
BIT Numerical Mathematics (2018) 58:881–906
https://doi.org/10.1007/s10543-018-0719-8

Weak convergence of Galerkin approximations for
fractional elliptic stochastic PDEs with spatial white noise

David Bolin1 · Kristin Kirchner1 ·Mihály Kovács1

Received: 12 January 2018 / Accepted: 1 August 2018 / Published online: 6 August 2018
© The Author(s) 2018

Abstract
Thenumerical approximation of the solution to a stochastic partial differential equation
with additive spatial white noise on a bounded domain is considered. The differential
operator is assumed to be a fractional power of an integer order elliptic differential
operator. The solution is approximated by means of a finite element discretization in
space and a quadrature approximation of an integral representation of the fractional
inverse from the Dunford–Taylor calculus. For the resulting approximation, a concise
analysis of theweak error is performed. Specifically, for the class of twice continuously
Fréchet differentiable functionals with second derivatives of polynomial growth, an
explicit rate of weak convergence is derived, and it is shown that the component of
the convergence rate stemming from the stochasticity is doubled compared to the
corresponding strong rate. Numerical experiments for different functionals validate
the theoretical results.
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1 Introduction

The representation of Gaussian random fields as solutions to stochastic partial dif-
ferential equations (SPDEs) has become a popular approach in spatial statistics in
recent years. It was observed already in [21] and [22] that a Gaussian random field
u on R

d with a covariance function of Matérn type [13] solves an SPDE of the form
(κ2 − Δ)βu = W . Here, W is Gaussian white noise, κ > 0 is a parameter determin-
ing the practical correlation range of the field, and β > d/4 controls the smoothness
parameter ν of the Gaussian Matérn field via the equality ν = 2β − d/2.

Later, this relation was the incentive to consider the SPDE

(κ2 − Δ)βu = W in D (1.1)

for Gaussian random field approximations of Matérn fields on bounded domains
D � R

d . On the boundary ∂D , the operator κ2 − Δ is augmented with, e.g., homo-
geneous Dirichlet or Neumann boundary conditions. In [12] it was shown that by
restricting the value of β to 2β ∈ N and by solving the stochastic problem (1.1) by
means of a finite element method, the computational costs of many operations, which
are needed for statistical inference, such as sampling and likelihood evaluations can
be significantly reduced. This decrease in computing time is one of the main reasons
for the popularity of the SPDE approach in spatial statistics. In addition, it facili-
tates various extensions of the Matérn model which are difficult to formulate using a
covariance-based approach, see, for instance [2,5,10,12,20].

However, the constraint 2β ∈ N imposed by [12] restricts the value of the smooth-
ness parameter ν, which is the most important parameter when the model is used for
prediction [17]. In [4] we showed that this restriction can be avoided by combining
a finite element discretization in space with a quadrature approximation based on an
integral representation of the inverse fractional power operator from the Dunford–
Taylor calculus. We furthermore derived an explicit rate of convergence for the strong
mean-square error of the proposed approximation for a class of fractional elliptic
stochastic equations including (1.1).

In practice, it is often not only necessary to sample from the solution u to (1.1),
but also to estimate the expected value E[ϕ(u)] of a certain real-valued quantity of
interest ϕ(u). The aim of this work is to provide a concise analysis of the weak error
|E[ϕ(u)] − E[ϕ(uQ

h,k)]| for the approximation uQ
h,k proposed in [4]. This analysis

includes the derivation of an explicit weak convergence rate for twice continuously
Fréchet differentiable real-valued functions ϕ, whose second derivatives are of poly-
nomial growth. Functions of this form occur in many applications, e.g., when integral
means of the solution with respect to a certain subdomain of D are of interest, or
when a transformation of the model is used as a component in a hierarchical model.
An example of the latter situation is to consider logit or probit transformed Gaussian
random fields for binary regression models, see, e.g., [16, §4.3.3].

We prove that, compared to the convergence rate of the strong error formulated
in [4], the component of the weak convergence rate stemming from the stochasticity
of the problem is doubled. To this end, two time-dependent stochastic processes are
introduced, which at time t = 1 have the same probability distribution as the exact
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Weak convergence for fractional elliptic SPDEs 883

solution u and the approximation uQ
h,k , respectively. The weak error is then bounded

by introducing an associated Kolmogorov backward equation on the interval [0, 1]
and applying Itô calculus.

The structure of this article is as follows: in Sect. 2 we formulate the equation of
interest in a Hilbert space setting similarly to [4] and state our main result on weak
convergence of the approximation in Theorem 2.1. A detailed proof of Theorem 2.1
is given in Sect. 3. For validating the theoretical result in practice, we describe the
outcomes of several numerical experiments in Sect. 4. Finally, Sect. 5 concludes the
article with a discussion.

2 Weak approximations

The subject of our investigations is the fractional order equation considered in [4],

Lβu = g + W , (2.1)

for β ∈ (0, 1), where W denotes Gaussian white noise defined on a complete prob-
ability space (�,A , P) with values in a separable Hilbert space H . Here and below,
(in-)equalities involving random terms are meant to hold P-almost surely, if not spec-

ified otherwise. Furthermore, we use the notation X
d= Y to indicate that two random

variables X and Y have the same probability distribution.
Similarly to [4], we make the following assumptions: L : D(L) ⊂ H → H is

a densely defined, self-adjoint, positive definite operator and has a compact inverse
L−1 : H → H . In this case, −L generates an analytic strongly continuous semigroup
(S(t))t≥0 on H . The H -orthonormal eigenvectors of L are denoted by {e j } j∈N and
the corresponding eigenvalues by {λ j } j∈N. These values are listed in nondecreasing
order and we assume that there exist constants α, cλ,Cλ > 0 such that

cλ jα ≤ λ j ≤ Cλ jα ∀ j ∈ N. (2.2)

The action of the fractional power operator Lβ in (2.1) is well-defined on

Ḣ2β := D(Lβ) =
{
ψ ∈ H : ‖ψ‖22β := ‖Lβψ‖2H =

∑
j∈N

λ
2β
j (ψ, e j )

2
H < ∞

}
,

which is itself a Hilbert space with inner product (φ,ψ)2β := (Lβφ, Lβψ)H .
Furthermore, there exists a unique continuous extension of Lβ to an isometric iso-
morphism Lβ : Ḣr → Ḣr−2β for all r ∈ R, see [4, Lem. 2.1]. Here, for s > 0,
the negative-indexed space Ḣ−s is defined as the dual space of Ḣ s . After identify-
ing the dual space H∗ of Ḣ0 := H via the Riesz map, we obtain the Gelfand triple
Ḣ s ↪→ H ∼= H∗ ↪→ Ḣ−s with continuous and dense embeddings. The norm on the
dual space Ḣ−s can be expressed by
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‖g‖−s = sup
φ∈Ḣ s\{0}

〈g, φ〉
‖φ‖s =

⎛
⎝∑

j∈N
λ−s
j 〈g, e j 〉2

⎞
⎠

1
2

,

where 〈 · , · 〉 denotes the duality pairing between Ḣ−s and Ḣ s , [19, Proof of Lem. 5.1].
With this representation of the dual norm and the growth (2.2) of the eigenvalues λ j

at hand, it is an immediate consequence of a Karhunen–Loève expansion of the white
noise W with respect to the H -orthonormal eigenvectors {e j } j∈N that W has mean-
square regularity in Ḣ−s for every s > α−1, see [4, Prop. 2.3]. Consequently, (2.1)
has a solution u ∈ L2(�; Ḣ2β−s) for s > α−1 if g ∈ Ḣ−s .

2.1 The Galerkin approximation

In the following, let (Vh)h∈(0,1) be a family of subspaces of Ḣ1 = D(L1/2)with finite
dimensions Nh := dim(Vh) and let �h : H → Vh be the H -orthogonal projection
onto Vh . For g ∈ H , we define the finite element approximation of v = L−1g by
vh = L−1

h �hg, where Lh denotes the Galerkin discretization of the operator L with
respect to Vh , i.e.,

Lh : Vh → Vh, (Lhψh, φh)H = 〈Lψh, φh〉 ∀ψh, φh ∈ Vh .

We then consider the following numerical approximation of the solution u to (2.1)

uQ
h,k := Qβ

h,k(�hg + W �
h ) (2.3)

proposed in [4, Eq. (2.18)]. It is based on the following two components:

(a) The operator Qβ
h,k is the quadrature approximation for L−β

h of [6]:

Qβ
h,k := 2k sin(πβ)

π

K+∑
�=−K−

e2β y�
(
IdVh + e2y�Lh

)−1
. (2.4)

The quadrature nodes {y� = �k : � ∈ Z,−K− ≤ � ≤ K+} are equidistant with
distance k > 0 and we set K− := ⌈ π2

4βk2
⌉
and K+ := ⌈ π2

4(1−β)k2
⌉
.

(b) The white noise W in H is approximated by the square-integrable Vh-valued
random variable W �

h given by W �
h := ∑Nh

j=1 ξ j φ j,h , where � := {φ j,h}Nh
j=1 is

any basis of the finite element space Vh . The vector ξ = (ξ1, . . . , ξNh )
T is multi-

variate Gaussian distributed with mean zero and covariance matrix M−1, where
M denotes the mass matrix with respect to the basis �, i.e., Mi j = (φi,h, φ j,h)H .

The main outcome of [4] is strong convergence of the approximation uQ
h,k in (2.3)

to the solution u of (2.1) at an explicit rate. Subsequently, this work focusses on weak
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Weak convergence for fractional elliptic SPDEs 885

approximations based on uQ
h,k , i.e., we investigate the error

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣ (2.5)

for continuous functions ϕ : H → R.

Remark 2.1 In practice, the expected value E[ϕ(uQ
h,k)] is approximated, e.g., by a

Monte Carlo method. For this, usually a large number of realizations of ϕ(uQ
h,k) and,

thus, of the approximation uQ
h,k in (2.3) is needed. Each of them requires a sample

of the load vector b with entries b j := (�hg + W �
h , φ j,h)H . As pointed out in [4,

Rem. 2.9], this is computationally feasible if the mass matrix M with respect to the
finite element basis� is sparse, since the distribution of ξ ∼ N (0,M−1) implies that

b ∼ N (g,M), b d= g + Gz,

where z ∼ N (0, I), G is the Cholesky factor of M = GGT , and the vector g has
entries g j := (g, φ j,h)H .

2.2 Weak convergence

For bounding the error in (2.5), we start by introducing some more notation and
assumptions. Let E := {e j,h}Nh

j=1 ⊂ Vh be the H -orthonormal eigenvectors of the

discrete operator Lh with corresponding eigenvalues {λ j,h}Nh
j=1 listed in nondecreasing

order. In addition, the strongly continuous semigroup on Vh generated by −Lh is
denoted by (Sh(t))t≥0.

We define the space C2(H ; R) of twice continuously Fréchet differentiable func-
tions ϕ : H → R, i.e., ϕ ∈ C2(H ; R) if and only if

ϕ ∈ C(H ; R), Dϕ ∈ C(H ; H), and D2ϕ ∈ C(H ;L (H)).

Here and below, using the Riesz representation theorem, we identify the first two
Fréchet derivatives Dϕ and D2ϕ of ϕ with functions taking values in H and inL (H),
respectively. Furthermore, we say that the second derivative has polynomial growth
of degree p ∈ N, if there exists a constant K > 0 such that

‖D2ϕ(ψ)‖L (H) ≤ K
(
1 + ‖ψ‖p

H

) ∀ψ ∈ H . (2.6)

All the properties of the finite element discretization, of the operator L , and of
the function ϕ, which are of importance for our analysis of the weak error (2.5), are
summarized in the assumption below.

Assumption 2.1 The finite element spaces (Vh)h∈(0,1) ⊂ Ḣ1, the operator L in (2.1),
and the function ϕ : H → R in (2.5) satisfy the following:

(i) there exists d ∈ N such that Nh = dim(Vh) ∝ h−d for all h > 0;
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(ii) there exist constants C1,C2 > 0, h0 ∈ (0, 1), as well as exponents r , s > 0 and
q > 1 such that

λ j ≤ λ j,h ≤ λ j + C1h
rλ

q
j ,

‖e j − e j,h‖2H ≤ C2h
2sλ

q
j ,

for all h ∈ (0, h0) and j ∈ {1, . . . , Nh};
(iii) the eigenvalues of L satisfy (2.2) for an exponent α with

1
2β < α ≤ min

{
r

(q−1)d , 2s
qd

}
,

where the values of d ∈ N, r , s > 0, and q > 1 are the same as in (i)–(ii);
(iv) s > 2β and for 0 ≤ θ ≤ σ ≤ s there exists a constant C3 > 0 such that

‖(S(t) − Sh(t)�h)g‖H ≤ C3h
σ t

θ−σ
2 ‖g‖θ ∀t > 0,

for every g ∈ Ḣ θ and h ∈ (0, h0). Here, h0 and s are as in (ii);
(v) ϕ ∈ C2(H ; R) and D2ϕ has polynomial growth (2.6) of degree p ≥ 2.

The following example shows that Assumptions 2.1(i)–(iv) are satisfied, e.g., for
the motivating problem (1.1) related to approximations of Matérn fields, if β > d/4,
when using continuous piecewise linear finite element bases.

Example 2.1 For κ ≥ 0 and a bounded, convex, polygonal domain D ⊂ R
d , consider

the stochastic model problem (1.1), i.e., the fractional order equation (2.1) for g = 0
and L = κ2 − Δ on H = L2(D). Furthermore, we assume that the differential
operator L is augmented with homogeneous Dirichlet boundary conditions on ∂D . In
this case, the eigenvalues {λ j } j∈N of L satisfy (2.2) for α = 2/d (see [8, Ch. VI.4] for
D = (0, 1)d , the result for more general domains as above follows from the min–max
principle). Consequently, the first inequality of Assumption 2.1(iii) holds if β > d/4.

In addition, if (Vh)h∈(0,1) ⊂ Ḣ1 = H1
0 (D) are finite element spaces with continu-

ous piecewise linear basis functions defined with respect to a quasi-uniform family of
triangulations, Assumption 2.1(i) holds and Assumptions 2.1(ii), (iv) are satisfied for
r = s = q = 2, see [18, Thm. 6.1, Thm. 6.2] and [19, Thm. 3.5]. Thus,

s = 2 > 2β, α = 2
d = min

{
r

(q−1)d , 2s
qd

}
,

and Assumptions 2.1(i)–(iv) hold for all β ∈ (d/4, 1).

We remark that Assumptions 2.1(i)–(iii) coincide with those of [4]. The strong
L2(�; H)-convergence rate

min{d(αβ − 1/2), r , s} (2.7)
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Weak convergence for fractional elliptic SPDEs 887

was derived in [4, Thm. 2.10] for the approximation uQ
h,k in (2.3) under a suitable

calibration of the distance of the quadrature nodes k with the finite element mesh
size h. Furthermore, a bound for the weak-type error

∣∣∣‖u‖2L2(�;H) − ‖uQ
h,k‖2L2(�;H)

∣∣∣
was provided, showing convergence to zero with the rate min{d(2αβ − 1), r , s}, see
[4, Cor. 3.4]. In particular, the term d(2αβ − 1) stemming from the stochasticity is
doubled compared to the strong rate in (2.7).

In the following, we generalize this result to weak errors of the form (2.5) for
functions ϕ : H → R, which are twice continuously Fréchet differentiable and have a
second derivative of polynomial growth. The bound of the weak error in Theorem 2.1
is our main result.

Theorem 2.1 Let Assumption 2.1 be satisfied. Let θ > min{d(2αβ − 1), s} − 2β, if
d(2αβ − 1) ≥ 2β, and set θ = 0 otherwise. Then, for g ∈ Ḣ θ and for sufficiently
small h ∈ (0, h0) and k ∈ (0, k0), the weak error in (2.5) admits the bound

∣∣E[ϕ(u)] − E[ϕ(uQh,k)]
∣∣ ≤ C

(
hmin{d(2αβ−1),r ,s} + e− π2

k h−d + e− π2
2k + e− π2

2k fα,β(h)

)

×
(
1 + e−

pπ2

2k h− pd
2 + ‖g‖p+1

H

)
. (2.8)

Here, we set fα,β(h) := hd(αβ−1), if αβ �= 1, and fα,β(h) := | ln(h)|, if αβ = 1. The
constant C > 0 is independent of h and k and the values of α, r , s > 0, d ∈ N, and
p ∈ {2, 3, . . .} are those of Assumption 2.1.

Remark 2.2 In the derivation of the strong convergence rate (2.7), we balanced the
error terms caused by the quadrature and by the finite element method by choosing
the quadrature step size k sufficiently small with respect to the finite element mesh
width h, namely e−π2/(2k) ∝ hdαβ , see [4, Table 1].

For calibrating the terms in the weak error estimate (2.8), we distinguish the cases
αβ < 1, αβ = 1, and αβ > 1. If αβ < 1, then dαβ > d(2αβ − 1) and we let k > 0
be such that e−π2/(2k) ∝ hdαβ . With this choice, the error estimate (2.8) simplifies to

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣ ≤ Chmin{d(2αβ−1),r ,s} (1 + ‖g‖p+1
H

)
(1 + ‖g‖θ ).

For αβ > 1 (αβ = 1) we achieve the same bound if k and h are calibrated such that
e−π2/(2k) ∝ hd(2αβ−1) (e−π2/(2k) max{1, | ln(h)|} ∝ hd ). Note that the calibration for
αβ < 1 coincides with the one for the strong error and that the term d(2αβ − 1) in
the derived weak convergence rate min{d(2αβ − 1), r , s} is doubled compared to the
first term of the strong convergence rate (2.7).

Remark 2.3 We emphasize that (under the same assumptions) both the strong and
weak convergence rates remain the same when approximating the solution u to

Lβu = σ(g + W )
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by uQ
h,k := σ Qβ

h,k(�hg+W �
h ), where σ > 0 is a constant parameter which scales the

variance of u. This can be seen from the equality σ−1Lβ = Lβ
σ for Lσ := σ−1/βL ,

combined with the fact that the eigenvalues of the operator Lσ satisfy the growth
assumption (2.2) with the same exponent α > 0 as the eigenvalues of L .

However, the constants cλ,Cλ > 0 in (2.2) and the constants in the error estimates
change. For instance, if ϕ(u) := ‖u‖p∗

H for p∗ ∈ N, then the constant C > 0 in (2.8)
will depend linearly on σ p∗ .

Note that one has to consider a problem of the form

(κ2 − Δ)βu = σW for σ := σ∗(4π)
d
4 κ2β− d

2

√
�(2β)

�(2β−d/2)

when approximating a Matérn field with variance σ 2∗ . Here and in what follows, �( · )
denotes the Gamma function.

Remark 2.4 We also comment on how the error bound in (2.8) changes if instead of
the family (Qβ

h,k)k>0 a different sequence of approximations {Rβ
h,n}n∈N of L−β

h is
used. If there exists a function E : N → R≥0 such that limn→∞ E(n) = 0 as well as
a constant C > 0, independent of h and n, such that

‖(L−β
h − Rβ

h,n)φh‖H ≤ CE(n)‖φh‖H ∀φh ∈ Vh,

it is an immediate consequence of the arguments in our proof that a bound of the weak
error for the approximation uR

h,n := Rβ
h,n(�hg + W �

h ) is given by

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣ ≤ C
(
hmin{d(2αβ−1),r ,s} + E(n)2h−d + E(n) + E(n) fα,β(h)

)

×
(
1 + E(n)ph− pd

2 + ‖g‖p+1
H

)
(1 + ‖g‖θ ).

An example of such a family {Rβ
h,n}n∈N are the approximations of L−β

h proposed in [3],

which are based on rational approximations of the function x−β of different degrees
n ∈ N.

3 The derivation of Theorem 2.1

Themain idea in our derivation of theweak error estimate (2.8) is to introduce two time-
dependent stochastic processes with the property that their (random) values at time
t = 1 have the same distribution as the solution u to (2.1) and its approximation uQ

h,k
in (2.3), respectively. We then use an associated Kolmogorov backward equation and
Itô calculus to estimate the difference between these values.

3.1 The extension to time-dependent processes

Recall the eigenvalue-eigenvector pairs {(λ j , e j )} j∈N of L as well as the parameter
α > 0 determining the growth of the eigenvalues via (2.2). In what follows, we assume
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Weak convergence for fractional elliptic SPDEs 889

that g ∈ H and 2αβ > 1 so that the solution u to (2.1) satisfies u ∈ L2(�; H). With
the aim of introducing the time-dependent processes mentioned above, we start by
defining

Wβ(t) :=
∑
j∈N

λ
−β
j B j (t) e j , t ≥ 0,

where {Bj } j∈N is a sequence of independent real-valued Brownian motions adapted
to a filtration F := (Ft , t ≥ 0). Owing to this construction, (Wβ(t), t ≥ 0) is
an F -adapted H -valued Wiener process with covariance operator L−2β , which is of
trace-class if 2αβ > 1. Since the random variables {Bj (1)} j∈N are independent and
identically N (0, 1)-distributed, the spatial white noise W satisfies

W
d=
∑
j∈N

Bj (1) e j in H .

The stochastic process Y := (Y (t), t ∈ [0, 1]) defined as the (strong) solution to
the stochastic partial differential equation

dY (t) = dWβ(t), t ∈ [0, 1], Y (0) = L−βg, (3.1)

therefore takes the following random value in H at time t = 1,

Y (1) = Y (0) +
∫ 1

0
dWβ(t) = L−βg + Wβ(1)

d= L−β(g + W ) = u. (3.2)

Its Gaussian distribution implies the existence of all moments, as shown in the
following lemma.

Lemma 3.1 Let p ∈ N, t ∈ [0, 1], and Y be the strong solution of (3.1). Then the p-th
moment of Y (t) exists and, for p ≥ 2, it admits the following bound:

E
[‖Y (t)‖p

H

] ≤ 2p−1
(
‖g‖p

−2β + t
p
2 μp tr(L

−2β)
p
2

)
. (3.3)

Here, μp := E[|Z |p] =
√

2p
π

�
(
p+1
2

)
is the p-th absolute moment of Z ∼ N (0, 1).

Proof For p = 2, the bound in (3.3) follows from the Itô isometry [15, Thm. 8.7(i)]:

E

[
‖Y (t)‖2H

]
= ‖L−βg‖2H +

∫ t

0
tr(L−2β) ds = ‖g‖2−2β + tμ2 tr(L

−2β).
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890 D. Bolin et al.

If p ≥ 3, we estimate E[‖Y (t)‖p
H ] ≤ 2p−1(‖L−βg‖p

H + E[‖Wβ(t)‖p
H ]). By

Jensen’s inequality we have

E

∣∣∣∑
j∈N

λ
−2β
j |Bj (t)|2

∣∣∣
p
2 ≤ E

[∣∣∣∑
j∈N

λ
−2β
j

∣∣∣
p
2 −1∑

j∈N
λ

−2β
j |Bj (t)|p

]
.

Thus, the distributionof {Bj (t)} j∈N implies thatE[‖Wβ(t)‖p
H ] ≤ t p/2μp tr(L−2β)p/2,

and assertion (3.3) follows. ��
In order to define a another stochastic process Ỹ := (Ỹ (t), t ∈ [0, 1]) with the

property Ỹ (1)
d= uQ

h,k in H , we recall the orthonormal eigenbasis E = {e j,h}Nh
j=1 ⊂ Vh

of Lh and define Pβ
h : H → Vh for β ∈ (0, 1) by

Pβ
h g :=

Nh∑
j=1

λ
β
j (g, e j )H e j,h . (3.4)

Since Vh is finite-dimensional, the operator Qβ
h,k : Vh → Vh in (2.4) is bounded,

Qβ
h,k ∈ L (Vh) for short, with norm

‖Qβ
h,k‖L (Vh) := sup

ψh∈Vh\{0}
‖Qβ

h,kψh‖H
‖ψh‖H < ∞.

We now consider the following stochastic partial differential equation

dỸ (t) = Qβ
h,k P

β
h dWβ(t), t ∈ [0, 1], Ỹ (0) = Qβ

h,k�hg. (3.5)

Note that the reproducing kernel Hilbert space of Wβ is Ḣ2β . The finite rank of the
operator Qβ

h,k P
β
h : H → Vh implies that it is a Hilbert–Schmidt operator from Ḣ2β

to H . For this reason, existence and uniqueness of a (strong) solution Ỹ to (3.5) is
evident. Furthermore, the solution process Ỹ satisfies

Ỹ (1) = Ỹ (0) +
∫ 1

0
Qβ

h,k P
β
h dWβ(t) = Qβ

h,k(�hg + W E
h ),

where W E
h := ∑Nh

j=1 Bj (1) e j,h . To see that also Ỹ (1)
d= uQ

h,k holds in H , define the
deterministic matrix R and the random vector B1 by

Ri j := (ei,h, φ j,h)H , 1 ≤ i, j ≤ Nh, B1 := (B1(1), . . . , BNh (1))
T ,

i.e., B1 is the vector of the first Nh Brownian motions at time t = 1. Due to

(RTR)i j = (φi,h, φ j,h)H = Mi j ,
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the vector ξ := R−1B1 is N (0,M−1)-distributed. In addition, by [4, Lem. 2.8] the
Vh-valued random variables

W E
h =

Nh∑
j=1

Bj (1) e j,h and W �
h :=

Nh∑
j=1

ξ j φ j,h

are equal in L2(�; H). In particular, their first and second moments coincide. Since
W E

h and W �
h are Gaussian random variables, their distributions are uniquely charac-

terized by their first two moments and we conclude that

Ỹ (1) = Qβ
h,k(�hg + W E

h )
d= Qβ

h,k(�hg + W �
h ) = uQ

h,k . (3.6)

3.2 The Kolmogorov backward equation and partition of the error

With the aim of bounding theweak error in (2.5) bymeans of Itô calculus, we introduce
the following Kolmogorov backward equation associated with the stochastic partial
differential equation (3.1) for Y and the function ϕ by

wt (t, x) + 1

2
tr
(
wxx (t, x)L

−2β
)

= 0, t ∈ [0, 1], x ∈ H , w(1, x) = ϕ(x).

(3.7)

Here, wx := Dxw and wxx := D2
xw denote the first and second order Fréchet deriva-

tive of w with respect to x ∈ H . It is well-known [9, Rem. 3.2.1, Thm. 3.2.3] that
the solution w : [0, 1] × H → R to (3.7) is given in terms of the stochastic process Y
in (3.1) by the following expectation

w(t, x) = E[ϕ(x + Y (1) − Y (t))]. (3.8)

Since ϕ : H → R is twice continuously Fréchet differentiable, we can furthermore
express the first two derivatives of w with respect to x in terms of ϕ and Y by

wx (t, x) = E[Dϕ(x + Y (1) − Y (t))], (3.9)

wxx (t, x) = E[D2ϕ(x + Y (1) − Y (t))]. (3.10)

Let Ỹ be the solution to (3.5). The application of Itô’s lemma [7] to the stochastic
process (w(t, Ỹ (t)), t ∈ [0, 1]) yields

dw(t, Ỹ (t)) =
(

wt (t, Ỹ (t)) + 1

2
tr
(
wxx (t, Ỹ (t))Qβ

h,k P
β
h L−2β(Qβ

h,k P
β
h

)∗)) dt

+ wx (t, Ỹ (t))Qβ
h,k P

β
h dWβ(t), t ∈ [0, 1], (3.11)
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where, for T ∈ L (H), the H -adjoint operator is denoted by T ∗. To simplify the
second term in (3.11), we define the operator �̃h : H → Vh by

�̃hg :=
Nh∑
j=1

(g, e j )H e j,h . (3.12)

Note that in contrast to the H -orthogonal projection �h , the operator �̃h is neither
self-adjoint (�̃∗

h �= �̃h) nor a projection (�̃2
h �= �̃h). We then use the following

relation between �̃h and Pβ
h from (3.4),

Pβ
h L−βg = �̃hg ∀g ∈ H ,

and express (3.11) as an integral equation for t = 1. Taking the expectation on both
sides of this equation yields

E[w(1, Ỹ (1))] = w(0, Qβ
h,k�hg)

+ 1

2
E

∫ 1

0
tr
(
wxx (t, Ỹ (t))

(
Qβ

h,k�̃h�̃
∗
hQ

β∗
h,k − L−2β

))
dt

(3.13)

since Ỹ (0) = Qβ
h,k�hg by (3.5) andwt (t, Ỹ (t)) = − 1

2 tr
(
wxx (t, Ỹ (t))L−2β

)
by (3.7).

As a final step in this subsection, we relate the quantity of interest E[ϕ(u)] with
the expected value of w(1,Y (1)) and similarly for the approximation E[ϕ(uQ

h,k)] and
w(1, Ỹ (1)). For this purpose, we extend the equalities in (3.8)–(3.10) to the case that
x = ξ is a an H -valued random variable in the following lemma.

Lemma 3.2 Let Assumption 2.1 (v) be satisfied. Then, for every t ∈ [0, 1] and any
Ft -measurable random variable ξ ∈ L p+2(�; H), it holds

Dk
xw(t, ξ) = E[Dkϕ(ξ + Y (1) − Y (t)) |Ft ], k ∈ {0, 1, 2}.

Proof For k = 0, this identity follows from [11, Lem. 4.1] with N = p + 2, ξ1 = ξ

and ξ2 = Y (1) − Y (t), since Y (t) ∈ L p+2(�; H) for all t ∈ [0, 1] by Lemma 3.1 and

|ϕ(x)| � 1 + ‖x‖p+2
H as a consequence of (2.6).

Furthermore, for y, z ∈ H , we define ϕy, ϕy, z : H → R by

ϕy(x) := (Dϕ(x), y)H , ϕy, z(x) := (D2ϕ(x)z, y)H .

Since the inner product is bilinear and continuous with respect to both components,
we find with (3.9)–(3.10) that

(wx (t, x), y)H = E[ϕy(x + Y (1) − Y (t))],
(wxx (t, x)z, y)H = E[ϕy, z(x + Y (1) − Y (t))].
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Thus, again applying [11, Lem. 4.1] for ξ1 = ξ and ξ2 = Y (1) − Y (t) as well as
N = p + 1 and N = p, respectively, yields

(wx (t, ξ), y)H = E[ϕy(ξ1 + ξ2) |Ft ] = (E[Dϕ(ξ + Y (1) − Y (t)) |Ft ], y)H ,

(wxx (t, ξ)z, y)H = E[ϕy, z(ξ1 + ξ2) |Ft ] = (E[D2ϕ(ξ + Y (1) − Y (t)) |Ft ]z, y)H
by bilinearity and continuity of the inner product. The separability of H and the
arbitrary choice of y, z ∈ H complete the proof of the assertion for k ∈ {1, 2}. ��

Owing to Lemma 3.2 and the tower property for conditional expectations, the
stochastic process (w(t,Y (t)), t ∈ [0, 1]) has no drift, i.e.,

E[w(1,Y (1))] = E[ϕ(Y (1))] = E[w(0,Y (0))] = w(0, L−βg). (3.14)

Furthermore, it follows with (3.2) and (3.6) that

E[w(1,Y (1))] = E[ϕ(Y (1))] = E[ϕ(u)], (3.15)

E[w(1, Ỹ (1))] = E[ϕ(Ỹ (1))] = E[ϕ(uQ
h,k)]. (3.16)

Summing up the observations in (3.13)–(3.16), we find that the difference between
the quantity of interest E[ϕ(u)] and the expected value of the approximation ϕ(uQ

h,k)

can be expressed by

E[ϕ(u)] − E[ϕ(uQ
h,k)] = w(0, L−βg) − w(0, Qβ

h,k�hg)

− 1

2
E

∫ 1

0
tr
(
wxx (t, Ỹ (t))

(
Qβ

h,k�̃h�̃
∗
hQ

β∗
h,k − L−2β

))
dt .

This equality implies that the weak error (2.5) admits the following upper bound

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣ ≤ ∣∣w(0, L−βg) − w(0, L−β
h �hg)

∣∣
+ ∣∣w(0, L−β

h �hg) − w(0, Qβ
h,k�hg)

∣∣
+ 1

2

∣∣∣∣E
∫ 1

0
tr
(
wxx (t, Ỹ (t))

(
Q̃β

h,k Q̃
β∗
h,k − L̃−β

h L̃−β∗
h

))
dt

∣∣∣∣
+ 1

2

∣∣∣∣E
∫ 1

0
tr
(
wxx (t, Ỹ (t))

(
L̃−β
h L̃−β∗

h − L−2β
))

dt

∣∣∣∣
=: (I) + (II) + (III) + (IV),

(3.17)

where we set Q̃β
h,k := Qβ

h,k�̃h and L̃−β
h := L−β

h �̃h .
The following subsections are structured as follows: In Sect. 3.3 we bound the

deterministic error ‖(L−β − L−β
h �h)g‖H caused by the finite element discretization.

This result is essential for estimating the first error term (I) in (3.17). Secondly, we
investigate the terms (II) and (III) stemming from applying the quadrature operator
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Qβ
h,k instead of the discrete fractional inverse L−β

h in Sect. 3.4. Finally, in Sect. 3.5
we estimate the trace in (IV) and combine all our results to prove Theorem 2.1.

3.3 The deterministic finite element error

In this subsection we focus on the deterministic error ‖(L−β − L−β
h �h)g‖H caused

by the inhomogeneity g. More precisely, we derive an explicit rate of convergence
depending on the Ḣ θ -regularity of g inLemma3.3 below. Subsequently, inLemma3.4,
we apply this result to bound the first term of (3.17).

Lemma 3.3 Suppose Assumption 2.1(iv) is satisfied. Set θ∗ := d(2αβ − 1) − 2β and
let θ > min{θ∗, s − 2β} if θ∗ ≥ 0, and set θ = 0 otherwise. Then there exists a
constant C > 0, independent of h, such that

‖(L−β − L−β
h �h)g‖H ≤ Chmin{d(2αβ−1),s}‖g‖θ (3.18)

for all g ∈ Ḣ θ and sufficiently small h ∈ (0, h0).

Proof By applying [14, Ch. 2, Eq. (6.9)] to the negative fractional powers of L and Lh ,
we find

L−β − L−β
h �h = 1

�(β)

∫ ∞

0
tβ−1(S(t) − Sh(t)�h) dt .

Thus, Assumption 2.1(iv) yields for 0 ≤ θ j ≤ σ j ≤ s ( j = 1, 2) the estimate

‖(L−β − L−β
h �h)g‖H � hσ1‖g‖θ1

∫ 1

0
tβ−1+ θ1−σ1

2 dt + hσ2‖g‖θ2

∫ ∞

1
tβ−1+ θ2−σ2

2 dt .

If θ∗ ≥ 0, we let ε > 0 be such that θ = min{θ∗, s − 2β} + ε and we choose
σ1 := min{d(2αβ − 1), s}, σ2 := s, θ1 := min{θ, σ1}, and θ2 := 0. We then obtain
θ1 − σ1 = min{−2β + ε, 0} and

‖(L−β − L−β
h �h)g‖H � hmin{d(2αβ−1),s}( 2

min{ε,2β} ‖g‖θ1 + 2
s−2β ‖g‖H

)
.

For θ∗ < 0, we instead set σ1 := d(2αβ − 1), σ2 := s, θ1 := 0, θ2 := 0, and we
conclude in a similar way that

‖(L−β − L−β
h �h)g‖H � hmin{d(2αβ−1),s}‖g‖H (−2θ−1∗ + 2(s − 2β)−1).

Since in both cases max{‖g‖θ1, ‖g‖θ2} ≤ ‖g‖θ with θ defined as in the statement
of the lemma, the bound (3.18) follows. ��
Remark 3.1 We note that by letting σ1 = σ2 := s, θ1 := s − 2β + ε, and θ2 := 0 in
the proof of Lemma 3.3 the optimal convergence rate for the deterministic error,

‖(L−β − L−β
h �h)g‖H ≤ Chs‖g‖s−2β+ε,
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can be derived. The error estimate (3.18) is formulated in such a way that the smooth-
ness θ ≥ 0 of g ∈ Ḣ θ is minimal for convergence with the rate min{d(2αβ − 1), s},
which will dominate the overall weak error, stemming from the term (IV) in the par-
tition (3.17), see Lemma 3.8.

We furthermore remark that the convergence result of Lemma 3.3 is in accordance
with the result of [6, Thm. 4.3]. There the self-adjoint positive definite operator L is
induced by an H1

0 (D)-coercive, symmetric bilinear form A:

〈Lv,w〉 := A(v,w) =
∫
D
a(x)∇v(x) · ∇w(x) dx ∀v,w ∈ Ḣ1,

where 0 < a0 ≤ a(x) ≤ a1, H := L2(D), Ḣ1 := H1
0 (D) and D is a bounded

polygonal domain in R
d , d ∈ {1, 2, 3}, with Lipschitz boundary. The discrete spaces

(Vh)h considered in [6] are the finite element spaces with continuous piecewise linear
basis functions defined with respect to a quasi-uniform family of triangulations. The
convergence rate for the error ‖(L−β − L−β

h �h)g‖H derived in [6, Thm. 4.3] is 2τ ,
if g ∈ Ḣ θ for θ > 2(τ − β), if τ ≥ β, and θ = 0 otherwise. Here, τ ∈ (0, 1] is such
that the operators

L−1 : H̃−1+τ (D) → H̃1+τ (D) and L : H̃1+τ (D) → H̃−1+τ (D)

are bounded with respect to the intermediate Sobolev spaces

H̃�(D) :=

⎧⎪⎨
⎪⎩
H1
0 (D) ∩ H�(D), � ∈ [1, 2],

[L2(D), H1
0 (D)]�,2, � ∈ [0, 1],

[H−1(D), L2(D)]1+�,2, � ∈ [−1, 0],

where H−1(D) = Ḣ−1 is the dual space of H1
0 (D) = Ḣ1 and [·, ·]�,q denotes the

real K -interpolation method.
According to this result of [6], the convergence rate 2min{d(αβ − 1/2), 1} can be

achieved if g is Ḣ θ -regular for θ > θ∗ if θ∗ := 2(min{d(αβ − 1/2), 1} − β) ≥ 0
and θ = 0 if θ∗ < 0. A comparison with (3.18) in Lemma 3.3 shows that the error
estimates and regularity assumptions coincide for this particular case, since s = 2 for
the choice of finite-dimensional subspaces (Vh)h in [6] specified above.

Having bounded the error between L−βg and L−β
h �hg, an estimate of the first

error term (I) in (3.17) is an immediate consequence of the fundamental theorem of
calculus and the chain rule for Fréchet derivatives. This bound is formulated in the
next lemma.

Lemma 3.4 Let Assumptions 2.1 (iv)–(v) be satisfied and 2αβ > 1. Define θ ≥ 0 as
in Lemma 3.3. Then there exists a constant C > 0, independent of h, such that

∣∣w(0, L−βg) − w(0, L−β
h �hg)

∣∣ ≤ Chmin{d(2αβ−1),s}‖g‖θ (1 + ‖g‖p+1
H )

for all g ∈ Ḣ θ and sufficiently small h ∈ (0, h0).
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Proof Since the mapping x �→ w(0, x) is Fréchet differentiable, we obtain by the
fundamental theorem of calculus and the Cauchy–Schwarz inequality

∣∣w(0, L−β
h �hg) − w(0, L−βg)

∣∣
=
∣∣∣
∫ 1

0
(wx (0, L

−βg + t(L−β
h �h − L−β)g), (L−β

h �h − L−β)g)H dt
∣∣∣

≤ ‖(L−β
h �h − L−β)g‖H sup

t∈[0,1]
‖wx (0, L

−βg + t(L−β
h �h − L−β)g)‖H .

A bound for the first term is given by (3.18) in Lemma 3.3. For the second term, we
use (3.9), Y (0) = L−βg, and the polynomial growth (2.6) of D2ϕ to estimate

‖wx (0, L
−βg + t(L−β

h �h − L−β)g)‖H ≤ E[‖Dϕ(Y (1) + t(L−β
h �h − L−β)g)‖H ]

�
(
1 + E[‖Y (1)‖p+1

H ] + ‖g‖p+1
H

)

for all t ∈ [0, 1]. The boundedness (3.3) of the (p + 1)-th moment of Y (1) completes
the proof, since the trace of L−2β is finite if 2αβ > 1. ��

3.4 The quadrature approximation

In this subsection we address the error terms (II) and (III) in (3.17), which are induced
by the quadrature approximation Qβ

h,k of L−β
h . To this end, we start by stating the

following result of [6, Lem. 3.4, Thm. 3.5] that bounds the error between the two
operators on Vh .

Lemma 3.5 The approximation Qβ
h,k : Vh → Vh of L

−β
h in (2.4) admits the bound

‖(Qβ
h,k − L−β

h )φh‖H ≤ Ce− π2
2k ‖φh‖H ∀φh ∈ Vh,

and it is bounded, ‖Qh,k‖L (Vh) ≤ C ′, for sufficiently small h ∈ (0, h0), k ∈ (0, k0),
where the constants C,C ′ > 0 depend only on β and the smallest eigenvalue of L.

In the following, we use this error estimate of the quadrature approximation Qβ
h,k

for bounding the second term of (3.17) in Lemma 3.6 as well as the trace occurring
in the third term of (3.17) in Lemma 3.7.

Lemma 3.6 Suppose that Assumption 2.1(v) is satisfied and that 2αβ > 1. Then there
exists a constant C > 0, independent of h and k, such that

∣∣w(0, L−β
h �hg) − w(0, Qβ

h,k�hg)
∣∣ ≤ Ce− π2

2k ‖g‖H
(
1 + ‖g‖p+1

H

)

for all g ∈ H and sufficiently small h ∈ (0, h0) and k ∈ (0, k0).
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Proof As in the proof of Lemma 3.4, we apply the fundamental theorem of calculus
and the chain rule for Fréchet derivatives. By (3.9) and Lemma 3.5 we then find

∣∣w(0, Qβ
h,k�hg) − w(0, L−β

h �hg)
∣∣ ≤ ‖(Qβ

h,k − L−β
h )�hg‖H

× sup
t∈[0,1]

E[‖Dϕ(L−β
h �hg + t(Qβ

h,k − L−β
h )�hg + Y (1) − L−βg)‖H ]

� e− π2
2k ‖g‖H

(
1 + E[‖Y (1)‖p+1

H ] + ‖g‖p+1
H

)
.

Again, the proof is completed by (3.3) and the fact that tr(L−2β) < ∞. ��
Lemma 3.7 Let Assumptions 2.1(i)–(iii) be satisfied. Then there exists a constant
C > 0, independent of h and k, such that

∣∣tr(T (Q̃β
h,k Q̃

β∗
h,k − L̃−β

h L̃−β∗
h ))

∣∣ ≤ C

(
e− π2

k h−d + e− π2
2k + e− π2

2k fα,β(h)

)
‖T ‖L (H)

for every self-adjoint T ∈ L (H) and sufficiently small h ∈ (0, h0) and k ∈ (0, k0).
Here, the function fα,β is defined as in Theorem 2.1.

Proof By the definition of �̃h in (3.12) we have

�̃he j = e j,h, j ∈ {1, . . . , Nh}, �̃he j = 0, j > Nh . (3.19)

Therefore, the trace of interest simplifies to a finite sum,

tr(T (Q̃β
h,k Q̃

β∗
h,k − L̃−β

h L̃−β∗
h )) =

Nh∑
j=1

[
(T Qβ

h,ke j,h, Q
β
h,ke j,h)H − (T L−β

h e j,h, L
−β
h e j,h)H

]

=
Nh∑
j=1

(T (Qβ
h,k − L−β

h )e j,h, (Q
β
h,k − L−β

h )e j,h)H

+ 2
Nh∑
j=1

(T (Qβ
h,k − L−β

h )e j,h, L
−β
h e j,h)H

=: S1 + 2S2, (3.20)

where the second equality follows from the self-adjointness of T ∈ L (H).
The application of the Cauchy–Schwarz inequality and of Lemma 3.5 to the first

sum yield the following upper bound

|S1| ≤ ‖T ‖L (H)

Nh∑
j=1

‖(Qβ
h,k − L−β

h )e j,h‖2H ≤ Ce− π2
k Nh‖T ‖L (H).

By Assumption 2.1(i) we thus have |S1| � e− π2
k h−d‖T ‖L (H).
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The second sum can be bounded by

|S2| ≤ ‖T ‖L (H) max
1≤ j≤Nh

‖(Qβ
h,k − L−β

h )e j,h‖H
Nh∑
j=1

λ
−β
j,h .

Finally, due to the approximation property of the discrete eigenvalues λ j,h in Assump-
tion 2.1(ii) as well as the growth (2.2) of the exact eigenvalues λ j we obtain

λ
−β
j,h ≤ λ

−β
j ≤ c−β

λ j−αβ and, for αβ �= 1, we find

|S2| � e− π2
2k

(
1 + N 1−αβ

h

)
‖T ‖L (H) � e− π2

2k

(
1 + hd(αβ−1)

)
‖T ‖L (H),

where we have used Lemma 3.5 andAssumption 2.1(i). If αβ = 1, we instead estimate
|S2| � e−π2/(2k)(1 + | ln(h)|) ‖T ‖L (H). This completes the proof. ��

3.5 Proof of Theorem 2.1

After having bounded the terms (I), (II), and (III) in the partition (3.17) of the weak
error in the previous subsections, we now turn to estimating the final error term (IV).
Furthermore, we bound the p-th moment of Ỹ (t), where Ỹ is the solution process
of (3.5). We then combine all our results and prove Theorem 2.1.

Lemma 3.8 Let Assumptions 2.1(i)–(iii) be satisfied. Then there exists a constant
C > 0, independent of h, such that

∣∣tr(T (L̃−β
h L̃−β∗

h − L−2β))∣∣ ≤ Chmin{d(2αβ−1),r ,s}‖T ‖L (H)

for every self-adjoint T ∈ L (H) and sufficiently small h ∈ (0, h0).

Proof Similarly to (3.20) we use the self-adjointness of T and rewrite the trace as
tr(T (L̃−β

h L̃−β∗
h − L−2β)) = S1 + S2, where

S1 :=
∑
j∈N

(T (L̃−β
h − L−β)e j , L̃

−β
h e j )H , S2 :=

∑
j∈N

(T (L̃−β
h − L−β)e j , L

−βe j )H .

In order to estimate the terms S1 and S2, we note that for j ∈ {1, . . . , Nh}
‖(L̃−β

h − L−β)e j‖H = ‖λ−β
j,he j,h − λ

−β
j e j‖H ≤ |λ−β

j,h − λ
−β
j | + λ

−β
j ‖e j,h − e j‖H .

By the mean value theorem, the existence of λ̃ j ∈ (λ j , λ j,h) satisfying λ
−β
j − λ

−β
j,h =

βλ̃
−β−1
j (λ j,h − λ j ) is ensured. By Assumption 2.1(ii) we thus have

‖(L̃−β
h − L−β)e j‖H ≤ max

{
βC1,

√
C2
}(

hrλq−β−1
j + hsλ

q
2 −β

j

)
. (3.21)
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Owing to (3.19) the series S1 simplifies to the finite sum

S1 =
Nh∑
j=1

λ
−β
j,h (T (L̃−β

h − L−β)e j , e j,h)H .

Using (3.21) as well as Assumptions 2.1(i)–(iii), this sum can be bounded by

|S1| � ‖T ‖L (H)

Nh∑
j=1

(
hrλq−2β−1

j + hsλ
q
2 −2β
j

)
� hmin{d(2αβ−1),r ,s}‖T ‖L (H),

since dα(q − 1) ≤ r and dαq/2 ≤ s by Assumption 2.1(iii).
For the second term we find

S2 =
Nh∑
j=1

λ
−β
j (T (L̃−β

h − L−β)e j , e j )H −
∑
j>Nh

λ
−2β
j (T e j , e j )H ,

since L̃−β
h e j = 0 for j > Nh by (3.19). Therefore, the application of (3.21) yields

|S2| � ‖T ‖L (H)

( Nh∑
j=1

(
hrλq−2β−1

j + hsλ
q
2 −2β
j

)
+
∑
j>Nh

λ
−2β
j

)

and |S2| � hmin{d(2αβ−1),r ,s}‖T ‖L (H) follows from Assumptions 2.1(i), (iii). ��

Lemma 3.9 Suppose that Assumptions 2.1(i)–(iii) are satisfied. Let p ∈ N, t ∈ [0, 1],
and Ỹ be the strong solution of (3.5). Then the p-th moment of Ỹ (t) exists and, for
p ≥ 2, it admits the following bound:

E
[‖Ỹ (t)‖p

H

] ≤ C
(
1 + e− pπ2

2k h− pd
2 + ‖g‖p

H

)
,

where the constant C > 0 is independent of h and k.

Proof Since Pβ
h W

β(t) = ∑Nh
j=1 Bj (t) e j,h , we obtain by Lemma 3.5, for any p ≥ 2,

that

E
[‖(Qβ

h,k − L−β
h )Pβ

h W
β(t)‖p

H

] ≤ C pe− pπ2

2k E

∣∣∣
Nh∑
j=1

Bj (t)
2
∣∣∣
p
2 ≤ C pe− pπ2

2k N
p
2
h t

p
2 μp,

where, again, μp := E[|Z |p] denotes the p-th absolute moment of Z ∼ N (0, 1) and
the constant C > 0 is independent of h, k, and p. Furthermore, using 0 < λ j ≤ λ j,h
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of Assumption 2.1(ii) and applying the Hölder inequality gives

E
[‖L−β

h Pβ
h W

β(t)‖p
H

] = E

∣∣∣
Nh∑
j=1

λ
−2β
j,h B j (t)

2
∣∣∣
p
2 ≤ tr(L−2β)

p
2 t

p
2 μp,

where tr(L−2β) < ∞ by Assumption 2.1(iii). Thus, we obtain for the solution Ỹ
of (3.5) that for any t ∈ [0, 1] the bound

E
[‖Ỹ (t)‖pH

] = E
[‖Qβ

h,k�hg + (Qβ
h,k − L−β

h )Pβ
h Wβ(t) + L−β

h Pβ
h Wβ(t)‖pH

]
≤ 3p−1

(
‖Qβ

h,k�hg‖pH + E
[‖(Qβ

h,k − L−β
h )Pβ

h Wβ(t)‖pH
]+ E

[‖L−β
h Pβ

h Wβ(t)‖pH
])

≤ 3p−1
(
‖Qβ

h,k‖pL (Vh)
‖g‖pH + C pe−

pπ2

2k N
p
2
h t

p
2 μp + tr(L−2β)

p
2 t

p
2 μp

)

holds. Finally, the assertion follows by the boundedness of Qβ
h,k which is uniform in

h and k, the finiteness of tr(L−2β), and Assumption 2.1(i). ��

Proof (of Theorem 2.1) Owing to the partition (3.17) and the estimates of the error
terms (I)–(IV) in Lemmata 3.4 and 3.6–3.8 we can bound the weak error as follows

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣ �
(
hmin{d(2αβ−1),s} + e− π2

2k

)
‖g‖θ

(
1 + ‖g‖p+1

H

)

+ sup
t∈[0,1]

E
[‖wxx (t, Ỹ (t))‖L (H)

] (
e− π2

k h−d + e− π2
2k + e− π2

2k fα,β(h)

)

+ sup
t∈[0,1]

E
[‖wxx (t, Ỹ (t))‖L (H)

]
hmin{d(2αβ−1),r ,s},

sincewxx (t, x) ∈ L (H) is self-adjoint for every t ∈ [0, 1] and x ∈ H . The application
of Lemma 3.2 and of the tower property for conditional expectations yield

E[‖wxx (t, Ỹ (t))‖L (H)] = E[‖E[D2ϕ(Ỹ (t) + Y (1) − Y (t))|Ft ]‖L (H)]
≤ E[‖D2ϕ(Ỹ (t) + Y (1) − Y (t))‖L (H)].

By the polynomial growth (2.6) of D2ϕ and the boundedness of the p-th moments
of Y (t) and Ỹ (t) in Lemmata 3.1 and 3.9, respectively, we obtain that

E[‖wxx (t, Ỹ (t))‖L (H)] �
(
1 + E[‖Ỹ (t)‖p

H ] + E[‖Y (1)‖p
H ] + E[‖Y (t)‖p

H ])
�
(
1 + e− pπ2

2k h− pd
2 + ‖g‖p

H

)
,

since tr(L−2β) < ∞. This completes the proof of the weak error estimate in (2.8). ��
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Remark 3.2 Note that, if the first and second Fréchet derivatives of ϕ are bounded,
the estimates of the Lemmata 3.1 and 3.9 are not needed and the weak error estimate
in (2.8) simplifies to

∣∣E[ϕ(u)] − E[ϕ(uQ
h,k)]

∣∣
≤ C

(
hmin{d(2αβ−1),r ,s} + e− π2

k h−d + e− π2
2k + e− π2

2k fα,β(h)
)
(1 + ‖g‖θ ).

The calibration of the discretization parameters k and h remains as described in
Remark 2.2.

4 An application and numerical experiments

In this section we validate the theoretical results of the previous sections within the
scope of a simulation study based on the model for Matérn approximations in (1.1) on
the domain D = (0, 1)d for d = 1, 2, κ = 0.5, and u = 0 on ∂D , i.e., L = κ2 − Δ

with homogeneous Dirichlet boundary conditions. In this case, the operator L has the
following eigenvalue-eigenvector pairs [8, Ch. VI.4]:

λj = κ2 + π2|j|2 = κ2 + π2
d∑

i=1

j2i , ej(x) =
d∏

i=1

(√
2 sin(π ji xi )

)
, (4.1)

where j = ( j1, . . . , jd) ∈ N
d is a d-dimensional multi-index. As already mentioned

in Example 2.1, these eigenvalues satisfy (2.2) for α = 2/d.
Note that, for every x ∈ D , the solution u satisfies u(x) ∼ N (0, σ (x)2). Fol-

lowing a Karhunen–Loève expansion of u with respect to the eigenfunctions {ej}j∈Nd

in (4.1), the variance σ(x)2 can be expressed explicitly in terms of the eigenvalues and
eigenfunctions in (4.1) by

σ(x)2 = E

∣∣∣∣∣∣
∑
j∈Nd

λ
−β
j ξ̃j ej(x)

∣∣∣∣∣∣
2

=
∑
j∈Nd

λ
−2β
j ej(x)2, (4.2)

where
{̃
ξj
}
j∈Nd are independent N (0, 1)-distributed random variables.

Considering continuous evaluation functions ϕ : L2(D) → R of the form

ϕ(u) =
∫
D

f (u(x)) dx

allows us to perform the simulation study without Monte Carlo sampling, since

E[ϕ(u)] =
∫
D

E[ f (u(x))] dx,
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Table 1 Numbers of finite
element basis functions and the
corresponding numbers of
quadrature nodes as a function
of β

β

Nh 0.6 0.7 0.8 0.9

d = 1 511 146 226 386 866

1023 180 278 476 1069

2047 218 337 576 1293

4095 258 400 685 1538

d = 2 225 24 36 60 133

961 38 58 98 218

3969 56 86 145 325

16,129 78 119 203 453

and the value of E[ f (u(x))] can be derived analytically from u(x) ∼ N (0, σ (x)2).
More precisely, we choose f (u) = |u|p, p = 2, 3, 4, and f (u) = �(20(u − 0.5)),
where �(·) denotes the cumulative distribution function for the standard normal dis-
tribution. The motivation of the latter function is given by its correspondence to a
probit transform which is often used to approximate step functions (see, e.g., [1]), in
this case 1(u > 0.5). These four functions satisfy Assumption 2.1(v) and we obtain
for the quantity of interest,

E[ϕ(u)] = 2p/2�((p+1)/2)√
π

∫
D

σ(x)p dx, (4.3)

if f (u) = |u|p, and

E[ϕ(u)] =
∫
D

�

(
− a√

c−2+σ(x)2

)
dx, (4.4)

if f (u) = �(c(u − a)) for a ∈ R and c > 0.
We truncate the series in (4.2) in order to approximate the variance σ(x)2,

σ(x)2 ≈
Nok∑
j1=1

· · ·
Nok∑
jd=1

λ
−2β
( j1,..., jd )e( j1,..., jd )(x)2.

Here, we choose Nok = 1+218 for d = 1 and Nok = 1+211 for d = 2 so that, in both
cases, Nd

ok � Nh for all considered finite element spaces with Nh basis functions. This
estimate of σ(x) is used at Nd

ok equally spaced locations x ∈ D , and the reference
solution E[ϕ(u)] is then approximated by applying the trapezoidal rule in order to
evaluate the integrals in (4.3) and (4.4) numerically.

We consider (1.1) for β = 0.6, 0.7, 0.8, 0.9 and use a finite element discretization
based on continuous piecewise linear basis functions with respect to uniform meshes
on D̄ = [0, 1]d . We use four different mesh sizes h in each dimension d = 1, 2, and
calibrate the quadrature step size k with h for each value of β by k = −1/(β ln h).
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This results in the numbers of basis functions and quadrature nodes shown in Table 1.
As already pointed out in Example 2.1, the growth exponent of the eigenvalues is in
this case α = 2/d, and Assumption 2.1 is satisfied for r = s = q = 2. This gives the
theoretical value min{4β − d, 2} for the weak convergence rate.

For the computation of E[ϕ(uQ
h,k)] we can use the same procedure as for the ref-

erence solution in order to avoid Monte Carlo simulations. For this purpose, we have
to replace σ(x)2 in (4.3) and (4.4) by the variance of the finite element solution,
σh(x)2 = Var(uQ

h,k(x)). To this end, we first assemble the matrix

Qβ
h,k = 2k sin(πβ)

π

K+∑
�=−K−

e2β y� (M + e2y� (κ2M + S))−1,

where y� := �k andM,S ∈ R
Nh×Nh are the mass matrix and the stiffness matrix with

respect to the finite element basis {φ j,h}Nh
j=1 with entries

Mi j := (φi,h, φ j,h)L2(D), Si j := (∇φi,h,∇φ j,h)L2(D), 1 ≤ i, j,≤ Nh .

If we let φh(x) := (φ1,h(x), . . . , φNh ,h(x))
T denote the vector of the finite element

basis functions evaluated at x ∈ D and b := ((W �
h , φ j,h)L2(D))

Nh
j=1 ∼ N (0,M), the

variance σh(x)2 is given by

σh(x)2 = Var(uQ
h,k(x)) = Var

(
φh(x)

TQβ
h,kb

)
= φh(x)

TQβ
h,kM(Qβ

h,k)
Tφh(x).

The computation of σh(x)2 at the same Nd
ok locations as for the reference solution again

enables a numerical evaluation of the integrals in (4.3) and (4.4) via the trapezoidal
rule for approximating E[ϕ(uQ

h,k)].
The resulting observed weak errors err� := |E[ϕ(u)] − E[ϕ(uQ

h�,k
)]| are shown

in Fig. 1. For each function ϕ and for each value of β, we compute the empirical
convergence rate r by a least-squares fit of a line c + r ln h to the data set {h�, err�}.
The results are shown in Table 2 and can be seen to validate the theoretical rates given
in Theorem 2.1 for d = 1. For d = 2, the observed rates deviate slightly from the
theoretical rates for β = 0.9, which is caused by the fact that we had to use coarser
finite element meshes for d = 2 than for d = 1 in order to be able to assemble the
dense matrices Qβ

h,k ∈ R
Nh×Nh for performing the simulation study without Monte

Carlo simulations.

5 Conclusion

Gaussian randomfields are of great importance asmodels in spatial statistics.Apopular
method for reducing the computational cost for operations, which are needed during
statistical inference, is to represent the Gaussian field as a solution to an SPDE. In this
work, we have investigated a recent extension of this approach to Gaussian random
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904 D. Bolin et al.

Fig. 1 Observed weak errors for d = 1, 2 and different values of β. The errors for the four choices of
ϕ(u) = ∫

D f (u(x)) dx are shown as functions of the mesh size h in a log-log scale. The corresponding
observed convergence rates are shown in Table 2
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Table 2 Observed (resp. theoretical) rates of convergence for the weak errors shown in Fig. 1

β

f (u) 0.6 0.7 0.8 0.9

d = 1 |u|2 1.396 (1.4) 1.748 (1.8) 1.945 (2) 1.994 (2)

|u|3 1.397 (1.4) 1.753 (1.8) 1.949 (2) 1.995 (2)

|u|4 1.398 (1.4) 1.754 (1.8) 1.951 (2) 1.996 (2)

�(20(u − 0.5)) 1.398 (1.4) 1.755 (1.8) 1.952 (2) 1.996 (2)

d = 2 |u|2 0.483 (0.4) 0.800 (0.8) 1.139 (1.2) 1.442 (1.6)

|u|3 0.442 (0.4) 0.783 (0.8) 1.145 (1.2) 1.465 (1.6)

|u|4 0.409 (0.4) 0.768 (0.8) 1.143 (1.2) 1.472 (1.6)

�(20(u − 0.5)) 0.512 (0.4) 0.782 (0.8) 1.135 (1.2) 1.458 (1.6)

fields with general smoothness proposed in [4]. The method considers the fractional
order equation (2.1) and is based on combining a finite element discretization in space
with the quadrature approximation (2.4) of the inverse fractional power operator. This
yields an approximate solution uQ

h,k of the SPDE, which in [4] was shown to converge
to the solution u of (2.1) in the strong mean-square sense with rate (2.7).

In many applications one is mostly interested in a certain quantity of the random
field u which can be expressed by ϕ(u) for some real-valued function ϕ. For this
reason, the focus of the present work has been the weak error |E[ϕ(u)]−E[ϕ(uQ

h,k)]|.
Themain outcome of this article, Theorem 2.1, shows convergence of this type of error
to zero at an explicit rate for twice continuously Fréchet differentiable functions ϕ,
which have a second derivative of polynomial growth. Notably, the component of the
convergence rate stemming from the stochasticity of the problem is doubled compared
to the strong convergence rate (2.7) derived in [4]. For proving this result, we have
performed a rigorous error analysis in Sect. 3, which is based on an extension of the
Eq. (2.1) to a time-dependent problem as well as an associated Kolmogorov backward
equation and Itô calculus.

In order to validate the theoretical findings, we have performed a simulation study
for the stochastic model problem (1.1) on the domain D = (0, 1)d for d = 1, 2 in
Sect. 4. This model is highly relevant for applications in spatial statistics, since it is
often used to approximate Gaussian Matérn fields. We have considered four different
functions ϕ and the fractional orders β = 0.6, 0.7, 0.8, 0.9. The observed empirical
weak convergence rates can be seen to verify the theoretical results. One of the con-
sidered functions ϕ is based on a transformation of the random field by a Gaussian
cumulative distribution function. Quantities of this form are particularly important for
applications to porous materials, as they are used to model the pore volume fraction of
the material, see, e.g., [1]. Thus, we see ample possibilities for applying the outcomes
of this work to problems in spatial statistics and related disciplines.

Acknowledgements The authors thank Stig Larsson for valuable comments on the manuscript and an
anonymous referee who helped to improve the presentation of the results.
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