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Abstract The two dimensional advection–diffusion equation in a stochastically vary-
ing geometry is considered. The varying domain is transformed into a fixed one and
the numerical solution is computed using a high-order finite difference formulation
on summation-by-parts form with weakly imposed boundary conditions. Statistics of
the solution are computed non-intrusively using quadrature rules given by the proba-
bility density function of the random variable. As a quality control, we prove that the
continuous problem is strongly well-posed, that the semi-discrete problem is strongly
stable and verify the accuracy of the scheme. The technique is applied to a heat transfer
problem in incompressible flow. Statistical properties such as confidence intervals and
variance of the solution in terms of two functionals are computed and discussed. We
show that there is a decreasing sensitivity to geometric uncertainty as we gradually
lower the frequency and amplitude of the randomness. The results are less sensitive
to variations in the correlation length of the geometry.

Keywords Incompressible flow · Advection–diffusion · Uncertainty quantification ·
Uncertain geometry ·Boundary conditions · Parabolic problems ·Variable coefficient ·
Temperature field · Heat transfer

Mathematics Subject Classification 35L03 · 35K15 · 65M06

Communicated by Jan Hesthaven.

B Markus Wahlsten
markus.wahlsten@liu.se

Jan Nordström
jan.nordstrom@liu.se

1 Department of Mathematics, Computational Mathematics, Linköping University,
581 83 Linköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-017-0676-7&domain=pdf


510 M. Wahlsten, J. Nordström

1 Introduction

When solving partial differential equations, uncertain geometry of the computational
domain may arise for many reasons. Examples include irregular materials, inaccu-
rate Computer-Aided Design (CAD) software, imprecise manufacturing machines
and non-perfect mesh generators. We study the effects of this uncertainty and impose
the boundary condition at stochastically varying positions in space. Related techniques
are boundary perturbation [26], Lagrangian approach [1] and isoparametric mapping
[5]. Other techniques dealing with geometric uncertainty include polynomial chaos
with remeshing of geometry [8,9] as well as chaos collocation methods with fictious
domains [3,17].

We transform the stochastically varying domain into a fixed one. This procedure
has previously been used in Xiu et al. [25] for elliptic problems. Numerical techniques
can be employed if the analytical transformation of the geometry is unavailable [4].
In this article it is extended to the analysis of the time-dependent advection–diffusion
equation. The continuous problem is analyzed using the energy method, and strong
well-posedness is proved [14,15].

We discretize using high-order finite difference methods on summation-by-parts
form with weakly imposed boundary conditions, and prove strong stability [23,24].
The statistics of the solution such as the mean, variance and confidence intervals are
computed non-intrusively using quadrature rules for the given stochastic distributions
[10,12]. As an application, we analyze the heat transfer at rough surfaces in incom-
pressible flow [2,18,22].

The paper will proceed as follows: in Sect. 2 we define the continuous problem in
two space dimensions, transform it to the unit square using curvilinear coordinates and
derive energy estimates that lead to well-posedness. We formulate a finite difference
scheme for the continuous problem and prove stability in Sect. 3. In Sect. 4, we
consider a heat transfer problem in incompressible flow. Finally, in Sect. 5 we draw
conclusions.

2 The continuous problem

Consider the advection–diffusion problem on the stochastically varying domain�(θ)

ut + ūux + v̄uy = (εux )x + (εuy)y + F(x, y, t), (x, y) ∈ �(θ), t ≥ 0

Hu(x, y, t, θ) = g(x, y, t), (x, y) ∈ ∂�(θ), t ≥ 0

u(x, y, 0, θ) = f (x, y), (x, y) ∈ �(θ), t = 0. (2.1)

In (2.1), ū and v̄ are the known mean velocities in the x- and y-directions sat-
isfying the divergence relation ūx + v̄y = 0 stemming from an incompressible
Navier–Stokes solution. Furthermore, ε = ε(x, y, t) is a positive diffusion coeffi-
cient, u = u(x, y, t, θ) represents the solution to the problem and θ = (θ1, θ2, . . . )

is a vector of random variables describing the geometry of the domain. F , g and f
are data to the problem. The goal of this study is to investigate the effects of placing
the boundary condition Hu = g at the stochastically varying boundary ∂�(θ).
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2.1 The transformation

We transform the stochastically varying domain � into the unit square by the trans-
formation,

x = x(ξ, η, θ), ξ = ξ(x, y, θ)

y = y(ξ, η, θ), η = η(x, y, θ),

where 0 ≤ ξ, η ≤ 1. The Jacobian matrix of the transformation is given by,

[J ] =
[
xξ yξ
xη yη

]
.

By applying the chain rule to (2.1) and multiplying by J = xξ yη − xηyξ > 0, we
obtain

Jut + J (ūξx + v̄ξy)uξ + J (ūηx + v̄ηy)uη + J F

= J ((εux )ξ ξx + (εuy)ξ ξy) + J ((εux )ηηx + (εuy)ηηy). (2.2)

The final formulation of the transformed problem is

Jut + (ãu)ξ + (b̃u)η = f̃ξ + g̃η + J F(ξ, η, t), (ξ, η) ∈ �, t ≥ 0

H̃u(ξ, η, t, θ) = g(ξ, η, t), (ξ, η) ∈ ∂�, t ≥ 0

u(ξ, η, 0, θ) = f (ξ, η), (ξ, η) ∈ �, t = 0, (2.3)

where

ã = J [(ū, v̄) · ∇ξ ] f̃ = J [ε(∇u · ∇ξ)]
b̃ = J [(ū, v̄) · ∇η]g̃ = J [ε(∇u · ∇η)] (2.4)

and � = [0, 1] × [0, 1]. A more complete derivation of the transformed problem is
included in “Appendix A”. In (2.4), we have used the notation ∇ = ( ∂

∂x , ∂
∂y )

T. The
transformed fixed domain including normal vectors are given in Fig. 1. Note that the
wave speeds ã and b̃ depend on the stochastic variables θ .

2.2 The energy method

Wemultiply the transformed problem (2.3) with u, integrate over the domain� (ignor-
ing the forcing function F), and apply the Green–Gauss theorem. This yields

d

dt
‖u(ξ, η, t)‖2J + 2DI = −

∮
∂�

u2 Ā − 2u F̄ ds, (2.5)
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Fig. 1 The transformed domain
including normal vectors for the
east, west, north and south
boundaries (nE , nW , nN and
nS )

nN = (0,1)

nE = (1,0)

nS = (0,−1)

nW = (−1,0) Φ

η

ξ

1

1

where Ā = (ã, b̃) ·n, F̄ = ( f̃ , g̃) ·n and n is the outward pointing normal vector from
∂�, see Fig. 1. In (2.5), ‖u‖2J = ∫

�
u2 J dξ dη = ∫

�
u2 dx dy is the L2-norm, while

DI =
∫

�

[
uξ

uη

]T [
D̃11 D̃12

D̃21 D̃22

] [
uξ

uη

]
dξ dη =

∫
�

ε J |∇u|2 dx dy ≥ 0

where

D̃11 = ε J (ξ2x + ξ2y ), D̃12 = ε J (ηxξx + ηyξy)

D̃21 = D̃12, D̃22 = ε J (η2x + η2y).

The right-hand side (RHS) of (2.5) can be expanded as

d

dt
‖u(ξ, η, t)‖2J + 2DI = −

∫ 1

0
ãu2 − 2u f̃

∣∣∣∣
ξ=1

ξ=0
dη −

∫ 1

0
b̃u2 − 2ug̃

∣∣∣∣
η=1

η=0
dξ

(2.6)

where for example the fluxes at the boundaries ξ = 1 and η = 1 are

f̃ = ( f, g) · J∇ξ = ε(ux Jξx + uy Jξy) = ε
∂u

∂n
J |∇ξ |

g̃ = ( f, g) · J∇η = ε(ux Jηx + uy Jηy) = ε
∂u

∂n
J |∇η| ,

respectively. Further, we note that f̃ and g̃ can also be written in terms of uξ and uη

as

f̃ = D̃11uξ + D̃12uη, g̃ = D̃21uξ + D̃22uη
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The formulation (2.6) in matrix form can be written

d

dt
‖u‖2J + 2DI = −

∫ 1

0

[
u
f̃

]T [
ã −1

−1 0

] [
u
f̃

] ∣∣∣∣
ξ=1

ξ=0
dη

−
∫ 1

0

[
u
g̃

]T [
b̃ −1

−1 0

] [
u
g̃

] ∣∣∣∣
η=1

η=0
dξ. (2.7)

The matrices in (2.7) are symmetric, and hence they can be diagonalized as

d
dt ‖u‖2J + 2DI = −

∫ 1

0

[
u − f̃

ã
f̃

]T [
ã 0
0 − 1

ã

] [
u − f̃

ã
f̃

] ∣∣∣∣
ξ=1

ξ=0
dη

−
∫ 1

0

[
u − g̃

ã
g̃

]T [
b̃ 0
0 − 1

b̃

] [
u − g̃

ã
g̃

] ∣∣∣∣
η=1

η=0
dξ,

(2.8)

for ã, b̃ �= 0. By imposing the boundary conditions

H−
E u = gE H−

Wu = gW H−
N u = gN H−

S u = gS (2.9)

where

H−
E =

⎧⎨
⎩
1 − 1

ã

(
D̃11

∂
∂ξ

+ D̃12
∂
∂η

)
if ã

∣∣ξ=1
< 0

D̃11
∂
∂ξ

+ D̃12
∂
∂η

if ã
∣∣ξ=1

> 0

H−
W =

⎧⎨
⎩
1 − 1

ã

(
D̃11

∂
∂ξ

+ D̃12
∂
∂η

)
if ã

∣∣
ξ=0 > 0

D̃11
∂
∂ξ

+ D̃12
∂
∂η

if ã
∣∣
ξ=0 < 0

H−
N =

⎧⎨
⎩
1 − 1

b̃

(
D̃21

∂
∂ξ

+ D̃22
∂
∂η

)
if b̃

∣∣η=1
< 0

D̃21
∂
∂ξ

+ D̃22
∂
∂η

if b̃
∣∣η=1

> 0

H−
S =

⎧⎨
⎩
1 − 1

b̃

(
D̃21

∂
∂ξ

+ D̃22
∂
∂η

)
if b̃

∣∣
η=0 > 0

D̃21
∂
∂ξ

+ D̃22
∂
∂η

if b̃
∣∣
η=0 < 0,

(2.10)

the (RHS) of (2.8) is bounded by data and hence gives an energy estimate.

2.3 Weak imposition of boundary conditions

As a preparation for the numerical approximation, we now impose the boundary con-
ditions weakly using penalty terms. This gives
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d
dt ‖u‖2J + 2DI = −

∫ 1

0
ãu2 − 2u f̃

∣∣∣∣
ξ=1

ξ=0
dη −

∫ 1

0
b̃u2 − 2ug̃

∣∣∣∣
η=1

η=0
dξ

+ 2
∫ 1

0
u	E (W−

E − gE )

∣∣∣∣
ξ=1

+ u	W (W−
W − gW )

∣∣∣∣
ξ=0
dη

+ 2
∫ 1

0
u	N (W−

N − gN )

∣∣∣∣
η=1

+ u	S(W
−
S − gS)

∣∣∣∣
η=0
dξ.

(2.11)

To illustrate the procedure, we assume ã
∣∣ξ=1
ξ=0 > 0 and b̃

∣∣η=1
η=0 > 0 and impose the

boundary conditions using the operators in (2.10), which yields

d
dt ‖u‖2J + 2DI = −

∫ 1

0
ãu2 − 2u f̃

∣∣∣∣
ξ=1

ξ=0
dη −

∫ 1

0
b̃u2 − 2ug̃

∣∣∣∣
η=1

η=0
dξ

+ 2
∫ 1

0
u	E ( f̃ − gE )

∣∣∣∣
ξ=1

+ u	W (u − f̃

ã
− gW )

∣∣∣∣
ξ=0

dη

+ 2
∫ 1

0
u	N (g̃ − gN )

∣∣∣∣
η=1

+ u	S(u − g̃

b̃
− gS)

∣∣∣∣
η=0

dξ.

(2.12)
The indefinite terms in (2.12) are canceled by letting

	E = −1, 	W = −ã 	N = −1, 	S = −b̃. (2.13)

By using (2.13) in (2.12) we obtain

d
dt ‖u‖2J + 2DI = −

∫ 1

0
ã

(
u − gE

ã

)2 − g2E
ã

∣∣∣∣
ξ=1

dη

−
∫ 1

0
ã(u − gW )2 − g2W ã

∣∣∣∣
ξ=0

dη

−
∫ 1

0
b̃

(
u − gN

b̃

)2

− g2N
b̃

∣∣∣∣
η=1

dξ

−
∫ 1

0
b̃(u − gS)

2 − g2Sb̃

∣∣∣∣
η=0

dξ,

(2.14)

which lead directly to an energy estimate.
For general ã and b̃, the choices

	E =
{

−ã if ã < 0

−1 if ã > 0
	W =

{
−ã if ã > 0

−1 if ã < 0

	N =
{

−b̃ if b̃ < 0

−1 if b̃ > 0
	S =

{
−b̃ if b̃ > 0

−1 if b̃ < 0

(2.15)

bounds the (RHS) of (2.11), in a similar way. The special cases with ã, b̃ = 0 are
treated in a similar way, see “Appendix B”.
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We can now prove

Proposition 2.1 The problem (2.3)with the boundary conditions (2.9) and the penalty
coefficients in (2.15) is strongly well-posed.

Proof Consider the specific case in (2.14). For other values of ã and b̃, the same
general procedure is used. Time integration (from 0 to T ) of (2.14) results in

‖u(T )‖2J + 2
∫ T

0
DI dt = ‖ f ‖2J

−
∫ T

0

∫ 1

0
ã

(
u − gE

ã

)2 − g2E
ã

∣∣∣∣
ξ=1

dη dt

−
∫ T

0

∫ 1

0
ã(u − gW )2 − g2W ã

∣∣∣∣
ξ=0

dη dt

−
∫ T

0

∫ 1

0
b̃

(
u − gN

b̃

)2

− g2N
b̃

∣∣∣∣
η=1

dξ dt

−
∫ T

0

∫ 1

0
b̃(u − gS)

2 − g2Sb̃

∣∣∣∣
η=0
dξ dt. (2.16)

In (2.16), the boundary terms with zero data all give a non-positive contribution, and
hence the solution is bounded by data. The bound leads directly to uniqueness, and
existence is guaranteed by the fact that we use the correct (i.e., minimal) number of
boundary conditions.

3 The semi-discrete formulation

In this section we consider the numerical approximation of (2.3) formulated by
using Summation-By-Parts (SBP) operators with Simultaneous Approximation Terms
(SAT), the so called SBP-SAT technique [24]. First, we rewrite our variable coefficient
continuous problem (2.3) using the splitting technique described in [13], to obtain,

Jut + 1

2
[(ãu)ξ + ãuξ + ãξu + (b̃u)η + b̃uη + b̃ηu] = f̃ξ + g̃η. (3.1)

In (3.1), we note that the lower order terms vanish, since ãξ + b̃η = 0. The correspond-
ing semi-discrete version of (3.1) including penalty terms for the boundary conditions
is

J̃Ut + 1

2
[Dξ ÃU + ÃDξU + Dη B̃U + B̃DηU ]

−Dξ F̃ξ − DηG̃η = (P−1
ξ ENN ⊗ Iη)Σ E (H−

EU − g)

+ (P−1
ξ E0N ⊗ Iη)ΣW (H−

WU − g)

+ (Iξ ⊗ P−1
η EMM )ΣN (H−

NU − g)
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+ (Iξ ⊗ P−1
η E0M )Σ S(H

−
S U − g)

U (0) = f. (3.2)

where
Dξ = (P−1

ξ Qξ ⊗ Iη) Dη = (Iξ ⊗ P−1
η Qη)

F̃ = D̃11DξU + D̃12DηU G̃ = D̃21DξU + D̃22DηU
D̃11 = ε̃ J̃ (ξ̃2x + ξ̃2y ), D̃12 = ε̃ J̃ (η̃x ξ̃x + η̃y ξ̃y)

D̃21 = D̃12, D̃22 = ε̃ J̃ (η̃2x + η̃2y).

(3.3)

In (3.2) and (3.3), P−1
ξ,η Qξ,η are the finite difference operators, Pξ,η are diagonal

positive definite matrices, and Qξ,η are almost skew-symmetric matrices satisfying
Qξ,η + QT

ξ,η = B = diag[−1, 0, . . . , 0, 1].
U is a vector containing the numerical solution Ui, j which approximates u(ξi , η j )

ordered as

U =

⎡
⎢⎢⎢⎣
U0
U1
...

UN

⎤
⎥⎥⎥⎦ , Ui =

⎡
⎢⎢⎢⎣
Ui,0
Ui,1

...

Ui,M

⎤
⎥⎥⎥⎦ .

The indices i = 0, 1, . . . , N and j = 0, 1, . . . , M correspond to the grid points in ξ -
and η-direction.

To ease the notation we denote (P−1
ξ Qξ ⊗ Iη)U = Uξ and (Iξ ⊗ P−1

η Qη)U = Uη

as the discrete derivatives with respect to ξ and η. E0N and E0M are zero matrices with
the exception of the first element which is equal to one, and the corresponding sizes of
the matrices are (N +1)× (N +1) and (M +1)× (M +1). Similarly, ENN and EMM

are zero matrices with the exception of the last element which is equal to one, and the
corresponding sizes of the matrices are (N +1)×(N +1) and (M+1)×(M+1). The
notations Iξ , Iη and Iξη correspond to the identity matrices of sizes (N +1)× (N +1),
(M + 1) × (M + 1) and (M + 1)(N + 1) × (M + 1)(N + 1), respectively. Ã, B̃, F̃ ,
G̃, ξ̃x , ξ̃y , η̃x , η̃y , ε̃ and J̃ are diagonal matrices approximating ã, b̃, f̃ , g̃, ξx , ξy , ηx ,
ηy , ε and J pointwise.

The discrete boundary operators H−
E , H−

W, H−
N and H−

S are defined as

H−
E =

{
Iξη − Ã−1

(
D̃11Dξ + D̃12Dη

)
if Ã

∣∣ξ=1
< 0

D̃11Dξ + D̃12Dη if Ã
∣∣ξ=1

> 0

H−
W =

⎧⎨
⎩
Iξη − Ã−1

(
D̃11Dξ + D̃12Dη

)
if Ã

∣∣
ξ=0 > 0

D̃11Dξ + D̃12Dη if Ã
∣∣
ξ=0 < 0

H−
N =

{
Iξη − B̃−1

(
D̃21Dξ + D̃22Dη

)
if B̃

∣∣η=1
< 0

D̃21Dξ + D̃22Dη if B̃
∣∣η=1

> 0

H−
S =

⎧⎨
⎩
Iξη − B̃−1

(
D̃21Dξ + D̃22Dη

)
if B̃

∣∣
η=0 > 0

D̃21Dξ + D̃22Dη if B̃
∣∣
η=0 < 0
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which corresponds to the continuous counterparts in (2.10). Finally, The penalty
matrices Σ E ,ΣW ,ΣN and Σ S will be chosen such that the numerical scheme (3.2)
becomes stable. For more details on the SBP-SAT techniques, see [24].

3.1 Stability

To prove stability (we only consider the west boundary, as the treatment of the other
boundaries is similar), we multiply (3.2) with UT(Pξ ⊗ Pη) from the left, add the
transpose of the outcome and define the discrete norm ‖U‖2J (Pξ ⊗Pη) = UT J̃ (Pξ ⊗
Pη)U to obtain

d

dt
‖U‖2J (Pξ ⊗Pη) + 1

2
[UT(Qξ + QT

ξ ⊗ Pη) ÃU +UT Ã(Qξ + QT
ξ ⊗ Pη)U ]

+1

2
[UT(Pξ ⊗ Qη + QT

η )B̃U +UT B̃(Pξ ⊗ Qη + QT
η )U ]

−U (Qξ ⊗ Pη)F̃ − F̃T(QT
ξ ⊗ Pη)T

−U (Pξ ⊗ Qη)G̃ − G̃(Pξ ⊗ QT
η )U

= UT(E0N ⊗ Pη)ΣW (H−
WU − g)

+(H−
WU − g)TΣT

W (E0N ⊗ Pη)U (3.4)

By observing that H−
WU = U − Ã−1 F̃ , Qξ + QT

ξ = ENN − E0N , Qη + QT
η =

EMM − E0M , and ignoring the contribution from the other boundaries (the terms
including ENN , EMM and E0M ) we can rewrite (3.4) as

d

dt
‖U‖2J (Pξ ⊗Pη) + 2DI = UT Ã(E0N ⊗ Pη)U

− UT(E0N ⊗ Pη)F̃ − F̃T(E0N ⊗ Pη)U

+ UT(E0N ⊗ Pη)ΣW (U − Ã−1 F̃ − g)

+ (U − Ã−1 F̃ − g)TΣT
W (E0N ⊗ Pη)U (3.5)

where

DI =
[
Uξ

Uη

]T
(I2 ⊗ Pξ ⊗ Pη)

[
D̃11 D̃12

D̃21 D̃22

] [
Uξ

Uη

]
≥ 0.

The remaining derivations leading to the discrete energy estimate

d
dt ‖U‖2J (Pξ ⊗Pη) + 2DI = − ((U − g)T Ã(E0N ⊗ Pη)(U − g)

− gT(E0N ⊗ Pη) Ãg)
(3.6)

is included in “Appendix C”.
We can now prove
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Proposition 3.1 The numerical approximation (3.2) using the penalty coefficients

Σ E =
{

− Ã if ã < 0

−Iξη if ã > 0
ΣW =

{
− Ã if ã > 0

−Iξη if ã < 0

ΣN =
{

−B̃ if b̃ < 0

−Iξη if b̃ > 0
Σ S =

{
−B̃ if b̃ > 0

−Iξη if b̃ < 0

(3.7)

is strongly stable.

Proof For ease of presentation we prove the special case when ã, b̃ > 0. By inte-
grating (3.6) in time, considering also the remaining boundaries and using the penalty
parameters in (3.7) we find

‖U (T )‖2J (Pξ ⊗Pη) + 2
∫ T

0
DI dt = ‖ f ‖2J (Pξ ⊗Pη)

−
∫ T

0
(U − Ã−1g)T Ã(ENN ⊗ Pη)(U − Ã−1g)

− gT(ENN ⊗ Pη) Ã
−1g dt

−
∫ T

0
(U − g)T Ã(E0N ⊗ Pη)(U − g)

− gT(E0N ⊗ Pη) Ãg dt

−
∫ T

0
(U − B̃−1g)T B̃(Pξ ⊗ EMM )(U − B̃−1g)

− gT(Pξ ⊗ EMM )B̃−1g dt

−
∫ T

0
(U − g)T B̃(Pξ ⊗ E0M )(U − g)

− gT(Pξ ⊗ E0M )B̃g dt.

(3.8)

As in the continuous energy estimate (2.14), the RHS of (3.8) consists of boundary
data and negative semi-definite dissipative boundary terms which result in a strongly
stable numerical approximation.

Remark 3.1 Note the similarity between the discrete energy estimate (3.8) and its
continuous counterpart (2.16).

Remark 3.2 The possibility of applying the SBP-SAT technique to the coupled PDEs
resulting from the use of polynomial chaos in combination with a stochastic Galerkin
projection is shown in Pettersson et al. [19,20].

4 Numerical results

We start with a quality control by using the method of manufactured solution [16,21]
to verify the accuracy and stability of the scheme.
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Table 1 The order of accuracy
for the 2nd-, 3rd-, 4th- and
5th-order SBP-SAT schemes for
different number of grid points
in space

SBP operator/Nx , Ny 20, 20 30, 30 40, 40 50, 50

2nd order 1.979 1.989 1.993 1.996

3rd order 3.006 2.919 3.000 3.133

4th order 4.209 4.272 4.307 4.340

5th order 4.858 4.811 4.784 4.767

4.1 Rate of convergence for the deterministic case

We use ū = sin(x) cos(y), v̄ = − cos(x) sin(y), ε = 0.01 in order to satisfy the
incompressibility condition. The rate of convergence is verified by computing the
order of accuracy p defined as

p = log2

(
‖ua − uh‖P∥∥ua − uh/2

∥∥
P

)
. (4.1)

In (4.1), uh is the numerical solution, using the grid spacing h, and the manufactured
solution is

ua = sin(2π(x − t)) + sin(2π(y − t)).

The order of accuracy computed for different number of grid points andSBP-operators,
is shown in Table 1. As time-integrator, the classical 4th-order Runge–Kutta method
with 5000 grid points was used. The results shown in Table 1 confirm that the scheme
is accurate for the 2nd-, 3rd-, 4th- and 5th-order SBP-SAT schemes [23].

4.2 Heat transfer at rough surfaces

Equipped with a provably stable scheme, we will now investigate the stochastic prop-
erties of a heat distribution problem in incompressible flow. The problem in two
dimensions is of the form

Tt + ūTx + v̄Ty = (εTx )x + (εTy)y, (4.2)

where we specify the following boundary conditions

North: T + ε ∂T
∂n = T∞

South: ∂T
∂n = 0

East: ∂T
∂n = 0

West: ūT − ε ∂T
∂n = ū

√
ε(1 − e−αy)

(4.3)

In (4.2), T is the temperature, (ū, v̄) the given velocity field, ε the viscosity. The
boundary conditions in (4.3) are a well-posed subset of the general ones derived
previously.
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To simulate a boundary layer the quantities ū, v̄ and ε are chosen as

(ū, v̄) = (
1 − e−αy, 0

)
, ε = 0.01, α = 1/

√
ε. (4.4)

where T∞ = √
ε and ∂T

∂n = n · ∇T . The velocity field is generated on the unit square
(Fig. 2), then injected on the corresponding grid points on the varying domain. The
simplified velocity field in (4.4) satisfies the divergence relation ūx + v̄y = 0 and has
a boundary layer.

4.3 Statistical results

In the calculations below, the 4th-order Runge–Kutta method is used together with
3rd-order SBP-operators on a grid with 50 and 100 grid points in the x- and y-direction
and 9000 grid points in time, in order to minimize the time discretization error.

We start by enforcing the following stochastic variation on the south boundary of
the geometry, (see Fig. 3)

yS(x, θ1, θ2) = 0.05θ1 sin(2πxθ2)

where θ1 ∼ N (−1, 1) and θ2 ∼ U (2, 10) are stochastic variables controlling the
amplitude and frequency of the periodic variation respectively. In order to study the
influence of different correlation lengths, we use

ySlong (x, θ1) = 0.05θ1 sin(2πx)
ySshort (x, θ1) = 0.05θ1 sin(2πx) + 0.005 sin(16πx),

where we let ySshort and ySlong represent short and long correlation lengths respectively.
As typical measures of the results, we compute statistics of the integral of the

solution and squared solution over the domain, that is

Fig. 2 An illustration of the
mean velocity profile for (ū, v̄)

as a function of y

x

y

1

1
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Fig. 3 A schematic of the
computational domain with
definitions of yS , θ1 and θ2

x
yS

y

1/θ2

θ1

∫∫
�

u(x, y, t, θ1, θ2) dx dy, and
∫∫

�

u2(x, y, t, θ1, θ2) dx dy.

To compute the integrals in the stochastic analysis, we have used 20 grid points
in both the θ1- and θ2-direction. For high-dimensional problems adaptive sparse grid
techniques or multilevel Monte Carlo methods can be used to improve the efficiency
of calculations like these, see for example [6,11]. However, in this particular case,
with only two stochastic dimensions, straightforward quadrature is efficient enough.

Figures 4 and 5 show the variance with respect to θ2 of the integral of the solution
and squared solution respectively, as a function of time for different realizations of θ1
with yS as south boundary. Figures 4 and 5 both illustrate the fact that the variance
increase with increasing amplitude, as could be expected.

Figures 6 and 7 depict the variance with respect to θ1 of the integral of the solution
and squared solution respectively, as a function of time for fixed values of θ2 using
yS as south boundary. As can be seen, an increased frequency leads to an increased
variance. Hence high-frequency random variation in the geometry affects the solution
more than low-frequency random variation.

Figures 8 and 9 illustrate the effects of correlation length on the variance. The
variance as a function of time is shown for two different correlation lengths (one short
ySshort and one long ySlong ). The figures show no significant difference between the two
cases, and we conclude that the correlation length has a minor impact on the variance
of the solution.

5 Conclusions and future work

We have studied how the solution to the advection–diffusion equation is affected
by imposing boundary data on a stochastically varying geometry. The problem was
transformed to the unit square resulting in a formulation with stochastically varying
wave speeds. Strong well-posedness and strong stability were proven.
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Fig. 4 The variance of the linear functional
∫∫

� u(x, y, t, θ) dx dy with respect to θ2 (frequency) for
different realizations of θ1 (amplitude)
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Fig. 5 The variance of the non-linear functional
∫∫

� u2(x, y, t, θ) dx dy with respect to θ2 (frequency)
for different realizations of θ1 (amplitude)

As an application, the two-dimensional heat transfer problem in incompressible
flow with a given velocity field was studied. One of the boundaries was assumed to
be stochastically varying. The geometry of the boundary was prescribed to have a
periodic behaviour with stochastic variations in both amplitude and frequency.
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Fig. 6 The variance of the linear functional
∫∫

� u(x, y, t, θ) dx dy with respect to θ1 (amplitude) for
different realizations of θ2 (frequency)
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Fig. 7 The variance of the non-linear functional
∫∫

� u2(x, y, t, θ) dx dy with respect to θ1 (amplitude)
for different realizations of θ2 (frequency)

The variances were computed for different fixed realizations of θ1 (when varying
θ2) and θ2 (when varying θ1) controlling the amplitude and frequency respectively. A
tentative conclusion is that an increased frequency of the randomness in the geometry
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Fig. 8 The variance of the linear functional
∫∫

� u(x, y, t, θ) dx dy with respect to θ1 (amplitude) for
different correlation lengths
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Fig. 9 The variance of the non-linear functional
∫∫

� u2(x, y, t, θ) dx dy with respect to θ1 (amplitude)
for different correlation lengths

leads to an increased variance in the solution. Also, as expected, the variance of the
solution grows as the amplitude of the randomness in the geometry increases. Finally,
computational results suggests that the correlation length of the geometry has no
significant impact on the variance of the solution.
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In the next paper we will extend the analysis using polynomial chaos combined
with stochastic Galerkin projection to incompletely parabolic systems, including cal-
culations using the Navier–Stokes equations.
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Appendix A: Transformation

Using the product rule (2.2) becomes

Jut + [J (ūξx + v̄ξy)u]ξ + [J (ūηx + v̄ηy)u]η + J F

−[J ūξ ξx + J ūηηx + J v̄ξ ξy + J v̄ηηy]u
−[ū((Jξx )ξ + (Jηx )η) + v̄((Jξy)ξ + (Jηy)η)]u
= [J ((εux )ξx + (εuy)ξy)]ξ + [J ((εux )ηx + (εuy)ηy)]η
−[(Jξx )ξ + (Jηx )η]εux − [(Jξy)ξ + (Jηy)η]εuy . (A.1)

Weuse theGeometricConservationLaw (GCL) ((Jξx )ξ+(Jηx )η = 0 and (Jξy)ξ+
(Jηy)η = 0, see [7] for more details) and note that ūx = J ūξ ξx + J ūηηx and
v̄y = J v̄ξ ξy + J v̄ηηy in (A.1), resulting in

Jut + [J (ūξx + v̄ξy)u]ξ + [J (ūηx + v̄ηy)u]η + J F

= [J ((εux )ξx + (εuy)ξy)]ξ + [J ((εux )ηx + (εuy)ηy)]η
+[ūx + v̄y]u. (A.2)

Finally, the divergence relation ūx + v̄y = 0 is utilized to (A.2).

Appendix B: Boundary conditions for the case ã = b̃ = 0

By considering (2.7) with ã = b̃ = 0 we obtain

d
dt ‖u‖2J + 2DI = −

∫ 1

0

[
u
f̃

]T [
0 −1

−1 0

] [
u
f̃

] ∣∣∣∣
ξ=1

ξ=0
dη

−
∫ 1

0

[
u
g̃

]T [
0 −1

−1 0

] [
u
g̃

] ∣∣∣∣
η=1

η=0
dξ.

(B.1)
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Due to symmetry, the matrices in (B.1) can be diagonalized as

d
dt ‖u‖2J + 2DI = − ∫ 1

0

[
u − f̃
u + f̃

]T [ 1
2 0
0 − 1

2

] [
u − f̃
u + f̃

] ∣∣∣∣
ξ=1

ξ=0
dη

− ∫ 1
0

[
u − g̃
u + g̃

]T [ 1
2 0
0 − 1

2

] [
u − g̃
u + g̃

] ∣∣∣∣
η=1

η=0
dξ.

(B.2)

To bound the RHS of (B.2) we impose the following boundary conditions

W−
E = H−

E u = gE W−
W = H−

Wu = gW W−
N = H−

N u = gN W−
S = H−

S u = gS
(B.3)

where
H−
E = 1 +

(
D̃11

∂
∂ξ

+ D̃12
∂
∂η

)
H−
W = 1 −

(
D̃11

∂
∂ξ

+ D̃12
∂
∂η

)
H−
N = 1 +

(
D̃21

∂
∂ξ

+ D̃22
∂
∂η

)
H−
S = 1 −

(
D̃21

∂
∂ξ

+ D̃22
∂
∂η

)
.

(B.4)

By imposing (B.4) in (B.1) weakly gives

d
dt ‖u‖2J + 2DI =

∫ 1

0
2u f̃

∣∣∣∣
ξ=1

ξ=0
dη +

∫ 1

0
2ug̃

∣∣∣∣
η=1

η=0
dξ

+ 2
∫ 1

0
u	E (W−

E − gE )

∣∣∣∣
ξ=1

dη

+ 2
∫ 1

0
u	W (W−

W − gW )

∣∣∣∣
ξ=0

dη

+ 2
∫ 1

0
u	N (W−

N − gN )

∣∣∣∣
η=1

dξ

+ 2
∫ 1

0
u	S(W

−
S − gS)

∣∣∣∣
η=0

dξ.

We expand the boundary terms W−
E,W,N ,S to obtain

d

dt
‖u‖2J + 2DI =

∫ 1

0
2u f̃

∣∣∣∣
ξ=1

ξ=0
dη +

∫ 1

0
2ug̃

∣∣∣∣
η=1

η=0
dξ

+ 2
∫ 1

0
u	E (u + f̃ − gE )

∣∣∣∣
ξ=1

dη

+ 2
∫ 1

0
u	W (u − f̃ − gW )

∣∣∣∣
ξ=0

dη
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+ 2
∫ 1

0
u	N (u + g̃ − gN )

∣∣∣∣
η=1

dξ

+ 2
∫ 1

0
u	S(u − g̃ − gS)

∣∣∣∣
η=0

dξ. (B.5)

In an attempt to cancel the indefinite terms in (B.5) we choose

	E = −1 	W = −1 	N = −1 	S = −1 (B.6)

The choices (B.6) in (B.5) gives

d

dt
‖u‖2J + 2DI = −

∫ 1

0
2

(
u − gE

2

)2 − g2E
2

∣∣∣∣
ξ=1

dη

−
∫ 1

0
2

(
u + gW

2

)2 − g2W
2

∣∣∣∣
ξ=0

dη

−
∫ 1

0
2

(
u − gN

2

)2 − g2N
2

∣∣∣∣
η=1

dξ

−
∫ 1

0
2

(
u + gS

2

)2 − g2S
2

∣∣∣∣
η=0

dξ. (B.7)

From (B.7), we note as in (2.14) that the solution is bounded by data.

Proposition B.1 Theproblem (2.3)with the boundary conditions (B.3)and thepenalty
coefficients in (B.6) is strongly well-posed.

Proof Time integration (from 0 to T ) of (B.7) results in

‖u(T )‖2J + 2
∫ T
0 DI dt −

∫ T

0

∫ 1

0
2

(
u − gE

2

)2 − g2E
2

∣∣∣∣
ξ=1

dη dt

−
∫ T

0

∫ 1

0
2

(
u + gW

2

)2 − g2W
2

∣∣∣∣
ξ=0

dη dt

−
∫ T

0

∫ 1

0
2

(
u − gN

2

)2 − g2N
2

∣∣∣∣
η=1

dξ dt

−
∫ T

0

∫ 1

0
2

(
u + gS

2

)2 − g2S
2

∣∣∣∣
η=0

dξ dt.

Similarly to Proposition 2.1, the solution is bounded by data.

Appendix C: Stability

Thematrix I2 is the identity matrix of size 2×2. Note that DI is positive semi-definite
and mimics its continuous counterpart in (2.5).
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By rewriting (3.5) we find

d

dt
‖U‖2J (Pξ ⊗Pη) + 2DI = UT( Ã + ΣW + ΣT

W )(E0N ⊗ Pη)U

− F̃T(Iξη + ΣW Ã−1)T(E0N ⊗ Pη)U

− UT(E0N ⊗ Pη)(Iξη + ΣW Ã−1)F̃

+ UT(E0N ⊗ Pη)(Iξη + 2ΣW )( Ãξ + B̃η)U

− UT(E0N ⊗ Pη)ΣWg

− gTΣT
W (E0N ⊗ Pη)U. (C.1)

As in the continuous case, see (2.15), we cancel the indefinite terms, by the choice

ΣW = − Ã. (C.2)

The use of (C.2) in equation (C.1) results in

d
dt ‖U‖2J (Pξ ⊗Pη) + 2DI = UT(E0N ⊗ Pη) Ãg + gT(E0N ⊗ Pη) ÃU

− UT Ã(E0N ⊗ Pη)U.
(C.3)

By adding and subtracting gT(E0N ⊗ Pη) Ãg in (C.3) one obtains

d
dt ‖U‖2J (Pξ ⊗Pη) + 2DI = − ((U − g)T Ã(E0N ⊗ Pη)(U − g)

− gT(E0N ⊗ Pη) Ãg)
(C.4)

and hence, the RHS of (3.6) is bounded by data with the initial assumption (as in the
continuous case) that Ã > 0. Note the resemblance between (C.4) and the related
continuous estimate in (2.14) considering only the west boundary.

When considering all the boundaries, the following choices

Σ E =
{

− Ã if ã < 0

−Iξη if ã > 0
ΣW =

{
− Ã if ã > 0

−Iξη if ã < 0

ΣN =
{

−B̃ if b̃ < 0

−Iξη if b̃ > 0
Σ S =

{
−B̃ if b̃ > 0

−Iξη if b̃ < 0

give us a discrete energy estimate.
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