
BIT Numer Math (2018) 58:133–162
https://doi.org/10.1007/s10543-017-0671-z

On restarting the tensor infinite Arnoldi method

Giampaolo Mele1 · Elias Jarlebring1

Received: 14 July 2016 / Accepted: 5 July 2017 / Published online: 13 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract An efficient and robust restart strategy is important for any Krylov-based
method for eigenvalue problems. The tensor infinite Arnoldi method (TIAR) is a
Krylov-basedmethod for solving nonlinear eigenvalue problems (NEPs). This method
can be interpreted as an Arnoldi method applied to a linear and infinite dimensional
eigenvalue problem where the Krylov basis consists of polynomials. We propose new
restart techniques for TIAR and analyze efficiency and robustness. More precisely, we
consider an extension of TIARwhich corresponds to generating theKrylov space using
not only polynomials, but also structured functions, which are sums of exponentials
and polynomials, while maintaining a memory efficient tensor representation. We
propose two restarting strategies, both derived from the specific structure of the infinite
dimensional Arnoldi factorization. One restarting strategy, whichwe call semi-explicit
TIAR restart, provides the possibility to carry out locking in a compact way. The
other strategy, which we call implicit TIAR restart, is based on the Krylov–Schur
restart method for the linear eigenvalue problem and preserves its robustness. Both
restarting strategies involve approximations of the tensor structured factorization in
order to reduce the complexity and the required memory resources. We bound the
error introduced by some of the approximations in the infinite dimensional Arnoldi
factorization showing that those approximations do not substantially influence the
robustness of the restart approach. We illustrate the effectiveness of the approaches by

Communicated by Daniel Kressner.

B Giampaolo Mele
gmele@kth.se

Elias Jarlebring
eliasj@kth.se

1 Department of Mathematics, Swedish e-science Research Center (SeRC), KTH Royal Institute of
Technology, Lindstedtsvägen 25, Stockholm, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-017-0671-z&domain=pdf
http://orcid.org/0000-0002-6990-445X

134 G. Mele, E. Jarlebring

applying them to solve large scaleNEPs that arise fromadelaydifferential equation and
a wave propagation problem. The advantages in comparison to other restart methods
are also illustrated.

Keywords Nonlinear eigenvalue problem · Restart · Tensor infinite Arnoldi · Krylov
subspace method · Krylov–Schur method

Mathematics Subject Classification 35P30 · 65H17 · 65F60 · 15A18 · 65F15

1 Introduction

We consider the nonlinear eigenvalue problem (NEP) defined as finding (λ, v) ∈
C × C

n\ {0} such that

M(λ)v = 0 (1)

where λ ∈ Ω ⊆ C,Ω is an open disk centered in the origin and M : Ω → C
n×n is

analytic. The NEP has received a considerable attention in literature. See the review
papers [26,38] and the problem collection [7].

There is a large number of methods available in a large amount of numerical
linear algebra literature for (1). There are specialized methods for solving differ-
ent classes of NEPs such as polynomial eigenvalue problems (PEPs) see [18,22,23]
and [2, Chapter 9], in particular quadratic eigenvalue problems (QEPs) [3,24,25,33]
and rational eigenvalue problems (REPs) [5,6,30,36]. There are also methods that
exploit the structure of the operator M(λ) like Hermitian structure [31,32] or low
rank of the matrix-coefficients [34]. Methods for solving a more general class of
NEP are also present in literature. There exist methods based on modification of
the Arnoldi method [37], which can be restarted for certain problems, Jacobi–
Davidson methods [8], Newton-like methods [9,16,28]. Finally, there is a class of
methods (to which the presented method belongs) based on Krylov methods and
rational Krylov methods that can be interpreted as either dynamically expanding an
approximation of the NEP or applying a method on an infinite dimensional operator
[11,14,35].

In principle, we do not assume any particular structure of the NEP except for the
analyticity and the computability of certain quantities associated with M(λ) (fur-
ther described later). This is similar to the infinite Arnoldi method (IAR) [14], which
is in the same line of reasoning as our approach. IAR is equivalent to the Arnoldi
method applied to a linear operator. More precisely, under the assumption that zero
is not an eigenvalue, the problem (1) can be reformulated as λB(λ)v = v, where
B(λ) = M(0)−1(M(0) − M(λ))/λ. This problem is equivalent to the linear and infi-
nite dimensional eigenvalue problem λBψ(θ) = ψ(θ), where ψ : C → C

n is
an analytic function [14, Theorem 3]. The operator B is linear, maps functions to
functions, and it is defined as

123

On restarting the tensor infinite Arnoldi method 135

Bψ(θ) :=
∫ θ

0
ψ(θ̂)d θ̂ +

∞∑
i=0

B(i)(0)

i ! ψ(i)(0). (2)

IAR has a particular structure such that it can be represented with a tensor and this
was the basis for the tensor infinite Arnoldi method (TIAR) in [13]. TIAR is equivalent
to IAR but computationally more attractive (in terms of memory and CPU-time) due
to a memory efficient representation of the basis matrix.

A problematic aspect of any algorithm based on the Arnoldi method is that, when
many iterations are performed, the computation time per iteration will eventually
become large. Moreover, finite arithmetic aspects may restrict the accuracy. For-
tunately, an appropriate restart of the algorithm can resolve these issues in many
situations. There exist two main classes of restarting strategies: explicit restart and
implicit restart. Most of the explicit restart techniques correspond to selecting a start-
ing vector that generates an Arnoldi factorization with the wanted Ritz values. The
implicit restart consists in computing a new Arnoldi factorization, without explicitly
computing a starting vector, with the wanted Ritz values. This process can be done
deflating the unwanted Ritz values as in, e.g., IRA [20] or extracting a proper subspace
of the Krylov space by using the Krylov–Schur restart approach [29]. For reasons of
numerical stability, the implicit restart is often considered more robust than explicit
restart. See [27] for further discussions about the restart of the Arnoldi method for the
linear eigenvalue problem.

In this work we propose two new restart techniques for TIAR:

– An implicit restart, which consists in an adaption of the Krylov–Schur restart,
– A semi-explicit restart, which consists in an explicit restart by imposing the struc-
ture on the converged locked Ritz pairs and on the starting function.

The derivation of our implicit restart procedure is based on Krylov–Schur restarting
in infinite dimensions. We improve the procedure in several ways. The structure of the
Arnoldi factorization allows us to perform approximations that reduce the complexity
and the memory requirements. We prove that the coefficients matrix, representing the
basis of the Kylov space, presents a fast decay in the singular values. This allows us
to effectively use a low rank approximation of this matrix. Moreover, we prove that
there is a fast decay in the coefficients of the polynomials representing the basis of
the Krylov space. Therefore, the high order coefficients of the Krylov basis can be
neglected if the power series coefficients of M(λ) decay to zero. We give explicit
bounds on the errors due to those approximations.

A semi-explicit restart for IAR was presented in [12]. We extend the procedure
to TIAR. The feature of imposing the structure on the converged Ritz values and
starting function is obtained by generating the Krylov space using a particular type
of structured functions, which are sums of polynomial and exponential functions. We
show that such functions can be included in the framework of TIAR. In particular we
carry out a memory efficient representation of the structured functions, similar to [13].

There exist other Arnoldi-like methods combined with a companion linearization
that use memory efficient representation of the Krylov basis matrix and that can be
restarted. There are, for instance, TOAR [17,39] and CORK [35], which are based on
the concept of compactArnoldi decompositions [21]. Similar to TIAR, the direct usage

123

136 G. Mele, E. Jarlebring

of the Krylov–Schur restart for these methods does not decrease the complexity unless
SVD-based approximations are used (which is indeed suggested in the implementation
of the methods). More precisely, the coefficients that represent the Krylov basis are
replaced with their low rank approximations. In contrast to those approaches, our
specific setting, in particular the infinite dimensional function formulation and the
representation of the basis with tensor structure functions, allows us to characterize
the impact of the approximations.

The relationship with CORK [35] can be seen as follows. A variation of a special
case of our approach (implicit restart without SVD-compression and without poly-
nomial degree reduction) has similarities with a special case of a variation of CORK
(single shift, with a particular companion linearization without SVD-compression).
Our approach is based on a derivation involving infinite dimensionalitywhich allows us
to derive theory for the truncation and it allows us to restart with infinite dimensional
objects. This strategy is effective since the invariant pairs are infinite dimensional
objects. In contrast to this, CORK is derived from reasoning concerning the NEP lin-
earization. This allows the usage of different types of companion linearizations, that
correspond to different approximations of the nonlinearities of M(λ), and leads to a
rational Krylov approach, i.e., several shifts can be used in one run.

The paper is organized as follows: in Sect. 2 we extend TIAR to tensor structured
functions. In Sect. 3 we present a derivation of the Krylov–Schur type restarting in
an abstract and infinite dimensional setting. Section 4 contains the derivation of a
semi-explicit restart for TIAR. In Sect. 5 we carry out the adaption of Krylov–Schur
restart for TIAR. We analyze the complexity of the proposed methods in Sect. 6.
Finally, in Sect. 7 we show the effectiveness of the restarting strategies with numerical
simulations to large and sparse NEPs.

We denote by a:,:,: a three-dimensional tensor and by ai,:,:, a:, j,: and a:,:,� the slices
of the tensorwith respect to the first, second and third dimension. The vector z j denotes
the j–th column of the matrix Z and e j the j–th canonical unit vector. The matrix
Im,p denotes the matrix obtained by extracting the fist m rows and p columns of a
larger square identity matrix. The matrix Hk denotes the square matrix obtained by
removing the last row from the matrix Hk ∈ C

(k+1)×k .

2 Tensor structured functions and TIAR factorizations

Our main algorithms are derived using particular types of functions. More pre-
cisely, we consider functions that can be expressed as ψ(θ) = q(θ) + Y exp(Sθ)c
where q : C → C

n is a polynomial, Y ∈ C
n×p, S ∈ C

p×p, c ∈ C
p and

exp(Sθ) denotes the matrix exponential. Such functions were also used in [12]. We
now introduce a new memory-efficient representation of such functions involving
tensors.

Definition 1 (Tensor structured function) The vector-valued function ψ : C → C
n

is a tensor structured function if there exist Y,W ∈ C
n×p, ā ∈ C

d×r , b̄ ∈ C
d×p, c̄ ∈

C
p, S ∈ C

p×p and Z ∈ C
n×r where [Z , W] has orthonormal columns and span(Y) =

span(W), such that

123

On restarting the tensor infinite Arnoldi method 137

ψ(θ) =Pd−1(θ)

(
r∑

�=1

ā:,� ⊗ z� +
p∑

�=1

b̄:,� ⊗ w�

)
+ Y expd−1(θ S)c̄ (3)

where

Pd−1(θ) := (1, θ, . . . , θd−1) ⊗ In (4)

and expd−1(θ S) := ∑∞
i=d θ i Si/ i ! is the remainder of the Taylor series expansion of

the exponential function.

The matrix-valued function Ψk : C → C
n×k is a tensor structured function if it can

be expressed as Ψk(θ) = (ψ1(θ), . . . , ψk(θ)), where each ψi is a tensor structured
function. We denote the i–th column ofΨk byψi . The structure induced by (3) is now,
in a compact form

Ψk(θ) =Pd−1(θ)

(
r∑

�=1

a:,:,� ⊗ z� +
p∑

�=1

b:,:,� ⊗ w�

)
+ Y expd−1(θ S)C (5)

where a ∈ C
d×k×r , b ∈ C

d×k×p and C ∈ C
p×k . In particular, Ψk(θ) is represented

by the matrices (Z ,W,Y, S) and the coefficients (a, b,C). We say that Ψk(θ) is
orthogonal if the columns are orthonormal, i.e., 〈ψi , ψ j 〉= δi, j for i, j = 1, . . . , k.
We use the scalar product consistent with the other papers about the infinite Arnoldi
method [12,14], i.e., if ψ(θ) = ∑∞

i=0 θ i xi and ϕ(θ) = ∑∞
i=0 θ i yi , then

〈ψ, ϕ〉 =
∞∑
i=0

yHi xi .

The computation of this scalar product and the induced norm for the tensor structured
functions (3) is further characterized in this section. We let ‖F‖ denote the induced
norm of F : C → C

n×p. Notice that the polynomials are also tensor structured func-
tions,more precisely they are represented as (5)withC = 0. In particular, by definition
of (4), we have the following relation between the induced norm of a polynomial and
the Frobenius norm if its coefficients

‖Pd−1W‖ = ‖W‖F (6)

for any W ∈ C
nd×p.

Similar to many restart strategies for linear eigenvalue problems, our approach is
based on computation, representation and manipulation of an Arnoldi-type factoriza-
tion. For our infinite dimensional operator, the analogous Arnoldi-type factorization
is defined as follows.

Definition 2 (TIAR factorization) Let B be the operator defined in (2). Let Ψk+1 :
C → C

n×(k+1) be a tensor structured function with orthonormal columns and let

123

138 G. Mele, E. Jarlebring

Hk ∈ C
(k+1)×k be a Hessenberg matrix with positive elements in the sub-diagonal.

The pair (Ψk+1, Hk) is a TIAR factorization of length k if

BΨk(θ) = Ψk+1(θ)Hk . (7)

2.1 Action of B on tensor structured functions

The TIAR factorization in Definition 2 involves the action of the operatorB. In order
to characterize the action of the operatorB on tensor structured functions (3), we need
the function Md : Cn×p × C

p×p → C
n×p, defined in [12] as

Md(Y, S) :=
∞∑

i=d+1

MiY Si

i ! , (8)

where we introduced the notation Mi := M (i)(0).

Theorem 3 (Action ofB) Let (Z ,W,Y, S) ∈ C
n×r ×C

n×p ×C
n×p ×C

p×p be the
matrices and (ā, b̄, c̄) ∈ C

d×r × C
d×p × C

p be the coefficients that represent ψ(θ)

given in (3). Suppose λ(S) ⊂ Ω\ {0}, let c̃ := S−1c̄ and

z̃ := −M−1
0

[
d∑

i=1

Mi

(
r∑

�=1

āi,�
i

z� +
p∑

�=1

b̄i,�
i

w�

)
+ Md(Y, S)c̃

]
. (9)

Under the assumption that

z̃ /∈ span(z1, . . . , zr , w1, . . . , wp), (10)

let zr+1 be the normalized result of the Gram–Schmidt orthogonalization of z̃ against
z1, . . . , zr , w1, . . . , wp and ã1,� and b̃1,� be the orthonormalization coefficients, i.e.,

z̃ =
r+1∑
�=1

ã1,�z� +
p∑

�=1

b̃1,�w�. (11)

Then, the action of B on the tensor structured function defined by (3) is

Bψ(θ) = Pd(θ)

(
r+1∑
�=1

ã:,� ⊗ z� +
p∑

�=1

b̃:,� ⊗ w�

)
+ Y expd(θ S)c̃ (12)

where ã ∈ C
(d+1)×(r+1) and b̃ ∈ C

(d+1)×p are defined as follows

ãi,r+1 := 0, i = 2, . . . , d + 1, (13a)

ãi+1,� := āi,�/ i, i = 1, . . . , d ; � = 1, . . . , r, (13b)

b̃i+1,� := b̄i,�/ i, i = 1, . . . , d ; � = 1, . . . , p. (13c)

123

On restarting the tensor infinite Arnoldi method 139

Proof With the notation

xi :=
r∑

�=1

āi+1,�z� +
p∑

�=1

b̄i+1,�w�, i = 0, . . . , d − 1, (14)

and x := vec(x0, . . . , xd−1) ∈ C
dn, ψ(θ) defined in (3) can be expressed as

ψ(θ) = Pd−1(θ)x + Y expd−1(θ S)c̄. (15)

By invoking [12, theorem 4.2] and using (14), we can express the action of the operator
as

Bψ(θ) = Pd(θ)x+ + Y expd(θ S)c̃ (16)

where x+ := vec(x+,0, . . . , x+,d) ∈ C
(d+1)n with

x+,i :=
r∑

�=1

āi,�
i

z� +
p∑

�=1

b̄i,�
i

w�, i = 1, . . . , d, x+,0 := −M−1
0

(
d∑

i=1

Mi x+,i + Md (Y, S)c̃

)
.

Substituting x+,i into x+,0 we obtain x+,0 = z̃ given in (9). Using (13) and (11) we
can express x+ in terms of ã and b̃ and we conclude by substituting this expression
for x+ in (16).

Remark 4 The assumption (10) can only be satisfied if r + p ≤ n. This is the generic
case that we consider in this paper. Our focus is on large–scale NEPs and, in Sect. 5.1,
we introduce approximations that avoid r from being large. The hypothesis λ(S) ⊆ Ω

is necessary in order to define Md(Y, S) that is used to compute z̃ in Eq. (9).

2.2 Orthogonality

The tensor structured functions in the TIAR factorization (Definition 2) are orthonor-
mal. In order to impose the orthogonality in our algorithms, we now present a theory
which characterizes the orthonormality of tensor structured functions in terms of their
coefficients. In particular, we derive the theory necessary to carry out the Gram–
Schmidt orthogonalization. Since most of the orthogonalization procedures involve
linear combinations of vectors, we start with the observation that linear combinations
of tensor structured functions carry over directly to the coefficients.

Observation 5 (Linearity with respect to coefficients) Given the tensor structured
function Ψk(θ) represented by the matrices (Z ,W,Y, S) ∈ C

n×r × C
n×p × C

n×p ×
C

p×p with coefficients (a, b,C) ∈ C
d×k×r ×C

d×k×p ×C
p×k and Ψ̃k̃(θ) represented

by the same matrices but with coefficients (ã, b̃, C̃) ∈ C
d×k̃×r ×C

d×k̃×p ×C
p×k̃ . Let

M ∈ C
k×t and N ∈ C

k̃×t , then the function Ψ̂k̂(θ) := Ψk(θ)M + Ψ̃k̃(θ)N is also a

123

140 G. Mele, E. Jarlebring

tensor structured function represented by the same matrices and coefficients (â, b̂, Ĉ),
where for � = 1, . . . , r and �′ = 1, . . . , p

â:,:,� = a:,:,�M + ã:,:,�N , b̂:,:,�′ = b:,:,�′M + b̃:,:,�′N , Ĉ = CM + ˜CN .

The above relation can be expressed also in terms of the unfolding in the first dimen-
sion, in particular for i = 1, . . . , d it holds

âTi,:,: = aTi,:,:M + ãTi,:,:N , b̂Ti,:,: = bTi,:,:M + b̃Ti,:,:N .

Theorem 6 (Gram–Schmidt orthogonalization) Let (Z ,W,Y, S) ∈ C
n×r × C

n×p ×
C
n×p × C

p×p be the matrices and (ā, b̄, c̄) ∈ C
d×r × C

d×p × C
p and (a, b, c) ∈

C
d×k×r × C

d×k×p × C
p×k be the coefficients that represent ψ(θ) given in (3) and

Ψk(θ) given in (5). Assume that Ψk(θ) is orthogonal. Let

h =
r∑

�=1

(a:,:,�)H ā:,� +
p∑

�=1

(b:,:,�)H b̄:,� +
∞∑
i=d

CH (Si)HY HY Si

(i !)2 c̄. (17)

The normalized result of the Gram–Schmidt orthogonalization of ψ(θ) against the
columns of Ψk(θ) is

ψ⊥(θ) = Pd−1(θ)

(
r∑

�=1

a⊥:,� ⊗ z� +
p∑

�=1

b⊥:,� ⊗ w�

)
+ Y expd−1(θ S)c⊥

where

c⊥ = c̄ − Ch, (18a)

a⊥:,� = ā:,� − a:,:,�h, � = 1, . . . , r, (18b)

b⊥:,� = b̄:,� − b:,:,�h, � = 1, . . . , p. (18c)

The vector h contains the orthogonalization coefficients, i.e., h j = 〈ψ,ψ j 〉. Moreover

‖ψ⊥‖ := β =
√√√√‖a⊥‖2F + ‖b⊥‖2F +

∞∑
i=d

(
c⊥)H (

Si
)H

Y HY Si c⊥
(i !)2 . (19)

Proof Let us define h j := 〈ψ,ψ j 〉 for j = 1, . . . , k. The orthogonal complement,
computed with the Gram–Schmidt process, is ψ⊥(θ) = ψ(θ) − Ψk(θ)h. Using the
Observation 5 we obtain directly (18).

We express ψ(θ) as (15) and, the columns of Ψk as

ψ j (θ) = Pd−1(θ)x (j) + Y expd−1(θ S)c j (20)

123

On restarting the tensor infinite Arnoldi method 141

where x (j) := vec(x (j)
0 , . . . , x (j)

d−1) ∈ C
dn , with

x (j)
i :=

r∑
�=1

ai+1, j,�z� +
p∑

�=1

bi+1, j,�w�, i = 0, . . . , d − 1. (21)

By applying [12, Equation (4.32)] we obtain

h j =
d−1∑
i=0

(x (j)
i)H xi + cHj

∞∑
i=d

(Si)HY HY Si

(i !)2 c̄, j = 1, . . . , k. (22)

We now substitute (14) and (21) in (22) and, by using the orthonormality of the vectors
z1, . . . , zr , w1, . . . , wp, we find that

h j =
r∑

�=1

(a:, j,�)H ā:,� +
p∑

�=1

(b:, j,�)H b̄:,� +
∞∑
i=d

cHj
(Si)HY HY Si

(i !)2 c̄, j = 1, . . . , k.

Those are the elements of the right-hand side of (17). Using that ‖ψ⊥‖2 = 〈ψ⊥, ψ⊥〉,
and repeating the same reasoning, we have

‖ψ⊥‖2 =
r∑

�=1

(a⊥:,�)Ha⊥:,� +
p∑

�=1

(b⊥:,�)Hb⊥:,� +
∞∑
i=d

(
c⊥)H (

Si
)H

Y HY Si c⊥

(i !)2

which proves (19).

3 Restarting for TIAR in an abstract setting

3.1 A TIAR expansion algorithm in finite dimension

One algorithmic component common in many restart procedures is the expansion of
an Arnoldi-type factorization. The standard way to expandArnoldi-type factorizations
(as, e.g., described in [29, Sect. 3]) requires the computation of the action of the opera-
tor/matrix and orthogonalization. We now show how we can carry out an expansion of
the infinite dimensional TIAR factorization (7) by only using operations on matrices
and vectors (of finite dimension).

In the previous section we characterized the action of the operator B and
orthogonalization of tensor structured functions. Notice that we have derived the
orthogonalization procedure only for tensor structured functions that have the same
degree in the polynomial part. The expansion of a TIAR factorization (Ψk, Hk−1),
involves the orthogonalization of the tensor structured functionBψk (computed using
the Theorem 3) against the columns of Ψk . If the degree of Ψk is d − 1 then the degree

123

142 G. Mele, E. Jarlebring

ofBψk is d. Therefore, in order to perform the orthogonalization, we have to represent
Ψk as a tensor structured function with degree d. Starting from (5) we rewrite Ψk as

Ψk(θ) = Pd−1(θ)

(
r∑

�=1

a:,:,� ⊗ z� +
p∑

�=1

b:,:,� ⊗ w�

)
+ Y SdC

d! θd + Y expd(θ S)C.

(23)

We define

E := WHY SdC

d! ,
ad+1, j,� := 0 � = 1, . . . , r + 1,
bd+1, j,� := e�, j � = 1, . . . , p,

(24)

for j = 1, . . . , k. Since span(W) = span(Y) and, since W is orthogonal, we have
that Y = WWHY . Hence, using this relation and (24), the function Ψk in (23) can be
expressed as

Ψk(θ) = Pd(θ)

(
r+1∑
�=1

a:,:,� ⊗ z� +
p∑

�=1

b:,:,� ⊗ w�

)
+ Y expd(θ S)C.

These results can be directly combined to expand a TIAR factorization. The result-
ing algorithm is summarized in Algorithm 1. The action of the operatorB, described
in Theorem 3, is expressed in Steps 2–4. Step 5 corresponds to increasing the degree of
the TIAR factorization as described in (23) and (24). The orthogonalization of the new
function, carried out by Theorem 6, is expressed in Steps 6–8 and the orthonormal-
ization coefficients are then stored in the Hessenberg matrix Hk̃ . We can truncate the
sum in (8), (19) and (17) analogously to [12]. Due to the representation ofΨk as tensor
structured function, the expansion with one column corresponds to an expansion of
all the coefficients representing Ψk . This expansion is visualized in Fig. 1.

3.2 The Krylov–Schur decomposition for TIAR factorizations

We briefly recall the reasoning for the Krylov–Schur type restarting [29]. This pro-
cedure can be carried out with operations on matrices and vectors of finite size. Let
(Ψm+1, Hm) be a TIAR factorization. Let P ∈ C

m×m be such that PH Hm P is trian-
gular (ordered Schur factorization). Then,

BΨ̂m = Ψ̂m+1

⎛
⎜⎜⎝
R1,1 R1,2 R1,3

R2,2 R2,3
R3,3

aH
1 aH

2 aH
3

⎞
⎟⎟⎠ , (25)

where Ψ̂m+1 = [
Ψm P, ψm+1

]
. The matrix P is selected in a way that the matrix

R1,1 ∈ C
p�×p� contains the converged Ritz values, the matrix R2,2 ∈ C

(p−p�)×(p−p�)

123

On restarting the tensor infinite Arnoldi method 143

Algorithm 1: Expand TIAR factorization (tensor structured functions)
input : A TIAR factorization (Ψk+1, Hk) represented by

(Z ,W, Y, S) ∈ C
n×r × C

n×p × C
n×p × C

p×p and
(a, b,C) ∈ C

d×(k+1)×r × C
d×(k+1)×p × C

p×(k+1) with S invertible and the final length
m.

output: A TIAR factorization (Ψm+1, Hm) represented by
(Z ,W, Y, S) ∈ C

n×r̃ × C
n×p × C

n×p × C
p×p and

(a, b,C) ∈ C
d̃×(m+1)×r̃ × C

d̃×(m+1)×p × C
p×(m+1) where r̃ = r + m − k and

d̃ = d + m − k.

1 Set r̃ = r , d̃ = d

for k̃ = k̄ + 1, . . . ,m + 1 do
2 Compute z̃ using (9), where ā = a:,k̃,:, b̄ = b:,k̃,: and c̄ = ck̃
3 Compute zr̃+1 as in Theorem 3 and increase r̃ = r̃ + 1

4 Set ã, b̃ as in (11) and (13) and c̃ = S−1c̄

5 Compute E and expand the tensors a and b as (24) and increase d̃ = d̃ + 1

6 Compute h using (17), where ā = ã, b̄ = b̃ and c̄ = c̃

7 Compute a⊥, b⊥, c⊥ using (18) and β using (19) and extend

Hk̃ =
(
Hk̃−1 h
0 β

)
∈ C

(k̃+1)×k̃

8 Expand ck̃+1 := c⊥/β and a:,k̃+1,: := a⊥/β and b:,k̃+1,: := b⊥/β.

end

contains the wanted Ritz values and the matrix R3,3 ∈ C
(m−p)×(m−p) contains the

Ritz values that we want to purge. From (25) we find that

BΨ̃p = Ψ̃p+1

⎛
⎝R1,1 R1,2

R2,2

aH
1 aH

2

⎞
⎠ , (26)

where Ψ̃p+1 := [Ψ̂m Im,p, ψm+1] = [Ψ̂p, ψm+1]. By using a product of Householder
reflectors, we compute a matrix Q ∈ C

p×p such that

BΨ̄p = Ψ̄p+1

⎛
⎝R1,1 F

H
aH
1 βeHp−p�

⎞
⎠ , (27)

where Ψ̄p+1 = [Ψ̃pQ, ψm+1] and H has an upper Hessenberg form. Since we want
to lock the Ritz values in the matrix R1,1, we replace in (27) the vector a1 with zeros
introducing an error O(‖a1‖). With this approximation, (27) is the wanted TIAR
factorization of length p.

Observation 7 In the TIAR factorization (27), (Ψ̄p�
, R1,1) is an approximation of an

invariant pair, i.e., BΨ̄p�
= Ψ̄p�

R1,1. Moreover (Ψ̄p�
(0), R−1

1,1) is an approximation
of an invariant pair of the original NEP in the sense of [16, Definition 1], see [12,
Theorem 2.2].

123

144 G. Mele, E. Jarlebring

C = c̃=
c
β

=

a=

ã=
a
β

=

b=

b̃= E =
b
β

=

Z = zr+1 =

H = h=

β =

TIAR factorization Step: 1–4 Step: 5 Step: 6–8

⊥

⊥

⊥

Fig. 1 Graphical illustration of the expansion of the tensor structured function that represents the TIAR
factorization in Algorithm 1

3.3 Two structured restarting approaches

The standard restart approach for TIAR using Krylov–Schur type restarting, as
described in the previous section, involves expansions and manipulations of the TIAR
factorization. Due to the linearity of tensor structured functions with respect to the
coefficients, described in Observation 5, the manipulations for Ψm leading to Ψp can
be directly carried out on the coefficients representing Ψm . Unfortunately, due to the
implicit representation of Ψm , the memory requirements are not substantially reduced

123

On restarting the tensor infinite Arnoldi method 145

since the basis matrix Z ∈ C
n×r is not modified in the manipulations. The size of the

basis matrix Z is the same before and after the restart.
We propose two ways of further exploiting the structure of the functions in order

to avoid a dramatic increase in the required memory resources.

– Semi-explicit restart (Sect. 4): An invariant pair can be completely represented by
exponentials and therefore it does not contribute to the memory requirement for
Z . The fact that invariant pairs are exponentials was exploited in the restart in [12].
We show how the ideas in [12] can be carried over to tensor structured functions.
More precisely, the adaption of [12] involves restarting the iteration with a locked
pair, i.e., only the first p� columns of (27), and a function f constructed in a
particular way. The approach is outlined in Algorithm 2 with details specified in
Sect. 4.

– Implicit restart (Sect. 5): By only representing polynomials, we show that the TIAR
factorization has a particular structure such that it can be accurately approximated.
This allows us to carry out a full implicit restart, and subsequently approximate
the TIAR factorization reducing the size of the matrix Z . The adaption is given in
Algorithm 3. The approximation of the TIAR factorization in Step 6 is specified
in Algorithm 4 and derived in Sect. 5, including an error analysis.

Algorithm 2: Semi-explicit restarting for TIAR in operator setting
input : A normalized tensor structured function ψ represented by

(Z ,W, Y, S) ∈ C
n×r × C

n×p × C
n×p × C

p×p with S invertible,
(a, b,C) ∈ C

d×1×r ×C
d×1×p ×C

p and the maximum length m of the TIAR factorization
and number of wanted eigenvalues pmax

output: pmax eigenvalues of B
1 Set Ψ (1) = [ψ], H (1) empty matrix of size 1 × 0 and j = 1

while p� ≤ pmax do
2 Expand the TIAR factorization (Ψ (j), H (j)) to length m using Algorithm 1
3 Compute the p� converged Ritz pairs and P , Ri, j and ai given in (25)
4 Compute the matrices Q, F and H given in (27)

5 Set S :=
(
R1,1 F

H

)−1
and compute Ŷ , as in (28), where Ψm = Ψ (j)

6 Compute and impose the structure to the invariant pair (Ψ̄ , R1,1) by setting C = Ip,p�

and Ψ̄ = Ŷ exp(Sθ)C
7 Set f = Ŷ exp(θ S)ep�+1 and compute h using (17), where ā = b̄ = 0, and c̄ = ep�+1

8 Set c⊥ using (18a) and f ⊥ = Ŷ exp(θ S)c⊥
9 Compute β using (19), where a⊥ = b⊥ = 0

10 Set C = [C, c⊥/β], Ψ (j+1) = [Ψ̄ , f ⊥/β] = Ŷ exp(θ S)C and H (j+1) =
(
R1,1
0

)
and

j = j + 1
end

11 Return the eigenvalues of R1,1

123

146 G. Mele, E. Jarlebring

Algorithm 3: Implicit restart for TIAR in operator setting
input : A normalized tensor structured function ψ represented by

(Z , 0, 0, I) ∈ C
n×r × C

n×p × C
n×p × C

p×p and (a, 0, 0) ∈ C
d×1×r × C

d×1×p × C
p

and the maximum length m of the TIAR factorization and number of wanted eigenvalues
pmax

output: pmax eigenvalues of B.

1 Set Ψ (1) = [ψ], H (1) empty matrix of size 1 × 0 and j = 1
while p� ≤ pmax do

2 Expand the TIAR factorization (Ψ (j), H (j)) to length m using Algorithm 1
3 Compute the p� converged Ritz pairs and P , Ri, j and ai given in (25)
4 Compute the matrices Q, F , H and β given in (27)

5 Set Ψ (j+1) = Ψ (j)[Im+1,m P Im,pQ , em+1], H (j+1) =
⎛
⎝R1,1 F

H
βep−p�

⎞
⎠

6 Approximate the TIAR factorization, Algorithm 4
end

7 Return the eigenvalues of R1,1

4 Tensor structure exploitation for the semi-explicit restart

The IAR restart approach in [12] is based on representing functions as sums of expo-
nentials and polynomials. An attractive feature of that approach is that the invariant
pairs can be exactly represented and locking can be efficiently incorporated. Due to
the explicit storage of polynomial coefficients, the approach still requires considerable
memory. We here show that, by representing the functions implicitly as a tensor struc-
tured functions (3), we can maintain all the advantages but improve performance (both
in memory and CPU-time). This construction is equivalent to [12], but more efficient.

The expansion of the TIAR factorization with tensor structured functions (as
described in Algorithm 1), combined with the locking procedure (as described in
Sect. 3.2), and imposing the structure to the invariant pair as in [12], results in Algo-
rithm2. Steps 3–10 follow the procedure described in [12] adapted for tensor structured
functions. In particular Steps 3– 6 consist in extracting and imposing the structure on
the invariant pair (Ψ̄ , R1,1). In Steps 7–9 a new starting function f is selected and
orthogonalized with respect to Ψ̄ and in Step 10 the new TIAR factorization is defined.

The computation of the invariant pair (Ψ̄ , R1,1) and of the new starting function
f involves the matrix Ŷ [12, Equation (5.11)]. This matrix can be extracted from
the tensor structured representation as follows. By using Observation 5 with M :=
P Im,p Q, we obtain

Ŷ :=Ψm(0)M= Pd−1(0)

(
r∑

�=1

a:,:,�M ⊗ z�+
p∑

�=1

b:,:,�M ⊗ w�

)
+Y expd−1(0)CM

(28a)

=
r∑

�=1

a1,:,�M ⊗ z� +
p∑

�=1

b1,:,�M ⊗ w�. (28b)

123

On restarting the tensor infinite Arnoldi method 147

5 Tensor structure exploitation for the implicit polynomial restart

In contrast to the procedure in Sect. 4, where the main idea was to do locking with
exponentials and restart with a factorization of length p�, we now propose a fully
implicit procedure involving a factorization of length p. In this setting we use C = 0,
i.e., we only represent polynomials with the tensor structured functions. This allows
us to derive theory for the structure of the coefficient matrix, which shows how to
approximate the TIAR factorization. This procedure is summarized in Algorithm 3.

The approximation in Step 6 is done in order to reduce the growth in memory
requirements for the representation. The approximation technique is derived in the
following subsections and summarized in Algorithm 4.

Our approximation approach is based on an approximationwith a truncated singular
value decomposition and a degree reduction. A compression with a truncated singular
value decomposition was also made for the compact representations in CORK [35]
and TOAR [17]. Our specific setting allows us to prove bounds on the error introduced
by the approximations (Sects. 5.1, 5.2). We also show the effectiveness by proving a
bound on the decay of the singular values (Sect. 5.3).

Similar to the semi-explicit restart, the approximations that we use in the implicit
restart are based on the fact that the invariant pairs ofB are represented by exponential
functions. In particular, if (Ψ,Λ−1) is an invariant pair ofB, thenΨ (θ) = Y exp(Λθ),
see [12, Theorem 2.2]. Hence, Ψ expressed in a monomial basis, corresponds to
a Taylor series expansion with coefficients having a fast decay. In this section we
illustrate that, under certain hypothesis, the functions generated by Algorithm 1 and
Algorithm 3 have similar decay properties. We introduce a definition that describes
the decay in the magnitude of the coefficients of the power series, represented by the
tensor structured function Ψk (5), in terms of the representing polynomial coefficients
a and b, i.e.,

C(Ψk) := min

{
β ∈ R : ‖ai,:,:‖F + ‖bi,:,:‖F ≤ β

(i − 1)! for i = 1, . . . , d

}
. (29)

Observe that, if (Ψ,Λ−1) is an invariant pair, due to the decay of the power series
coefficients of the exponential function, we have

C(Ψ) = ‖Λ‖F . (30)

Theorem 8 Letψ bea tensor structured function (3) such that c̄ = 0and‖ψ‖ = 1. Let
Z ∈ C

n×r be a matrix and a ∈ C
(d+k+1)×(k+1)×r be a set of coefficients that represent

the tensor structured function Ψk+1 and Hk ∈ C
(k+1)×k be such that (Ψk+1, Hk) is a

TIAR factorization obtained by using ψ as a starting function. Then

C(Ψk+1) ≤
√
d − 1

κ(Lk)
‖Lk‖FC(ψ) + κ(Lk), (31)

where Lk := [v,Ck+1v, . . . ,Ck+1
k+1v],Ck+1 is defined in [14, Eq. 29] and v =∑r

�=1 ā:,� ⊗ z� and κ is the condition number with respect to the Frobenius norm.

123

148 G. Mele, E. Jarlebring

Proof Let
k+1(θ) = (
ψ(θ),Bψ(θ), . . . ,Bkψ(θ)

)
. By applying Theorem 3, we

obtain

k+1(θ) = Pk(θ)

(
r∑

�=1

â:,:,� ⊗ z�

)

where, for � = 1, . . . , r we have â:,:,� = DT� ∈ C
(d+k+1)×(k+1) with D ∈ C

d×d

being a diagonal matrix with elements Di,i = 1/(i − 1)! and T� ∈ C
(d+k+1)×(k+1)

is a Toeplitz matrix with leading column [ā1,�, 1!ā2,�, . . . , (d − 1)!ād,�, 0, . . . , 0] and
with leading row [ā1,�, â1,2,�, . . . , â1,k+1,�]. The structure of â:,:,� implies that

‖âi,:,�‖2F = 1

(i − 1)!2

⎛
⎝min(d,i)∑

t=2

ā2t,�(t − 1)!2 +
k−i+2∑
t=1

â21,t,�

⎞
⎠

≤ (d − 1)C(ψ)2 + ‖â1,:,�‖2F
(i − 1)!2

and by using the properties of the Frobenius norm we have

‖âi,:,:‖2F ≤ (d − 1)C(ψ)2 + ‖â1,:,:‖2F
(i − 1)!2 . (32)

Since (Ψk+1, Hk) forms a TIAR factorization, it holds span (
k+1) = span (Ψk+1).
Therefore it exists an invertible matrix R ∈ C

(k+1)×(k+1) such that
k+1 = Ψk+1R.
By using Observation 5 and the sub-multiplicativity of the Frobenius norm we have
that for i = 1, . . . , k + 1

‖ai,:,:‖F = ‖âi,:,:R−1‖F ≤ ‖âi,:,:‖F‖R−1‖F . (33)

By combining (33), (32) and sub-additivity of the square root we obtain

‖ai,:,:‖F ≤
√

(d − 1)C(ψ)2 + ‖â1,:,:‖2F
(i − 1)! ‖R−1‖F

≤
√
d − 1C(ψ)‖R−1‖F + ‖a1,:,:‖Fκ(R)

(i − 1)! . (34)

Since Ψk is orthonormal and (6) we have that ‖a1,:,:‖F ≤ 1.
Let L†

k denote the pseudo-inverse of Lk . In order to show (31), we now show

that ‖R−1‖F = ‖L†
k‖F and κ(R) = κ(Lk) where κ(Lk) = ‖Lk‖F‖L†

k‖F . Due to
the equivalence of TIAR and IAR and the companion matrix interpretation of IAR
[14, theorem 6], we have that TIAR is equivalent to using the Arnoldi method on
the matrix Ck+1 with starting vector v = ∑r

�=1 ā:,�z�. More precisely, the relation

k+1 = Ψk+1R can be written in terms of vectors as Lk+1 = Vk+1R where the first
column of Vk+1 and Lk+1 is v = ∑r

�=1 ā:,� ⊗ z� and Lk = [v,Ck+1v, . . . ,Ck+1
k+1v].

123

On restarting the tensor infinite Arnoldi method 149

By using the orthogonality of Vk+1 we conclude that that ‖R−1‖F = ‖L†
k‖F and

κ(R) = κ(Lk).

The approximations that we introduce in the next sections (required in Step 6 of
Algorithm 3) are based on the assumption that the tensor structured functions Ψ (j)

are such that the decay constant C(Ψ (j)) is small. Theorem 8 shows that this constant
remains small after the TIAR expansion in Step 2 if κ(Lk) is not large. However, the
condition number of the Krylov matrix Lk can be large, see [4]. This does not neces-
sarily imply that the decay constant is large. Notice that if (Ψk, Hk) is an invariant pair,
Lk has linearly dependent columns and κ(Lk) is infinite. Analogously, if (Ψk, Hk) is
(in this sense) close to an invariant pair, we expect κ(Lk) to be large. Hence, in these
situations, the right-hand side of (31) is expected to be large. However, the decay con-
stant is not expected to be large, since the decay constant for an invariant pair is given
by (30). Note that the decay is also preserved in the operations associated with the
restart. After the Ritz-value selection (Step 3–4) the new TIAR factorization is com-
puted in Step 5. Since Ψ (j+1) is obtained through a unitary transformation from Ψ (j),
by using the properties of the Frobenius norm, we get C(Ψ (j+1)) ≤ √

p + 1C(Ψ (j)).

5.1 Approximation by SVD compression

Given a TIAR factorization with basis function Ψk we now show (in the following
theorem) how we can approximate the basis function with less memory, by using a
thinner basis matrix Z ∈ C

n×r̃ where r̃ should be selected as small as possible. The
theorem also shows how this approximation influences the approximation Ψk as well
as the residual of the TIAR factorization. It turns out that the residual error is small if
σr̃ is small, where σ1, . . . , σr are singular values associated with the coefficient tensor.
This implies that r̃ can be chosen small if we have a fast singular value decay. We
characterize the decay of the singular values in Sect. 5.3.

Theorem 9 Let a ∈ C
(d+1)×(k+1)×r , Z ∈ C

n×r be the coefficients and the matrix
that represent the tensor structured function Ψk+1 and let Hk ∈ C

(k+1)×k be such
that (Ψk+1, Hk) is a TIAR factorization. Suppose {|z| ≤ R} ⊆ Ω with R > 1. Let
A := [A1, . . . , Ad+1] ∈ C

r×(d+1)(k+1) be the unfolding of the tensor a in the sense
that Ai = (ai,:,:)T . Given the singular value decomposition of A

A = [U1,U] diag(Σ1,Σ)[V H
1 , . . . , V H

d+1]
Σ1 = diag(σ1, . . . , σr̃), Σ = diag(σr̃+1, . . . , σr), (35)

let

Z̃ := ZU1, Ãi := Σ1V
H
i i = 1, . . . , d + 1. (36)

The tensor structured function Ψ̃k+1 is defined by ã ∈ C
(d+1)×(k+1)×r̃ and Z̃ ∈ C

n×r̃ ,
with ãi,:,: = ÃT

i . Then,

123

150 G. Mele, E. Jarlebring

‖Ψk+1 − Ψ̃k+1‖ ≤ √
(d + 1)(k + 1)σr̃+1 (37a)

‖BΨ̃k − Ψ̃k+1Hk‖ ≤ √
k(Cd + Cs)σr̃+1 (37b)

with Cd := γ + log(d + 1) + (d + 1)‖Hk‖2 and Cs := ‖M−1
0 ‖2

[
(γ + log(s + 1))

max1≤i≤s ‖Mi‖2 + max|λ|=R ‖M(λ)‖2
]
whereγ ≈ 0.57721 is theEuler–Mascheroni

constant and s := min{s ∈ N : C(Ψk)
√
k(d − s)/Rs ≤ σr̃+1

}
.

Proof The proof of (37a) is based on the construction of a difference function Ψ̂k+1 =
Ψk+1 − Ψ̃k+1 as follows. We define

Ẑ := ZU, Âi := ΣV H
i ,

Xi := Z Ai+1, X̂i := Ẑ Âi+1, X̃i := Z̃ Ãi+1,

X := [XH
0 . . . XH

d]H , X̂ := [X̂ H
0 , . . . , X̂ H

d]H , X̃ := [X̃ H
0 , . . . , X̃ H

d]H .

Hence, we can express Ψk+1(θ) = Pd(θ)X , Ψ̃k+1(θ) = Pd(θ)X̃ and Ψ̂k+1(θ) =
Pd(θ)X̂ . By using (6) and ‖X̂i‖2F ≤ (k + 1)‖X̂i‖22 = (k + 1)‖Ẑ Âi+1‖22 =
(k + 1)‖ Âi+1‖22 = (k + 1)‖ΣV H

i+1‖22 ≤ (k + 1)‖Σ‖22 = (k + 1)σ 2
r̃+1 we obtain

‖Ψ̂k+1‖2 =
d∑

i=0

‖X̂i‖2F ≤ (d + 1)(k + 1)σ 2
r̃+1

which proves (37a).
In order to show (37b) we first use that, since (Ψk+1, Hk) is a TIAR factorization,

it holds ‖BΨ̃k − Ψ̃k+1Hk‖ = ‖BΨ̂k − Ψ̂k+1Hk‖ and subsequently we use the decay
of Ai and analyticity of M as follows. For notational convenience we define

Yi := X̂i Ik+1,k, for i = 0, . . . , d (38)

and Y := [Y H
0 . . . Y H

d]H such that we can express Ψ̂k(θ) = Pd−1(θ)Y . Using [12,
theorem 4.2] for each column of Ψ̂k(θ), we get BΨ̂k(θ) = Pd(θ)Y+ with

Y+,i+1 := Yi
i + 1

for i = 0, . . . , d − 1 and Y+,0 := −M−1
0

d∑
i=1

MiY+,i .

By definition and (6) we have

‖BΨ̂k − Ψ̂k+1Hk‖ = ‖Pd(θ)Y+ − Pd(θ)X̂ Hk‖ = ‖Y+ − X̂ Hk‖F .

Moreover, by using the two-norm bound of the Frobenius norm, (38) and that ‖X̂i‖2 ≤
σr̃+1,

123

On restarting the tensor infinite Arnoldi method 151

‖Y+ − X̂ Hk‖F ≤
d∑

i=0

‖Y+,i − X̂i Hk‖F ≤√
k

d∑
i=0

(‖Y+,i‖2+‖X̂i‖2‖Hk‖2) (39a)

= √
k

(
‖Y+,0‖2+

d∑
i=1

‖Y+,i‖2 +
d∑

i=0

‖X̂i‖2‖Hk‖2
)

(39b)

≤ √
k

(
‖Y+,0‖2 +

d∑
i=1

‖X̂i−1 Ik+1,k‖2
i

+
d∑

i=0

‖X̂i‖2‖Hk‖2
)

(39c)

≤ √
k

(
‖Y+,0‖2 +

d∑
i=1

σr̃+1

i
+

d∑
i=0

σr̃+1‖Hk‖2
)

(39d)

≤ √
k

[‖Y+,0‖2 + σr̃+1
(
γ + log(d + 1) + (d + 1)‖Hk‖2

)]
. (39e)

In the last inequality we use the Euler–Mascheroni inequality where γ is defined in
[1, Formula 6.1.3]. It remains to bound ‖Y+,0‖2. By using the definition of Y+,0 and
again applying the Euler–Mascheroni inequality we have that

‖Y+,0‖2 ≤ ‖M−1
0 ‖2

d∑
i=1

‖Mi‖2 ‖X̂i−1 Ik+1,k‖2
i

≤ ‖M−1
0 ‖2

d∑
i=1

‖Mi‖2 ‖X̂i−1‖2
i

= ‖M−1
0 ‖2

(
s∑

i=1

‖Mi‖2 ‖X̂i−1‖2
i

+
d∑

i=s+1

‖Mi‖2 ‖X̂i−1‖2
i

)

≤ ‖M−1
0 ‖2

(
σr̃+1(γ + log(s + 1)) max

1≤i≤s
‖Mi‖2 +

d∑
i=s+1

‖Mi‖2 ‖X̂i−1‖2
i

)
.

(40)

As consequence of the Cauchy integral formula

‖Mi‖2 ‖X̂i−1‖2
i

≤ ‖Mi‖2 ‖Ai‖2
i

≤ C(Ψk)
√
k
‖Mi‖2

i ! ≤ C(Ψk)
√
k
max|λ|=R

‖M(λ)‖2
Ri

.

(41)

By substituting (41) in (40) we obtain

‖Y+,0‖2 ≤ ‖M−1
0 ‖2

(
σr̃+1(γ + log(s + 1)) max

1≤i≤s
‖Mi‖2

+ max|λ|=R
‖M(λ)‖2C(Ψk)

√
k
d − s

Rs

)

≤ σr̃+1‖M−1
0 ‖2

(
(γ + log(s + 1)) max

1≤i≤s
‖Mi‖2 + max|λ|=R

‖M(λ)‖2
)

. (42)

We reach the conclusion (37b) from the combination of (42) in (39).

123

152 G. Mele, E. Jarlebring

5.2 Approximation by reducing the degree

Another approximation which reduces the complexity can be done by truncating the
polynomial in Ψk . The following theorem illustrates the approximation properties of
this approach.

Theorem 10 Let a ∈ C
(d+1)×(k+1)×r , Z ∈ C

n×r be the coefficients and the matrix
that represent the tensor structured functionΨk+1 and let Hk ∈ C

(k+1)×k be such that
(Ψk+1, Hk) is a TIAR factorization. For d̃ ≤ d let

Ψ̃k+1(θ) := Pd̃(θ)

(
r∑

�=1

ã:,:,� ⊗ z�

)
(43)

where ãi, j,� = ai, j,� for i = 1, . . . , d̃, j = 1, . . . , k + 1 and � = 1, . . . , r . Then

‖Ψ̃k+1 − Ψk+1‖ ≤ C(Ψk+1)
(d − d̃)

d̃! (44)

‖BΨ̃k − Ψ̃k+1Hk‖ ≤ C(Ψk+1)

(
max

d̃+1≤i≤d
‖Mi‖F

)
‖M−1

0 ‖F d − d̃

(d̃ + 1)! . (45)

Proof We define Xi := Z Ai+1 for i = 0, . . . , d and X := [XT
0 , . . . , XT

d] and X̃ :=
[XT

0 , . . . , XT
d̃
] such that Ψk+1(θ) = Pd(θ)X and Ψ̃k+1(θ) = Pd̃(θ)X̃ . We have

‖Ψk+1(θ) − Ψ̃k+1(θ)‖2 =
d∑

i=d̃+1

‖Xi‖2F =
d∑

i=d̃+1

‖Ai‖2F .

By using the definition of C(Ψk+1) we obtain (44).
By definition Ψk(θ) = Ψk+1(θ)Ik+1,k and Ψ̃k(θ) = Ψ̃k+1(θ)Ik+1,k , using the

Observation 5, if we define Yi := Xi Ik+1,k for i = 0, . . . , d − 1 and Y :=
[Y H

0 . . . Y H
d−1]H and Ỹ := [Y H

0 . . . Ỹ H
d̃−1

]H we can express Ψk(θ) = Pd−1(θ)Y and

Ψ̃k(θ) = Pd̃−1(θ)Ỹ .

Using [12, theorem 4.2] for each column of Ψk(θ) and Ψ̃k(θ), we get BΨk(θ) =
Pd(θ)Y+ and BΨ̃k(θ) = Pd̃(θ)Ỹ+ with

Y+,i+1 := Yi
i + 1

for i=0, . . . , d − 1 and Y+,0 :=−M−1
0 Σd

i=1MiY+,i

Ỹ+,i+1 := Y+,i+1 for i=0, . . . , d̃ − 1 and Ỹ+,0 :=−M−1
0 Σ d̃

i=1MiY+,i

In our notation, the fact that (Ψk+1, Hk) is a TIAR factorization, can be expressed as
Pd(θ)Y+ = Pd(θ)XHk , which implies that the monomial coefficients are equal, i.e.,

Y+,i = Xi Hk for i = 0, . . . , d. (46)

123

On restarting the tensor infinite Arnoldi method 153

Hence, from (6) we have

‖BΨ̃k − Ψ̃k+1Hk‖2 = ‖Pd(θ)Ỹ+ − Pd(θ)X̃ Hk‖2
= ‖Ỹ+ − X̃ Hk‖2F

= ‖Ỹ+,0 − X0Hk‖2F +
d̃∑

i=1

‖Y+,i − Xi Hk‖2F

= ‖Ỹ+,0 − X0Hk‖2F .

In the last step we applied (46). Moreover, by again using (46), we have

Y+,0 − X0Hk = −M−1
0

d∑
i=1

MiY+,i − X0Hk

= −M−1
0

d̃∑
i=1

Mi Ỹ+,i − M−1
0

d∑
i=d̃+1

MiY+,i − X0Hk

= Ỹ+,0 − X0Hk − M−1
0

d∑
i=d̃+1

Mi
Xi−1 Ik+1,k

i
.

Therefore ‖Ỹ+,0−X0Hk‖F ≤ ‖M−1
0 ‖F ∑d

i=d̃+1
‖Mi‖F‖Ai‖F

i .We obtain (45) by using
the properties of the Frobenius norm and the definition of C(Ψk+1).

Remark 11 The approximation given in Theorem 10 can only be effective under the

condition that
(
maxd̃+1≤i≤d ‖Mi‖F

)
/(d̃ + 1)! is small. In particular this condition

is satisfied if the Taylor coefficients Mi/ i ! present a fast decay. This condition cor-
responds to having the coefficients of the power series expansion of M(λ) that are
decaying to zero.

The final approximation procedure is summarized in Algorithm 4. In particular
Step 1–2 correspond to the approximation by SVDcompression, described in Sect. 5.1,
whereas Step 3–4 correspond to the approximation by reducing the degree, described
in Sect. 5.2.

5.3 The fast decay of singular values

Finally, as a further justification for our approximation procedure, we now show how
fast the singular values decay. The fast decay in the singular values illustrated below
justifies the effectiveness of the truncation in Sect. 5.1.

Lemma 12 Let a ∈ C
(d+1)×(k+1)×r , Z ∈ C

n×r be the coefficients and the matrix
that represent the tensor structured functionΨk+1 and let Hk ∈ C

(k+1)×k be such that
(Ψk+1, Hk) is a TIAR factorization. Then, the tensor a is generated by d + 1 vectors,

123

154 G. Mele, E. Jarlebring

Algorithm 4: Approximation of TIAR factorization
input : An approximated TIAR factorization (Ψk+1, Hk) where the tensor structured function is

represented by the matrices (Z , 0, 0, I) ∈ C
n×r × C

n×p × C
n×p × C

p×p and
(a, 0, 0) ∈ C

(d+1)×(k+1)×r × C
(d+1)×(k+1)×p × C

p and the tolerance ε.
output: An approximated TIAR factorization (Ψk+1, Hk) where the tensor structured function is

represented by the matrices (Z̃ , 0, 0, I) ∈ C
n×r̃ × C

n×p × C
n×p × C

p×p and

(ã, 0, 0) ∈ C
(d̃+1)×(k+1)×r̃ × C

(d̃+1)×(k+1)×p × C
p .

1 Compute the SVD decomposition given in (35) partitioned such that σr̃+1 ≤ ε

2 Compute Z̃ and Ãi according to (36) and set ai,:,: = ÃTi for i = 1, . . . , d + 1

3 Compute d̃ such that

(
max

d̃+1≤i≤d
‖Mi‖F

)
‖M−1

0 ‖F d − d̃

(d̃ + 1)! < ε

4 Reduce the size of the tensor ãi,:,: = ai,1:d̃,:.

in the sense that each vector ai, j,: for i = 1, . . . , d + 1 and j = 1, . . . , k + 1 can be
expressed as linear combination of the vectors ai,1,: and a1, j,: for i = 1, . . . , d − k
and j = 1, . . . , k + 1.

Proof The proof is based on induction over the length k of the TIAR factorization. The
result is trivial if k = 1. Suppose the result holds for some k. Let Z ∈ C

n×(r−1), a ∈
C
d×k×(r−1) represent the tensor structured functionΨk and let Hk−1 ∈ C

k×(k−1) be an
upper Hessenberg matrix such that (Ψk, Hk−1) is a TIAR factorization. If we expand
the TIAR factorization (Ψk, Hk−1) by using the Algorithm 1, more precisely by using

(13b) and (18b), we obtain βai+1,k+1,: = ai,k,:/ i − ∑k
j=1 h jai, j,: for i = 1, . . . , d.

We reach the conclusion by induction.

Theorem 13 Under the same hypothesis of Lemma 12, let A be the unfolding of the
tensor a in the sense that A = [A1, . . . , Ad+1] such that Ai := (ai,:,:)T . We have the
following decay in the singular values

σi ≤ C(Ψk+1)
d − (R − k − 1)

(R − k)! i = R + 1, . . . , d + 1,

where k ≤ R ≤ d + k + 1.

Proof We define the matrix Ã := [A1, . . . , AR−k, 0, . . . , 0] ∈ C
r×(k+1)(d+1). Notice

that the columns of the matrices A and Ã correspond to the vectors aTi, j,:. In particular,
using theLemma12,wehave that rank(A1) = k+1whereas rank(A j) = 1 if j ≤ d−k
otherwise rank(A j) = 0. Then we have that rank(A) = d + 1 and rank(Ã) = R.
Using Weyl’s theorem [10, Corollary 8.6.2] and Theorem 8 we have for i ≥ R + 1

σi ≤‖A− Ã‖F ≤
d+1∑

i=R−k+1

‖Ai‖F ≤
d+1∑

i=R−k+1

C(Ψk+1)

(i − 1)! ≤C(Ψk+1)
d − (R − k − 1)

(R − k)! .

��

123

On restarting the tensor infinite Arnoldi method 155

6 Complexity analysis

We presented above two different restarting strategies: the structured semi-explicit
restart and the implicit restart. They have different performance for different problems
and we have not been able to conclusively determine if one is better than the other. The
best choice of the restarting strategy appears to depend on many problem properties.
It may be convenient to test both methods on the same problem. We now discuss the
general performances, in terms of complexity and stability. The complexity discussion
is based on the assumption that the complexity of the action of M−1

0 is neglectable in
comparison to the other parts of the algorithm.

6.1 Complexity of expanding the TIAR factorization

The main computational effort of the Algorithm 2 and Algorithm 3 is the expansion
of a TIAR factorization described in Algorithm 1, independent of which restarting
strategy is used. The essential computational effort of Algorithm 1 is the computation
of z̃, given in Eq. (9). This operation has complexity O(drn) for each iteration. In
the implicit restart, Algorithm 3, r and d are not large in general, due to the way
they are automatically selected in the approximation procedure in Algorithm 4. In the
semi–explicit restart, Algorithm 2, we have instead r, d ≤ m.

6.2 Complexity of the restarting strategies

After an implicit restart we obtain a TIAR factorization of length p, whereas after a
semi-explicit restart, we obtain a TIAR factorization of length p�. This means that the
semi–explicit restart requires a re–computation phase, i.e., after the restart we need
to perform extra p − p� steps in order to have a TIAR factorization of length p. If
p− p� is large, i.e., if not many Ritz values converged in comparison to the restarting
parameter p, then the re-computation phase is the essential computational effort of
the algorithm. Notice that this is hard to predict since we do not know how fast the
Ritz values will converge in advance.

6.3 Stability of the restarting strategies

We will illustrate in Sect. 7 that the restarting approaches have different stability
properties. The semi-explicit restart tends to be efficient if only a few eigenvalues are
wanted, i.e., if pmax is small. This is due to the fact that we impose the structure in the
starting function. On the other hand, the implicit restart requires a thick restart in order
to be stable in several situations, see corresponding discussions for the linear case in
[19, chapter 8]. Then p has to be large enough in a sense that at each restart the p
wanted Ritz values have the corresponding residual not small. This leads to additional
computational and memory resources.

If we use the semi-explicit restart, then the computation of z̃, in Eq. (9), involves the
termMd(Y, S). This quantity can be computed in different ways. In the simulations we

123

156 G. Mele, E. Jarlebring

must choose between (8) or [12, Equation (4.8)]. The choice influences the stability
of the algorithm. In particular if one eigenvalue of S is close to ∂Ω and M(λ) is
not analytic on ∂Ω , the series (8) may converge slowly and in practice overflow can
occur. In such situations, [12, Equation (4.8)] is preferable. Notice that it is not always
possible to use [12, Equation (4.8)] since many problems cannot be formulated as a
short sum of product of matrices and functions.

6.4 Memory requirements of the restarting strategies

Fromamemorypoint of view, the essential part of the semi-explicit restart is the storage
of the matrices Z and Y , that isO(nm+np). In the implicit restart the essential part is
the storage of the matrix Z and requires O(nrmax) where rmax denotes the maximum
value that the variable r takes in the Algorithm 1. The size of rmax is not predictable
since it depends on the SVD-approximation introduced in Algorithm 4. Since in each
iteration of the Algorithm 1 the variable r is increased, it holds rmax ≥ m − p.
Therefore, in the optimal case where rmax takes the lower value, the two methods are
comparable in terms of memory requirements. Notice that, the semi–explicit restart
in general requires less memory and has the advantage that the required memory is
problem independent.

7 Numerical experiments

7.1 Delay eigenvalue problem

In order to illustrate properties of the proposed restart methods and advantages in
comparison to other approaches, we carried out numerical simulations 1 for solving
a delay eigenvalue problem (DEP). More precisely, we consider the DEP obtained
by discretizing the characteristic equation of the delay differential equation defined in
[15, sect 4.2, Eq (22a)] with τ = 1. By using a standard second order finite difference
discretization, the DEP is formulated as M(λ) = −λ2 I + λT1 + T0 + e−λT2. We
show how the proposed methods perform in terms of m, the maximum length of the
TIAR factorization, and the restarting parameter p.

Table 1a, b show the advantages of our semi-explicit restart approach in comparison
to the equivalentmethod described in [12]. Our new approach is faster in terms ofCPU-
time and can solve larger problems due to the memory efficient representation of the
Krylov basis.

Table 2a, b show the effectiveness of approximations introduced in Sects. 5.1 and 5.2
in comparison to the corresponding restart procedure without approximations. In par-
ticular, in Algorithm 4 we consider a drop tolerance ε = 10−14. Since the DEP is
defined by entire functions, the power series coefficients decay to zero and, according
to Remark 11, the approximation by reducing the degree is expected to be effective.

1 All simulations were carried out with Intel octa core i7-3770 CPU 3.40GHz and 16 GB RAM using
MATLAB.

123

On restarting the tensor infinite Arnoldi method 157

50 100
10−15

10−11

10−7

10−3

iteration

re
la

tiv
e

re
si

du
al

Implicit restart

Semi-explicit restart

50 100
0

10

20

30

iteration
M

B

Fig. 2 Implicit and semi-explicit restart for DEP of size n = 40401 with m = 20, p = 5 and resting 7
times (restart=7)

50 100
10−15

10−11

10−7

10−3

iteration

re
la

tiv
e

re
si

du
al

Implicit restart

Semi-explicit restart

50 100
0

20

40

iteration

M
B

Fig. 3 Implicit and semi-explicit restart for DEP of size n = 40401 with m = 40, p = 10 and resting 4
times (restart=4)

By approximating the TIAR factorization, the implicit restart requires less resources
in terms of memory and CPU-time and can solve larger problems.

We now illustrate the differences between the semi-explicit and the implicit restart.
More precisely, we show how the parameters m and p influence the convergence of
the Ritz values with respect to the number of iterations. The accuracy of an eigenpair
(λ, v) of the nonlinear eigenvalue problem is measured with the relative residual

‖M(λ)v‖2
‖v‖2 ∑q

i=1 ‖Ti‖∞| fi (λ)| ,

123

158 G. Mele, E. Jarlebring

Table 1 DEP, Semi-explicit restart

Size Tensor struct. Functions Original approach [12]

CPU Memory CPU Memory

(a) m = 20, p = 5, restart=7

10,201 19.07 s 3.7 MB 31.41 s 65.38 MB

40,401 30.14 s 14.8 MB 1m 30s 258.92 MB

160,801 1m 47s 58.9 MB 6m 04 1.01 GB

641,601 7m 30s 235.0 MB 24m 27s 4.02 GB

1,002,001 12m 01s 366.9 MB – –

(b) m = 40, p = 10, restart=4

10,201 13.47 s 7.62 MB 1m 05s 255.27 MB

40,401 41.81 s 30.20 MB 4m 1 GB

160,801 144.79 s 120.23 MB 15m 54s 3.93 GB

641,601 10 m 43s 479.71 MB – –

1,002,001 16 m 21s 749.18 MB – –

where M(λ) = ∑q
i=1 Ti fi (λ). The convergence of the semi-explicit restart appears

to be slower when p is not sufficiently large. See Fig. 2. The convergence speed of
both restarting strategies is comparable for a larger m and p. See Fig. 3.

In practice, the performance of the two restarting strategies corresponds to a trade-
off between CPU-time and memory. In particular, due to the fact that we impose the
structure, the semi-explicit restart does not have a growth in the polynomial part at
each restart and therefore requires less memory. On the other hand, for this problem,
the semi-explicit restart appears to be slower in terms of CPU-time. See Tables 1 and
2. For completeness we provide the total number of accumulated inner iterations: for
Table 1a 134, for Table 1b 154, for Table 2a 110 and for Table 2b 130. An illustration
of the CPU-time for a fixed accuracy is given in Table 3.

7.2 Waveguide eigenvalue problem

In order to illustrate how the performance depends on the problem properties, we now
consider a NEP defined by functions with branch point and branch cut singularities.
More precisely, we consider the waveguide eigenvalue problem (WEP) described in
[13, Section 5.1] after the Cayley transformation with pole removal, i.e.,

M(λ) =
(

FA(λ) FC1(λ)

(1 − λ)CT
2 P̃(λ)

)
.

The matrix CT
2 and the second degree polynomials FA(λ) and FC1(λ) are sparse.

The matrix P̃(λ) is defined by nonlinear functions of λ involving square roots of
polynomials and it is dense. However, in our framework, an explicit storage of this
matrix is not necessary since the matrix–vector product P̃(λ)w is efficiently computed

123

On restarting the tensor infinite Arnoldi method 159

Table 2 DEP, Implicit restart

Size Approximation No approximation

CPU Memory CPU Memory

(a) m = 20, p = 5, restart=7

10,201 6.82 s 7.8 MB 11.95 s 17.1 MB

40,401 21.96 s 30.8 MB 37.63 s 67.8 MB

160,801 1m20s 120.2 MB 2m21s 269.9 MB

641,601 5m24s 469.9 MB 9m33s 1.1 GB

1,002,001 8m36s 733.9 MB 15m16s 1.6 GB

(b) m = 40, p = 10, restart=4

10,201 9.54 s 11.1 MB 16.61 s 20.2 MB

40,401 30.48 s 43.8 MB 50.66 s 80.1 MB

160,801 1m54s 174.2 MB 3m11s 319.0 MB

641,601 8m05s 695.1 MB 13m14s 1.2 GB

1,002,001 12m17s 1.1 GB 20m57s 1.9 GB

Table 3 DEP, Implicit and semi-explicit restart, stopped when residual of pmax = 10 Ritz values is less
than 10−10

Size Implicit restart Semi-explicit restart

Nr. restarts CPU Memory Nr. restarts CPU Memory

40,401 6 13.8 s 29.59 MB 7 28.97 s 14.79 MB

160,801 4 37.02 s 115.32 MB 6 1m 29s 58.89 MB

641,601 4 2m 31s 450.34 MB 6 6m 23s 234.96 MB

1,002,001 4 3m 58s 703.30 MB 5 8m 29s 366.94 MB

2,563,201 – – – 5 21m10s 938.67 MB

using two Fast Fourier Transforms (FFTs) and a multiplication with a diagonal matrix.
See [13] for a full description of the problem. In this NEP, Ω is the unit disc and there
are branch point singularities in ∂Ω . Thus, due to the slow convergence of the power
series of M(λ), in the semi-explicit restart we have to use [12, Equation (4.8)] in
order to computeMd(Y, S). This also implies that the approximation by reducing the
degree is not expected to be effective since the power series coefficients of M(λ) are
not decaying to zero.

In analogy to the previous subsection, we carried out numerical simulations in order
to compare the semi-explicit and the implicit restart. With Figs. 4 and 5, we illustrate
the performance of the two restarting approaches with respect to the choice of the
parameters m and p. When p is sufficiently large, the residual in the semi-explicit
restart appears to stagnate after the first restart whereas it decreases in a regular way in
the implicit restart. See Fig. 4. This is due to the fact that semi-explicit restart imposes
the structure on p vectors which is not beneficial when they do not contain eigenvector
approximations.On the other hand,when p is small, the behavior of the residual appear

123

160 G. Mele, E. Jarlebring

20 40 60 80 100
10−15

10−11

10−7

10−3

iteration

re
la

tiv
e

re
si

du
al

Implicit restart

Semi-explicit restart

20 40 60 80 100
0

20

40

60

80

iteration
M

B
Fig. 4 Implicit and semi-explicit restart for WEP of size n = 40803 with m = 40, p = 20 and restart=4

50 100
10−15

10−11

10−7

10−3

iteration

re
la

tiv
e

re
si

du
al

Implicit restart

Semi-explicit restart

50 100
0

20

40

60

iteration

M
B

Fig. 5 Implicit and semi-explicit restart for WEP of size n = 91,203 with m = 20, p = 4 and restart=6

to be specular. See Fig. 5. This is a consequence of the fact that, already after the first
restart, the Krylov subspace is almost an invariant subspace (since p Ritz pairs are
quite accurate). This is consistent with the linear case where implicit restarting with
a Krylov subspace which is almost an invariant subspace is known to suffer from
numerical instabilities. It is known that this specific problem has two eigenvalues.
Therefore, in order to reduce the CPU-time and the memory resources, the restarting
parameter p should be selected small. As consequence of the above discussion, we
conclude that the semi-explicit restart is the best restarting strategy for this problem.

123

On restarting the tensor infinite Arnoldi method 161

8 Concluding remarks and outlook

In this work we have derived an extension of the TIAR algorithm and two restarting
strategies. Both restarting strategies are based on approximating the TIAR factor-
ization. In other works on the IAR-method it has been proven that the basis matrix
contains a structure that allows exploitations, e.g. for NEPs with low rank structure in
the coefficients [34]. An investigation about the combination of the approximations
of the TIAR factorization with such structures of the NEP seems possible but deserve
further attention.

Although the framework of TIAR and restarted TIAR is general, a specialization
of the methods to the NEP is required in order to efficiently solve the problem. More
precisely, an efficient computation procedure for computing (9) is required. This is a
nontrivial task for many application and requires problem specific research.

Acknowledgements Wegratefully acknowledge the support of the Swedish Research Council under Grant
No. 621-2013-4640.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abramowitz, M., Stegun, I.: Handbook ofMathematical Functions:With Formulas, Graphs, andMath-
ematical Tables, vol. 55. Courier Corporation, North Chelmsford (1964)

2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide, vol. 11. Siam, New Delhi (2000)

3. Bai, Z., Su, Y.: SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue
problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)

4. Beckermann, B.: The condition number of real Vandermonde, Krylov and positive definite Hankel
matrices. Numer. Math. 85(4), 553–577 (2000)

5. Betcke,M.M., Voss, H.: Restarting projectionmethods for rational eigenproblems arising in fluid-solid
vibrations. Math. Model. Anal. 13(2), 171–182 (2008)

6. Betcke, M.M., Voss, H.: Restarting iterative projection methods for Hermitian nonlinear eigenvalue
problems with minmax property. Numer. Math. 135(2), 397–430 (2017)

7. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear
eigenvalue problems. In: Technical Report, Manchester Institute for Mathematical Sciences (2011)

8. Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems.
Future Gener. Comput. Syst. 20(3), 363–372 (2004)

9. Effenberger, C.: Robust solution methods for nonlinear eigenvalue problems. Ph.D. thesis, École poly-
technique fédérale de Lausanne (2013)

10. Golub, G.H., Van Loan, C., Charles, F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)
11. Güttel, S., Van Beeumen, R., Meerbergen, K., Michiels, W.: NLEIGS: a class of fully rational Krylov

methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 36(6), A2842–A2864 (2014)
12. Jarlebring, E., Meerbergen, K., Michiels, W.: Computing a partial Schur factorization of nonlinear

eigenvalue problems using the infinite Arnoldi method. SIAM J. Matrix Anal. Appl. 35(2), 411–436
(2014)

13. Jarlebring, E., Mele, G., Runborg, O.: The waveguide eigenvalue problem and the tensor infinite
Arnoldi method. SIAM J. Sci. Comput. 39(3), A1062–A1088 (2017)

14. Jarlebring, E.,Michiels,W.,Meerbergen,K.:A linear eigenvalue algorithm for the nonlinear eigenvalue
problem. Numer. Math. 122(1), 169–195 (2012)

123

http://creativecommons.org/licenses/by/4.0/

162 G. Mele, E. Jarlebring

15. Jarlebring, E., Poloni, F.: Iterative methods for the delay Lyapunov equation with T-Sylvester precon-
ditioning. In: Technical Report (2015). ArXiv:1507.02100

16. Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114(2), 355–
372 (2009)

17. Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polyno-
mials in Chebyshev basis. Numer. Linear Algeb. Appl. 21(4), 569–588 (2014)

18. Lancaster, P., Psarrakos, P.: On the pseudospectra of matrix polynomials. SIAM J. Matrix Anal. Appl.
27(1), 115–129 (2005)

19. Lehoucq, R.B.: Analysis and implementation of an implicitly restarted Arnoldi iteration. Ph.D. thesis,
Rice University (1995)

20. Lehoucq,R.B., Sorensen,D.C.:Deflation techniques for an implicitly restartedArnoldi iteration. SIAM
J. Matrix Anal. Appl. 17(4), 789–821 (1996)

21. Lu, D., Su, Y., Bai, Z.: Stability analysis of the two-level orthogonal Arnoldi procedure. SIAM J.
Matrix Anal. Appl. 37(1), 195–214 (2016)

22. Mackey, D.S.,Mackey, N.,Mehl, C.,Mehrmann, V.: Structured polynomial eigenvalue problems: good
vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006)

23. Mackey, D.S., Mackey, N., Tisseur, F.: Polynomial eigenvalue problems: Theory, computation, and
structure. In:NumericalAlgebra,Matrix Theory,Differential-Algebraic Equations andControl Theory,
pp. 319–348. Springer (2015)

24. Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5),
1814–1839 (2001)

25. Meerbergen, K.: The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem.
SIAM J. Matrix Anal. Appl. 30(4), 1463–1482 (2008)

26. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.
GAMM Mitt. 27(2), 121–152 (2004)

27. Morgan, R.: On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Math.
Comput. 65(215), 1213–1230 (1996)

28. Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal.
22(5), 914–923 (1985)

29. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J.Matrix Anal. Appl. 23(3),
601–614 (2002)

30. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl.
32(1), 201–216 (2011)

31. Szyld, D., Vecharynski, E., Xue, F.: Preconditioned eigensolvers for large-scale nonlinear Hermitian
eigenproblems with variational characterizations. II. Interior eigenvalues. SIAM J. Sci. Comput. 37(6),
A2969–A2997 (2015)

32. Szyld, D., Xue, F.: Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems
with variational characterizations. I. Extreme eigenvalues. Math. Comput. 85(302), 2887–2918 (2016)

33. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 2, 235–286 (2001)
34. Van Beeumen, R., Jarlebring, E., Michiels, W.: A rank-exploiting infinite Arnoldi algorithm for non-

linear eigenvalue problems. Numer. Linear Algebra Appl. 23(4), 607–628 (2016)
35. Van Beeumen, R., Meerbergen, K., Michiels, W.: Compact rational Krylov methods for nonlinear

eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(2), 820–838 (2015)
36. Voss, H.: A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral

problem in fluid-solid vibration. Appl. Math. 48(6), 607–622 (2003)
37. Voss, H.: An Arnoldi method for nonlinear eigenvalue problems. BIT 44(2), 387–401 (2004)
38. Voss, H.: Nonlinear eigenvalue problems. In: L. Hogben (ed.) Handbook of Linear Algebra, Second

Edition, no. 164 in Discrete Mathematics and Its Applications. Chapman and Hall/CRC (2013)
39. Zhang, Y., Su, Y.: A memory-efficient model order reduction for time-delay systems. BIT 53(4),

1047–1073 (2013)

123

http://arxiv.org/abs/1507.02100

	On restarting the tensor infinite Arnoldi method
	Abstract
	1 Introduction
	2 Tensor structured functions and TIAR factorizations
	2.1 Action of mathcalB on tensor structured functions
	2.2 Orthogonality

	3 Restarting for TIAR in an abstract setting
	3.1 A TIAR expansion algorithm in finite dimension
	3.2 The Krylov–Schur decomposition for TIAR factorizations
	3.3 Two structured restarting approaches

	4 Tensor structure exploitation for the semi-explicit restart
	5 Tensor structure exploitation for the implicit polynomial restart
	5.1 Approximation by SVD compression
	5.2 Approximation by reducing the degree
	5.3 The fast decay of singular values

	6 Complexity analysis
	6.1 Complexity of expanding the TIAR factorization
	6.2 Complexity of the restarting strategies
	6.3 Stability of the restarting strategies
	6.4 Memory requirements of the restarting strategies

	7 Numerical experiments
	7.1 Delay eigenvalue problem
	7.2 Waveguide eigenvalue problem

	8 Concluding remarks and outlook
	Acknowledgements
	References

