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Abstract
Variational integrators are derived for structure-preserving simulation of stochastic
Hamiltonian systems with a certain type of multiplicative noise arising in geomet-
ric mechanics. The derivation is based on a stochastic discrete Hamiltonian which
approximates a type-II stochastic generating function for the stochastic flow of the
Hamiltonian system.The generating function is obtained by introducing an appropriate
stochastic action functional and its corresponding variational principle. Our approach
permits to recast in a unified framework a number of integrators previously studied in
the literature, and presents a general methodology to derive new structure-preserving
numerical schemes. The resulting integrators are symplectic; they preserve integrals
of motion related to Lie group symmetries; and they include stochastic symplectic
Runge–Kutta methods as a special case. Several new low-stage stochastic symplec-
tic methods of mean-square order 1.0 derived using this approach are presented and
tested numerically to demonstrate their superior long-time numerical stability and
energy behavior compared to nonsymplectic methods.
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1 Introduction

Stochastic differential equations (SDEs) play an important role in modeling dynam-
ical systems subject to internal or external random fluctuations. Standard references
include [5,27–29,42,50]. Within this class of problems, we are interested in stochastic
Hamiltonian systems, which take the form (see [6,30,43])

dq = ∂ H

∂ p
dt + ∂h

∂ p
◦ dW (t),

dp = −∂ H

∂q
dt − ∂h

∂q
◦ dW (t), (1.1)

where H = H(q, p) and h = h(q, p) are the Hamiltonian functions, W (t) is the
standard one-dimensional Wiener process, and ◦ denotes Stratonovich integration.
The system (1.1) can be formally regarded as a classical Hamiltonian system with
the randomized Hamiltonian given by ̂H(q, p) = H(q, p) + h(q, p) ◦ Ẇ , where
H(q, p) is the deterministic Hamiltonian and h(q, p) is another Hamiltonian, to be
specified, whichmultiplies (in the Stratonovich sense, denoted as ◦) a one-dimensional
Gaussian white noise, Ẇ . Such systems can be used to model, e.g., mechanical
systems with uncertainty, or error, assumed to arise from random forcing, limited pre-
cision of experimental measurements, or unresolved physical processes on which the
Hamiltonian of the deterministic system might otherwise depend. Particular exam-
ples include modeling synchrotron oscillations of particles in particle storage rings
(see [17,56]) and stochastic dynamics of the interactions of singular solutions of the
EPDiff basic fluids equation (see [23]). More examples are discussed in Sect. 4. See
also [31,37,46,54,57,58,61].

Asoccurs for other SDEs,mostHamiltonianSDEs cannot be solved analytically and
onemust resort to numerical simulations to obtain approximate solutions. In principle,
general purpose stochastic numerical schemes for SDEs can be applied to stochas-
tic Hamiltonian systems. However, as for their deterministic counterparts, stochastic
Hamiltonian systems possess several important geometric features. In particular, their
phase space flows (almost surely) preserve the symplectic structure. When simulating
these systems numerically, it is therefore advisable that the numerical scheme also
preserves such geometric features. Geometric integration of deterministic Hamilto-
nian systems has been thoroughly studied (see [18,41,55] and the references therein)
and symplectic integrators have been shown to demonstrate superior performance in
long-time simulations of Hamiltonian systems, compared to non-symplectic methods;
so it is natural to pursue a similar approach for stochastic Hamiltonian systems. This
is a relatively recent pursuit. Stochastic symplectic integrators were first proposed in
[43,44]. Stochastic generalizations of symplectic partitioned Runge–Kutta methods
were analyzed in [13,35,36]. A stochastic generating function approach to construct-
ing stochastic symplectic methods, based on approximately solving a corresponding
stochastic Hamilton–Jacobi equation satisfied by the generating function, was pro-
posed in [65,66], and this idea was further pursued in [2,4,16]. Stochastic symplectic
integrators constructed via composition methods were proposed and analyzed in [45].
A first order weak symplectic numerical scheme and an extrapolation method were
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Stochastic discrete Hamiltonian variational integrators 1011

proposed and their global error was analyzed in [3]. More recently, an approach based
on Padé approximations has been used to construct stochastic symplectic methods for
linear stochastic Hamiltonian systems (see [60]). Higher-order strong and weak sym-
plectic partitioned Runge–Kutta methods have been proposed in [67,68]. High-order
conformal symplectic and ergodic schemes for the stochastic Langevin equation have
been introduced in [25]. Other structure-preserving methods for stochastic Hamil-
tonian systems have also been investigated, see, e.g., [1,15,26], and the references
therein.

Long-time accuracy and near preservation of the Hamiltonian by symplectic inte-
grators applied to deterministic Hamiltonian systems have been rigorously studied
using the so-called backward error analysis (see, e.g., [18] and the references therein).
To the best of our knowledge, such rigorous analysis has not been attempted in the
stochastic context as yet. However, the numerical evidence presented in the papers
cited above is promising and suggests that stochastic symplectic integrators indeed
possess the property of very accurately capturing the evolution of the Hamiltonian H
over exponentially long time intervals (note that the Hamiltonian H in general does
not stay constant for stochastic Hamiltonian systems).

An important class of geometric integrators are variational integrators. This type
of numerical schemes is based on discrete variational principles and provides a natural
framework for the discretization of Lagrangian systems, including forced, dissipative,
or constrained ones. These methods have the advantage that they are symplectic,
and in the presence of a symmetry, satisfy a discrete version of Noether’s theorem.
For an overview of variational integration for deterministic systems see [40]; see
also [21,32,33,47,48,53,63,64]. Variational integrators were introduced in the context
of finite-dimensional mechanical systems, but were later generalized to Lagrangian
field theories (see [39]) and applied in many computations, for example in elasticity,
electrodynamics, or fluid dynamics; see [34,49,59,62].

Stochastic variational integrators were first introduced in [8] and further studied in
[7]. However, those integrators were restricted to the special case when the Hamil-
tonian function h = h(q) was independent of p, and only low-order Runge–Kutta
types of discretization were considered. In the present work we extend the idea of
stochastic variational integration to general stochastic Hamiltonian systems by gen-
eralizing the variational principle introduced in [33] and applying a Galerkin type of
discretization (see [32,33,40,47,48]), which leads to a more general class of stochastic
symplectic integrators than those presented in [7,8,35,36]. Our approach consists in
approximating a generating function for the stochastic flow of the Hamiltonian sys-
tem, but unlike in [65,66], we do make this discrete approximation by exploiting its
variational characterization, rather than solving the corresponding Hamilton–Jacobi
equation.
Main content The main content of the remainder of this paper is, as follows.

In Sect. 2we introduce a stochastic variational principle and a stochastic generating
function suitable for considering stochastic Hamiltonian systems, and we discuss
their properties.
In Sect. 3 we present a general framework for constructing stochastic Galerkin
variational integrators, prove the symplecticity and conservation properties of such
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1012 D. D. Holm, T. M. Tyranowski

integrators, show they contain the stochastic symplectic Runge–Kutta methods
of [35,36] as a special case, and finally present several particularly interesting
examples of new low-stage stochastic symplectic integrators of mean-square order
1.0 derived with our general methodology.
In Sect. 4 we present the results of our numerical tests, which verify the theoreti-
cal convergence rates and the excellent long-time performance of our integrators
compared to some popular non-symplectic methods.
Section 5 contains the summary of our work.

2 Variational principle for stochastic Hamiltonian systems

The stochastic variational integrators proposed in [7,8] were formulated for dynam-
ical systems which are described by a Lagrangian and which are subject to noise
whose magnitude depends only on the position q. Therefore, these integrators are
applicable to (1.1) only when the Hamiltonian function h = h(q) is independent of p
and the Hamiltonian H is non-degenerate (i.e., the associated Legendre transform is
invertible). However, in the case of general h = h(q, p) the paths q(t) of the system
become almost surely nowhere differentiable, which poses a difficulty in interpreting
the meaning of the corresponding Lagrangian. Therefore, we need a different sort of
action functional and variational principle to construct stochastic symplectic integra-
tors for (1.1). To this end, we will generalize the approach taken in [33]. To begin,
in the next section, we will introduce an appropriate stochastic action functional and
show that it can be used to define a type-II generating function for the stochastic flow
of the system (1.1).

2.1 Stochastic variational principle

Let the Hamiltonian functions H : T ∗Q −→ R and h : T ∗Q −→ R be defined
on the cotangent bundle T ∗Q of the configuration manifold Q, and let (q, p) denote
the canonical coordinates on T ∗Q. For simplicity, in this work we assume that the
configuration manifold has a vector space structure, Q ∼= R

N , so that T ∗Q = Q ×
Q∗ ∼= R

N × R
N and T Q = Q × Q ∼= R

N × R
N . In this case, the natural pairing

between one-forms and vectors can be identified with the scalar product onRN , that is,
〈(q, p), (q, q̇)〉 = p · q̇ , where (q, q̇) denotes the coordinates on T Q . Let (Ω,F ,P)

be the probability space with the filtration {Ft }t≥0, and let W (t) denote a standard
one-dimensional Wiener process on that probability space (such that W (t) is Ft -
measurable). We will assume that the Hamiltonian functions H and h are sufficiently
smooth and satisfy all the necessary conditions for the existence and uniqueness of
solutions to (1.1), and their extendability to a given time interval [ta, tb] with tb >

ta ≥ 0. One possible set of such assumptions can be formulated by considering the
Itô form of (1.1),

dz = A(z)dt + B(z)dW (t), (2.1)

with z = (q, p) and
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A(z) =
⎛

⎝

∂ H
∂ p + 1

2
∂2h

∂ p∂q
∂h
∂ p − 1

2
∂2h
∂ p2

∂h
∂q

− ∂ H
∂q − 1

2
∂2h
∂q2

∂h
∂ p + 1

2
∂2h

∂q∂ p
∂h
∂q

⎞

⎠ , B(z) =
(

∂h
∂ p

− ∂h
∂q

)

, (2.2)

where ∂2h/∂q2, ∂2h/∂ p2, and ∂2h/∂q∂ p denote the Hessian matrices of h. For
simplicity and clarity of the exposition, throughout this paper we assume that (see
[5,27–29])

(H1) H and h are C2 functions of their arguments
(H2) A and B are globally Lipschitz

These assumptions are sufficient1 for our purposes, but could be relaxed if necessary.
Define the space

C([ta, tb]) = {

(q, p) : Ω × [ta, tb]
−→ T ∗Q

∣

∣ q, p are almost surely continuous Ft -adapted semimartingales
}

.

(2.3)

Since we assume T ∗Q ∼= R
N ×R

N , the space C([ta, tb]) is a vector space (see [50]).
Therefore, we can identify the tangent space T C([ta, tb]) ∼= C([ta, tb]) × C([ta, tb]).
We can now define the following stochastic action functional,B : Ω×C([ta, tb]) −→
R,

B
[

q(·), p(·)] = p(tb)q(tb)−
∫ tb

ta

[

p◦dq−H
(

q(t), p(t)
)

dt−h
(

q(t), p(t)
)◦dW (t)

]

,

(2.4)
where ◦ denotes Stratonovich integration, and we have omitted writing the elemen-
tary events ω ∈ Ω as arguments of functions, following the standard convention in
stochastic analysis.

Theorem 2.1 (Stochastic variational principle in phase space) Suppose that H(q, p)

and h(q, p) satisfy conditions (H1)–(H2). If the curve
(

q(t), p(t)
)

in T ∗Q satisfies
the stochastic Hamiltonian system (1.1) for t ∈ [ta, tb], where tb ≥ ta > 0, then the
pair

(

q(·), p(·)) is a critical point of the stochastic action functional (2.4), that is,

δB
[

q(·), p(·)] ≡ d

dε

∣

∣

∣

∣

ε=0
B
[

q(·) + εδq(·), p(·) + εδ p(·)] = 0, (2.5)

almost surely for all variations
(

δq(·), δ p(·)) ∈ C([ta, tb]) such that almost surely
δq(ta) = 0 and δ p(tb) = 0.

Proof Let the curve
(

q(t), p(t)
)

in T ∗Q satisfy (1.1) for t ∈ [ta, tb]. It then follows
that the stochastic processes q(t) and p(t) are almost surely continuous, Ft -adapted

1 In this work we only consider Hamiltonian functions H and h that are independent of time. In the time-
dependent case one needs to add a further assumption that the growth of A and B is linearly bounded, i.e.
‖A(z, t)‖2 + ‖B(z, t)‖2 ≤ K (1 + ‖z‖2) for a constant K > 0 (see [5,27–29]).
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1014 D. D. Holm, T. M. Tyranowski

semimartingales, that is,
(

q(·), p(·)) ∈ C([ta, tb]) (see [5,50]). We calculate the vari-
ation (2.5) as

δB
[

q(·), p(·)] = p(tb)δq(tb) −
∫ tb

ta
p(t) ◦ dδq(t) −

∫ tb

ta
δ p(t) ◦ dq(t)

+
∫ tb

ta

[

∂ H

∂q

(

q(t), p(t)
)

δq(t) + ∂ H

∂ p

(

q(t), p(t)
)

δ p(t)

]

dt

+
∫ tb

ta

[

∂h

∂q

(

q(t), p(t)
)

δq(t) + ∂h

∂ p

(

q(t), p(t)
)

δ p(t)

]

◦ dW (t),

(2.6)

where we have used the end point condition, δ p(tb) = 0. Since the Hamiltonians are
C2 and the processes q(t), p(t) are almost surely continuous, in the last two lines
we have used a dominated convergence argument to interchange differentiation with
respect to ε and integration with respect to t and W (t). Upon applying the integration
by parts formula for semimartingales (see [50]), we find

∫ tb

ta
p(t) ◦ dδq(t) = p(tb)δq(tb) − p(ta)δq(ta) −

∫ tb

ta
δq(t) ◦ dp(t). (2.7)

Substituting and rearranging terms produces,

δB
[

q(·), p(·)] =
∫ tb

ta
δq(t)

[

◦ dp(t) + ∂ H

∂q

(

q(t), p(t)
)

dt + ∂h

∂q

(

q(t), p(t)
) ◦ dW (t)

]

−
∫ tb

ta
δ p(t)

[

◦ dq(t) − ∂ H

∂ p

(

q(t), p(t)
)

dt − ∂h

∂ p

(

q(t), p(t)
) ◦ dW (t)

]

,

(2.8)

where we have used δq(ta) = 0. Since
(

q(t), p(t)
)

satisfy (1.1), then by definition we
have that almost surely for all t ∈ [ta, tb],

q(t) = q(ta) +
∫ t

ta

∂ H

∂ p
(q(s), p(s)) ds

︸ ︷︷ ︸

M1(t)

+
∫ t

ta

∂h

∂ p
(q(s), p(s)) ◦ dW (s)

︸ ︷︷ ︸

M2(t)

, (2.9)

that is, q(t) can be represented as the sum of two semi-martingales M1(t) and M2(t),
where the sample paths of the process M1(t) are almost surely continuously differen-
tiable. Let us calculate
∫ tb

ta
δ p(t) ◦ dq(t) =

∫ tb

ta
δ p(t) ◦ d

(

q(ta) + M1(t) + M2(t)
)

=
∫ tb

ta
δ p(t) ◦ d M1(t) +

∫ tb

ta
δ p(t) ◦ d M2(t)

=
∫ tb

ta
δ p(t)

∂ H

∂ p
(q(t), p(t)) dt +

∫ tb

ta
δ p(t)

∂h

∂ p
(q(t), p(t)) ◦ dW (t),

(2.10)
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where in the last equality we have used the standard property of the Riemann–Stieltjes
integral for the first term, as M1(t) is almost surely differentiable, and the associativity
property of the Stratonovich integral for the second term (see [27,50]). Substituting
(2.10) in (2.8), we show that the second term is equal to zero. By a similar argument we
also prove that the first term in (2.8) is zero. Therefore, δB = 0, almost surely. �
Remark It is natural to expect that the converse theorem, that is, if

(

q(·), p(·)) is a crit-
ical point of the stochastic action functional (2.4), then the curve

(

q(t), p(t)
)

satisfies
(1.1), should also hold, although a larger class of variations (δq, δ p)may be necessary.
A variant of such a theorem, although for a slightly different variational principle and
in a different setting, was proved in Lázaro-Camí and Ortega [30]. Another variant
for Lagrangian systems was proved by Bou-Rabee and Owhadi [8] in the special case
when h = h(q) is independent of p. In that case, one can assume that q(t) is con-
tinuously differentiable. In the general case, however, q(t) is not differentiable, and
the ideas of [8] cannot be applied directly. We leave this as an open question. Here,
we will use the action functional (2.4) and the variational principle (2.5) to construct
numerical schemes, and we will directly verify that these numerical schemes converge
to solutions of (1.1).

2.2 Stochastic type-II generating function

When the Hamiltonian functions H(q, p) and h(q, p) satisfy standard measurability
and regularity conditions [e.g., (H1)–(H2)], then the system (1.1) possesses a pathwise
unique stochastic flow Ft,t0 : Ω × T ∗Q −→ T ∗Q. It can be proved that for fixed
t, t0 this flow is mean-square differentiable with respect to the q, p arguments, and
is also almost surely a diffeomorphism (see [5,27–29]). Moreover, Ft,t0 almost surely
preserves the canonical symplectic form ΩT ∗ Q = ∑N

i=1 dqi ∧ dpi (see [6,30,44]),
that is,

F∗
t,t0ΩT ∗ Q = ΩT ∗ Q, (2.11)

where F∗
t,t0 denotes the pull-back by the flow Ft,t0 . We will show below that the

action functional (2.4) can be used to construct a type II generating function for
Ft,t0 . Let (q̄(t), p̄(t)) be a particular solution of (1.1) on [ta, tb]. Suppose that for
almost all ω ∈ Ω there is an open neighborhood U (ω) ⊂ Q of q̄(ω, ta), an open
neighborhood V (ω) ⊂ Q∗ of p̄(ω, tb), and an open neighborhood W (ω) ⊂ T ∗Q of
the curve (q̄(ω, t), p̄(ω, t)) such that for all qa ∈ U (ω) and pb ∈ V (ω) there exists
a pathwise unique solution (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) of (1.1) which satisfies
q̄(ω, ta; qa, pb) = qa , p̄(ω, tb; qa, pb) = pb, and (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) ∈
W (ω) for ta ≤ t ≤ tb. (As in the deterministic case, for tb sufficiently close to ta one
can argue that such neighborhoods exist; see [38].) Define the function S : Y −→ R

as
S(qa, pb) = B

[

q̄(·; qa, pb), p̄(·; qa, pb)
]

, (2.12)

where the domain Y ⊂ Ω × T ∗Q is given by Y = ⋃

ω∈Ω {ω} × U (ω) × V (ω).
Below we prove that S generates2 the stochastic flow Ftb,ta .

2 A generating function for the symplectic transformation (qa , pa) −→ (qb, pb) is a function of one of
the variables (qa , pa) and one of the variables (qb, pb). Therefore, there are four basic types of generating
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Theorem 2.2 The function S(qa, pb) is a type-II stochastic generating function for the
stochastic mapping Ftb,ta , that is, Ftb,ta : (qa, pa) −→ (qb, pb) is implicitly given by
the equations

qb = D2S(qa, pb), pa = D1S(qa, pb), (2.13)

where the derivatives are understood in the mean-square sense.

Proof Under appropriate regularity assumptions on the Hamiltonians [e.g., (H1)–
(H2)], the solutions q̄(t; qa, pb) and p̄(t; qa, pb) are mean-square differentiable with
respect to the parameters qa and pb, and the partial derivatives are semimartingales
(see [5]). We calculate the derivative of S as

∂S

∂qa
(qa, pb) = pb

∂q̄(tb)

∂qa
−
∫ tb

ta

∂ p̄(t)

∂qa
◦ dq̄(t) −

∫ tb

ta
p̄(t) ◦ d

∂ q̄(t)

∂qa

+
∫ tb

ta

[

∂q̄(t)

∂qa

∂ H

∂q

(

q̄(t), p̄(t)
)+ ∂ p̄(t)

∂qa

∂ H

∂ p

(

q̄(t), p̄(t)
)

]

dt

+
∫ tb

ta

[

∂q̄(t)

∂qa

∂h

∂q

(

q̄(t), p̄(t)
)+ ∂ p̄(t)

∂qa

∂h

∂ p

(

q̄(t), p̄(t)
)

]

◦ dW (t),

(2.14)

where for notational conveniencewe have omittedwriting qa and pb explicitly as argu-
ments of q̄(t) and p̄(t). Applying the integration by parts formula for semimartingales
(see [50]), we find

∫ tb

ta
p̄(t) ◦ d

∂q̄(t)

∂qa
= pb

∂q̄(tb)

∂qa
− p̄(ta) −

∫ tb

ta

∂ q̄(t)

∂qa
◦ d p̄(t). (2.15)

Substituting and rearranging terms, we obtain the result,

∂S

∂qa
(qa, pb) = p̄(ta) +

∫ tb

ta

∂ q̄(t)

∂qa

[

◦ d p̄ + ∂ H

∂q

(

q̄(t), p̄(t)
)

dt + ∂h

∂q

(

q̄(t), p̄(t)
) ◦ dW (t)

]

+
∫ tb

ta

∂ p̄(t)

∂qa

[

◦ dq̄ − ∂ H

∂ p

(

q̄(t), p̄(t)
)

dt − ∂h

∂ p

(

q̄(t), p̄(t)
) ◦ dW (t)

]

= p̄(ta), (2.16)

since (q̄(t), p̄(t)) is a solution of (1.1). Similarly we show ∂S/∂ pb(qa, pb) = q̄(tb).
By definition of the flow, then Ftb,ta (qa, p̄(ta)) = (q̄(tb), pb). �
We can consider S(qa, pb) as a function of time if we let tb vary. Let us denote
this function as St (qa, p). Below we show that St (qa, p) satisfies a certain stochastic
partial differential equation, which is a stochastic generalization of the Hamilton–
Jacobi equation considered in [33].

Footnote 2 continued
functions: S = S1(qa , qb), S = S2(qa , pb), S = S3(pa , qb), and S = S4(pa , pb). In this work we use the
type-II generating function S = S2(qa , pb).
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Proposition 2.1 (Type II stochasticHamilton–Jacobi equation)Let the time-dependent
type-II generating function be defined as
S2(qa, p, t) ≡ St (qa, p)

= pq̄(t) −
∫ t

ta

[

p̄(τ ) ◦ dq̄(τ ) − H
(

q̄(τ ), p̄(τ )
)

dτ − h
(

q̄(τ ), p̄(τ )
) ◦ dW (τ )

]

,

(2.17)

where q̄(τ ) ≡ q̄(τ ; qa, p) and p̄(τ ) ≡ p̄(τ ; qa, p) as before. Then the function
S2(qa, p, t) satisfies the following stochastic partial differential equation

d S2 = H

(

∂S2
∂ p

, p

)

dt + h

(

∂S2
∂ p

, p

)

◦ dW (t), (2.18)

where d S2 denotes the stochastic differential of S2 with respect to the t variable.

Proof Choose an arbitrary pair (qa, pa) ∈ T ∗Q and define the particular solution
(q̄(τ ), p̄(τ )) = Fτ,ta (qa, pa). Form the function S2(qa, p̄(t), t) and consider its total
stochastic differential3 d̄ S2(qa, p̄(t), t) with respect to time. On one hand, the rules
of Stratonovich calculus imply

d̄ S2(qa, p̄(t), t) = d S2(qa, p̄(t), t) + ∂S2
∂ p

(qa, p̄(t), t) ◦ d p̄(t), (2.19)

where d S2 denotes the partial stochastic differential of S2 with respect to the t argu-
ment. On the other hand, integration by parts in (2.17) implies

d̄ S2(qa, p̄(t), t) = q̄(t)◦d p̄(t)+H(q̄(t), p̄(t)) dt +h(q̄(t), p̄(t))◦dW (t). (2.20)

Comparing (2.19) and (2.20), and using (2.13), we obtain

d S2(qa, p̄(t), t) = H

(

∂S2
∂ p

(

qa, p̄(t), t
)

, p̄(t)

)

dt + h

(

∂S2
∂ p

(

qa, p̄(t), t
)

, p̄(t)

)

◦ dW (t).

(2.21)
This equation is satisfied along a particular path p̄(t), however, as in the discussion
preceding Theorem 2.2, we can argue, slightly informally, that for almost all ω ∈
Ω , and for t sufficiently close to ta , one can find open neighborhoods U (ω) ⊂ Q
and V (ω) ⊂ Q∗ which can be connected by the flow Ft,ta , i.e., given qa ∈ U (ω)

and p ∈ V (ω), there exists a pathwise unique solution (q̄(ω, τ), p̄(ω, τ)) such that
q̄(ω, ta) = qa and p̄(ω, t) = p. With this assumption, (2.21) can be reformulated as
the full-blown stochastic PDE (2.18). �
Remark Similar stochastic Hamilton–Jacobi equations were introduced in [65,66],
where theywere used for constructing stochastic symplectic integrators by considering

3 In analogy to ordinary calculus, the total stochastic differential is understood as S2(qa , p̄(tb), tb) −
S2(qa , p̄(ta), ta) = ∫ tb

ta d̄ S2(qa , p̄(t), t), whereas the partial stochastic differential means S2(qa , pb, tb)−
S2(qa , pb, ta) = ∫ tb

ta d S2(qa , pb, t).
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1018 D. D. Holm, T. M. Tyranowski

series expansions of generating functions in terms of multiple Stratonovich integrals.
This was a direct generalization of a similar technique for deterministic Hamiltonian
systems (see [18]). In this work we explore the generalized Galerkin framework for
constructing approximations of the generating function S(qa, pb) in (2.13) by using
its variational characterization (2.12). Our approach is a stochastic generalization of
the techniques proposed in [33,48] for deterministic Hamiltonian and Lagrangian sys-
tems.

2.3 Stochastic Noether’s theorem

Let a Lie group G act on Q by the left action Φ : G × Q −→ Q. The Lie group G
then acts on T Q and T ∗Q by the tangent ΦT Q : G × T Q −→ T Q and cotangent
ΦT ∗ Q : G × T ∗Q −→ T ∗Q lift actions, respectively, given in coordinates by the
formulas (see [22,38])

ΦT Q
g (q, q̇) ≡ ΦT Q(g, (q, q̇)

) =
(

Φ i
g(q),

∂Φ i
g

∂q j
(q)q̇ j

)

,

ΦT ∗ Q
g (q, p) ≡ ΦT ∗ Q(g, (q, p)

) =
(

Φ i
g(q), p j

∂Φ
j
g−1

∂qi

(

Φg(q)
)

)

, (2.22)

where i, j = 1, . . . , N and summation is implied over repeated indices. Let g denote
the Lie algebra of G and exp : g −→ G the exponential map (see [22,38]). Each
element ξ ∈ g defines the infinitesimal generators ξQ , ξT Q , and ξT ∗ Q , which are
vector fields on Q, T Q, and T ∗Q, respectively, given by

ξQ(q) = d

dλ

∣

∣

∣

∣

λ=0
Φexp λξ (q), ξT Q(q, q̇) = d

dλ

∣

∣

∣

∣

λ=0
Φ

T Q
exp λξ (q, q̇),

ξT ∗ Q(q, p) = d

dλ

∣

∣

∣

∣

λ=0
Φ

T ∗ Q
exp λξ (q, p). (2.23)

The momentum map J : T ∗Q −→ g∗ associated with the action ΦT ∗ Q is defined as
themapping such that for all ξ ∈ g the function Jξ : T ∗Q � (q, p) −→ 〈J (q, p), ξ 〉 ∈
R is the Hamiltonian for the infinitesimal generator ξT ∗ Q , i.e.,

ξ
q
T ∗ Q = ∂ Jξ

∂ p
, ξ

p
T ∗ Q = −∂ Jξ

∂q
, (2.24)

where ξT ∗ Q(q, p) = (

q, p, ξ
q
T ∗ Q(q, p), ξ

p
T ∗ Q(q, p)

)

. The momentum map J can be
explicitly expressed as (see [22,38])

Jξ (q, p) = p · ξQ(q). (2.25)

Noether’s theorem for deterministic Hamiltonian systems relates symmetries of the
Hamiltonian to quantities preserved by the flow of the system. It turns out that this
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Stochastic discrete Hamiltonian variational integrators 1019

result carries over to the stochastic case, as well. A stochastic version of Noether’s
theorem was proved in [6,30]. For completeness, and for the benefit of the reader,
below we state and provide a less involved proof of Noether’s theorem for stochastic
Hamiltonian systems.

Theorem 2.3 (Stochastic Noether’s theorem) Suppose that the Hamiltonians H :
T ∗Q −→ R and h : T ∗Q −→ R are invariant with respect to the cotangent lift
action ΦT ∗ Q : G × T ∗Q −→ T ∗Q of the Lie group G, that is,

H ◦ ΦT ∗ Q
g = H , h ◦ ΦT ∗ Q

g = h, (2.26)

for all g ∈ G. Then the cotangent lift momentum map J : T ∗Q −→ g∗ associated with
ΦT ∗ Q is almost surely preserved along the solutions of the stochastic Hamiltonian
system (1.1).

Proof Equation (2.26) implies that the Hamiltonians are infinitesimally invariant with
respect to the action of G, that is, for all ξ ∈ g we have

d H · ξT ∗ Q = 0, dh · ξT ∗ Q = 0, (2.27)

where d H and dh denote differentials with respect to the variables q and p. Let
(q(t), p(t)) be a solution of (1.1) and consider the stochastic process Jξ (q(t), p(t)),
where ξ ∈ g is arbitrary. Using the rules of Stratonovich calculus we can calculate the
stochastic differential

d Jξ

(

q(t), p(t)
) = ∂ Jξ

∂q
(q(t), p(t)) ◦ dq + ∂ Jξ

∂ p
(q(t), p(t)) ◦ dp

= −
(

∂ H

∂q
ξ

q
T ∗ Q + ∂ H

∂ p
ξ

p
T ∗ Q

)

dt −
(

∂h

∂q
ξ

q
T ∗ Q + ∂h

∂ p
ξ

p
T ∗ Q

)

◦ dW

= −(d H · ξT ∗ Q) dt − (dh · ξT ∗ Q) ◦ dW = 0, (2.28)

where we used (1.1), (2.24), and (2.27). Therefore, Jξ

(

q(t), p(t)
) = const almost

surely for all ξ ∈ g, which completes the proof. �

3 Stochastic Galerkin Hamiltonian variational integrators

If the converse to Theorem 2.1 holds, then the generating function S(qa, pb) defined
in (2.12) could be equivalently characterized by

S(qa, pb) = ext
(q,p)∈C([ta ,tb])

q(ta)=qa , p(tb)=pb

B
[

q(·), p(·)], (3.1)
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1020 D. D. Holm, T. M. Tyranowski

where the extremum is taken pointwise in the probability space Ω . This characteri-
zation allows us to construct stochastic Galerkin variational integrators by choosing a
finite dimensional subspace of C([ta, tb]) and a quadrature rule for approximating the
integrals in the action functionalB. Galerkin variational integrators for deterministic
systems were first introduced in [40], and further developed in [21,32,33,47,48]. In
the remainder of the paper, we will generalize these ideas to the stochastic case.

3.1 Construction of the integrator

Suppose we would like to solve (1.1) on the interval [0, T ] with the initial con-
ditions (q0, p0) ∈ T ∗Q. Consider the discrete set of times tk = k · �t for
k = 0, 1, . . . , K , where �t = T /K is the time step. In order to determine the
discrete curve {(qk, pk)}k=0,...,K that approximates the exact solution of (1.1) at times
tk we need to construct an approximation of the exact stochastic flow Ftk+1,tk on each
interval [tk, tk+1], so that (qk+1, pk+1) ≈ Ftk+1,tk (qk, pk). Let us consider the space
Cs([tk, tk+1]) ⊂ C([tk, tk+1]) defined as

Cs([tk, tk+1]) = {

(q, p) ∈ C([tk, tk+1])
∣

∣ q is a polynomial of degree s
}

. (3.2)

For convenience, we will express q(t) in terms of Lagrange polynomials. Consider
the control points 0 = d0 < d1 < · · · < ds = 1 and let the corresponding Lagrange
polynomials of degree s be denoted by lμ,s(τ ), that is, lμ,s(dν) = δμν . A polynomial
trajectory qd(t; qμ) can then be expressed as

qd(tk + τ�t; qμ) =
s
∑

μ=0

qμlμ,s(τ ), q̇d(tk + τ�t; qμ) = 1

�t

s
∑

μ=0

qμl̇μ,s(τ ),

(3.3)
where qν = qd(tk +dν�t; qμ) for ν = 0, . . . , s are the control values, q̇d denotes the
time derivative of qd , and l̇μ,s denotes the derivative of the Lagrange polynomial lμ,s

with respect to its argument. The restriction of the action functional (2.4) to the space
Cs([tk, tk+1]) takes the form

Bs[qd(·; qμ), p(·)] = p(tk+1)q
s −

∫ tk+1

tk

[

p(t)q̇d(t) − H
(

qd(t), p(t)
)

]

dt

+
∫ tk+1

tk
h
(

qd(t), p(t)
) ◦ dW (t), (3.4)

since for differentiable functions dqd(t) = q̇d(t) dt , where for brevity qd(t) ≡
qd(t; qμ). Next we approximate the integrals in (3.4) using numerical quadrature
rules (αi , ci )

r
i=1 and (βi , ci )

r
i=1, where 0 ≤ c1 < · · · < cr ≤ 1 are the quadrature

points, and αi , βi are the corresponding weights. At this point we only make a general
assumption that for each i we have αi �= 0 or βi �= 0. More specific examples will be
presented in Sect. 3.4. The approximate action functional takes the form
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Stochastic discrete Hamiltonian variational integrators 1021

B̄s[qd(·; qμ), p(·)]

= p(tk+1)q
s − �t

r
∑

i=1

αi

[

p(tk + ci�t)q̇d(tk + ci�t) − H
(

qd(tk + ci�t), p(tk + ci�t)
)

]

+ �W
r
∑

i=1

βi h
(

qd(tk + ci�t), p(tk + ci�t)
)

, (3.5)

where �W = W (tk+1) − W (tk) is the increment of the Wiener process over the con-
sidered time interval and is a Gaussian random variable with zero mean and variance
�t . The way of approximating the Stratonovich integral above was inspired by the
ideas presented in [8,12,36,43,44]. Note that since we only used �W = ∫ tk+1

tk
dW (t)

in the above approximation, we can in general expect mean-square convergence of
order 1.0 only. To obtainmean-square convergence of higher order wewould also need
to include higher-order multiple Stratonovich integrals, e.g., to achieve convergence
of order 1.5 we would need to include terms involving �Z = ∫ tk+1

tk

∫ t
tk

dW (ξ) dt (see
[12,43,44]). We can now approximate the generating function S(qk, pk+1) with the
discrete Hamiltonian function H+

d (qk, pk+1) defined as

H+
d (qk, pk+1) = ext

q1,...,qs∈Q
P1,...,Pr ∈Q∗

q0=qk

{

pk+1qs − �t
r
∑

i=1

αi

[

Pi q̇d(tk + ci�t)

− H
(

qd(tk + ci�t), Pi
)

]

+ �W
r
∑

i=1

βi h
(

qd(tk + ci�t), Pi
)

}

, (3.6)

where we denoted Pi ≡ p(tk + ci�t). The numerical scheme (qk, pk) −→
(qk+1, pk+1) is now implicitly generated by H+

d (qk, pk+1) as in (2.13):

qk+1 = D2H+
d (qk, pk+1), pk = D1H+

d (qk, pk+1). (3.7)

Equations (3.6) and (3.7) can be written together as the following system:

− pk =
r
∑

i=1

αi

[

Pi l̇0,s(ci ) − �t
∂ H

∂q

(

tk + ci�t
)

l0,s(ci )

]

− �W
r
∑

i=1

βi
∂h

∂q

(

tk + ci�t
)

l0,s(ci ), (3.8a)

0 =
r
∑

i=1

αi

[

Pi l̇μ,s(ci ) − �t
∂ H

∂q

(

tk + ci�t
)

lμ,s(ci )

]

− �W
r
∑

i=1

βi
∂h

∂q

(

tk + ci�t
)

lμ,s(ci ), (3.8b)
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1022 D. D. Holm, T. M. Tyranowski

pk+1 =
r
∑

i=1

αi

[

Pi l̇s,s(ci ) − �t
∂ H

∂q

(

tk + ci�t
)

ls,s(ci )

]

− �W
r
∑

i=1

βi
∂h

∂q

(

tk + ci�t
)

ls,s(ci ), (3.8c)

αi q̇d(tk + ci�t) = αi
∂ H

∂ p

(

tk + ci�t
)+ βi

�W

�t

∂h

∂ p

(

tk + ci�t
)

, (3.8d)

qk+1 = qs, (3.8e)

where μ = 1, . . . , s − 1 in (3.8b), i = 1, . . . , r in (3.8d), and for brevity we have
introduced the notation

H(tk + ci�t) ≡ H(qd(tk + ci�t), p(tk + ci�t)) (similarly for h).

Equation (3.8a) corresponds to the second equation in (3.7), Eqs. (3.8b), (3.8c) and
(3.8d) correspond to extremizing (3.6) with respect to q1, . . . , qs , and P1, . . . , Pr ,
respectively, and finally (3.8e) is the first equation in (3.7). Knowing (qk, pk), the
system (3.8) allows us to solve for (qk+1, pk+1): we first simultaneously solve (3.8a),
(3.8b) and (3.8d) [(s + r)N equations] for q1, . . . , qs and P1, . . . , Pr [(s + r)N
unknowns]; then qk+1 = qs and (3.8c) is an explicit update rule for pk+1. When
h ≡ 0, then (3.8) reduces to the deterministic Galerkin variational integrator discussed
in [48]. Note that depending on the choice of the Hamiltonians and quadrature rules,
the system (3.8) may be explicit, but in the general case it is implicit (see Sect. 3.4).
One can use the Implicit Function Theorem to show that for sufficiently small �t
and |�W | it will have a solution. However, since the increments �W are unbounded,
for some values of �W solutions might not exist. To avoid problems with numerical
implementations, if necessary, one can replace�W in (3.8) with the truncated random
variable �W defined as

�W =

⎧

⎪

⎨

⎪

⎩

A, if �W > A,

�W , if |�W | ≤ A,

− A, if �W < − A,

(3.9)

where A > 0 is suitably chosen for the considered problem. See [14,44] for more
details regarding schemes with truncated random increments and their convergence.
Alternatively, one could employ the techniques presented in, e.g., [51,52,67], where
the unbounded increments �W have been replaced with discrete random variables.

Although the scheme (3.8) formally appears to be a straightforward generalization
of its deterministic counterpart, it should be emphasized that the main difference
lies in the fact that the increments �W are random variables such that E(�W 2) =
�t , which makes the convergence analysis significantly more challenging than in
the deterministic case. The main difficulty is in the choice of the parameters s, r ,
αi , βi , ci , so that the resulting numerical scheme converges in some sense to the
solutions of (1.1). The number of parameters and order conditions grows rapidly,
when terms approximating multiple Stratonovich integrals are added (see Sect. 3.6
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Stochastic discrete Hamiltonian variational integrators 1023

and [10–12,14]). In Sects. 3.2 and 3.3 we study the geometric properties of the family
of schemes described by (3.8), whereas in Sects. 3.4 and 3.5 we provide concrete
choices of the coefficients that lead to convergent methods.

3.2 Properties of stochastic Galerkin variational integrators

The key features of variational integrators are their symplecticity and exact preserva-
tion of the discrete counterparts of conserved quantities (momentum maps) related to
the symmetries of the Lagrangian or Hamiltonian (see [40]). These properties carry
over to the stochastic case, as was first demonstrated in [8] for Lagrangian systems.
In what follows, we will show that the stochastic Galerkin Hamiltonian variational
integrators constructed in Sect. 3.1 also possess these properties.

Theorem 3.1 (Symplecticity of the discrete flow) Let F+
tk+1,tk : Ω × T ∗Q −→ T ∗Q

be the dicrete stochastic flow implicitly defined by the discrete Hamiltonian H+
d as in

(3.7). Then F+
tk+1,tk is almost surely symplectic, that is,

(F+
tk+1,tk )

∗ΩT ∗ Q = ΩT ∗ Q, (3.10)

where ΩT ∗ Q = ∑N
i=1 dqi ∧ dpi is the canonical symplectic form on T ∗Q.

Proof The proof follows immediately by observing that (see [33])

0=dd H+(qk, pk+1)=
N
∑

i=1

dqi
k+1∧dpi

k+1−
N
∑

i=1

dqi
k∧dpi

k =(F+
tk+1,tk )

∗ΩT ∗ Q−ΩT ∗ Q,

(3.11)
where d in the above formula denotes the differential operator with respect to the
variables q and p and is understood in the mean-square sense. The result holds almost
surely, because Eq. (3.7) holds almost surely. �

The discrete counterpart of stochastic Noether’s theorem readily generalizes from
the corresponding theorem in the deterministic case.

Theorem 3.2 (Discrete stochastic Noether’s theorem) Let ΦT ∗ Q be the cotangent lift
action of the action Φ of the Lie group G on the configuration space Q. If the gen-
eralized discrete stochastic Lagrangian Rd(qk, pk+1) = pk+1qk+1 − H+

d (qk, pk+1),
where qk+1 = D2H+

d (qk, pk+1), is invariant under the action of G, that is,

Rd
(

Φg(qk), πQ∗ ◦ ΦT ∗ Q
g (qk+1, pk+1)

) = Rd(qk, pk+1), for all g ∈ G, (3.12)

where πQ∗ : Q × Q∗ −→ Q∗ is the projection onto Q∗, then the cotangent
lift momentum map J associated with ΦT ∗ Q is almost surely preserved, i.e., a.s.
J (qk+1, pk+1) = J (qk, pk).

Proof See the proof of Theorem 4 in [33]. In our case the result holds almost surely,
because Eq. (3.7) holds almost surely. �
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1024 D. D. Holm, T. M. Tyranowski

For applications, it is useful to know under what conditions the discrete Hamiltonian
(3.6) inherits the symmetry properties of the Hamiltonians H and h. Not unexpectedly,
this depends on the behavior of the interpolating polynomial (3.3) under the group
action. We say that the polynomial qd(t; qμ) is equivariant with respect to G if for all
g ∈ G we have

ΦT Q
g

(

qd(t; qμ), q̇d(t; qμ)
)

=
(

qd
(

t;Φg(q
μ)
)

, q̇d
(

t;Φg(q
μ)
)

)

. (3.13)

Theorem 3.3 Suppose that the Hamiltonians H : T ∗Q −→ R and h : T ∗Q −→ R

are invariant with respect to the cotangent lift action ΦT ∗ Q : G × T ∗Q −→ T ∗Q of
the Lie group G, that is,

H ◦ ΦT ∗ Q
g = H , h ◦ ΦT ∗ Q

g = h, (3.14)

for all g ∈ G, and suppose the interpolating polynomial qd(t; qμ) is equivariant with
respect to G. Then the generalized discrete stochastic Lagrangian Rd(qk, pk+1) =
pk+1qk+1 − H+

d (qk, pk+1) corresponding to the discrete Hamiltonian (3.6), where
qk+1 = D2H+

d (qk, pk+1), is invariant with respect to the action of G.

Proof The proof is similar to the proofs of Lemma 3 in [33] and Theorem 3 in [48].
Let us, however, carefully examine the actions of G on Q, T Q, and T ∗Q. Let qk ∈ Q
and pk+1 ∈ Q∗, and let qk+1 = D2H+

d (qk, pk+1). First, note that for the stochastic
discrete Hamiltonian (3.6), we have

R(qk , pk+1) = ext
q1,...,qs∈Q
P1,...,Pr ∈Q∗

q0=qk

{

�t
r
∑

i=1

αi

[

Pi q̇d(tk + ci�t; qμ) − H
(

qd (tk + ci�t; qμ), Pi
)

]

−�W
r
∑

i=1

βi h
(

qd(tk + ci�t; qμ), Pi
)

}

, (3.15)

where we used (3.8e). Consider q̃k = Φg(qk) and (q̃k+1, p̃k+1) = Φ
T ∗ Q
g (qk+1, pk+1)

for g ∈ G, and calculate (3.15) for the transformed values q̃k and p̃k+1:

R(q̃k , p̃k+1) = ext
q̃1,...,q̃s∈Q
P̃1,...,P̃r ∈Q∗

q̃0=q̃k

{

�t
r
∑

i=1

αi

[

P̃i q̇d(tk + ci�t; q̃μ) − H
(

qd (tk + ci�t; q̃μ), P̃i
)

]

−�W
r
∑

i=1

βi h
(

qd(tk + ci�t; q̃μ), P̃i
)

}

. (3.16)

Let us perform a change of variables with respect to which we extremize. First, define
qμ = Φg−1(q̃μ), so that q̃μ = Φg(qμ) for μ = 0, . . . , s. From (3.13) we have
qd(tk + ci�t; q̃μ) = Φg(qd(tk + ci�t; qμ)), which we use to define Pi by

(

qd(tk +
ci�t; q̃μ), P̃i

) = Φ
T ∗Q
g

(

qd(tk +ci�t; qμ), Pi
)

for i = 1, . . . , r . SinceΦg andΦ
T ∗Q
g
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are bijective, extremization with respect to qμ and Pi is equivalent to extremization
with respect to q̃μ and P̃i , and q̃0 = q̃k implies q0 = qk . Moreover, from (3.13) and
(2.22) we have that P̃i q̇d(tk +ci�t; q̃μ) = Pi q̇d(tk +ci�t; qμ). Finally, the invariance
of the Hamiltonians implies

R(q̃k , p̃k+1) = ext
q1,...,qs∈Q
P1,...,Pr ∈Q∗

q0=qk

{

�t
r
∑

i=1

αi

[

Pi q̇d(tk + ci�t; qμ) − H
(

qd (tk + ci�t; qμ), Pi
)

]

−�W
r
∑

i=1

βi h
(

qd(tk + ci�t; qμ), Pi
)

}

= R(qk , pk+1), (3.17)

which completes the proof. �
Remark One can easily verify that the interpolating polynomial (3.3) is in particular
equivariant with respect to linear actions (translations, rotations, etc.), therefore the
stochastic Galerkin variational integrator (3.8) preserves quadratic momentum maps
(such as linear and angular momentum) related to linear symmetries of the Hamilto-
nians H and h.

3.3 Stochastic symplectic partitioned Runge–Kutta methods

A general class of stochastic Runge–Kutta methods for Stratonovich ordinary differ-
ential equations was introduced and analyzed in [10–12]. These ideas were later used
by Ma et al. [35] and Ma and Ding [36] to construct symplectic Runge–Kutta meth-
ods for stochastic Hamiltonian systems. An s-stage stochastic symplectic partitioned
Runge–Kutta method for (1.1) is defined in [36] by the following system:

Qi = qk + �t
s
∑

j=1

ai j
∂ H

∂ p
(Q j , Pj ) + �W

s
∑

j=1

bi j
∂h

∂ p
(Q j , Pj ), i = 1, . . . , s,

(3.18a)

Pi = pk − �t
s
∑

j=1

āi j
∂ H

∂q
(Q j , Pj ) − �W

s
∑

j=1

b̄i j
∂h

∂q
(Q j , Pj ), i = 1, . . . , s,

(3.18b)

qk+1 = qk + �t
s
∑

i=1

αi
∂ H

∂ p
(Qi , Pi ) + �W

s
∑

i=1

βi
∂h

∂ p
(Qi , Pi ), (3.18c)

pk+1 = pk − �t
s
∑

i=1

αi
∂ H

∂q
(Qi , Pi ) − �W

s
∑

i=1

βi
∂h

∂q
(Qi , Pi ), (3.18d)

where Qi and Pi for i = 1, . . . , s are the position and momentum internal stages,
respectively, and the coefficients of the method ai j , āi j , bi j , b̄i j , αi , βi satisfy the
symplectic conditions
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1026 D. D. Holm, T. M. Tyranowski

αi āi j + α j a ji = αiα j , (3.19a)

βi āi j + α j b ji = βiα j , (3.19b)

αi b̄i j + β j a ji = αiβ j , (3.19c)

βi b̄i j + β j b ji = βiβ j , (3.19d)

for i, j = 1, . . . , s. We now prove that in the special case when r = s, the stochastic
Galerkin variational integrator (3.8) is equivalent to the stochastic symplectic parti-
tioned Runge–Kutta method (3.18).

Theorem 3.4 Let r = s and let l̄i,s−1(τ ) for i = 1, . . . , s denote the Lagrange poly-
nomials of degree s −1 associated with the quadrature points 0 ≤ c1 < · · · < cs ≤ 1.
Moreover, let the weights αi be given by

αi =
∫ 1

0
l̄i,s−1(τ ) dτ, (3.20)

and assume αi �= 0 for i = 1, . . . , s. Then the stochastic Galerkin Hamiltonian
variational integrator (3.8) is equivalent to the stochastic partitioned Runge–Kutta
method (3.18) with the coefficients

ai j =
∫ ci

0
l̄ j,s−1(τ ) dτ, (3.21a)

āi j = α j (αi − a ji )

αi
, (3.21b)

bi j = β j ai j

α j
, (3.21c)

b̄i j = β j (αi − a ji )

αi
, (3.21d)

for i, j = 1, . . . , s.

Proof The proof follows themain steps of the proof of Theorem 2.6.2 in [40]. The time
derivative q̇d is a polynomial of degree s − 1. Therefore, it can be uniquely expressed
in terms of the Lagrange polynomials l̄ j,s−1(τ ) as

q̇d(tk + τ�t) =
s
∑

j=1

q̇d(tk + c j�t)l̄ j,s−1(τ ). (3.22)

Upon integrating with respect to time, we find

qd(tk + τ�t) = qk + �t
s
∑

j=1

q̇d(tk + c j�t)
∫ τ

0
l̄ j,s−1(ξ) dξ, (3.23)
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where we have used q0 = qk . For τ = 1 this gives

qk+1 = qk + �t
s
∑

j=1

α j q̇d(tk + c j�t), (3.24)

where we have used qs = qk+1 and (3.20). Define the internal stages Q j ≡ qd(tk +
c j�t). Then, upon using (3.8d), Eq. (3.24) becomes (3.18c). For τ = ci Eq. (3.23)
gives

Qi = qk + �t
s
∑

j=1

ai j q̇d(tk + c j�t), (3.25)

where ai j is defined by (3.21a). Upon substituting (3.8d), Eq. (3.25) becomes (3.18a),
where bi j is defined by (3.21c). Next, sum Eqs. (3.8a), (3.8b), and (3.8c). Noting that
∑s

μ=0 lμ,s(τ ) = 1, this gives Eq. (3.18d). Finally, we note that for each i = 1, . . . , s
we have a unique decomposition

∫ τ

0
l̄i,s−1(ξ) dξ − αi =

s
∑

μ=0

miμlμ,s(τ ), (3.26)

since the left-hand side is a polynomial of degree s, and therefore it can be uniquely
expressed as a linear combination of the Lagrange polynomials lμ,s(τ ) with the coef-
ficients miμ. Evaluating this identity at τ = d0 = 0, τ = ds = 1, and differentiating
it with respect to τ yield the following three equations, respectively,

−αi =
s
∑

μ=0

miμlμ,s(0) = mi0,

0 =
s
∑

μ=0

miμlμ,s(1) = mis,

l̄i,s−1(τ ) =
s
∑

μ=0

miμl̇μ,s(τ ). (3.27)

We forma linear combinationofEqs. (3.8a), (3.8b) and (3.8c)with the coefficientsm j0,
m jμ, and m js , respectively. By using the identities (3.27) and rearranging the terms,
we obtain (3.18d), where āi j and b̄i j are defined by (3.21b) and (3.21d), respectively.
One can easily verify that the coefficients (3.21) satisfy the conditions (3.19). �

3.4 Examples

In the construction of the integrator (3.8) we may choose the degree s of the approx-
imating polynomials and the quadrature rules (αi , ci )

r
i=1 and (βi , ci )

r
i=1. In the

deterministic case, the higher the degree of the polynomials and the higher the order of
the quadrature rule, then the higher the order of convergence of the resulting integrator
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1028 D. D. Holm, T. M. Tyranowski

(see [48]). In our case, however, as explained in Sect. 3.1, we cannot in general achieve
mean-square order of convergence higher than 1.0, because we only used�W in (3.5).
Since the system (3.8) requires solving (s + r)N equations for (s + r)N variables,
from the computational point of view it makes sense to only consider methods with
low values of s and r . In this work we focus on the following classical numerical
integration formulas (see [18–20]):

– Gauss–Legendre quadratures (Gau): midpoint rule (r = 1), etc.
– Lobatto quadratures (Lob): trapezoidal rule (r = 2), Simpson’s rule (r = 3), etc.
– Open trapezoidal rule (Otr; r = 2)
– Milne’s rule (Mil; r = 3)
– Rectangle rule (Rec; r = 1)—only in the case when h = h(q).

In [48] notation Ps Nr Qu was proposed to denote a Galerkin variational integrator
based on polynomials of degree s and a quadrature rule of order u with r quadrature
points. We adopt a similar notation, keeping in mind that u denotes the classical order
of the used quadrature rule—when the rule is applied to a stochastic integral, as in
(3.5), its classical order is not attained in general. We also use a three-letter code to
identify which integration formula is used. For example, P2N2Q4Gau denotes the
integrator defined by (3.8) using polynomials of degree 2 and the Gauss–Legendre
quadrature formula of classical order 4 with 2 quadrature points for both the Lebesgue
and Stratonovich integrals in (3.5). If two different quadrature rules are used, we
first write the rule applied to the Lebesgue integral, followed by the rule applied to the
Stratonovich integral, e.g., P1N1Q2GauN2Q2Lob. Belowwegive several examples
of integrators obtained by using polynomials of degree s = 1, 2 and the quadrature
rules listed above.

3.4.1 General Hamiltonian function h(q, p)

For a general Hamiltonian h = h(q, p), Eq. (3.8d), which represents the discretization
of the Legendre transform, needs to contain both ∂ H/∂ p and ∂h/∂ p terms to correctly
approximate the continuous system. Therefore, we only consider methods with αi =
βi �= 0 for all i = 1, . . . , r . A few examples of interest are listed below.

1. P1N1Q2Gau (Stochastic midpoint method)
Using the midpoint rule (r = 1, c1 = 1/2, α1 = β1 = 1) together with
polynomials of degree s = 1 gives a stochastic Runge–Kutta method (3.18)
with a11 = ā11 = b11 = b̄11 = 1/2. Noting that Q1 = (qk + qk+1)/2 and
P1 = (pk + pk+1)/2, this method can be written as

qk+1 = qk + ∂ H

∂ p

(

qk + qk+1

2
,

pk + pk+1

2

)

�t + ∂h

∂ p

(

qk + qk+1

2
,

pk + pk+1

2

)

�W ,

pk+1 = pk − ∂ H

∂q

(

qk + qk+1

2
,

pk + pk+1

2

)

�t − ∂h

∂q

(

qk + qk+1

2
,

pk + pk+1

2

)

�W .

(3.28)
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The stochastic midpoint methodwas considered in [36,44]. It is an implicit method
and in general one has to solve 2N equations for 2N unknowns. However, if the
Hamiltonians are separable, that is, H(q, p) = T0(p) + U0(q) and h(q, p) =
T1(p) + U1(q), then pk+1 from the second equation can be substituted into the
first one. In that case only N nonlinear equations have to be solved for qk+1.

2. P2N2Q2Lob (Stochastic Störmer–Verlet method)
If the trapezoidal rule (r = 2, c1 = 0, c2 = 1, α1 = β1 = 1/2, α2 = β2 = 1/2)
is used with polynomials of degree s = 2, we obtain another partitioned Runge–
Kutta method (3.18) with a11 = a12 = 0, a21 = a22 = 1/2, ā11 = ā21 = 1/2,
ā12 = ā22 = 0, (bi j ) = (ai j ), (b̄i j ) = (āi j ). Noting that Q1 = qk , Q2 = qk+1,
and P1 = P2, this method can be more efficiently written as

P1 = pk − 1

2

∂ H

∂q

(

qk, P1
)

�t − 1

2

∂h

∂q

(

qk, P1
)

�W ,

qk+1 = qk + 1

2

∂ H

∂ p

(

qk, P1
)

�t + 1

2

∂ H

∂ p

(

qk+1, P1
)

�t

+ 1

2

∂h

∂ p

(

qk, P1
)

�W + 1

2

∂h

∂ p

(

qk+1, P1
)

�W ,

pk+1 = P1 − 1

2

∂ H

∂q

(

qk+1, P1
)

�t − 1

2

∂h

∂q

(

qk+1, P1
)

�W . (3.29)

This method is a stochastic generalization of the Störmer–Verlet method (see [18])
and was considered in [36]. It is particularly efficient, because the first equation
can be solved separately from the second one, and the last equation is an explicit
update. Moreover, if the Hamiltonians are separable, this method becomes fully
explicit.

3. P1N2Q2Lob (Stochastic trapezoidal method)
This integrator is based on polynomials of degree s = 1with control points d0 = 0,
d1 = 1, and the trapezoidal rule. Equations (3.8) take the form

pk = 1

2
(P1 + P2) + 1

2

∂ H

∂q

(

qk, P1
)

�t + 1

2

∂h

∂q

(

qk, P1
)

�W ,

pk+1 = 1

2
(P1 + P2) − 1

2

∂ H

∂q

(

qk+1, P2
)

�t − 1

2

∂h

∂q

(

qk+1, P2
)

�W ,

qk+1 = qk + ∂ H

∂ p

(

qk, P1
)

�t + ∂h

∂ p

(

qk, P1
)

�W ,

qk+1 = qk + ∂ H

∂ p

(

qk+1, P2
)

�t + ∂h

∂ p

(

qk+1, P2
)

�W . (3.30)

This integrator is a stochastic generalization of the trapezoidal method for deter-
ministic systems (see [40]). One may easily verify that if the Hamiltonians are
separable, that is, H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q), then
P1 = P2 and (3.30) is equivalent to the Störmer–Verlet method (3.29) and is fully
explicit.
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1030 D. D. Holm, T. M. Tyranowski

4. P1N3Q4Lob
If we use Simpson’s rule (r = 3, c1 = 0, c2 = 1/2, c3 = 1, α1 = 1/6, α2 = 2/3,
α3 = 1/6, βi = αi ), the resulting integrator (3.8) requires solving simultaneously
4N nonlinear equations, so it is computationally expensive in general. However,
if the Hamiltonians H and h are separable, then (3.8d) implies P1 = P2 = P3,
and the integrator can be rewritten as

qk+1 = qk + ∂T0
∂ p

(

P1
)

�t + ∂T1
∂ p

(

P1
)

�W ,

pk+1 = P1 − 1

3

∂U0

∂q

(

qk + qk+1

2

)

�t − 1

6

∂U0

∂q

(

qk+1
)

�t

− 1

3

∂U1

∂q

(

qk + qk+1

2

)

�W − 1

6

∂U1

∂q

(

qk+1
)

�W , (3.31)

where

P1 = pk − 1

6

∂U0

∂q

(

qk
)

�t − 1

3

∂U0

∂q

(

qk + qk+1

2

)

�t

− 1

6

∂U1

∂q

(

qk
)

�W − 1

3

∂U1

∂q

(

qk + qk+1

2

)

�W , (3.32)

and H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q). In this case only
the first equation needs to be solved for qk+1, and then the second equation is an
explicit update.

5. P1N2Q2Otr
Like the method (3.30), this integrator is based on polynomials of degree s = 1
with control points d0 = 0, d1 = 1, but uses the open trapezoidal rule (r = 2,
c1 = 1/3, c2 = 2/3, α1 = 1/2, α2 = 1/2, βi = αi ). Equations (3.8) take the form

pk = 1

2
(P1 + P2) + 1

3

∂ H

∂q

(

qk+1 + 2qk

3
, P1

)

�t + 1

6

∂ H

∂q

(

2qk+1 + qk

3
, P2

)

�t

+ 1

3

∂h

∂q

(

qk+1 + 2qk

3
, P1

)

�W + 1

6

∂h

∂q

(

2qk+1 + qk

3
, P2

)

�W ,

pk+1 = 1

2
(P1 + P2) − 1

6

∂ H

∂q

(

qk+1 + 2qk

3
, P1

)

�t − 1

3

∂ H

∂q

(

2qk+1 + qk

3
, P2

)

�t

− 1

6

∂h

∂q

(

qk+1 + 2qk

3
, P1

)

�W − 1

3

∂h

∂q

(

2qk+1 + qk

3
, P2

)

�W ,

qk+1 = qk + ∂ H

∂ p

(

qk+1 + 2qk

3
, P1

)

�t + ∂h

∂ p

(

qk+1 + 2qk

3
, P1

)

�W ,

qk+1 = qk + ∂ H

∂ p

(

2qk+1 + qk

3
, P2

)

�t + ∂h

∂ p

(

2qk+1 + qk

3
, P2

)

�W . (3.33)
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In general one has to solve the first, third, and fourth equation simultaneously (3N
equations for 3N variables). In case of separable Hamiltonians we have P1 = P2
and one only needs to solve N nonlinear equations: P1 can be explicitly calculated
from the first equation and substituted into the third one, and the resulting nonlinear
equation then has to be solved for qk+1.

6. P2N2Q2Otr
If the open trapezoidal rule is used with polynomials of degree s = 2, we obtain
yet another partitioned Runge–Kutta method (3.18) with a11 = ā22 = 1/2, a12 =
ā12 = −1/6, a21 = ā21 = 2/3, a22 = ā11 = 0, (bi j ) = (ai j ), (b̄i j ) = (āi j ).
Inspecting Eq. (3.18) we see that, for example, Q2 is explicitly given in terms of
Q1 and P1, therefore one only needs to solve 3N equations for the 3N variables
Q1, P1, P2, and the remaining equations are explicit updates. This method further
simplifies for separable Hamiltonians H and h: Q1 and Q2 are now explicitly
given in terms of P1 and P2, and the nonlinear equation for P1 can be solved
separately from the nonlinear equation for P2.

7. P1N3Q4Mil
A method similar to (3.31) is obtained if we use Milne’s rule (r = 3, c1 = 1/4,
c2 = 1/2, c3 = 3/4, α1 = 2/3, α2 = −1/3, α3 = 2/3, βi = αi ) instead
of Simpson’s rule. The resulting integrator is also computationally expensive in
general, but if the Hamiltonians H and h are separable, then (3.8d) implies P1 =
P2 = P3, and the integrator can be rewritten as

qk+1 = qk + ∂T0
∂ p

(

P1
)

�t + ∂T1
∂ p

(

P1
)

�W ,

pk+1 = pk − 2

3

∂U0

∂q

(

3qk + qk+1

4

)

�t + 1

3

∂U0

∂q

(

qk + qk+1

2

)

�t

− 2

3

∂U0

∂q

(

qk + 3qk+1

4

)

�t − 2

3

∂U1

∂q

(

3qk + qk+1

4

)

�W

+ 1

3

∂U1

∂q

(

qk + qk+1

2

)

�W − 2

3

∂U1

∂q

(

qk + 3qk+1

4

)

�W , (3.34)

where

P1 = pk − 1

2

∂U0

∂q

(

3qk + qk+1

4

)

�t + 1

6

∂U0

∂q

(

qk + qk+1

2

)

�t

− 1

6

∂U0

∂q

(

qk + 3qk+1

4

)

�t − 1

2

∂U1

∂q

(

3qk + qk+1

4

)

�W

+ 1

6

∂U1

∂q

(

qk + qk+1

2

)

�W − 1

6

∂U1

∂q

(

qk + 3qk+1

4

)

�W , (3.35)

and H(q, p) = T0(p) + U0(q) and h(q, p) = T1(p) + U1(q). In this case only
the first equation needs to be solved for qk+1, and then the second equation is an
explicit update.
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3.4.2 Hamiltonian function h(q) independent of momentum

In case the Hamiltonian function h = h(q) is independent of the momentum variable
p, the term ∂h/∂ p does not enter Eq. (3.8d), and therefore we can allow a choice of
quadrature rules such that αi = 0 or βi = 0 for some i . If αi = 0, however, the system
(3.8) becomes underdetermined, but at the same time the corresponding Pi does not
enter any of the remaining equations, therefore we can simply ignore it. To simplify
the notation, let i1 < · · · < ir̄ be the set of indices such that αim �= 0, and denote
ᾱm ≡ αim , c̄m ≡ cim for m = 1, . . . , r̄ . Similarly, let j1 < · · · < jr̃ be the set of
indices such that β jm �= 0, and denote β̃m ≡ βim , c̃m ≡ c jm for m = 1, . . . , r̃ . In (3.8)
leave out the terms and equations corresponding to αi = 0 or βi = 0, and replace αi ,
βi , ci and r by ᾱi , β̃i , c̄i , c̃i , r̄ and r̃ , accordingly. In other words, this is equivalent to
using the quadrature rules (ᾱi , c̄i )

r̄
i=1 and (β̃i , c̃i )

r̃
i=1 in (3.6). We then simultaneously

solve (3.8a), (3.8b) and (3.8d) [(s + r̄)N equations] for q1, . . . , qs and P1, . . . , Pr̄

[(s + r̄)N unknowns]. A few examples of such integrators are listed below.

1. P1N1Q1Rec (Stochastic symplectic Euler method)
The rectangle rule (r̄ = 1, c̄1 = 1, ᾱ1 = 1) does not yield a convergent numerical
scheme in the general case, but when h = h(q), the Itô and Stratonovich inter-
pretations of (1.1) are equivalent, and the rectangle rule can be used to construct
efficient integrators. In fact, applying the rectangle rule to both the Lebesgue and
Stratonovich integrals and using polynomials of degree s = 1 yield a method
which can be written as

qk+1 = qk + ∂ H

∂ p

(

qk+1, pk
)

�t,

pk+1 = pk − ∂ H

∂q

(

qk+1, pk
)

�t − ∂h

∂q

(

qk+1
)

�W . (3.36)

This method is a straightforward generalization of the symplectic Euler scheme
(see [18,40]) and is particularly computationally efficient, as only the first equation
needs to be solved for qk+1, and then the second equation is an explicit update.
Moreover, in case the Hamiltonian H is separable, the method becomes explicit.

2. P1N1Q1RecN2Q2Lob
The accuracy of the stochastic symplectic Euler scheme above can be improved by
applying the trapezoidal rule to the Stratonovich integral instead of the rectangle
rule. The resulting integrator takes the form

qk+1 = qk + ∂ H

∂ p

(

qk+1, P1
)

�t,

pk+1 = pk − ∂ H

∂q

(

qk+1, P1
)

�t − 1

2

∂h

∂q

(

qk
)

�W − 1

2

∂h

∂q

(

qk+1
)

�W , (3.37)

where

P1 = pk − 1

2

∂h

∂q

(

qk
)

�W . (3.38)
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While having a similar computational cost, this method yields a more accurate
solution than (3.36) (see Sect. 4 for numerical tests). Moreover, in case the Hamil-
tonian H is separable, the method becomes explicit.

3. P1N1Q1RecN1Q2Gau
Similarly, if we apply the midpoint rule instead of the trapezoidal rule, we obtain
the following modification of the stochastic symplectic Euler method:

qk+1 = qk + ∂ H

∂ p

(

qk+1, P1
)

�t,

pk+1 = pk − ∂ H

∂q

(

qk+1, P1
)

�t − ∂h

∂q

(

qk + qk+1

2

)

�W , (3.39)

where

P1 = pk − 1

2

∂h

∂q

(

qk + qk+1

2

)

�W . (3.40)

This method demonstrates a similar performance as (3.37) (see Sect. 4 for numer-
ical tests). It becomes explicit if the Hamiltonian H is separable and the noise is
additive, i.e., ∂h/∂q = const.

4. P2N2Q2LobN1Q1Rec
A modification of the stochastic Störmer–Verlet method (3.29) is obtained if we
use the rectangle rule to approximate the Stratonovich integral:

P1 = pk − 1

2

∂ H

∂q

(

qk, P1
)

�t,

qk+1 = qk + 1

2

∂ H

∂ p

(

qk, P1
)

�t + 1

2

∂ H

∂ p

(

qk+1, P1
)

�t,

pk+1 = P1 − 1

2

∂ H

∂q

(

qk+1, P1
)

�t − ∂h

∂q

(

qk+1
)

�W . (3.41)

This integrator has a similar computational cost as the stochastic Störmer–Verlet
method (see Sect. 4), but it yields a slightly less accurate solution (see Sect. 4).
Moreover, in case the Hamiltonian H is separable, the method becomes explicit.

5. P1N1Q2GauN2Q2Lob
This integrator is a modification of the stochastic midpoint method (3.28). We
apply the midpoint rule (r̄ = 1, c̄1 = 1/2, ᾱ1 = 1) to the Lebesgue integral in
(3.4), and the trapezoidal rule (r̃ = 2, c̃1 = 0, c̃2 = 1, β̃1 = 1/2, β̃2 = 1/2) to the
Stratonovich integral. The resulting numerical scheme can be written as

qk+1 = qk + ∂ H

∂ p

(

qk + qk+1

2
, P1

)

�t,

pk+1 = pk − ∂ H

∂q

(

qk + qk+1

2
, P1

)

�t − 1

2

∂h

∂q

(

qk
)

�W − 1

2

∂h

∂q

(

qk+1
)

�W ,

(3.42)
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where

P1 = pk + pk+1

2
+ 1

4
�W

[

∂h

∂q

(

qk+1
)− ∂h

∂q

(

qk
)

]

. (3.43)

Thismethod is fully implicit, but similar to (3.28), simplifieswhen theHamiltonian
H is separable.

6. P1N2Q2LobN1Q2Gau
If instead we apply the trapezoidal rule to the Lebesgue integral and the midpoint
rule to the Stratonovich integral in (3.4), we obtain a modification of the stochastic
trapezoidal rule (3.30):

pk = 1

2
(P1 + P2) + 1

2

∂ H

∂q

(

qk, P1
)

�t + 1

2

∂h

∂q

(

qk + qk+1

2

)

�W ,

pk+1 = 1

2
(P1 + P2) − 1

2

∂ H

∂q

(

qk+1, P2
)

�t − 1

2

∂h

∂q

(

qk + qk+1

2

)

�W ,

qk+1 = qk + ∂ H

∂ p

(

qk, P1
)

�t,

qk+1 = qk + ∂ H

∂ p

(

qk+1, P2
)

�t . (3.44)

This method becomes explicit when the Hamiltonian H is separable and the noise
is additive, i.e., ∂h/∂q = const.

3.5 Convergence

Various criteria for convergence of stochastic schemes have been suggested in the
literature (see [28,42]). Some criteria concentrate on pathwise approximations of the
exact solutions (mean-square convergence, strong convergence), while others focus on
approximations of some functionals instead (weak convergence).We are here primarily
interested inmean-square convergence. Let z̄(t) = (q̄(t), p̄(t)) be the exact solution to
(1.1) with the initial conditions q0 and p0, and let zk = (qk, pk) denote the numerical
solution at time tk obtained by applying (3.8) iteratively k times with the constant time
step �t . The numerical solution is said to converge in the mean-square sense with
global order r if there exist δ > 0 and a constant C > 0 such that for all �t ∈ (0, δ)
we have

√

E(‖zK − z̄(T )‖2) ≤ C�tr , (3.45)

where T = K�t , as defined before, and E denotes the expected value. In principle, in
order to determine the mean-square order of convergence of the Galerkin variational
integrator (3.8) we need to calculate the power series expansions of qk+1 and pk+1
in terms of the powers of �t and �W , and compare them to the Stratonovich–Taylor
expansions for the exact solution q̄(tk + �t) and p̄(tk + �t) (see [12,28,42]). It is
quite a tedious task to do in the general case, therefore we only discuss the examples
presented in Sect. 3.4. For instance, in case of the stochastic trapezoidal method (3.30)
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weplug in series expansions for P1, P2,qk+1 and pk+1, and determine their coefficients
by expanding the derivatives of the Hamiltonians into Taylor series around (qk, pk)

and comparing the terms corresponding to the like powers of �t and �W . We find
that

qk+1 = qk + ∂ H

∂ p
�t + ∂h

∂ p
�W + 1

2

(

∂2h

∂ p∂q

∂h

∂ p
− ∂2h

∂ p2
∂h

∂q

)

�W 2 + · · · ,

pk+1 = pk − ∂ H

∂q
�t − ∂h

∂q
�W − 1

2

(

∂2h

∂q2

∂h

∂ p
− ∂2h

∂q∂ p

∂h

∂q

)

�W 2 + · · · , (3.46)

where the derivatives of the Hamiltonians are evaluated at (qk, pk). Let q̄(t; qk, pk)

and p̄(t; qk, pk) denote the exact solution of (1.1) such that q̄(tk; qk, pk) = qk and
p̄(tk; qk, pk) = pk . Using (1.1) we calculate the Stratonovich–Taylor expansions for
q̄(tk+1; qk, pk) and p̄(tk+1; qk, pk), and comparing them to (3.46) we find that

E
(

qk+1 − q̄(tk+1; qk , pk)
) = O(�t2),

√

E
(‖qk+1 − q̄(tk+1; qk , pk)‖2

) = O(�t
3
2 ),

E
(

pk+1 − p̄(tk+1; qk , pk)
) = O(�t2),

√

E
(‖pk+1 − p̄(tk+1; qk , pk)‖2

) = O(�t
3
2 ).

(3.47)

Using Theorem 1.1 from [42], we conclude that the stochastic trapezoidal method
(3.30) has mean-square order of convergence r = 1. In a similar fashion we prove
that all methods presented in Sect. 3.4 are convergent with mean-square order 1. We
further verify these results numerically in Sect. 4.1.

Remark For simplicity and clarity of the exposition, in this work we are mainly con-
cerned with a one-dimensional noise in (1.1). However, all of the constructions and
results presented in Sects. 2 and 3 generalize in a straightforward manner, when a mul-
tidimensional noise W 1, W 2, . . . , W M , together with the corresponding Hamiltonian
functions h1, h2, . . . , hM , is considered in (1.1), except that the integrators derived
in Sect. 3.4 in general do not attain mean-square order 1.0 of convergence, unless
the noise is commutative. Indeed, if we repeat the procedure described above for the
stochastic trapezoidal method, we will obtain the following power series expansions
in terms of the powers of �t and �W i :

qk+1 = qk + ∂ H

∂ p
�t +

M
∑

i=1

∂hi

∂ p
�W i + 1

2

M
∑

i=1

Γi i (�W i )2

+ 1

2

M
∑

i=1

M
∑

j=1
j �=i

Γi j�W i�W j + · · · ,

pk+1 = pk − ∂ H

∂q
�t −

M
∑

i=1

∂hi

∂q
�W i + 1

2

M
∑

i=1

Λi i (�W i )2

+ 1

2

M
∑

i=1

M
∑

j=1
j �=i

Λi j�W i�W j + · · · , (3.48)
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where the vectors Γi j and Λi j for each i, j = 1, . . . , M are defined as

Γi j = ∂2h j

∂ p∂q

∂hi

∂ p
− ∂2h j

∂ p2
∂hi

∂q
, Λi j = −∂2h j

∂q2

∂hi

∂ p
+ ∂2h j

∂q∂ p

∂hi

∂q
, (3.49)

and the derivatives of theHamiltonians are evaluated at (qk, pk). On the other hand, the
Stratonovich–Taylor expansions for q̄(tk+1; qk, pk) and p̄(tk+1; qk, pk) read, respec-
tively,

q̄(tk+1; qk, pk) = qk + ∂ H

∂ p
�t +

M
∑

i=1

∂hi

∂ p
�W i + 1

2

M
∑

i=1

Γi i (�W i )2

+
M
∑

i=1

M
∑

j=1
j �=i

Γi j Ji j + · · · ,

p̄(tk+1; qk, pk) = pk − ∂ H

∂q
�t −

M
∑

i=1

∂hi

∂q
�W i + 1

2

M
∑

i=1

Λi i (�W i )2

+
M
∑

i=1

M
∑

j=1
j �=i

Λi j Ji j + · · · , (3.50)

where Ji j = ∫ tk+1
tk

∫ t
tk

dW i (τ )◦dW j (t) denotes a double Stratonovich integral. Com-
paring (3.49) and (3.50), we find that in the general case not all first order terms agree,
and therefore we only have the local error estimates

E
(

qk+1 − q̄(tk+1; qk , pk)
) = O(�t

3
2 ),

√

E
(‖qk+1 − q̄(tk+1; qk , pk)‖2

) = O(�t),

E
(

pk+1 − p̄(tk+1; qk , pk)
) = O(�t

3
2 ),

√

E
(‖pk+1 − p̄(tk+1; qk , pk)‖2

) = O(�t).

(3.51)

Theorem 1.1 from [42] then implies that the stochastic trapezoidal method has mean-
square order 1/2. However, if the noise is commutative, that is, if the following
conditions are satisfied

Γi j = Γ j i , Λi j = Λ j i , for all i, j = 1, . . . , M, (3.52)

then using the property Ji j + J ji = �W i�W j (see [28,42]), one can easily show

M
∑

i=1

M
∑

j=1
j �=i

Γi j Ji j = 1

2

M
∑

i=1

M
∑

j=1
j �=i

Γi j�W i�W j ,

M
∑

i=1

M
∑

j=1
j �=i

Λi j Ji j = 1

2

M
∑

i=1

M
∑

j=1
j �=i

Λi j�W i�W j .

(3.53)
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In that case all first-order terms in the expansions (3.48) and (3.50) agree, and we
again have the local error estimates (3.47), meaning that the scheme has mean-square
order 1.0. Similar analysis holds for all the methods presented in Sect. 3.4. It should
be noted that the commutation conditions (3.52) hold for two important special cases:

– Hamiltonian functions hi linear in q and p for all i = 1, . . . , M , i.e. additive noise
– Hamiltonian functions hi simultaneously independent of one of the variables q or

p for all i = 1, . . . , M

The latter in particular means that the methods presented in Sect. 3.4.2 retain their
mean-square order of convergence for multidimensional noises.

3.6 Methods of order 3/2

In order to construct stochastic Galerkin variational integrators of higher order one
needs to include higher order terms in the discretization of the Stratonovich integral in
(3.5). For example, a method of mean-square order 3/2 must include terms involving
�Z = ∫ tk+1

tk

∫ t
tk

dW (ξ) dt (see [12,43,44]). Inspired by the theory presented in [12],
we can add extra terms to the discrete Hamiltonian (3.6) and write it as

H+
d (qk, pk+1)

= ext
q1,...,qs∈Q
P1,...,Pr ∈Q∗

q0=qk

{

pk+1qs − �t
r
∑

i=1

αi

[

Pi q̇d(tk + ci�t) − H
(

qd(tk + ci�t), Pi
)

]

+�W
r
∑

i=1

βi h
(

qd(tk + ci�t), Pi
)+ �Z

�t

r
∑

i=1

γi h
(

qd(tk + ci�t), Pi
)

}

.

(3.54)

The random variables �W and �Z have a Gaussian joint distribution (see [28,44]),
and at each time step they can be simulated by two independent N (0, 1)-distributed
random variables χ and η as

�W = χ
√

�t, �Z = 1

2
�t

3
2

(

χ + 1√
3
η

)

. (3.55)

In order to achieve mean-square convergence of order 3/2 one needs to determine
appropriate values for the parameters s, r , αi , βi , γi , and ci . However, we will not
attempt to achieve this in the present work. Instead, we will show that some known
stochastic symplectic integrators can be derived as stochastic Galerkin variational
integrators.

Suppose the Hamiltonian is separable, i.e., H(q, p) = T (p) + U (q), and the
Hamiltonian function h = h(q) does not depend on momentum. Consider the discrete
Hamiltonian
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H+
d (qk , pk+1) =

= ext
q1,...,qs∈Q
P1,...,Pr ∈Q∗

q0=qk

{

pk+1qs − �t
r
∑

i=1

[

ᾱi Pi q̇d (tk + ci�t) − ᾱi U
(

qd (tk + ci�t)
)− αi T

(

Pi
)

]

+�W
r
∑

i=1

β̄i h
(

qd (tk + ci�t)
)+ �Z

�t

r
∑

i=1

γ̄i h
(

qd(tk + ci�t)
)

}

, (3.56)

where different weights ᾱi and αi were applied to the potential U (q) and kinetic T (p)

terms, respectively. Similar to (3.8), the corresponding stochastic variational integrator
takes the form

−pk =
r
∑

i=1

ᾱi

[

Pi l̇0,s(ci ) − �t
∂U

∂q

(

tk + ci�t
)

l0,s(ci )
]

−
r
∑

i=1

(

β̄i�W + γ̄i
�Z

�t

)∂h

∂q

(

tk + ci�t
)

l0,s(ci ),

0 =
r
∑

i=1

ᾱi

[

Pi l̇μ,s(ci ) − �t
∂U

∂q

(

tk + ci�t
)

lμ,s(ci )
]

−
r
∑

i=1

(

β̄i�W + γ̄i
�Z

�t

)∂h

∂q

(

tk + ci�t
)

lμ,s(ci ),

pk+1 =
r
∑

i=1

ᾱi

[

Pi l̇s,s(ci ) − �t
∂U

∂q

(

tk + ci�t
)

ls,s(ci )
]

−
r
∑

i=1

(

β̄i�W + γ̄i
�Z

�t

)∂h

∂q

(

tk + ci�t
)

ls,s(ci ),

ᾱi q̇d(tk + ci�t) = αi
∂T

∂ p

(

Pi
)

,

qk+1 = qs, (3.57)

whereμ = 1, . . . , s−1 in the second equation, and i = 1, . . . , r in the fourth equation.
In the special case when r = s and

ᾱi =
∫ 1

0
l̄i,s−1(τ ) dτ, i = 1, . . . , s, (3.58)

we can show, similar to Theorem 3.4, that the stochastic Galerkin variational integrator
(3.57) is equivalent to the stochastic partitioned Runge–Kutta method

Qi = qk + �t
s
∑

j=1

ai j
∂T

∂ p
(Pj ), i = 1, . . . , s,
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Pi = pk −�t
s
∑

j=1

āi j
∂U

∂q
(Q j ) −

s
∑

j=1

(

b̄i j�W + λ̄i j
�Z

�t

)

∂h

∂q
(Q j ), i =1, . . . , s,

qk+1 = qk + �t
s
∑

i=1

αi
∂T

∂ p
(Pi ),

pk+1 = pk − �t
s
∑

i=1

ᾱi
∂U

∂q
(Qi ) −

s
∑

i=1

(

β̄i�W + γ̄i
�Z

�t

)

∂h

∂q
(Qi ), (3.59)

with the coefficients

ai j = α j

ᾱ j

∫ ci

0
l̄ j,s−1(τ ) dτ, āi j = ᾱ j (αi − a ji )

αi
,

b̄i j = β̄ j (αi − a ji )

αi
, λ̄i j = γ̄ j (αi − a ji )

αi
, i, j = 1, . . . , s, (3.60)

where we assume αi �= 0 and ᾱi �= 0 for all i . Partitioned Runge–Kutta methods of
type (3.59) were considered in [44]. In particular, it was shown that for s = 2 the
choice of the coefficients

α1 = 2/3, α2 = 1/3, ᾱ1 = 1/4, ᾱ2 = 3/4,

a11 = 0, a12 = 0, ā11 = 1/4, ā12 = 0,

a21 = 2/3, a22 = 0, ā21 = 1/4, ā22 = 3/4,

β̄1 = −1/2, β̄2 = 3/2, γ̄1 = 3/2 γ̄2 = −3/2,

b̄11 = −1/2, b̄12 = 0, λ̄11 = 3/2, λ̄12 = 0,

b̄21 = −1/2, b̄22 = 3/2, λ̄21 = 3/2, λ̄22 = −3/2, (3.61)

gives a method of mean-square order 3/2 (see Theorem 4.3 in [44]).

4 Numerical experiments

In this section we present the results of our numerical experiments. We verify numeri-
cally the convergence results from Sect. 3.5 and investigate the conservation properties
of our integrators. In particular, we show that our stochastic variational integrators
demonstrate superior behavior in long-time simulations compared to some popular
general purpose non-symplectic stochastic algorithms.

4.1 Numerical convergence analysis

4.1.1 Kubo oscillator

In order to test the convergence of the numerical algorithms from Sect. 3.4.1 we
performed computations for the Kubo oscillator, which is defined by H(q, p) =
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Fig. 1 The mean-square error at the time T = 3.2 as a function of the time step �t for the simulations of
the Kubo oscillator with the initial conditions q0 = 0, p0 = 1 and the noise intensity β = 0.1. In each
case 2000 sample paths were generated. The tested integrators proved to be convergent of order 1.0 in the
mean-square sense. Note that the plots for P2N2Q2Lob and P1N2Q2Lob, as well as for P1N3Q4Lob
and P1N3Q4Mil, overlap very closely

p2/2+q2/2 and h(q, p) = β(p2/2+q2/2), where β is the noise intensity (see [44]).
The Kubo oscillator is used in the theory of magnetic resonance and laser physics.
The exact solution is given by

q̄(t) = p0 sin(t + βW (t)) + q0 cos(t + βW (t)),

p̄(t) = p0 cos(t + βW (t)) − q0 sin(t + βW (t)), (4.1)

where q0 and p0 are the initial conditions. Simulations with the initial conditions
q0 = 0, p0 = 1 and the noise intensity β = 0.1were carried out until the time T = 3.2
for a number of time steps �t = 0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02. In
each case 2000 sample paths were generated. Let z�t (t) = (q�t (t), p�t (t)) denote
the numerical solution. We used the exact solution (4.1) as a reference for com-
puting the mean-square error

√

E(|z�t (T ) − z̄(T )|2), where z̄(t) = (q̄(t), p̄(t)).
The dependence of this error on the time step �t is depicted in Fig. 1. We veri-
fied that our algorithms have mean-square order of convergence 1.0. The integrators
P1N3Q4Lob, P1N3Q4Mil, P1N2Q2Lob (stochastic trapezoidal method), and
P2N2Q2Lob (stochastic Störmer–Verlet method) turned out to be the most accu-
rate, with the latter two having least computational cost.

4.1.2 Synchrotron oscillations of particles in storage rings

We carried out a similar test for the numerical schemes from Sect. 3.4.2.We performed
computations for the stochastic Hamiltonian system defined by H(q, p) = p2/2 −
cos q and h(q) = β sin q, where β is the noise intensity. Systems of this type are used
for modeling synchrotron oscillations of a particle in a storage ring. Due to fluctuating
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Fig. 2 Themean-square error at the time T = 3.2 as a function of the time step�t for the simulations of the
synchrotron oscillations of a particle in a storage ringwith the initial conditions q0 = 0, p0 = 1 and the noise
intensityβ = 0.1. In each case 2000 sample pathswere generated. The tested integrators proved to be conver-
gent of order 1.0 in the mean-square sense. Note that the plots for P1N1Q1Rec, P1N1Q1RecN2Q2Lob,
and P1N1Q1RecN1Q2Gau, as well as for P2N2Q2Lob and P1N2Q2LobN1Q2Gau, overlap very
closely

electromagnetic fields, a particle performs stochastically perturbed oscillations with
respect to a reference particle which travels with fixed energy along the design orbit of
the accelerator; in this description p corresponds to the energy deviation of the particle
from the reference particle, and q measures the longitudinal phase difference of both
particles (see [17,56] for more details). Simulations with the initial conditions q0 = 0,
p0 = 1 and the noise intensity β = 0.1 were carried out until the time T = 3.2 for a
number of time steps�t = 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64. In each case 2000
sample paths were generated. The mean-square error was calculated with respect to a
high-precision reference solution generated using the order 3/2 strong Taylor scheme
(see [28], Chapter 10.4) with a very fine time step �t = 2 · 10−6. The dependence
of this error on the time step �t is depicted in Fig. 2. We verified that our algorithms
have mean-square order of convergence 1.0.

4.2 Long-time energy behavior

4.2.1 Kubo oscillator

One can easily check that in the case of the Kubo oscillator the Hamiltonian H(q, p)

stays constant for almost all sample paths, i.e., H(q̄(t), p̄(t)) = H(q0, p0) almost
surely.We used this example to test the performance of the integrators fromSect. 3.4.1.
Simulations with the initial conditions q0 = 0, p0 = 1, the noise intensity β = 0.1,
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Fig. 3 The numerical Hamiltonian for the simulations of the Kubo oscillator with the initial conditions
q0 = 0, p0 = 1 and the noise intensity β = 0.1. Top The results obtained with Milstein’s scheme and
the order 3/2 strong Taylor scheme. We see that the Hamiltonian tends to blow up despite using small time
steps. Bottom The results obtained with the integrators derived in Sect. 3.4.1. For comparison, the solution
obtained with the Taylor scheme for �t = 0.05 is also included. Note that for clarity the same color code
is applied when the plots for some integrators overlap very closely (color figure online)

and the relatively large time step �t = 0.25 were carried out until the time T = 1000
(approximately 160 periods of the oscillator in the absence of noise) for a single
realization of the Wiener process. For comparison, similar simulations were carried
out using non-symplectic explicit methods like Milstein’s scheme and the order 3/2
strong Taylor scheme (see [28]). The numerical value of the Hamiltonian H(q, p)

as a function of time for each of the integrators is depicted in Fig. 3. We find that
the non-symplectic schemes do not preserve the Hamiltonian well, even if small time
steps are used. For example, we find thatMilstein’s scheme does not give a satisfactory
solution even with �t = 0.001, and though the Taylor scheme with �t = 0.05 yields
a result comparable to the variational integrators, the growing trend of the numerical
Hamiltonian is evident. On the other hand, the variational integrators give numerical
solutions for which the Hamiltonian oscillates around the true value (one can check via
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a direct calculation that the stochastic midpoint method (3.28) in this case preserves
the Hamiltonian exactly; of course this does not necessarily hold in the general case).

4.2.2 Anharmonic oscillator

In general the Hamiltonian H(q, p) does not stay constant for stochastic Hamilton
equations. To determine howwell our integrators perform in such cases we considered
the anharmonic oscillator defined by H(q, p) = p2/2 + γ q4 and h(q) = βq, where
β is the noise intensity and γ is a parameter. One can calculate the expected value of
the Hamiltonian analytically as

E
(

H
(

q(t), p(t)
)

)

= H
(

q0, p0
)+ β2

2
t, (4.2)

that is, themean value of theHamiltonian grows linearly in time (see [56]). Simulations
with the initial conditions q0 = 0, p0 = 1, the parameter γ = 0.1, and the noise
intensity β = 0.1 were carried out until the time T = 784 (approximately 100 periods
of the oscillator in the absence of noise). In each case 10,000 sample paths were
generated. The numerical value of the mean Hamiltonian E(H) as a function of time
for each of the integrators is depicted in Fig. 4. We see that the variational integrators
accurately capture the linear growth of E(H), whereas the Taylor scheme fails to
reproduce that behavior even when a smaller time step is used. It is worth noting that
the integrators P1N1Q1RecN2Q2Lob and P1N1Q1RecN1Q2Gau yield a very
accurate solution, while being computationally efficient, as discussed in Sect. 3.4.2.

Remark One can verify by a direct calculation that when the P2N2Q2Otr integrator
(example 6 in Sect. 3.4.1) is applied to the Kubo oscillator, then the corresponding
system of Eqs. (3.18) does not have a solution when �t + β�W = 3. To avoid
numerical difficulties, one could in principle use the truncated increments (3.9) with,
e.g., A = (3 − �t)/(2β) (for �t < 3). However, given the negligible probability
that |�W | > A for the parameters used in Sects. 4.1.1 and 4.2.1, we did not observe
any numerical issues, even though we did not use truncated increments. In the case
of all the other numerical experiments presented in Sect. 4, the applied algorithms
either turned out to be explicit, or the corresponding nonlinear systems of equations
had solutions for all values of �W . Nonlinear equations were solved using Newton’s
method and the previous time step values of the position qk and momentum pk were
used as initial guesses.

5 Summary

In this paper we have presented a general framework for constructing a new class
of stochastic symplectic integrators for stochastic Hamiltonian systems. We general-
ized the approach of Galerkin variational integrators introduced in [33,40,48] to the
stochastic case, following the ideas underlying the stochastic variational integrators
introduced in [8]. The solution of the stochasticHamiltonian systemwas approximated
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Fig. 4 Top The numerical value of the mean Hamiltonian E(H) for the simulations of the anharmonic
oscillator with the initial conditions q0 = 0, p0 = 1, the parameter γ = 0.1, and the noise intensity
β = 0.1 is shown for the solutions computed with the order 3/2 strong Taylor scheme using the time step
�t = 0.05 and the variational integrators derived in Sect. 3.4.1 using the time step �t = 0.25 or �t = 0.5.
The variational integrators accurately capture the linear growth of E(H), whereas the Taylor scheme fails
to reproduce that behavior. Middle The difference between the numerical value of the mean Hamiltonian
E(H) and the exact value (4.2) is shown for the integrators derived in Sect. 3.4.1. Bottom Same for the
integrators derived in Sect. 3.4.2. The integrators P1N1Q1RecN2Q2Lob and P1N1Q1RecN1Q2Gau
prove to be particularly accurate, while having a low computational cost

by a polynomial of degree s, and the action functional was approximated by a quadra-
ture formula based on r quadrature points.We showed that the resulting integrators are
symplectic, preserve integrals of motion related to Lie group symmetries, and include
stochastic symplectic Runge–Kutta methods introduced in [35,36,44] as a special case
when r = s. We pointed out several new low-stage stochastic symplectic methods of
mean-square order 1.0 for systems driven by a one-dimensional noise, both for the case
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of a general Hamiltonian function h = h(q, p) and a Hamiltonian function h = h(q)

independent of p, and demonstrated their superior long-time numerical stability and
energy behavior via numerical experiments.We also stated the conditions under which
these integrators retain their first order of convergence when applied to systems driven
by a multidimensional noise.

Our work can be extended in several ways. In Sect. 3.6 we indicated how higher-
order stochastic variational integrators can be constructed and showed that a type
of stochastic symplectic partitioned Runge–Kutta methods of mean-square order 3/2
considered in [44] can be recast in that formalism. It would be interesting to derive new
stochastic integrators of order 3/2 by choosing appropriate values for the parameters
in (3.54) or (3.56). It would also be interesting to apply the Galerkin approach to
construct stochastic variational integrators for constrained (see [7]) and dissipative (see
[9]) stochastic Hamiltonian systems, and systems defined on Lie groups (see [32]).
Another important problem would be stochastic variational error analysis. That is,
rather than considering how closely the numerical solution follows the exact trajectory
of the system, one could investigate how closely the discrete Hamiltonian matches
the exact generating function. In the deterministic setting these two notions of the
order of convergence are equivalent (see [40]). It would be instructive to know if a
similar result holds in the stochastic case. A further vital task would be to develop
higher-order weakly convergent stochastic variational integrators. As mentioned in
Sects. 3.1 and 3.6, higher-order methods require inclusion of higher-order multiple
Stratonovich integrals, which are cumbersome to simulate in practice. In many cases,
though, one is only interested in calculating the probability distribution of the solution
rather than precisely approximating each sample path. In such casesweakly convergent
methods are much easier to use (see [28,42]). Finally, one may extend the idea of
variational integration to stochastic multisymplectic partial differential equations such
as the stochastic Korteweg–de Vries, Camassa–Holm or Hunter–Saxton equations.
Theoretical groundwork for such numerical schemes has been recently presented in
[24].
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