0 (r’xK(nJ))lpdr}
0 Kk(n,s)
N 1
x(nEE [ A 0I5 P s
k(n,s)
o3 Tl n IR IAL
+ Kn~ 3 {”l 2E |6(xk(n,r)) -0 (x/((n,r))l d}’}
0 Kk(n,s)
s 1
x w5 / (U 1 D216 g 1P | s
k(n,s)
which due to further application of Young’s inequality gives,
! T _po 4y
Iss <K sup Eleflpds—l—l(n"’/ {n ro=2op
0 0<r<s 0
s _ppo po=20p 20=Pp
X / {E(1+ |x/c(n r)|)p0}P0 pp {Elo"(r, xlc(n r))| rory ner dr} v ods
k(n,s)

Wi

t s

_p=3 _1

+Kn 3 /0 {n ZE/( ) |U(x;l) - G(Xf(n,r)) ] (r’x/((n r))| dV}
k(n,s

=

ds

_ryq S 0 —n _PopP_ PO—PP
x {n ; (EQL+ [x0, DTV R0 {EIG" (r, 0, )P0 P} 70 dr}
Kk(n,s)
5

I A L g
+Kn™ 3 /(; {n 2E/( )|0(x,’:(n’r)) —o"(x,'('(nyr))|”dr}
k(n,s

W=

24 5 20 pp n n _POP_ PO—PP
) AnTEE [ B DYV EIG" 5l )07 ) dr | ds
Kk(n,s)
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and finally on the application of Lemmas [3.3, 4.5, 4.6] and Corollary 4.1, one obtains
t
Tzs < Kn™P —i—K/ sup Elel|Pds (4.13)
0 0<r<s

for any ¢ € [0, T']. Hence, on substituting estimates from (4.8), (4.10), (4.12) and
(4.13) in (4.7), one obtains
t
T <Kn?+K sup Ele!|Pds (4.14)

0 0<r<s

for any ¢t € [0, T']. Thus, the proof is completed by combining estimates from (4.5),
(4.6) and (4.14) in (4.4).

Proof of Theorem 2.1 Let b"(s) := b(x,) — b"(x;’(n’s)) and 6" (s) = o(xg) —

6”(x,'(’(n’s)) and then one writes

t t
el :=x; —xj =/ b"(s)ds —l—/ o (s)dws
0 0
for any ¢ € [0, T']. By the application of Itd’s formula,
t _ 1
wmp=p/|4W44NuMs+pf|4w*4&mem
0 0
-2 t t
+ —p(p2 ) / " [P~ (s)el |2 ds + %/ " P25 (s)|*ds
0 0

for any t € [0, T']. As before, when p = 2 the third term does appear on the right

hand side of the above equation and |e} |” —2 is absent from the rest of the terms. Due

to Cauchy—Bunyakovsky—Schwartz inequality, one obtains
! 2 nig pp—1) ! 2= 2
Elel|P < pEf led [P~ el b" (s)ds + TE/ led |P~|o" (s)|"ds

0 0
for any 7 € [0, T]. Furthermore, one observes that for z1, z> € R |z 4+ 25)* =
lz112 +2 Zflzl Z’};l zgl’j)zg’]) + |z2/?, which on using Young’s inequality further
implies |21 + 2217 < (1 + €)|z1|> + (1 + 1/€)|z2|? for every € > 0. Let us now fix
€ > 0. Hence, one can use this arguments for estimating |o (x;) — o (x]) |> when using

the splitting given in equation (4.11). This along with the splitting of equation (4.9)
gives

t
m&WSpEf|4W44wuo—Mwnm
0
t
+ pE /0 lef [P 2 {(b(x]) — b(xL, ,))ds
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t
+ pE / e 172 (b (x5 — b (X o) s
0
e+1 ! B
+——pp - 1>E/ e 17720 (xy) — o (x!)|*ds
0
t
+ KE/ " 1P 2o (x") — o (X 0s) — oln(x,':(n’x))lzds
0

t
+KE /0 17210 (5% o)) — 0" (Kl o) s

for any ¢ € [0, T']. Notice that the constant K > 0 (a large constant) in the last two
terms of the above inequality depends on €. Also, one obtains the following estimates,

Elef|” < gE /(;t |e?|l’—2[e?{b(xs) — b} + (1 +e)(p — Dlo(xy) — G(x?)lz]ds
+ pE /0’ e [P2em b (xl) — b(xl, ,)}ds
+pE /Ot |e§~1|p_ze§{b(x,’j(nﬁs)) — b ()
+KE /Ot lef 1720 (k) — 0 (X 5) — O (xf ) dls
+ KE /Ot |e;’|l’—2|0(x’r(1(”’s)) _ Gn(x:(n,s))|2dS.

for any ¢ € [0, T']. Since p < pi, thus on using Assumption A-3, Lemmas [4.6, 4.7]
and Young’s inequality, one obtains

t t
Ele}|? < KE/O |e?|pds+Kn7p+KE/O |b(x;‘(n’x))—b"(x" ))lpds

K(n,s
t
+ KE/(; |a(x,’:(n’s)) - o"(x,'(’(n’s))lpds

and hence Lemmas [4.4, 4.5] give

t
sup Elef|” <K sup Ele!|Pds + Kn™? < o0 (4.15)

0<s<t 0 0<r<s

for any ¢ € [0, T']. Finally, the use of Gronwall’s lemma completes the proof.

5 Numerical example

In this section, numerical experiments are implemented by using the proposed Milstein
type scheme and it is demonstrated that their findings support our theoretical results.
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5.1 First example
Consider a one-dimensional SDE which is given by
dx, = x;(1 — x?)dt + o (1 — x*)dwy, (5.1)

for any ¢ € [0, 1], with initial value xo = 2.0 and o = 0.3. Our Milstein type scheme
of SDE (5.1) at the (/ 4+ 1)A-th gridpoint is given by, forany/ =0, 1, ...,2" — 1,

Xy (1= (xf)%) 1 — (x)})?
x" — x" Lh lh o lh Aw
(I+1Dh lh 1+h|xlnh|4 1+h|xlnh|4 lh
(xn )3 — x
- 02W(mwm)2 —h) (5.2)

with h = 27" where Awyy, = w1y — Wy Our aim is to calculate
(E(x§2t = xf 1P, p=2.3, (5.3)

where x{**! is the exact solution of the SDE (5.1) and x] is the value of the scheme at
(I + 1)h = 1 and for step length /. Since the exact solution of the SDE is not known,
the scheme (5.2) with 2* = 272! and n* = 21 is taken to be the true solution of SDE
(5.1). Letting

*

AWy = Wy e — Wi 1=0,...,2" =1 (5.4)

to denote one particular (i.e. the i-th) realization of the driving Wiener process with
h* = 2721, the corresponding sequences of Wiener increments with step size h = 27"
and for the same realisation, where n = 6, .. ., 20, are given according to

‘ ' ‘ (k+1)N*/N—1 ‘
Awpy, =wh = why = Y Awje, k=0,....2"—1, (5.5
I=kN*/N

where

N* 1/h* _
= 1//h _ p2l-n (5.6)

Hence,

(k+1D)N*/N~-1 N
h? = Var(Awl,) = Var Yoo Auwj | = W(h"‘)z. (5.7)
I=kN*/N
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LetY; := |xfxa°t’i —xf’i |? for the i-th path and let M,, denote the Monte Carlo estimate
of E(|x§**" — x1'|7). Then, one defines

N
. 1 2 : 2 2

to denote the corresponding sample variance. Thus, the 100« % confidence interval is
given by

\%
LY, =M, — .,
’ (I —a)N
Vv,
R/ =M —, 5.9
o nt (1 —a)N (59)
meaning that
liminf P (0 @: L), < EQ{™ = x{1") < R),) za.  (5.10)
Hence, the confidence interval for (E (Jx{**" — x'|? NP is given by

lim inf P (a) €2 (LY )P < (B8 — x1Py)l/P < (Rgn)l//’) >a. (5.11)
n—00 ’ ’

The numerical values for the MC estimate of (E (Jx{**" — x['|? WP, p = 2,3 with
60,000 paths and the corresponding 95% confidence intervals (with o« = 0.95) are
given in the Tables 1 and 2 below.

Figure 1 indicates that the rate of .Z 2_and & 3—convelrgence of the scheme (5.2) is
1.0.

5.2 Second example
Consider the following one-dimensional SDE,
5
d.xt = —x;|x,|7dl‘+x,|x,|dw,, (512)

for any ¢ € [0, 1], where the initial value xq follows a Pareto distribution with density
function f(x) = (1 4+ £x)~I+1/% for x > 0 and & > 0. Notice that E|xg|? < oo
iff p < 1/&. Take & = 1/18 so that E|xg|” < oo for all p < 18 which implies
that Theorem 2.1 holds for p = 2. Our Milstein-type scheme of SDE (5.12) at the

@ Springer



On Milstein approximations with varying coefficients...

965

Table1 .#2-error estimates of scheme (5.2) of SDE (5.1) along with confidence intervals; 60,000 paths

h

VElxr — .12

VLY,

[ pV.2
Ro

2-20
2—19
)18
)17

Rate

9.2804422e—8
2.77515651e—7
6.46843867e—7
1.387329766e—6
2.863272318e—6
5.821545011e—6
1.1735922668e—5
2.3572479941e—5
4.7252316526e—5
9.4863191116e—5
1.90145769556e—4
3.82313724983e—4
7.73551815525¢e—4
1.580694137454e—3
3.287376306117e—3
1.0443

9.0745628e—8
2.71345114e—7
6.32514110e—7
1.356766320e—6
2.800585733e—6
5.693680639¢—6
1.1479765118e—5
2.3056879878e—5
4.6214321427e—5
9.2771495289%—5
1.85933220584e—4
3.73833566073e—4
7.56364565903e—4
1.545660471499e—3
3.216029485139e—3

9.4818523e—8
2.83551939e—7
6.60862979%e—7
1.417234247e—6
2.924615580e—6
5.946660694e—6
1.1986607300e—5
2.4077041169e—5
4.8267994875e—5
9.6909750383e—5
1.94266993705e—4
3.90609822582e—4
7.90365400338e—4
1.614967993245¢e—3
3.357207218321e—3

Table2 %3 error estimates of scheme (5.2) for SDE (5.1) along with confidence intervals; 60,000 paths

h

JEIxr — 223

3
JLY,

3
JRY

2-20
719
)18
)17
216

)15

Rate

1.19363485e—7
3.56696975e—7
8.31018568e—7
1.781134560e—6
3.671853336e—6
7.474536813e—6
1.5050905892e—5
3.0227268264e—5
6.0631283273e—5
1.21732753401e—4
2.44274435402e—4
4.90938533017e—4
9.9297444768%¢—4
2.028091528002e—3
4.203676502573e—3
1.0441

1.14888003e—7
3.42408674e—7
7.98388702e—7
1.713241516e—6
3.533347061e—6
7.188865185e—6
1.4494837584e—5
2.9087566516e—5
5.8318280012e—5
1.17062831486e—4
2.34654964209e—4
4.70734578425e—4
9.51526592940e—4
1.945079525756e—3

4.047658325797e—3

1.23526385e—7
3.69924020e—7
8.61269435e—7
1.844212318e—6
3.800631433e—6
7.739897084e—6
1.5568667222e—5
3.1286954439¢e—5
6.2780114250e—5
1.26069487266e—4
2.53190657240e—4
5.09603787663e—4
1.031223997204e—3
2.104813178236e—3
4.348900908286e—3
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-8r — — Reference line, Slope=-1
—%—p=2, Slope=-1.0443
100 N —%—p=3, Slope=-1.0441 —
A ~ —-—- Confidence interval
— -12F ]
o
& 4t ,
il
X
>é_ -16 ]
o
= -18f ]
N
)}
o
-20 - ]
=22 ]
24+ ]
5 10 15 20

-log, (h)

Fig. 1 Z2_and Z3rate of convergence of scheme (5.2) of SDE (5.1) along with confidence intervals;
60,000 paths

-2 — — ~ Reference Line, Slope=-1.0 — — — Reference Line, Slope= —1.0
-4 —%— Slope=-1.0543 0 e, —%— p=2, Slope= -1.0939
B — 3 —#— p=3, Slope= -1.1002
s 6 «q \ | —— p=4, Slope= -1.0946
N’_T_ -8 &« s -
c N
>I< -10 c>l<l—
=
x -12 =
] x -10
= -4 o
= =
o 16 2 -15
_18 o
-20 20
5 10 15 20 5 10 15 20
~log,(h) ~log, (h)
(@) &=1/18. (b) £=1/35.

Fig. 2 ZP-rate of convergence for scheme (5.13) of SDE (5.12) when initial value x( follows Pareto
distribution (&)

(I + 1)h-th gridpoint is given by, forany / =0, 1,...,2" — 1,

3 ni,.n|2
2 AN

1+ hlx], 1?

n n n n
=X, %75, AN

Awgp)? — h
[ hinl, P T4 hil, P ((Awpy) )

n . .n
Xi4nn = Xip + wip +

(5.13)

with h = 27" where Awyy, := wq41)n — wy,. Figure 2a and Table 3a indicate that the
rate of .Z>-convergence of the scheme (5.13) is 1.0. The scheme (5.2) with A = 272!
is taken to be the true solution of SDE (5.12). The number of paths is 60, 000.
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Table3 _ZP-error estimates for scheme (5.2) of SDE (5.1) when initial value x( follows Pareto distribution

&)

@&=1/18 (b) & =1/35

h \/E\xT 2k \/E|xT—x;|2 \3/E|xT—x;|3 ;‘/E\xr —
2720 3.82¢—6 2720 42648¢—6 1.69361e—5 3.85166e—5
219 1.181e—5 219 1.30283e—5 5.37473e—5 1.239876c—4
2718 2719e—5 2718 301379¢—5 1.239889¢—4 2.855687c—4
217 5.830e—5 217 6.29993¢—5 2.576638¢—4 5.948614e—4
216 1.1772e—4 216 1.299127e—4 5.360642¢—4 1.2410145e—3
2~ 15 2.3817e—4 2-15 2.745450e—4 1.1564830e—3 2.6728298¢—3
214 4.6434e—4 214 5.424517e—4 2.2812305¢—3 5.2416873e—3
213 9.1447¢—4 213 1.0867710e—3 4.7518196e—3 1.11401384e—2
2~ 12 1.78599¢—3 2712 2.1260453¢—3 9.2792157¢—3 2.16728168¢—2
2~1 3.23109¢—3 2~ 11 3.9335503¢—3 1.67284195¢—2 3.86256700e—2
210 554801e—3 2710 6.5037893¢—3 2.44399652e—2 5.28781014e—2
279 9.91017e—3 279 2.61946794e—2 1.451149744e—1  3.595569591e—1
28 2.53445]e—2 28 7.56294887¢—2 3.964104860e—1  9.346289017e—1
277 1.0489420e—1 27 1.264329313e—1  5.399683736e—1 1.1773671164¢0
276 2.3601349¢—1 276 2.072816207e—1  6.943160590e—1 1.3754166888¢0
Rate 1.0543 Rate 1.0939 1.1002 1.0946

Let us now take £ = 1/35 so that E|x|”° < oo for all pg < 35 which implies that
Theorem 2.1 holds for p = 2, 3, 4. Figure 2b and Table 3b show that the theoretical
rate of convergence is realised in these three cases.
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