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Abstract
In thiswork, we investigate the spectra of “flipped” Toeplitz sequences, i.e., the asymp-
totic spectral behaviour of {YnTn( f )}n , where Tn( f ) ∈ R

n×n is a real Toeplitz matrix
generated by a function f ∈ L1([−π, π ]), and Yn is the exchange matrix, with 1s on
the main anti-diagonal. We show that the eigenvalues of YnTn( f ) are asymptotically
described by a 2× 2 matrix-valued function, whose eigenvalue functions are ± | f |. It
turns out that roughly half of the eigenvalues of YnTn( f ) are well approximated by a
uniform sampling of | f | over [−π, π ], while the remaining are well approximated by
a uniform sampling of − | f | over the same interval. When f vanishes only on a set of
measure zero, this motivates that the spectrum is virtually half positive and half nega-
tive. Some insights on the spectral distribution of related preconditioned sequences are
provided as well. Finally, a wide number of numerical results illustrate our theoretical
findings.
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464 M. Mazza, J. Pestana

1 Introduction

Given a Toeplitz matrix Tn( f ) ∈ R
n×n generated by a function f ∈ L1([−π, π ]),

and the exchange matrix Yn ∈ R
n×n ,

Yn =

⎡
⎢⎢⎣

1
1

. .
.

1

⎤
⎥⎥⎦ ,

numerical experiments suggest that YnTn( f ) has eigenvalues that are distributed like
±| f |, i.e., like the eigenvalues of the matrix-valued symbol

g =
[
0 f
f ∗ 0

]
, (1.1)

where f ∗ is the conjugate of f . In this paper we seek to explain this observation.
One reason for characterizing the spectra of these flipped matrices relates to the

solution of linear systems with Toeplitz coefficient matrices. Since YnTn( f ) is sym-
metric, the resulting linear system may be solved by the MINRES method [18,21]
or by preconditioned MINRES [16,17], with its descriptive convergence rate bounds
based on eigenvalues (see, e.g., [2, Chapters 2 and 4]). However, whilst there has
been significant interest in relating the eigenvalues and singular values of Toeplitz
sequences to generating functions, analogous results have not been proved for flipped
Toeplitz sequences and corresponding preconditioned ones.

This paper aims to fill this gap. To do so, in Sect. 2 we describe the tools we require,
specifically we introduce the class of Generalized locally Toeplitz matrix-sequences
and related properties [6]. The main results, that describe the spectra of sequences
of (preconditioned) flipped Toeplitz matrices can be found in Sect. 3. Examples that
illustrate these theoretical results are in Sect. 4.

2 Preliminaries

In this section we formalize the definition of block Toeplitz and Hankel sequences
associated to a matrix-valued Lebesgue integrable function. Moreover, we introduce a
class ofmatrix-sequences containing both blockToeplitz andHankel sequences known
as the block Generalized Locally Toeplitz (GLT) class [5,6]. The properties of block
GLT sequences will be used to derive the spectral distribution of (preconditioned)
flipped Toeplitz sequences (cf. Definition 2.2).

2.1 Block Toeplitz and Hankel matrices, and their spectral distributions

Let us denote by L1([−π, π ], s) the space of s × s matrix-valued functions f :
[−π, π ] → C

s×s , f = [ fi j ]si, j=1 with fi j ∈ L1([−π, π ]), i, j = 1, . . . , s. In Defini-
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Spectral properties of flipped Toeplitz matrices and… 465

tion 2.1 we introduce the notion of Toeplitz and Hankel matrix-sequences generated
by f .

Definition 2.1 Let f ∈ L1([−π, π ], s) and let t j be its Fourier coefficients

t j = 1

2π

∫ π

−π

f (θ)e−i jθ dθ ∈ C
s×s,

where the integrals are computed component-wise. Then, the n-th s×s-block Toeplitz
matrix associated with f is the matrix of order n̂ = s · n given by

Tn( f ) = [
ti− j

]n
i, j=1 .

Similarly, the n-th s× s-block Hankel matrix associated with f is the following n̂× n̂
matrix

Hn( f ) = [
ti+ j−2

]n
i, j=1 .

The sets {Tn( f )}n and {Hn( f )}n are called the sequences of s × s-block Toeplitz and
Hankel matrices generated by f , respectively. The function f is referred to as the
generating function either of {Tn( f )}n or {Hn( f )}n .

The generating function f provides a description of the spectrum of Tn( f ), for n
large enough in the sense of the following definition.

Definition 2.2 Let f : [a, b] → C
s×s be a measurable matrix-valued function with

eigenvalues λi ( f ) and singular values σi ( f ), i = 1, . . . , s. Assume that {An}n is a
sequence of matrices such that dim(An) = dn → ∞, as n → ∞ and with eigenvalues
λ j (An) and singular values σ j (An), j = 1, . . . , dn .

– We say that {An}n is distributed as f over [a, b] in the sense of the eigenvalues,
and we write {An}n ∼λ ( f , [a, b]), if

lim
n→∞

1

dn

dn∑
j=1

F(λ j (An)) = 1

b − a

∫ b

a

∑s
i=1 F(λi ( f (t)))

s
dt, (2.1)

for every continuous function F with compact support. In this case, we say that f
is the symbol of {An}n .

– We say that {An}n is distributed as f over [a, b] in the sense of the singular values,
and we write {An}n ∼σ ( f , [a, b]), if

lim
n→∞

1

dn

dn∑
j=1

F(σ j (An)) = 1

b − a

∫ b

a

∑s
i=1 F(σi ( f (t)))

s
dt, (2.2)

for every continuous function F with compact support.
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466 M. Mazza, J. Pestana

Remark 2.1 If f is smooth enough, an informal interpretation of the limit relation (2.1)
(resp. (2.2)) is that when n is sufficiently large, then dn/s eigenvalues (resp. singular
values) of An can be approximated by a sampling of λ1( f ) (resp. σ1( f )) on a uniform
equispaced grid of the domain [a, b], and so on until the last dn/s eigenvalues (resp.
singular values), which can be approximated by an equispaced sampling of λs( f )
(resp. σs( f )) in the domain.

Remark 2.2 Both Definitions 2.1 and 2.2 can be generalized to the case where f :
[−π, π ]d → C

s×s , d > 1. In this case a Toeplitz (resp. Hankel) sequence associated
to f is referred to as multilevel block Toeplitz (resp. Hankel) sequence. Theorems
2.2–2.3 and Proposition 2.2 hold true for d > 1, as well.

For Toeplitz matrix-sequences, the following theorem (due to Szegő, Tilli, Zama-
rashkin, Tyrtyshnikov, ...) holds.

Theorem 2.1 (see [8,20,22]) Let {Tn( f )}n be a Toeplitz sequence generated by f ∈
L1([−π, π ]). Then, {Tn( f )}n ∼σ ( f , [−π, π ]). Moreover, if f is real-valued, then
{Tn( f )}n ∼λ ( f , [−π, π ]).

In the case where f is a Hermitian matrix-valued function, the previous theorem
can be extended as follows:

Theorem 2.2 (see [20]) Let f ∈ L1([−π, π ], s) be a Hermitian matrix-valued func-
tion. Then, {Tn( f )}n ∼λ ( f , [−π, π ]).

We end this subsection with a theorem that is a useful tool for computing the
spectral distribution of a sequence of Hermitian matrices. For the related proof, see
[11, Theorem 4.3]. From now on, the conjugate transpose of the matrix A is denoted
by A∗.

Theorem 2.3 Let {Xn}n be a sequence of matrices, with Xn Hermitian of size dn, and
let {Pn}n be a sequence such that Pn ∈ C

dn×δn , P∗
n Pn = Iδn , δn ≤ dn and δn/dn → 1

as n → ∞. Then {Xn}n ∼λ f if and only if {P∗
n Xn Pn}n ∼λ f .

2.2 Block generalized locally Toeplitz class

In the sequel, we introduce the block GLT class [5], a ∗-algebra of matrix-sequences
containing both block Toeplitz and Hankel matrix-sequences. The formal definition of
block GLT matrix-sequences is rather technical and involves somewhat cumbersome
notation: therefore we just give and briefly discuss a few properties of the block GLT
class, which are sufficient for studying the spectral features of (preconditioned) flipped
Toeplitz matrices.

Throughout, we use the following notation

{An}n ∼GLT κ(x, θ), κ : [0, 1] × [−π, π ] → C
s×s,

to say that the sequence {An}n is a s × s-block GLT sequence with GLT symbol
κ(x, θ).

Here we list four main features of block GLT sequences.
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Spectral properties of flipped Toeplitz matrices and… 467

GLT1 Let {An}n ∼GLT κ with κ : G → C
s×s , G = [0, 1] × [−π, π ], then

{An}n ∼σ (κ,G). If the matrices An are Hermitian, then it also holds that
{An}n ∼λ (κ,G).

GLT2 The set of block GLT sequences forms a ∗-algebra, i.e., it is closed
under linear combinations, products, inversion, conjugation. In formulae,
let {An}n ∼GLT κ1 and {Bn}n ∼GLT κ2, then

• {αAn + βBn}n ∼GLT ακ1 + βκ2, α, β ∈ C;
• {AnBn}n ∼GLT κ1κ2;
• {A−1

n }n ∼GLT κ−1
1 provided that κ1 is invertible a.e.;

• {A∗
n}n ∼GLT κ∗

1 .

GLT 3 Any sequence of block Toeplitz matrices {Tn( f )}n generated by a function
f ∈ L1([−π, π ], s) is a s × s-block GLT sequence with symbol κ(x, θ) =
f (θ).

GLT4 Let {An}n ∼σ 0. We say that {An}n is a zero-distributed matrix-sequence.
Note that for any s > 1 {An}n ∼σ Os , with Os the s × s null matrix,
is equivalent to {An}n ∼σ 0. Every zero-distributed matrix-sequence is a
block GLT sequence with symbol Os and viceversa, i.e., {An}n ∼σ 0 ⇐⇒
{An}n ∼GLT Os .

According to Definition 2.2, in the presence of a zero-distributed sequence the
singular values of the n-th matrix (weakly) cluster around 0. This is formalized in the
following result [6].

Proposition 2.1 Let {An}n be a matrix sequence with An of size dn with dn → ∞, as
n → ∞. Then {An}n ∼σ 0 if and only if there exist two matrix sequences {Rn}n and
{En}n such that An = Rn + En, and

lim
n→∞

rank(Rn)

dn
= 0, lim

n→∞ ‖En‖ = 0,

where ‖ · ‖ is the spectral norm.
We next recall a result on the spectral distribution of Hankel sequences associated to
f ∈ L1([−π, π ], s).
Proposition 2.2 (see [3]) If {Hn( f )}n is an Hankel sequence generated by f ∈
L1([−π, π ], s), then {Hn( f )}n ∼σ 0.

Proposition 2.2 togetherwithGLT4 tell us that {Hn( f )}n is a s×s-blockGLT sequence
with symbol Os .

We end this preliminary section with a theorem that is very useful in the context
of GLT preconditioning. It is obtained as a straightforward extension of Theorem 1
in [7] to the block GLT case where the symbol of the preconditioning sequence is a
multiple of the identity.

Theorem 2.4 Let {An}n be a sequence of Hermitian matrices such that {An}n ∼GLT κ ,
with κ : G → C

s×s , G = [0, 1]×[−π, π ], and let {Pn}n be a sequence of Hermitian
positive definite matrices such that {Pn}n ∼GLT h · Is , with h : G → C, such that
h �= 0 a.e. Then

{P−1
n An}n ∼σ,λ (h−1κ, G).
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468 M. Mazza, J. Pestana

3 Spectral distribution of (preconditioned) flipped Toeplitz
sequences

To characterize the spectral distribution of YnTn( f ) we will subdivide Tn( f ) into a
2 × 2 block matrix as follows:

Tn( f ) =
n − m m[ ]
T11 T12 m
T21 T22 n − m

, (3.1)

where m = �n/2. Note that when n = 2m, m ∈ N, i.e., n is even, T2m( f ) is made
of four square blocks. However, when n is odd only the blocks (1, 2) and (2, 1) on
the anti-diagonal are square matrices of size m ×m and n −m × n −m, respectively.
Applying Yn to Tn( f ) in (3.1) gives

YnTn( f ) =
[
Yn−mT21 Yn−mT22
YmT11 YmT12

]
.

Furthermore, we can apply a similarity transform to YnTn( f ) using the matrix

Un =
[
Yn−m

Im

]
.

This gives

Gn = UnYnTn( f )Un =
[
T21Yn−m

YmT12

]

︸ ︷︷ ︸
Mn

+
[

T22
YmT11Yn−m

]

︸ ︷︷ ︸
T̂n

. (3.2)

When n = 2m, by using the fact that T11 = T22 = Tm( f ) and YmT11Ym = T T
m ( f ),

we can split G2m as follows:

G2m =
[
T21Ym

YmT12

]

︸ ︷︷ ︸
Mn

+
[

Tm( f )
T T
m ( f )

]

︸ ︷︷ ︸
T̂n

. (3.3)

In the following lemmas we prove that {Mn}n ∼λ 0 and that {T̂n}n ∼λ (g, [−π, π ])
with g as in (1.1). The proof of Lemma 3.1 is based on the idea in Proposition 3.10 in
[10].

Lemma 3.1 Let {Tn( f )}n, Tn( f ) ∈ R
n×n be the Toeplitz sequence associated to f ∈

L1([−π, π ]), and let Mn be defined as in (3.2) when n is odd and as in (3.3) when n
is even. Then, Mn = Rn + En, with

lim
n→∞

rank(Rn)

n
= 0, lim

n→∞ ‖En‖ = 0. (3.4)
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Moreover,
{Mn}n ∼GLT,σ,λ 0.

Proof Let us begin with the case that n = 2m. Then, (3.3) shows that

M2m =
[
T21Ym

YmT12

]
.

Now,

T21Ym =

⎡
⎢⎢⎣

t1 . . . tm−1 tm
t2 . . . tm tm+1
... . .

. ...
...

tm . . . tn−2 tn−1

⎤
⎥⎥⎦ ,

which is a submatrix of

Hm+1( f ) =

⎡
⎢⎢⎢⎢⎣

t0 t1 . . . tm−1 tm
t1 t2 . . . tm tm+1
...

... . .
. ...

...

tm−1 tm . . . tn−2 tn−1

tm tm+1 . . . tn−1 tn

⎤
⎥⎥⎥⎥⎦

,

i.e., [
0 T21Ym
0 0T

]
= Hm+1( f ) +U1V

T
1 , (3.5)

where U1, V1 ∈ R
(m+1)×2.

We want to write down a similar decomposition for YmT12. To so do, we first note
that since Tn( f ) is real,

t−k = (t−k)
∗ = 1

2π

∫ π

−π

(
f (θ) eikθ

)∗
dθ = 1

2π

∫ π

−π

f ∗(θ) e−ikθ dθ,

which is the k-th Fourier coefficient of f ∗(θ). Moreover, f ∗(θ) = f (−θ).
Thus,

YmT12 =

⎡
⎢⎢⎣

t−1 t−2 . . . t−m
...

... . .
. ...

t1−m t−m . . . t2−n

t−m t−m−1 . . . t1−n

⎤
⎥⎥⎦ ,

which is a submatrix of

Hm+1( f
∗) =

⎡
⎢⎢⎢⎢⎣

t0 t−1 t−2 . . . t−m
...

...
... . .

. ...

t2−m t1−m t−m . . . t2−n

t1−m t−m t−m−1 . . . t1−n

t−m t−m−1 . . . t1−n t−n

⎤
⎥⎥⎥⎥⎦

,
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470 M. Mazza, J. Pestana

so that [
0 YmT12
0 0T

]
= Hm+1( f

∗) +U2V
T
2 , (3.6)

where U2, V2 ∈ R
(m+1)×2.

Thanks to (3.5) and (3.6), we can write Mn as a submatrix of

M̃n+2 =
[
Hm+1( f )

Hm+1( f ∗)

]
+

[
U1V T

1
U2V T

2

]
.

Note that the first term of M̃n+2 is a permutation of a 2 × 2-block Hankel matrix,
i.e.,

Π

[
Hm+1( f )

Hm+1( f ∗)

]
ΠT = Hn+2(g̃), g̃ =

[
f 0
0 f ∗

]
.

To write explicitly the permutation matrixΠ , let us define by e j , j = 1, . . . , 2(m+1)
the j-th column of the identity matrix of size 2(m+1) and by π j , j = 1, . . . , 2(m+1)
the j-th column of Π . Then,

π j =
{
e2 j−1 j = 1, . . . ,m + 1,
e2( j−(m+1)) j = m + 2, . . . , 2(m + 1).

(3.7)

As a consequence, M̃n+2 is the sum of a permutation of Hn+2(g̃) plus a matrix whose
rank is fixed to 4. Thus, by Propositions 2.1–2.2, we have M̃n+2 = R̃n+2+ Ẽn+2 with

lim
n→0

rank(R̃n+2)

n + 2
= 0, lim

n→0
‖Ẽn+2‖ = 0.

Therefore, we get M2m = R2m + E2m , with R2m and E2m submatrices of R̃n+2 and
Ẽn+2, respectively. Since rank(R2m) ≤ rank(R̃n+2) and ‖E2m‖ ≤ ‖Ẽn+2‖ we have

lim
n→∞

rank(R2m)

n
= 0, lim

n→∞ ‖E2m‖ = 0,

and this completes the proof of (3.4) when n is even. To prove that (3.4) holds also
when n is odd, i.e., n = 2m + 1 it is enough to observe that now

M2m+1 =
[
T21Ym+1

YmT12

]
,

with

T21Ym+1 =

⎡
⎢⎢⎣

t0 . . . tm−1 tm
t1 . . . tm tm+1
... . .

. ...
...

tm . . . tn−2 tn−1

⎤
⎥⎥⎦ = Hm+1( f ),
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while

YmT12 =
⎡
⎣

t−2 . . . t−m−1
... . .

. ...

t−m−1 . . . t1−n

⎤
⎦ ,

which is a submatrix of

Hm+1( f
∗) =

⎡
⎢⎢⎢⎢⎣

t0 t−1 t−2 . . . t−m

t−1 t−2 t−3 . . . t−m−1
...

...
... . .

. ...

t1−m t−m t−m−1 . . . t2−n

t−m t−m−1 . . . t2−n t1−n

⎤
⎥⎥⎥⎥⎦

,

so that

[
0 0T

0 YmT12

]
= Hm+1( f

∗) +U3V
T
3 ,

where U3, V3 ∈ R
(m+1)×2. The above reasoning for the case n = 2m then shows that

(3.4) is true when n is odd.
Proposition 2.1 shows that

{Mn}n ∼σ 0.

Then, GLT4 implies that {Mn}n ∼GLT 0. The proof is complete once we note that
Mn is real symmetric: thanks to GLT1 this implies that {Mn}n is distributed as 0 also
in the eigenvalue sense.

The following lemma concerns the spectral distribution of the matrix-sequence
{T̂n}n .
Lemma 3.2 Let {Tn( f )}n, Tn( f ) ∈ R

n×n be the Toeplitz sequence associated to f ∈
L1([−π, π ]), and let {T̂n}n be defined as in (3.2) when n is odd and as in (3.3) when
n is even. Then,

{T̂n}n ∼λ (g, [−π, π ]), with g =
[
0 f
f ∗ 0

]
.

Proof Let us assume first that n = 2m. Then,

T̂2m =
[

Tm( f )
T T
m ( f )

]
.

By using the same permutation matrix Π as in (3.7) with m in place of m + 1, we can
rewrite T̂2m as a 2 × 2-block Toeplitz matrix, i.e.,

Π T̂2mΠT = T2m(g), with g =
[
0 f
f ∗ 0

]
.
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Due to the fact that g is an Hermitian matrix-valued function and thanks to Theo-
rem 2.2 with s = 2, we have

{T̂2m}n ∼λ (g, [−π, π ]), with g =
[
0 f
f ∗ 0

]
,

which completes the proof when n is even. To prove the thesis when n odd we note
that

T̂2m+1 =
[
0 uT

u T̂2m

]
,

with u ∈ R
2m , i.e., T̂2m is a principal submatrix of T̂2m+1 of order 2m × 2m. By

exploiting the fact that T̂2m+1 is real symmetric and by using Theorem 2.3 with Pn ∈
R
n×(n−1),

Pn =
[
0T

In−1

]
,

we get

{T̂2m = PT
n T̂2m+1Pn}n ∼λ (g, [−π, π ]) ⇐⇒ {T̂2m+1}n ∼λ (g, [−π, π ]),

and the proof is complete.

We are now ready to present our main results.

Theorem 3.1 Let {Tn( f )}n, Tn( f ) ∈ R
n×n be the Toeplitz sequence associated to f ∈

L1([−π, π ]), and let {YnTn( f )}n be the corresponding sequence of flipped Toeplitz
matrices. Then,

{YnTn( f )}n ∼λ (g, [−π, π ]), with g =
[
0 f
f ∗ 0

]
. (3.8)

Proof To prove the thesis it is enough to put together Lemmas 3.1–3.2 and to apply
GLT2.

Remark 3.1 Notice that multiplication by Yn does not affect the spectral distribution
in the singular value sense of the original Toeplitz sequence {Tn( f )}n , that is

{YnTn( f )}n ∼σ ( f , [−π, π ]). (3.9)

This immediately follows from the fact that since Yn is unitary Tn( f ) and YnTn( f )
have the same singular values.

Remark 3.2 The same argument used for real Toeplitz matrices shows that relation
(3.9) still holds for complex Toeplitz matrices. Concerning the eigenvalue distribution,
in general we do not expect a symbol as in (3.8). For instance, if we consider thematrix
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Spectral properties of flipped Toeplitz matrices and… 473

Tn( f̃ ), with f̃ = i f and f such that its Fourier coefficients are real, then by applying
Theorem 3.1 to Tn( f ), it can be easily seen that

{YnTn( f̃ )}n ∼λ (g̃, [−π, π ]) , with g̃ =
[

0 f̃
− f̃ ∗ 0

]
.

More detailed work for general complex Toeplitz matrices will be the subject of future
research.

Remark 3.3 Theorem 3.1 can be easily generalized to certain block Toeplitz matrices
by applying the same strategy used in this section. Specifically, given Tn( f ) ∈ R

n̂×n̂ ,
n̂ = s · n, generated by a matrix-valued function f ∈ L1([−π, π ], s), s > 1, assume
that its Fourier coefficients {t j } j∈Z are symmetrized by a real symmetric involutory
matrix Ws ∈ R

n×n , so that Wst j = t Tj Ws , j ∈ Z. Then

{ŶnTn( f )}n ∼λ (g, [−π, π ]),

where Ŷn ∈ R
n̂×n̂ , Ŷn = Yn ⊗ Ws .

Based on Theorem 3.1 and on Remark 2.1, we expect that asymptotically almost
half of the eigenvalues of YnTn( f ) are well approximated by a uniform sampling of
| f | over [−π, π ], while the remaining are well approximated by a uniform sampling
of−| f | over the same interval. Specifically, a certain number of outliers whose ratio is
infinitesimal in the matrix-size is allowed. When f vanishes only on a set of measure
zero, this motivates that the spectrum is virtually half positive and half negative.

Remark 3.4 Independently, a result equivalent to Theorem 3.1 has been proved in [4];
see Theorem3.2 andCorollary 3.3 therein. Themain differences between the approach
used here and the one in [4] can be summarized as follows: in [4] the authors use the
notion of approximating class of sequences, a technical tool behind the GLT construc-
tion, and they write the symbol as a scalar function (devoting some extra attention to
how to define its domain). Here we leverage the block GLT algebra as a black-box
tool and we naturally get a matrix-valued symbol with two eigenvalue functions that,
in line with Remark 2.1, immediately fits with the quasi-half positive/negative nature
of the spectrum of YnTn( f ).

We end this section by providing the spectral distribution of a preconditioned
sequence of flipped Toeplitz matrices.

Theorem 3.2 Let {Tn( f )}n, Tn( f ) ∈ R
n×n be the Toeplitz sequence associated to

f ∈ L1([−π, π ]), let {YnTn( f )}n be the corresponding sequence of flipped Toeplitz
matrices, and let {Pn}n be a sequence of Hermitian positive definite matrices such
that {Pn}n ∼GLT h, with h : [−π, π ] → C and h �= 0 a.e. Then,

{P−1
n YnTn( f )}n ∼λ (h−1g, [−π, π ]). (3.10)

Proof The thesis easily follows from the combination of Theorem 2.4 with Theo-
rem 3.1 by noticing that {Pn}n ∼GLT h is equivalent to {Pn}n ∼GLT h · I2, and
recalling that YnTn( f ) is real symmetric.
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Fig. 1 Comparison of the eigenvalues of YnTn( f ) (blue circle) with Λ collecting uniform samples of
λi (g) = ±| f (θ)|, i = 1, 2 (red asterisk), ordered in an ascending way, for Example 4.1 when n = 100
(left) and n = 300 (right) (colour figure online)

In the next section we give a variety of examples that validate the theoretical findings
in Theorems 3.1 and 3.2.

4 Numerical experiments

In this section we provide numerical evidence for the theory developed in Sect. 3. The
problems we consider represent banded and dense Toeplitz matrices, some of which
come from applications. We start by defining the following equispaced grid on [0, π ]:

Γ =
{
θ j = π j

m − 1
, j = 0, . . . ,m − 1, m =

⌊n
2

⌋}
.

Then, we denote by Λ1 and Λ2 the set of all evaluations of λ1(g), λ2(g) (resp.
λ1(h−1g),λ2(h−1g)) onΓ , andbyΛ the unionΛ1∪Λ2 ordered in an ascendingway. In
the following examples we numerically check relation (3.8) (resp. (3.10)) by compar-
ing the eigenvalues of YnTn( f ) (resp.P−1

n YnTn( f )) with the values collected inΛ. In
Examples 4.1–4.4 we also compare the eigenvalues of YnTn( f ) directly with the spec-
trum of g. Note that it suffices to consider only [0, π ] in place of [−π, π ] because the
eigenvalue functions of the considered symbols are even. This is clear for the unprecon-
ditioned case since Tn( f ) is real and so λi (g) = ±| f (θ)| = ±| f ∗(θ)| = ±| f (−θ)|.
The preconditioned case will be discussed in Example 4.7.

Example 4.1 Our first example is the banded Toeplitz matrix generated by f (θ) =
2 + eiθ . We see from Fig. 1 that, even for small matrices, the sampling of the eigen-
value functions of g collected in Λ accurately describes the eigenvalues of YnTn( f ).
Also Fig. 2a confirms a good matching between the eigenvalues of YnTn( f ) and the
spectrum of g when n = 100.

Example 4.2 Next, we consider a dense Toeplitz matrix that arises from the discretiza-
tion of space-fractional diffusion problems. Specifically, they occur when solving

123



Spectral properties of flipped Toeplitz matrices and… 475

(a) (b)

(c) (d)

Fig. 2 Eigenvalues of YnTn( f ) and the spectrum of g in (3.8) for Example 4.1–Example 4.4 when n = 100.
a Example 4.1, b Example 4.2, c Example 4.3, d Example 4.4

steady-state, or time-dependent, fractional diffusion equations involving theRiemann–
Liouville fractional derivatives defined as follows (see, e.g., [1])

dαu(x)

d+xα
= 1

Γ (n − α)

dn

dxn

∫ x

L

u(ξ)

(x − ξ)α+1−n
dξ,

dαu(x)

d−xα
= (−1)n

Γ (n − α)

dn

dxn

∫ R

x

u(ξ)

(ξ − x)α+1−n
dξ,

(4.1)

where n is the integer for which n − 1 < α ≤ n, and x ∈ [L, R].
After discretizing these derivatives by a shiftedGrünwald-Letnikov finite difference

method [12,13], we obtain an approximation of dαu(x)
d±xα . For instance, when the step

size is constant, the approximation of dαu(x)
d+xα is a dense lower Hessenberg Toeplitz

matrix Tn( f ), with symbol f (θ) = e−iθ (1 + ei(π+θ))α as described in [1]. Figure 3
shows that when n = 100 the eigenvalues of the flipped Toeplitz matrix YnTn( f ) are
well described by the sampling of the eigenvalue functions of g collected in Λ, and
when n = 300 the two are visually indistinguishable. Similar results can be inferred
from Fig. 2b when comparing the eigenvalues of YnTn( f ) directly with the spectrum
of g.
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Fig. 3 Comparison of the eigenvalues of YnTn( f ) (blue circle) with Λ collecting uniform samples of
λi (g) = ±| f (θ)|, i = 1, 2 (red asterisk), ordered in an ascending way, for Example 4.2 when n = 100
(left) and n = 300 (right) (colour figure online)

Fig. 4 Comparison of the eigenvalues of YnTn( f ) (blue circle) with Λ collecting uniform samples of
λi (g) = ±| f (θ)|, i = 1, 2 (red asterisk), ordered in an ascending way, for Example 4.3 when n = 100
(left) and n = 300 (right) (colour figure online)

Example 4.3 This example from [9, Example 2] has dense Toeplitz matrices with
slowly decaying entries. These entries are defined by the generating function f (θ) =
(2−2 cos(θ))(1+ ix). Figure 4 illustrates that even for such matrices the sampling of
the eigenvalue functions of g collected in Λ accurately describes the eigenvalues of
YnTn( f ). We refer the reader to Fig. 2c for the direct comparison with the spectrum
of g.

Example 4.4 In our fourth example, we choose the rational generating function

f (θ) = e4iθ − 1(
eiθ − 3

2

) (
eiθ − 1

2

)

from [14, Example 10].
The eigenvalues of YnTn( f ) are again characterized by a uniform sampling of the

eigenvalues of g (see Fig. 5), even though the spectrum is somewhat more complicated
than in previous examples (see Fig. 2d).
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Fig. 5 Comparison of the eigenvalues of YnTn( f ) (blue circle) with Λ collecting uniform samples of
λi (g) = ±| f (θ)|, i = 1, 2 (red asterisk), ordered in an ascending way, for Example 4.4 when n = 100
(left) and n = 300 (right) (colour figure online)

Example 4.5 In this example we consider the Toeplitz sequences generated by the
symbol of the advection and mass matrices encountered, for instance, when dealing
with a Galerkin B-spline isogeometric discretization of convection-diffusion-reaction
equations (refer to [6, pp. 235–239] for a detailed discussion). More precisely, if we
denote the mesh size by n and the B-spline degree by the fixed value p, we take
{Tn+p(ap)}n and {Tn+p(mp)}n with

ap(θ) = −2
p∑

k=1

φ′
2p+1(p + 1 − k) sin(kθ),

mp(θ) = φ2p+1(p + 1) + 2
p∑

k=1

φ2p+1(p + 1 − k) cos(kθ),

where φ2p+1 is the cardinal B-spline on knots {0, 1, . . . , 2p+2}. Note that the advec-
tion Toeplitz sequence {Tn+p(ap)}n is made of complex (skew-symmetric) matrices
whose symbol satisfies the conditions in Remark 3.2, while the matrices of the mass
Toeplitz sequence {Tn+p(mp)}n are symmetric.

Let g̃ be the symbol of {Yn+pTn+p(ap)}n . In Fig. 6a, we set p to 4 and we compare
the imaginary part of the eigenvalues of Yn+pTn+p(ap)with a sampling of±|ap|, i.e.,
with the imaginary part of λi (g̃), i = 1, 2 over [0, π ]. We refer to the resulting set
ordered in an ascending way as Λ̃. As in all previous examples, the matching between
the two is quite good when n = 300. Similar results can be obtained when comparing
the eigenvalues of Yn+pTn+p(mp) with a sampling of ±|mp| over [0, π ] (refer to
Fig. 6b).

Example 4.6 In all previous examples, the matching between eigenvalues and the sam-
pling of the eigenvalue functions was “exact”, in the sense that there were no outliers.
In our final example we show a case where the outliers come into play. More precisely,
we show how to build sequences of matrices with a constant number of outliers that
can be chosen a priori.
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(a) (b)

Fig. 6 a Comparison of the imaginary part of the eigenvalues of Yn+pTn+p( f ) (blue circle) with Λ̃

collecting uniform samples of ±|ap | (red asterisk), ordered in an ascending way for Example 4.5 when
f = ap , p = 4, and n = 300; b comparison of the eigenvalues of Yn+pTn+p( f ) (blue circle) with Λ

collecting uniform samples of λi (g) = ±|mp |, i = 1, 2 (red asterisk), ordered in an ascending way, for
Example 4.5 when f = mp , p = 4, and n = 300 (colour figure online)

Table 1 Outliers for
Tn+p(mp + rp,t ) when: (a)
p = 3, t = 2,
n = 100, 200, 400, 800, 1600;
(b) n = 300, t = 2,
p = 1, . . . , 5; (c) n = 300,
p = 4, t = 5, 10, 15, 20, 25

n Out. p Out. t Out.

100 3 1 3 5 9

200 3 2 4 10 14

400 3 3 5 15 19

800 3 4 6 20 24

1600 3 5 7 25 29

(a) (b) (c)

Let us define rp,t (θ) = e(p+t)iθ , with t > 1 and p ≥ 1, and let us consider
the Toeplitz sequence {Tn+p(mp + rp,t )}n , with mp as in the previous example. As
shown in Table 1a, with the fixed values of p = 3, t = 2 and varying n, we get
a constant number of outliers equal to 5. More generally, the number of outliers of
Tn+p(mp + rp,t ) equals p + t and can be decided a priori by changing either p or t
as illustrated in Table 1b, c.

Example 4.7 Our final example shows how the spectral results in Sect. 3 can be used
to describe the convergence rate of preconditioned MINRES, which depends heavily
on the spectral properties of the coefficient matrix (see, e.g., [2, Chapters 2 and 4]).

We consider the dense Toeplitz matrix already discussed in Example 4.2 that results
from the discretization of the space-fractional diffusion problem in [15, Example 3]:

− d

dx

(
d1−β u(x)

d+x1−β

)
= 1, 0 < x < 1,

123



Spectral properties of flipped Toeplitz matrices and… 479

with absorbing boundary conditions and 0 < β < 1, where the fractional derivative
is defined as in (4.1).

Discretizing Example 4.7 by a shifted Grünwald-Letnikov finite difference method
[12,13] with constant step size Δx = 1

n+1 gives the linear system

Tn( f )un = bn,

where Tn( f ) is the dense lower Hessenberg Toeplitz matrix with symbol f (θ) =
−e−iθ (1 + ei(π+θ))α (see [1]) and bn = (Δx)2−β

[
1, 1, . . . , 1

]T . Throughout we
choose β = 0.3.

We either solve Example 4.7without preconditioning, or apply a symmetric positive
definite preconditioner Pn , where {Pn}n ∼GLT h. It is outside the scope of this
manuscript to determine the best preconditioner for this problem, and so we simply
examine three choices:

• Pn = Tn( fR), where fR = ( f + f ∗)/2, so that h = fR ;
• Pn = Tn(| f |), so that h = | f |, and
• the absolute value Strang circulant preconditionerPn = |Cn| described in [17]. To
compute |Cn|we first formCn , the Strang circulant preconditioner for Tn( f ) [19].
Then |Cn| = (CT

n Cn)
1/2 can be cheaply evaluated using fast Fourier transforms.

Since Cn is normal its singular values must equal the eigenvalues of |Cn|. The fact
that {Cn}n ∼σ | f | implies h = | f |.
The same argument as for the unpreconditioned case immediately shows that, for

the previous three choices, h is even and so the eigenvalue functions of h−1g can be
sampled on [0, π ].

Figure 7 shows that the eigenvalues of YnTn( f ) (resp. P−1
n YnTn( f )) are well

described by the sampling of the eigenvalue functions of g (resp. h−1g) collected in
Λ, as predicted byTheorem3.1 (resp. Theorem3.2).Moreover,most of the eigenvalues
of the preconditioned matrices lie close to 1 and −1. This is particularly evident for
Tn(| f |)−1YnTn( f ). We note that |Cn|−1YnTn( f ) has a single outlying eigenvalue at
74.7 that is not plotted.

Given the eigenvalues in Fig. 7a and the fact that f has a zero at 0, it is not surpris-
ing that MINRES applied to Example 4.7 does not converge. On the other hand, from
Fig. 7b–d and since λi (h−1g) is either bounded or equal to±1, we expect that precon-
ditionedMINRESwith preconditioners Tn( fR), Tn(| f |) or |Cn|will converge rapidly.
To test this, we apply (preconditioned) MINRES to Example 4.7, stopping when the
residual norm is reduced by eight orders of magnitude, i.e, when ‖rk‖2/‖r0‖2 < 10−8.
We see from Table 2 that these iteration counts are exactly what we might expect from
the above spectral results: all three preconditioners are optimal, with Tn(| f |) resulting
in the lowest iteration counts.

5 Conclusions

We have investigated the spectra of flipped Toeplitz sequences, i.e., the asymptotic
spectral behaviour of {YnTn( f )}n , where Tn( f ) ∈ R

n×n is a real Toeplitz matrix
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(a) (b)

(c) (d)

Fig. 7 Comparison of the eigenvalues of YnTn( f ) or P−1
n YnTn( f )) (blue circle) with Λ collecting the

uniform samples of the eigenvalue functions of g or h−1g for Example 4.7 (red asterisk) when n = 100.
Note that |Cn |−1YnTn( f ) has a single outlying eigenvalue at 74.7 that is not plotted. a Unpreconditioned,
b Pn = Tn( fR), c Pn = Tn(| f |), d Pn = |Cn | (colour figure online)

Table 2 Preconditioned
MINRES iterations for
Example 4.7

n Tn( fR) Tn(| f |) |Cn |
100 15 7 12

300 16 8 14

500 17 8 15

1000 17 9 15

2000 18 9 17

4000 18 9 17

generated by a function f ∈ L1([−π, π ]), and Yn is the exchange matrix, with 1s on
the main anti-diagonal. Using the GLTmachinery, we have shown that the eigenvalues
of YnTn( f ) are asymptotically described by a 2 × 2 matrix-valued function, whose
eigenvalue functions are ±| f |. When f vanishes only on a set of measure zero, this
motivates that roughly half of the eigenvalues of YnTn( f ) are positive, while the
remaining are negative. The GLT theory allows us to describe also the asymptotic
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spectral behaviour of {P−1
n YnTn( f )}n , when Pn is Hermitian positive definite, and

hence predict the convergence rate of preconditioned MINRES.
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