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Abstract In choosing a numerical method for the long-time integration of reversible
Hamiltonian systems one must take into consideration several key factors: order of the
method, ability to preserve invariants of the system, and efficiency of the computation.
In this paper, 6th-order composite symmetric general linear methods (COSY-GLMs)
are constructed using a generalisation of the composition theory associated with
Runge–Kutta methods (RKMs). A novel aspect of this approach involves a nonlinear
transformation which is used to convert the GLM to a canonical form in which its
starting and finishing methods are trivial. Numerical experiments include efficiency
comparisons to symmetric diagonally-implicit RKMs, where it is shown that COSY-
GLMs of the same order typically require half the number of function evaluations,
as well as long-time computations of both separable and non-separable Hamiltonian
systems which demonstrate the preservation properties of the new methods.

Keywords Symmetric composition · General linear methods · Reversible Hamilto-
nian systems

Mathematics Subject Classification 65D30 · 65P10 · 65L06

1 Introduction

The long-time numerical integration of reversible Hamiltonian systems has been a
subject of interest for many years. For the special case of a second-orderseparable
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Hamiltonian system, the class of symmetric second-order multistep methods have
been identified as excellent candidates for integration, as they are explicit, high-order,
and preserve invariants of the system over long-times [14, Ch. XV], [18]. However,
for non-separable Hamiltonian systems, these methods are generally not applicable.
Thus, one would usually consider a symmetric (or possibly symplectic) Runge–Kutta
method (RKM) as an alternative. It is well-known that structure-preserving RKMs are
necessarily implicit, which inevitably limits their long-time efficiency. The impact of
implicitness can be mitigated to some extent by considering the class of symmetric
diagonally-implicit RKMs (DIRKs). Here, since the methods are essentially compo-
sitions of the implicit midpoint rule (IMR) [19], the computational cost amounts to
the number of its stages multiplied by the cost of IMR.

Alternatively, one could consider selecting a method from the class of symmetric
general linear methods (GLMs). In recent work, it has been shown that these methods
can preserve quadratic and Hamiltonian invariants over long-times without suffering
from the parasitic instability associated with multistep methods [5–7]. Furthermore,
these methods can be designed such that they consist of a mixture of implicit and
explicit stage equations, suggesting they have the potential to outperform symmetric
DIRKs, in terms of cost for a given order.

The choice of method will also depend on its order and computational efficiency. At
present, symmetric GLMs are mostly limited to 4th-order [6,17], with the exception
of the method presented in [7] that is of 6th-order. Beyond this, the construction of
higher-order methods is difficult. In this paper, we present a construction process that
is based on the theory of composition for one-step methods (OSMs), such as RKMs,
which in the past has been applied to generate composite symmetric (COSY) methods
of arbitrarily high order [10,12,16,20,21]. In particular, we generalise the following
OSM-composition formula (see e.g. [14, Ch. II.4]) to GLMs:

ψh(y0) = φ∗
βkh ◦ φαkh ◦ · · · ◦ φ∗

β2h ◦ φα2h ◦ φ∗
β1h ◦ φα1h(y0), (1.1)

where φh denotes the OSM and φ∗
h := φ−1

−h denotes its adjoint. In addition, we also
consider the GLM generalisation of the following composition

ψh(y0) = φαkh ◦ · · · ◦ φα2h ◦ φα1h(y0), (1.2)

which is frequently used with symmetric methods of even order p ∈ N. Notable
examples include the triple jump composition:

ψh(y0) := φα1h ◦ φα2h ◦ φα1h(y0), α1 = 1

2 − 21/(p+1)
, α2 = 1 − 2α1, (1.3)

and the Suzuki 5-jump [20]:

ψh(y0) := φα1h ◦ φα1h ◦ φα2h ◦ φα1h ◦ φα1h(y0), α1 = 1

4 − 41/(p+1)
,

α2 = 1 − 4α1. (1.4)
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Themain challengewith constructing aCOSY-GLMis understanding how its inputs
change between eachmethod evaluation. For OSMs, this is not an issue as there is only
one input which approximates the exact solution. However, GLMs possess multiple
inputs, each of which takes the form of a B-series. For the special case where these are
in Nordsieck form, an appropriate re-scaling of each input is sufficient to guarantee
an order increase [17, Ch. 5]. In this paper, we address the issue of general inputs by
introducing a nonlinear transformation that puts the GLM into a canonical form. Here,
canonical is taken to mean that the resulting method has trivial starting and finishing
methods given by its preconsistency vectors u and wH. As a result, its inputs are
essentially a Kronecker product of the preconsistency vector u and an approximation
to the exact solution. Thus, the method behaves in this respect as if it were a OSM
and the theory of composition can be straightforwardly applied to generate high-order
COSY-GLMs.

This paper is organised as follows: In Sect. 2 we give an introduction to GLMs. In
Sect. 3 we introduce a transformation that puts a GLM into a canonical form. In Sect. 4
we use the canonical transformation to develop composition formulae for GLMs. In
Sect. 5, we test our GLM-composition formula by constructing 6th-order COSY-
GLMs. Efficiency comparisons are then made between these methods and symmetric
DIRKs of the same order. Finally, several long-time Hamiltonian experiments are
performed to demonstrate the preservation properties of the methods.

2 General linear methods

Throughout the paper, we assume numerical methods are applied to the following
autonomous, initial value problem (IVP)

d

dt
y(t) = f (y(t)), y(0) = y0, t ∈ [0, T ], T > 0,

where f : X → X , and the solution y : R → X is expressed in terms of the flow map
ϕt : X → X and initial data y0 such that

y(t) = ϕt (y0).

Of particular interest will be Hamiltonian IVPs (see e.g. [14, Ch. I.1]):

d

dt

[
p(t)
q(t)

]
=

[−Hq(p(t), q(t))
Hp(p(t), q(t))

]
,

[
p(0)
q(0)

]
=

[
p0
q0

]
, t ∈ [0, T ], T > 0,

where H : X → R, is the Hamiltonian and X = R
2d , d ∈ N.

2.1 Method definition

An r ∈ N-input GLM, for fixed time-step h ∈ R, is written as themapMh : Xr → Xr

acting on inputs y[n] ∈ Xr at step n ∈ N0 such that
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Y = h(A ⊗ IX )F(Y ) + (U ⊗ IX )y[n],
Mh(y

[n]) = h(B ⊗ IX )F(Y ) + (V ⊗ IX )y[n], (2.1)

where ⊗ denotes a Kronecker product, IX is the identity matrix defined on X ,

y[n] =

⎡
⎢⎢⎢⎢⎣

y[n]
1
y[n]
2
...

y[n]
r

⎤
⎥⎥⎥⎥⎦ ∈ Xr , Y =

⎡
⎢⎢⎢⎣
Y1
Y2
...

Ys

⎤
⎥⎥⎥⎦ ∈ Xs, F(Y ) =

⎡
⎢⎢⎢⎣
f (Y1)
f (Y2)

...

f (Ys)

⎤
⎥⎥⎥⎦ ∈ Xs,

s ∈ N denotes the number of stages and its coefficient matrices are denoted by

A = [ai j ] ∈ R
s×s, B = [bi j ] ∈ R

r×s, U = [ui j ] ∈ R
s×r , V = [vi j ] ∈ R

r×r .

For compactness, we will refer to a GLM using its tableau:

[
A U
B V

]
.

2.2 Convergence, consistency and stability

Definition 2.1 [3,4] A GLM with coefficient matrices (A,U, B, V ) is said to be

(a) Preconsistent, if (1, u, w) is an eigentriple of V , such that Vu = u, wHV = wH

and wHu = 1.
(b) Consistent, if it is preconsistent, Uu = 1 for 1 = [1, 1, . . . , 1]T ∈ R

s and ∃
v ∈ C

r\{0} such that B1 + V v = u + v

(c) Stable, if it is zero-stable, i.e. supn≥0 ||V n|| < ∞.

The convergence of a GLM is guaranteed if the method is both consistent and stable.

2.3 Starting and finishing methods

Inputs to a GLM generally take the form of B-series. Consequently, a starting method
is required to generate the starting vector y[0] and a finishing method is required to
obtain approximations to the solution y(nh).

Definition 2.2 [3,4] A starting method is defined as the map Sh : X → Xr , where

Sh(y0) = y[0], ∀ y0 ∈ X.

A finishing method is defined as the map Fh : Xr → X such that

Fh ◦ Sh(y0) = y0, ∀ y0 ∈ X.
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Both Sh and Fh can be viewed as GLMs with tableaux respectively given by

[
AS 1S

BS u

]
,

[
AS −UF BS UF

−wHBS wH

]
, (2.2)

where u, w are as in the definition for preconsistency,

AS ∈ R
s̃×̃s, BS ∈ C

r×̃s, UF ∈ C
s̃×r , 1S = [1, . . . , 1]T ∈ R

s̃, s̃ ∈ N,

and it is assumed that
UFu = 1S . (2.3)

Remark 2.1 If wH and BS satisfy wHBS = 0T, then the finishing method is trivial,
i.e. it reduces to Fh(y[n]) = (wH ⊗ IX )y[n]. This is desirable as the finishing method
need not perform any additional function evaluations to approximate y(nh).

The numerical method in its entirety may now be expressed as the composition

Fh ◦ Mn
h ◦ Sh(y0) ≈ ϕnh(y0).

Definition 2.3 (GLM Order [3,4]) The pair (Mh,Sh) is of order p ∈ N if

Mh◦Sh(y0) = Sh◦ϕh(y0) + C(y0)h
p+1 + O(h p+2), (2.4)

whereC(y0) �= 0 is a constant vector depending on themethod and various derivatives
of f evaluated at y0.

It is worth mentioning that starting and finishing methods have found application in
a variety of areas outside of GLMs. For example, Butcher [2] uses them to achieve an
effective order increase in RKMs. Chan and Gorgey [8] apply passive symmetrizers to
the Gauss methods, where the symmetrizers are essentially finishing methods. Also,
the Gragg smoother used in extrapolation codes (see e.g. [15, Ch. II.9]) is a finishing
method that eliminates the leading order parasitic term in the Leapfrog method.

2.4 Composition

The composition of two GLMs, M2
h ◦ M1

h , can be computed using the following
tableau: ⎡

⎣ A1 0 U1
U2B1 A2 U2V1
V2B1 B2 V2V1

⎤
⎦ . (2.5)

where (A1,U1, B1, V1), (A2,U2, B2, V2) respectively denote the coefficient matrices
of M1

h and M2
h (see e.g. [17, Ch. 2]).
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2.5 Equivalence

Definition 2.4 [6]Consider a pair ofGLMswith coefficientmatrices (A1,U1, B1, V1)
and (A2,U2, B2, V2). Then, the two are said to be (T, P)-equivalent if there exists
an invertible matrix T ∈ C

r×r and an s × s permutation matrix P such that their
coefficient matrices satisfy

[
A2 U2

B2 V2

]
=

[
P−1A1P P−1U1T
T−1B1P T−1V1T

]
.

Permutation-based equivalence arises from the fact that F(Y ) = PP−1F(Y ) =
PF(P−1Y ). Transformation-based equivalence arises from studying the numerical
method as a whole:

Fh ◦ Mn
h ◦ Sh(y0) = Fh ◦ (T T−1)Mn

h ◦ (T T−1)Sh(y0)

= (Fh ◦ T )(T−1Mh ◦ T )n(T−1Sh)(y0).

Notice that under the transformation T , both starting and finishing methods also
undergo a transformation, with their tableaux now reading as

[
AS 1S

T−1BS T−1u

]
,

[
AS −UF BS UFT

−wHBS wHT

]
.

2.6 Symmetry

Definition 2.5 (OSM symmetry [14, Ch. II.4]) Consider the OSM Φh : X → X and
its adjoint methodΦ∗

h := Φ−1
−h : X → X . Then,Φh is symmetric ifΦh(y0) = Φ∗

h (y0),
∀ y0 ∈ X .

For a GLM, the direct analogue of this definition is quite restrictive. To see this,
consider the tableau of the GLM-adjoint method M∗

h := M−1
−h :

[
UV−1B − A UV−1

V−1B V−1

]
, (2.6)

which can be derived as follows: Let y[n] 
→ M−1
h (y[n]) in the stage and update

Eq. (2.1) and solve forM−1
h (y[n]) to obtain the inverse method. Then, reverse the sign

of h to obtain the adjoint method.
Here, we note that the inverse and adjoint methods exist if and only if V−1 exists.

Furthermore, unless V is an involution, then a GLM cannot be symmetric according
to the OSM definition. However, it is possible that a GLM is equivalent to its adjoint.

Definition 2.6 (GLM symmetry [6]) A GLM is said to be (L , P)-symmetric if there
exists an r × r involution matrix L , and an s × s symmetric permutation matrix P
such that it is (L , P)-equivalent to its adjoint, i.e. if its tableau satisfies
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[
A U
B V

]
=

[
P(UV−1B − A)P PUV−1L

LV−1BP LV−1L

]
. (2.7)

In terms of maps, the symmetry condition may be equivalently expressed as

Mh(y) = LM∗
h(Ly), ∀ y ∈ Xr .

An important observation that should be noted is that the adjoint method requires a
different set of starting and finishing methods, namely, S−h(y0) and F−h(y[n]). This
choice ensures that the order of the method is preserved, as is summarised by the
following lemma.

Lemma 2.1 [6] If the pair (Mh,Sh) is of order p then the pair (M∗
h,S−h) satisfies

M∗
h ◦ S−h(y0) = S−h ◦ ϕh(y0) + (−1)pV−1C(y0)h

p+1 + O(h p+2).

2.6.1 Symmetric starting and finishing methods

Since symmetry is defined in terms of equivalence to the adjoint method, it follows
that there must exist an alternative set of starting and finishing methods that will not
affect the order of the method [6].

Definition 2.7 [6] Consider an (L , P)-symmetric GLM with starting and finishing
methods, Sh and Fh , described by the tableaux (2.2). Then, Sh and Fh are said to be
(L , PS)-symmetric if there exists a symmetric permutation matrix PS such that

[
AS 1S

BS u

]
=

[−PS AS PS 1S

−LBS PS Lu

]
,

[
AS −UF BS UF

−wHBS wH

]
=

[−PS(AS −UF BS)PS PSUF L
wHBS PS wHL

]
. (2.8)

In terms of maps, condition (2.8) can be written as

Sh(y0) = LS−h(y0), ∀ y0 ∈ X, and Fh(y) = F−h(Ly), ∀ y ∈ Xr .

3 A canonical form for GLMs

In this section we consider equivalent methods that arise from a nonlinear change of
coordinates.Aswehave seen inSect. 2.5, any change of coordinateswill also transform
the corresponding starting and finishing methods. It is shown below that there exists a
nonlinear transformation that can convert the starting and finishingmethods to a trivial
form, i.e. they are given by the preconsistency vectors u and wH.

Definition 3.1 A pth-order GLM is said to be canonical if its starting and finishing
methods are given by its preconsistency vectors u and wH.
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Canonical methods have the important property that their inputs are independent of
h. Thus, we can compose multiple canonical methods of different time-steps provided
only the preconsistency vectors agree.

Theorem 3.1 Every pth-order GLM Mh, with starting and finishing methods, Sh

and Fh, determined by the tableaux (2.2), is equivalent to a pth-order canonical
GLM defined by the composition

Ch = T−1
h ◦ Mh ◦ Th,

where Th, T
−1
h : Xr → Xr are respectively determined by the GLM tableaux

[
AS UF

BS I

]
, and

[
AS −UF BS UF

−BS I

]
, (3.1)

where AS,UF , BS are the coefficient matrices of Sh andFh, and I is the r ×r identity
matrix.

Proof Let the maps Th, T
−1
h : Xr → Xr be determined by the GLM tableaux (3.1).

It can be verified using the GLM-adjoint tableau (2.6), with h 
→ −h, that the tableau
for T−1

h corresponds to the inverse method of Th . In other words,

Th ◦ T−1
h (y) = T−1

h ◦ Th(y) = y, for any y ∈ Xr .

Now, consider a nonlinear transformation of the numerical method as a whole, i.e.

Fh ◦ Mn
h ◦ Sh(y0) = (Fh ◦ Th) ◦

(
T−1
h ◦ Mh ◦ Th

)n ◦
(
T−1
h ◦ Sh

)
(y0)

= FC
h ◦ Cnh ◦ SC

h (y0).

Note that the corresponding starting and finishing methods of Ch are given by

SC
h := T−1

h ◦ Sh and FC
h := Fh ◦ Th,

where the tableaux for Sh and Fh are given by (2.2). Observe that the composition
Th ◦ u yields a tableau of the form

[
AS UFu
BS u

]
=

[
AS 1S

BS u

]
,

where we have used UFu = 1S from (2.3). This agrees with the tableau for Sh and
thus it follows that SC

h (y0) = u ⊗ y0. Also observe that wHT−1
h yields a tableau of

the form
[
AS −UF BS UF

−wHBS wH

]
,

which agrees with the tableau for Fh , thus FC
h (y) = wHy.
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Now, from the definition ofGLMorder (2.4)we knowMh◦Sh(y0) = Sh◦ϕh(y0)+
O(h p+1). After pre-multiplying by T−1

h we find

T−1
h ◦ Mh ◦ (Th ◦ T−1

h ) ◦ Sh(y0) = T−1
h ◦ Sh(ϕh(y0)) + O(h p+1),

�⇒ Ch(uy0) = uϕh(y0) + O(h p+1).

Thus, (Ch, u) is of order p, and by Definition 3.1 it follows that Ch is a canonical
method. ��
Remark 3.1 In the above theorem, a different notion of equivalence is used than that
was introduced in Definition 2.4, i.e. w.r.t. a nonlinear transformation Th . However,
note that if Th = T0 = T for some T ∈ Xr×r then equivalence is defined in the usual
sense.

The tableau for the corresponding canonical method of a GLM may be obtained
using the tableau composition formula (2.5):

⎡
⎢⎢⎣

AS 0 0 UF

U BS A 0 U
UFV BS UF B AS −UF BS UFV
V BS B −BS V

⎤
⎥⎥⎦ . (3.2)

Preservation of symmetry In general, performing a nonlinear change of coordinates
runs the risk of destroying certain properties of the underlying GLM. In particular,
symmetry is not preservedunless the starting andfinishingmethods are also symmetric.

Corollary 3.1 Suppose that Mh is (L , P)-symmetric. If Sh and Fh are (L , PS)-
symmetric, then Ch is symmetric.

Proof Since Sh and Fh are symmetric, this implies that their coefficient matrices
satisfy condition (2.8), i.e.

AS = −PS AS PS, BS = −LBS PS, Lu = u,

UF = PSUF L , wHL = wH.

Upon substitution into the tableaux for Th and T−1
h we deduce that Th = LT−h L and

T−1
h = LT−1

−h L . Now, by the symmetry of Mh , we observe that

Ch = T−1
h ◦ Mh ◦ Th = T−1

h ◦ LM∗
h ◦ LTh = (T−1

h ◦ LT−∗
h ) ◦ C∗

h ◦ (
T ∗
h ◦ LTh

)
.

However,

T ∗
h ◦ LTh = T−1

−h ◦ LTh = T−1
−h ◦ T−h ◦ L = L .

Thus, the canonical method Ch = LC∗
h ◦ L is symmetric, as required. ��
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Preservation of parasitism-free behaviour: In recent work [5,6], it has been shown
that structure-preserving GLMs can be designed such that they are free from the
influence of parasitism over intervals of length O(h−2) [11]. In particular, if their
coefficient matrices and preconsistency vectors satisfy the following condition [6]:

wTBUu = 0. (3.3)

Corollary 3.2 Suppose that Mh satisfies the parasitism-free condition (3.3). Then,
Ch is also parasitism-free.

Proof From (3.2), we take the expressions for the B,U matrices of Ch and insert into
the LHS of (3.3) to find

wTV BSUFu + wTBUu − wTBSUFVu = wTBSUFu − wTBSUFu = 0,

where we have used Vu = u, wTV = wT from the definition of the preconsistency
vectors, and wTBUu = 0 sinceMh satisfies (3.3). Thus, Ch is also parasitism-free. ��
Example 3.1 It has been shown by Gragg [13] that the Leapfrog method,

Un+1 = Un−1 + 2h f (Un), or equivalently as a GLM,

⎡
⎣0 0 1
0 0 1
2 1 0

⎤
⎦ ,

when initialised with the Euler starter,

y[0] =
[

y0
y0 + h f (y0)

]
, or equivalently,

⎡
⎣0 1
0 1
1 1

⎤
⎦ ,

yields a global error expansion in even powers of h. In the context of symmetric GLMs,
we cannot directly explain this result as the Euler starter is not symmetric with respect

to the L-involution of the Leapfrog method: L =
[
0 1
1 0

]
. However, we can explain

Gragg’s result using the canonical form given by (3.2):

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 2 −1 1 0

⎤
⎥⎥⎥⎥⎦ ,

Here, we observe that the second and third stage equations are equivalent, which
implies there is a redundancy in the representation of the method. By removing one
of these redundant stages (i.e. combining the second and third columns together, then
removing the third row), we obtain the irreducible representation given by the tableau
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⎡
⎢⎢⎣
0 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ .

It can now be verified using the symmetry conditions (2.7), that the canonical method
is (LC, PC)-symmetric where

LC =
[
1 0
0 1

]
, PC =

[
0 1
1 0

]
.

In addition, we observe that the starting and finishing methods, u and wH, are trivially
symmetric, i.e. LCu = u and wHLC = wH. Thus, the Leapfrog method written out in
full is given by

Fh ◦ Mn
h ◦ Sh(y0) = wHCnh ◦ uy0,

where wH, Ch and u are all symmetric with respect to LC . Finally, we may now apply
Theorem14of [6],which states that a symmetricGLMof even order p, with symmetric
starting and finishing methods, yields a global error expansion in even powers of h.

4 Composition of GLMs

4.1 Composition of canonical methods

Consider a canonical GLM Ch with an invertible matrix V . Since inputs to canonical
methods are given by their preconsistency vector u we can consider a straightforward
generalisation of composition (1.1) to GLMs:

CA
h := C∗

βkh ◦ Cαkh ◦ · · · ◦ C∗
β2h ◦ Cα2h ◦ C∗

β1h ◦ Cα1h . (4.1)

It can be shown that the conditions on α1, . . . , αk, β1, . . . , βk required for an order
increase agree with those used for the composition of OSMs.

Theorem 4.1 Suppose the pair (Ch, u) is of order p ∈ N and its V -matrix is invertible.
Then, the pair (CA

h , u) is at least of order p + 1 provided

α1 + β1 + α2 + β2 + · · · + αk + βk = 1, (4.2)

α
p+1
1 + (−1)pβ p+1

1 + α
p+1
2 + (−1)pβ p+1

2 + · · · + α
p+1
k + (−1)pβ p+1

k = 0.
(4.3)

Proof Recall that if V is invertible then C−1
h , and consequently C∗

h , exist. Thus, the
method arising froma composition of the form (4.1) also exists.Now, fromLemma2.1,
if the pair (Mh,Sh) is of order p, i.e.

Mh ◦ Sh(y0) = Sh ◦ ϕh(y0) + h p+1C(y0) + O(h p+2),
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then the pair (M∗
h,S−h) satisfies

M∗
h ◦ S−h(y0) = S−h ◦ ϕh(y0) + (−1)ph p+1V−1C(y0) + O(h p+2).

For canonical methods, Sh = S−h = u. Thus, for each j ∈ {1, . . . , k}, we have

Cα j h(uy0) = uϕα j h + α
p+1
j h p+1C(y0) + O(h p+2),

C∗
β j h(uy0) = uϕβ j h + (−1)pβ p+1

j h p+1V−1C(y0) + O(h p+2).

Composing these expressions, we find that

C∗
β j h ◦ Cα j h(uy0) = C∗

β j h(uϕα j h(y0) + C(y0)h
p+1α

p+1
j + O(h p+2)),

= C∗
β j h(uϕα j h(y0)) + V−1C(y0)h

p+1α
p+1
j + O(h p+2),

= uϕ(α j+β j )h(y0) + V−1C(y0)h
p+1

(
α
p+1
j + (−1)pβ p+1

j

)

+ O(h p+2),

where we have applied C∗
ah(y+ z) = C∗

ah(y)+V−1z+O(ah||z||), andC(ϕah(y0)) =
C(y0) + O(ah).

Recursively applying the above result to eachC∗
β j h

◦Cα j h in the order of j = 1, . . . , k
we find

CA
h (uy0) = uϕ∑k

j=1(α j+β j )h
(y0) + V−1C(y0)h

p+1
k∑
j=1

(
α
p+1
j + (−1)pβ p+1

j

)

+O(h p+2).

Thus, if (4.2) and (4.3) are satisfied, it follows that the pair (CA
h , u) is at least of order

p + 1. ��
To obtain an adjoint-free composition, i.e. a GLM-generalisation of (1.2), we set

β j = 0 for j = 1, . . . , k in (4.1). This choice replaces each C∗
β j h

by V−1 to give

CA
h = V−1Cαkh ◦ · · · ◦ V−1Cα2h ◦ V−1Cα1h .

Notice here that the final left-hand multiplication by V−1 will not affect the order of
the method as Vu = u. In other words, if (CA

h , u) is of order p, then (VCA
h , u) is also

of order p, since

VCA
h (uy0) = V

(
uϕh(y0) + O(h p+1)

)
= uϕh(y0) + O(h p+1).

Thus, we define the adjoint-free composition of canonical GLMs as

CB
h := Cαkh ◦ · · · ◦ V−1Cα2h ◦ V−1Cα1h . (4.4)
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Corollary 4.1 Let the assumptions of Theorem 4.1 hold. Then, the pair (CB
h , u) is at

least of order p + 1 provided

α1 + α2 + · · · + αk = 1, (4.5)

α
p+1
1 + α

p+1
2 + · · · + α

p+1
k = 0. (4.6)

Proof This follows from Theorem 4.1 with β1 = · · · = βs = 0, noting that
Vu = u. ��
Remark 4.1 The route we have taken in deriving (4.4) is important, as a direct
application of (1.2) to canonical GLMs would fail to include the intermediate mul-
tiplications by V−1. So while the composition would be valid, an order increase
under conditions (4.5)–(4.6) would not necessarily be achieved since (4.6) would read∑k

j=1 α
p+1
k− j+1V

j−1 = 0.

Preservation of symmetry Suppose now that the canonical method is (L , P)-
symmetric. Without loss of generality, we restrict our attention to compositions of
the form (4.4) as, by definition, a symmetric method is similar to its adjoint.

Corollary 4.2 Let Ch be an (L , P)-symmetric, canonical GLM. Then, composition
(4.4) is symmetric if α j = αk− j+1, for j = 1, . . . , k.

Proof Taking the adjoint of CB
h , we find

(
CB
h

)∗ =
(
Cαkh ◦ · · · ◦ V−1Cα2h ◦ V−1Cα1h

)∗ = C∗
α1h ◦ · · · ◦ VC∗

αk−1h ◦ VC∗
αkh .

By assumption, α j = αk− j+1, for j = 1, . . . , k. Thus, this becomes

(
CB
h

)∗ = C∗
αkh ◦ · · · ◦ VC∗

α2h ◦ VC∗
α1h .

Since Ch is symmetric, we have that Ch = LC∗
h ◦ L and LV L = V−1. Therefore,

(
CB
h

)∗ = (LCαkh ◦ L) ◦ · · · ◦ V LCα2h ◦ LV LCα1h ◦ L ,

= LCαkh ◦ · · · ◦ V−1Cα2h ◦ V−1Cα1h ◦ L = LCB
h ◦ L ,

and the method is symmetric as required. ��
The above result coupled with the necessity of even order for symmetric methods

(cf. Theorem 14 of [6]) implies that the composite method will achieve an increase of
two orders, i.e. p 
→ p + 2. Furthermore, this composition can be repeatedly applied
to generate canonical COSY-GLMs of arbitrarily high order.
Preservation of parasitism-free behaviour Consider now the case that the canonical
method is also parasitism-free.
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Corollary 4.3 Let Ch satisfy the parasitism-free condition (3.3). Then, composition
(4.4) is also parasitism-free.

Proof Repeatedly applying the tableau composition formula of (2.5), we find that the
corresponding B,U matrices of (4.4) are respectively given by

[Bα1 Bα2 · · · Bαk] and [UT UT · · · UT]T.

Inserting these into the LHS of (3.3), we find

(wTBUu)

k∑
j=1

α j = 0,

where we have applied wTBUu = 0 since Ch is parasitism-free. Thus, composition
(4.4) is also parasitism-free. ��

4.2 Composition of non-canonical methods

Consider now a compositionmethod based on an invertible GLMwith arbitrary inputs.
The corresponding composition formulae and results all extend straightforwardly from
those given in the previous section after making the substitution Ch = T−1

h ◦Mh ◦Th .
In particular, the general form of (4.1) is written as

MA
h := RA(α1, βk) ◦ M∗

βkh R
−1
A (αk, βk) ◦ Mαkh ◦ RA(αk, βk−1) ◦ · · · ◦

R−1
A (α2, β2) ◦ Mα2h ◦ RA(α2, β1) ◦ M∗

β1h ◦ R−1
A (α1, β1) ◦ Mα1h,

where RA(a, b) := Tah ◦ T ∗
bh , and for (4.4) this is

MB
h :=

(
Tα1h ◦ T−1

αkh

)
◦ Mαkh ◦ RB(αk, αk−1) ◦ · · · ◦ Mα2h ◦ RB(α2, α1) ◦ Mα1h,

(4.7)
where RB(a, b) := Tah ◦ V−1T−1

bh . In addition, the starting and finishing methods are
given by

S A
h = SB

h = Sα1h and F A
h = F B

h = Fα1h,

where Sh and Fh are the starting and finishing methods of the base GLM Mh .

Example 4.1 From composition (4.7), we can obtain the GLM version of the triple
jump:

MT
h := Mα1h ◦ RB(α1, α2) ◦ Mα2h ◦ RB(α2, α1) ◦ Mα1h, (4.8)

where, forMh of even order p, α1 and α2 are given in (1.3). Similarly, we can obtain
the GLM version of the Suzuki 5-jump:

MS
h := Mα1h ◦ RB(α1, α1) ◦ Mα1h ◦ RB(α1, α2)

◦ · · ·Mα2h ◦ RB(α2, α1) ◦ Mα1h ◦ RB(α1, α1) ◦ Mα1h, (4.9)
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where α1 and α2 are given in (1.4).

Stage reductions: Consider the straightforward implementation of a COSY-GLM
(e.g. in its canonical form), possibly using multiple iterations, such that the resulting
method attains order pD ∈ N. Then, the total number of stages that require evaluation
are given by

3
pD−p

2 · (s + 2s̃) when only using (4.8),

5
pD−p

2 · (s + 2s̃) when only using (4.9),

where s̃ denotes the number of stages in the starting method.
Improvements to the implementation can be made by identifying and removing any

redundant stages prior to integration. For example, the nonlinear map RB(a, b) which
is performed between method evaluations has the GLM tableau:

⎡
⎣ (AS −UF BS)b 0 UF

−UFV−1BSb ASa UFV−1

−V−1BSb BSa V−1

⎤
⎦ .

Suppose AS is an s̃ × s̃ matrix, then this tableau suggests that a total of 2̃s stage
equations must be solved for each RB(a, b)-evaluation. However, if we chooseUF =
1Sw

H
1 , where w1 is the left eigenvector of V corresponding to eigenvalue ζ = 1, then

in the case a = b (see Suzuki composition (4.9)) we find a reduction to s̃-many stages
occurs, i.e. the tableau for RB(a, a) actually reads

[
ASa UF

(I − V−1)BSa V−1

]
.

As reductions of this type are both method and composition dependent, we suggest
that each (distinct) nonlinear map RB(a, b) is implemented as an individual GLM,
with redundant stages removed. Then, compositions such as the Suzuki 5-jump (4.9)
would be performed in the fashion

MS
h := Mα1h ◦ R1 ◦ Mα1h ◦ R3 ◦ Mα2h ◦ R2 ◦ Mα1h ◦ R1 ◦ Mα1h,

where R1 = RB(α1, α1), R2 = RB(α2, α1) and R3 = RB(α1, α2) are each distinct,
and irreducible GLMs.

5 Numerical experiments

In following set of experiments, we consider compositions of methods under the triple
jump (4.8) and the Suzuki 5-jump (4.9). To indicate which specific composition is
used we adopt the naming convention T.method for the triple jump and S.method for
Suzuki 5-jump. For example, a triple jump of a method named GLM4A would be
referred to as T.GLM4A.
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The numerical experiments we consider are as follows: Firstly, we computationally
verify that the proposed COSY-formulae yield an appropriate order increase. Here,
we consider compositions of 4th to 6th-order methods (see also [17, Ch. 7] for higher
order). Secondly, we perform efficiency comparisons in terms of accuracy versus
function evaluations. Here, accuracy is measured by either the trajectory error or the
maximum absolute deviation in the Hamiltonian. Finally, we investigate long-time
Hamiltonian preservation of the composition methods on several reversible Hamilto-
nian systems. In particular, we consider

(P1) Modified pendulum (see [14, Ch. XV.5]): For y = [p, q]T,

H(p, q) = 1

2
p2 − cos(q)

(
1 − p

6

)
,

(p0, q0) = (2, 1).

(P2) Bead on a wire (see [1]): For y = [p, q]T,

H(p, q) = p2

2(1 +U ′(q)2)
+U (q), U (q) = 0.1(q(q − 2))2 + 0.008q3,

(p0, q0) = (0.49, 0).

(P3) Kepler (see [14, Ch. I.2]): For y = [p1, p2, q1, q2]T,

H(p1, p2, q1, q2) = 1

2
(p21 + p22) − (q21 + q22 )

− 1
2 ,

(p10, p20, q10, q20) =
(
0,

√
1 + e

1 − e
, 1 − e, 0

)
, e = 0.6.

5.1 Methods

5.1.1 Symmetric GLMs

The following GLMs are both 4th-order, (L , P)-symmetric and satsify the parasitism-
free condition (3.3):

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
− 1

8
1
4 0 1 1

4− 1
8

1
2

1
4 1 1

4
− 1

3
2
3

2
3 1 0

− 1
3

2
3

2
3 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
1
2

1
2 0 1 −2

3
2

1
2 0 1 −2

2
3

1
6

1
6 1 0

2
3

1
6

1
6 0 −1

⎤
⎥⎥⎥⎥⎦

GLM4A GLM4B

where L =
[
1 0
0 −1

]
, P =

⎡
⎣1 0 0
0 0 1
0 1 0

⎤
⎦ .
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In order to attain 4th-order, both GLMs must approximate the starting vector

y[0] =
[

y0
h
2
dy
dt (0) − h3

24
d3y
dt3

(0)

]
,

which can be achieved using the following (L , PS)-symmetric starting method:

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
1
2 0 0 0 1

− 1
2 0 0 0 1
0 − 1

10
1
10 0 1

0 0 0 0 1
5
12 − 1

6 − 1
6

5
12 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, where PS =

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

The corresponding finishing method is given by the first component, i.e. Fh(y) = y1.
Note that since both GLMs share the same starting and finishing methods, they also

share the same canonical transformation Th . The tableaux for both Th and T−1
h are

given respectively below

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
1
2 0 0 0 1 0

− 1
2 0 0 0 1 0
0 − 1

10
1
10 0 1 0

0 0 0 0 1 0
5
12 − 1

6 − 1
6

5
12 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
1
2 0 0 0 1 0

− 1
2 0 0 0 1 0
0 − 1

10
1
10 0 1 0

0 0 0 0 1 0
− 5

12
1
6

1
6 − 5

12 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the choice UF = 1SeT1 has been made such that T−1
h is also explicit.

5.1.2 Symmetric RKMs

For comparison, we have chosen methods from the class of symmetric DIRKs which
are closest, in the sense of structure, to GLM4A and GLM4B, i.e. their stage equations
can be solved sequentially.

Remark 5.1 Higher-orderGauss andLobattomethods are not considered as their stage
equations are typically solved ‘all-at-once’, i.e. in the product space Xs , in conjunction
with a sophisticated iteration scheme (see e.g. [9]).

The Butcher tableaux for two 4th-order symmetric DIRKs are given as follows:
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10−2 10−1
10−12

10−10

10−8

10−6

10−4

10−2

100

time−step

ε 
er

ro
r

Triple Jump
T.DIRK43
T.DIRK45
T.GLM4A
T.GLM4B

(a)

10−2 10−1
10−12

10−10

10−8

10−6

10−4

10−2

100

time−step

ε 
er

ro
r

Suzuki
S.DIRK43
S.DIRK45
S.GLM4A
S.GLM4B

(b)

Fig. 1 Order diagrams. Reference lines of gradient 6 are given by diagonally dotted lines. a Triple jump
methods, b Suzuki methods
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104 105 106
10−12

10−10

10−8

10−6

10−4

10−2

100

f−evals

ε 
er

ro
r

Triple Jump

T.DIRK43
T.DIRK45
T.GLM4A
T.GLM4B

(a)

104 105 106
10−12

10−10

10−8

10−6

10−4

10−2

100

f−evals

ε  
er

ro
r

Suzuki

S.DIRK43
S.DIRK45
S.GLM4A
S.GLM4B

(b)

Fig. 2 εh -error versus function evaluation diagrams for the Hamiltonian IVP from Sect. 5.2. a Triple jump,
b Suzuki
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α1
2

α1
2 0 0

1
2 α1

α2
2 0

1 − α1
2 α1 α2

α1
2

α1 α2 α1

α1
2

α1
2 0 0 0 0

3α1
2 α1

α1
2 0 0 0

1
2 α1 α1

α2
2 0 0

1 − 3α1
2 α1 α1 α2

α1
2 0

1 − α1
2 α1 α1 α2 α1

α1
2

α1 α1 α2 α1 α1

DIRK43 DIRK45

Note that both DIRKs are formed by compositions of the implicit midpoint rule.
DIRK43 is based on the triple jump with α1, α2 given by (1.3) and DIRK45 is a
Suzuki 5-jump with α1, α2 given by (1.4).

5.1.3 Implementation

We have ensured the update procedure is consistent across all methods. Specifically,
the stage equations are solved sequentially using fixed point iteration. The termination
criteria are given by

||Δk ||∞ < 10−12 and ||Δk+1||∞ > ||Δk ||∞, k ∈ N,

where Δk denotes the difference between iterates k and k + 1. Also, redundant stages
in the COSY-GLMs have been identified and removed prior to each integration.

5.2 Order confirmation

Consider problem (P3) which is known to be 2π -periodic (see e.g. [14, Ch. I.2.3]):
Let T = 10π and define h such that Nh := T/h is an integer. Then, for various values
of h, we measure the εh-error:

εh :=
∥∥∥Fh ◦ MNh

h ◦ Sh(y0) − y0
∥∥∥
2
.

The order of amethod is then approximately given by the gradient of the corresponding
plot of log(εh) − log(h). In Fig. 1, we demonstrate that compositions of GLM4A and
GLM4B by both the triple jump and Suzuki 5-jump can be applied to yield methods
of order p = 6.

5.3 Efficiency comparisons

Next,we investigate the computational efficiencyof theCOSY-GLMs. In particular,we
repeat the experiment of Sect. 5.2 and record the total number of function evaluations
made during the integration. Comparing this quantity to the εh error provides us with
an estimate on computational cost versus accuracy.
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104 105 106
10−16

10−14

10−12

10−10

10−8

10−6

10−4

f−evals

m
ax

 a
bs

. H
−e

rro
r

Triple Jump

T.DIRK43
T.DIRK45
T.GLM4A
T.GLM4B

(a)

104 105 106
10−16

10−14

10−12

10−10

10−8

10−6

10−4
Suzuki

f−evals

m
ax

 a
bs

. H
−e

rro
r

S.DIRK43
S.DIRK45
S.GLM4A
S.GLM4B

(b)

Fig. 3 maxn |Hn − H0| versus function evaluation diagrams for the Hamiltonian IVP from Sect. 5.2. a
Triple jump, b Suzuki

The results from this experiment are shown in Fig. 2. For a fixed accuracy, it can be
seen on average that COSY-GLMs require between 1.66 and 2.5 times fewer function
evaluations than the DIRK methods.
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100 101 102 103 104 105 106

steps

100 101 102 103 104 105 106

steps

100 101 102 103 104 105 106
−2.44e−2
−1.95e−2
−1.46e−2
−9.76e−3
−4.88e−3

0
4.88e−3

time

100 101 102 103 104 105 106

time

H
. e

rro
r

(a)

−2.18e−5
−1.64e−5
−1.09e−5
−5.45e−6

0
5.45e−6
1.09e−5

H
. e

rro
r

(b)

Fig. 4 Modified pendulum: t ∈ [0, 106], h = 0.5. a T.GLM4B: Hamiltonian preservation, b S.GLM4B:
Hamiltonian preservation

In addition to εh error versus function evaluations, we also consider the maximum
deviation of the absolute Hamiltonian error, i.e.

max
n

|H(yn) − H(y0)|, n ∈
{
1, . . . ,

T

h

}
,

versus function evaluations. These results are given in Fig. 3. Similar to before, for
a fixed accuracy it can been seen that COSY-GLMs require approximately half the
number of function evaluations when compared against the DIRK methods.

5.4 Long-time hamiltonian preservation

Lastly, we investigate the long-time preservation of the Hamiltonian for problems
(P1)–(P3) using a COSY-GLM. As the results on computational efficiency indicate
that compositions of GLM4A and GLM4B perform similarly, we restrict our attention
to compositions of only GLM4B as this requires fewer function evaluations for a fixed
time-step.

The results given in Figs. 4, 5 and 6 show that COSY-GLMs approximately preserve
the Hamiltonian over long-times. Also, Fig. 6 shows that quadratic invariants such as
angular momentum, i.e. L : R4 → R,
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100 101 102 103 104 105 106

100 101 102 103 104 105 106

100 101 102 103 104 105 106

100 101 102 103 104 105 106

steps

−5.46e−7
−3.64e−7
−1.82e−7

0
1.82e−7
3.64e−7
5.46e−7

time

H
. e

rro
r

(a)

steps

−1.48e−8
−9.89e−9
−4.95e−9

0
4.95e−9
9.89e−9
1.48e−8

time

H
. e

rro
r

(b)

Fig. 5 Bead on a wire: t ∈ [0, 106], h = 0.25. a T.GLM4B: Hamiltonian preservation, b S.GLM4B:
Hamiltonian preservation

L(p1, p2, q1, q2) := q1 p2 − q2 p1,

are also approximately preserved. Furthermore, we observe that parasitic instability
has yet to manifest itself despite the use of coarse time-steps.

6 Conclusion

A composition technique for generating composite symmetric general linear methods
(COSY-GLMs) of arbitrarily high order has been developed and then applied to cre-
ate new methods of order 6. The process involves using a canonical transformation
that alters the starting and finishing methods of a GLM to be in terms of only the
preconsistency vectors u and w. The new methods have been shown to be suitable for
the long-time integration of reversible Hamiltonian systems that are either separable
or non-separable. In particular, numerical experiments have been performed which
show that the methods approximately preserve the Hamiltonian and other invariants
for the duration of the computation. Furthermore, these methods have been found to
be computationally more efficient than symmetric diagonally-implicit Runge–Kutta
methods (DIRKs) of the same order, typically requiring half the number of total func-
tion evaluations for a fixed accuracy.
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100 101 102 103 104 105 106

steps

10−1 100 101 102 103 104

−7.02e−10
−5.85e−10
−4.68e−10
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0

time

H
. e

rro
r

(a)

steps

10−1 100 101 102 103 104

−9.35e−11
−7.79e−11
−6.23e−11
−4.68e−11
−3.12e−11
−1.56e−11

0

time

L.
 e

rro
r

(b)

steps

10−1 100 101 102 103 104

−1.70e−9
−1.42e−9
−1.14e−9

−8.52e−10
−5.68e−10
−2.84e−10

0

time

H
. e

rro
r

(c)

10−1 100 101 102 103 104

−1.31e−10
−1.09e−10
−8.76e−11
−6.57e−11
−4.38e−11
−2.19e−11

0

time

L.
 e

rro
r

(d)

100 101 102 103 104 105 106

100 101 102 103 104 105 106

steps
100 101 102 103 104 105 106

Fig. 6 Kepler: t ∈ [0, 104 ·π ]. aT.GLM4B: Hamiltonian preservation with h = π
250 , bT.GLM4B: angular

momentum preservation with h = π
250 , c S.GLM4B: Hamiltonian preservation with h = π

100 , d S.GLM4B:
angular momentum preservation with h = π

100
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