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1 Multilevel Monte Carlo Error Analysis

The statement and proof of Theorem 4.1 in [4] should account for the type of Banach
space in which the discretization scheme is analyzed. To render the presentation self-
contained, we recapitulate the relevant definitions as used, e.g., in [2]. For a general
Banach space E , the type of the Banach space is defined as follows (see, e.g., [3, Page
246]).

Definition 1.1 Let 1 ≤ p ≤ ∞, and Z j , j ∈ N, be a sequence of Bernoulli–
Rademacher random variables. A Banach space E is said to be of type p if there
is a type constant C > 0 such that for all finite sequences (x j )Nj=1 ⊂ E , N ∈ N,

∥
∥
∥
∥
∥
∥

N
∑

j=1

Z j x j

∥
∥
∥
∥
∥
∥
E

≤ C

⎛

⎝

N
∑

j=1

∥
∥x j

∥
∥
p
E

⎞

⎠

1/p

.

Every Banach space is of type 1; L p-spaces are of type min{p, 2} for 1 ≤ p < ∞
(see [3]). The following result from [3, Proposition 9.11] for Banach spaces of type p
is the basis of the MLMC-FT error analysis.

Proposition 1.1 [2, Prop. 2.4] Let E be a Banach space of type p with type con-
stant Ct . Then, for every finite sequence (Y j )

M
j=1 of independent random variables in

L p(Ω; E) with zero mean, one has

E

⎡

⎣

∥
∥
∥
∥
∥
∥

N
∑

j=1

Y j

∥
∥
∥
∥
∥
∥

p

E

⎤

⎦ ≤ (2Ct )
p

N
∑

j=1

E
[∥
∥Y j

∥
∥p
E

]

.

For the front-tracking error analysis, we need strengthen the assumptions from [4]
to either the physical or computational domain is bounded (as, e.g., in the periodic
setting) or that all realizations of the random initial data are compactly supported in
R
d , with support contained in one common bounded domain D.

2 MLMC-FT convergence analysis

We recapitulate notation and basic estimates from the convergence analysis from
[4, Section 4.4]. In doing so, we take into account the type of the Banach spaces
appearing in the error analysis which was disregarded in [4]. This results in estimates
of the combined multilevel Monte Carlo front-tracking (MLMC-FT, for short) errors
which differ from those in [4, Theorem 4.5, Corollary 4.5] in that more general q-
integrability for some 1 < q ≤ 2 of the random entropy solutions is considered, and
that convergence rates of the front-tracking errors are now estimated in L p for some
p ≥ q > 1. We can write
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E [u(t)] − EMLMC
L [uL ] = E

[

u(t) − uL(t)
]

+ E

[

uL(t)
]

− EMLMC
L

[

uL(t)
]

.

Hence,

∥
∥
∥E [u(t)] − EMLMC

L

[

uL(t)
]∥
∥
∥
Lq (Ω;L p(Rd ))

≤
∥
∥
∥E[u(t)] − E[uL(t)]

∥
∥
∥
Lq (Ω;L p(Rd ))

+
∥
∥
∥E[uL(t)] − EMLMC

L [uL(t)]
∥
∥
∥
Lq (Ω;L p(Rd ))

:= A + B.

We estimate the two terms A and B. For the first one, we use the monotonicity of the
expectation and the deterministic front-tracking error estimate:

A =
∥
∥
∥E[u(t)] − E[uL(t)]

∥
∥
∥
L p(Rd )

≤
∥
∥
∥u(t) − uL(t)

∥
∥
∥
L1(Ω;L p(Rd ))

≤ Cδ
s/p
L ,

where the second inequality follows from the bound on the deterministic approxi-
mation error of the FT in L p(Rd). Here, δL is the FT discretization parameter at
refinement level L . In nonadaptive approximations of the flux, δL = 2−Lδ0, where
δ0 > 0 denotes the discretization parameter for the coarsest level. For front tracking,
and for Lipschitz regular flux functions, s = 1 [1]. To bound the term B, we set
u−1 := 0 and Δu� := u� − u�−1.

Bq =
∥
∥
∥
∥
∥
E

[
L

∑

�=0

(

u� − u�−1
)
]

−
L

∑

�=0

EM�

(

u� − u�−1
)
∥
∥
∥
∥
∥

q

Lq (Ω;L p(Rd ))

=
∥
∥
∥
∥
∥

L
∑

�=0

(

E

[

Δu�
]

− EM�

[

Δu�
])

∥
∥
∥
∥
∥

q

Lq (Ω;L p(Rd ))

=
∥
∥
∥
∥
∥
∥

L
∑

�=0

M�∑

j=1

(

E
[

Δu�
] − Δu�, j

M�

)
∥
∥
∥
∥
∥
∥

q

Lq (Ω;L p(Rd ))

assume
p≤q≤ Csuppu

∥
∥
∥
∥
∥
∥

L
∑

�=0

M�∑

j=1

(

E
[

Δu�
] − Δu�, j

M�

)
∥
∥
∥
∥
∥
∥

q

Lq (Ω;Lq (Rd ))

.

Define

Y �, j := E
[

Δu�
] − Δu�, j

M�

.

Y �, j are independent, zero-mean random variables. Hence, we can use [3, Prop. 9.11]
as stated in Proposition 1.1 (see also [2, Cor. 2.5]) for q ∈ (1, 2] to estimate Bq by:
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Bq ≤ CsuppuCq

L
∑

�=0

M�∑

j=1

∥
∥
∥Y �, j

∥
∥
∥

q

Lq (Ω;Lq (Rd ))

:=
L

∑

�=0

M�∑

j=1

∥
∥
∥
∥
∥

E
[

Δu�
] − Δu�, j

M�

∥
∥
∥
∥
∥

q

Lq (Ω;Lq (Rd ))

,

where Cq is a constant depending on the type q of the Banach space Lq . We continue
estimating the last term:

Bq ≤ CsuppuCq

L
∑

�=0

M1−q
�

∥
∥
∥E

[

Δu�
]

− Δu�,1
∥
∥
∥

q

Lq (Ω;Lq (Rd ))

≤ CsuppuCq

L
∑

�=0

M1−q
�

∥
∥
∥Δu�,1

∥
∥
∥

q

Lq (Ω;Lq (Rd ))

≤ Csuppu,q

(

M1−q
0

+
L

∑

�=1

(∥
∥u�(t) − u(t)

∥
∥
q
Lq (Ω;Lq (Rd ))

M1−q
�

+
∥
∥u�−1(t) − u(t)

∥
∥
q
Lq (Ω;Lq (Rd ))

M1−q
�

))

≤ Csuppu,q

(

M1−q
0 +

L
∑

�=1

M1−q
�

∥
∥
∥u�(t) − u(t)

∥
∥
∥

q

Lq (Ω;Lq (Rd ))

)

Hölder≤ Csuppu,q

(

M1−q
0 + C‖u0‖∞

L
∑

�=1

M1−q
�

∥
∥
∥u�(t) − u(t)

∥
∥
∥
Lq (Ω;L1(Rd ))

)

deterministic
error

estimate≤ C(suppu, q, ‖u0‖∞ , T, ‖ f ‖W 1,∞)

(

M1−q
0 +

L
∑

�=1

M1−q
� δs�

)

,

where we recall that δ� is the FT flux discretization parameter at level �, � = 0, . . . , L ,
and that for front tracking, the convergence rate is s = 1.

Combining the estimates for terms A and B, we arrive at

∥
∥
∥E[u] − EMLMC

L [uL ]
∥
∥
∥

q

Lq (Ω;L p(Rd ))
≤ C

(

M1−q
0 +

L
∑

�=1

M1−q
� δs� + δ

sq
p
L

)

. (2.1)

For p = 1, the last term is minimized which results in the bound

∥
∥
∥E[u] − EMLMC

L [uL ]
∥
∥
∥

q

Lq (Ω;L1(Rd ))
≤ C

(

M1−q
0 +

L
∑

�=1

M1−q
� δs� + δ

sq
L

)

. (2.2)
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3 Choice of MC sample sizes M� and error versus work bounds

TheMonteCarlo sample numbers in the error bound (2.2), i.e.,M�, at FT discretization
level � should be chosen such that for a given error tolerance ε, the bound for the
required computational work is optimized. We recall, from [4], the work estimates for
the deterministic front-tracking method for different scenarios:

Proposition 3.1 The computational work WFT for the deterministic front-tracking
method behaves asymptotically as

WFT � δ−w,

where δ > 0 is the discretization parameter and w given by

w =

⎧

⎪⎪⎨

⎪⎪⎩

1, d = 1, convex flux,
2, d = 1, nonconvex flux,
2d + 1, d > 1, convex flux components,
2d + 2, d > 1, nonconvex flux components.

(3.1)

The computational work for themultilevelMonte Carlo front-tracking scheme behaves
asymptotically as

WMLMC-FT
L �

L
∑

�=0

M�δ
−w
� , (3.2)

with the work rate w as given in (3.1).

For a given maximal discretization level L and for prescribed overall error ε > 0, the
choice of sample numbers M� is obtained by optimizing the error bounds, as is by
now customary in MLMC error analysis. The following result is analogous to Lemma
4.9 in [4]:

Lemma 3.1 Let {δ�}�≥0 be a strictly decreasing sequence of positive FT discretization
parameters. Assume that the work for the MLMC-FT algorithm with L discretization
levels scales asymptotically as in (3.2), that is, there exists a constant C > 0 which is
independent of {δ�}�≥0 and of {M�}�≥0 such that for every L ≥ 1,

WMLMC
L ≤ C

L
∑

�=0

M�δ
−w
� , (3.3)

for w > 0, given in (3.1). Given that the MCFT error at FT discretization level L is
bounded as [cf. (2.2)]

ErrL ≤ C

(
L

∑

�=0

M1−q
� δ

qs
� + δ

qs
L + M1−q

0

)

, (3.4)
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(i.e., p = 1), the optimal sample numbers M� in terms of the work bound (3.3) and of
the error bound (3.4) are given by

M� � M0δ
− w

q
0 δ

s+w
q

� , � = 1, . . . , L , (3.5)

where

M0 �
⎛

⎜
⎝

δ

w−wq
q

0 + ∑L
j=1 δ

s+w−wq
q

j

ε − δ
qs
L

⎞

⎟
⎠

1
q−1

δ
w
q
0 .

The symbol � indicates equality up to a constant which may depend on the data
(u0, f ) and the domain but which is independent of � and L. If we assume in addition
that the δ� are a geometric sequence, that is, δ� = 2−α�δ0 for some α, δ0 > 0, we
obtain for L → ∞ that the error of the MLMC algorithm is bounded for any s > 0,
and for q ∈ (1, 2] as

∥
∥E[u(·, t)] − EMLMC

L [u(·, t)]∥∥Lq (Ω;L1(Rd ))

≤ C

⎧

⎪⎨

⎪⎩

(WMLMC
L )−

s
s+w , s + w − wq < 0,

(WMLMC
L )

− q−1
q log(WMLMC

L ), s + w − wq = 0,

(WMLMC
L W0,det)

− q−1
q , s + w − wq > 0,

where W0,det is the work for the deterministic front-tracking algorithm with resolution
δ0 > 0. In particular, the error of the MLMC-FT algorithm (s = 1) scales for p = 1,
q = 2 with respect to work as

∥
∥E[u(·, t)] − EMLMC

L [u(·, t)]∥∥L2(Ω;L1(Rd ))

�

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(WMLMC
L )−1/2 log(WMLMC

L ), d = 1, convex flux,

(WMLMC
L )−1/3, d = 1, nonconvex flux,

(WMLMC
L )−

1
2+2d , d > 1 convex flux components,

(WMLMC
L )−

1
3+2d , d > 1 nonconvex flux components.

Proof We use a Lagrange multiplier argument to determine the optimal M�. Since the
assertion is about an asymptotically optimal error versus work bound, we require an
(eventually small) error tolerance ε > 0 and assume all constants in the error bounds
to take the value 1. This assumption results in the following asymptotic work and error
measures:

WL :=
L

∑

�=0

M�δ
−w
� ,

ErrL := M1−q
0 + δ

qs
L +

L
∑

�=1

M1−q
� δs�.

123



MLMC front tracking 253

To minimize the overall work subject to prescribed error ε > 0, consider the
Lagrangian

L := WL − λ(ε − ErrL),

where λ is the Lagrange multiplier. Taking the derivative ofL with respect to M�, we
have

∂L

∂M�

= ∂WL

∂M�

+ λ
∂ErrL
∂M�

,

∂WL

∂M�

= δ−w
� ,

∂ErrL
∂M�

=
{

(1 − q)M−q
� δs�, � > 0,

(1 − q)M−q
0 , � = 0.

Hence,

δ−w
� =

{

λ(q − 1)M−q
� δs�, � > 0,

λ(q − 1)M−q
0 , � = 0,

or

M� =
{(

δs+w
� λ(q − 1)

) 1
q , � > 0,

(

δw
0 λ(q − 1)

) 1
q , � = 0.

Now insert ε = ErrL to get an expression for λ:

ε = ErrL = δ
qs
L + (

δw
0 λ(q − 1)

) 1−q
q + (λ(q − 1))

1−q
q

(
L

∑

�=1

δ
s+w
q (1−q)

� δs�

)

= δ
qs
L + (λ(q − 1))

1−q
q

(

δ

w(1−q)
q

0 +
L

∑

�=1

δ

s+w−wq
q

�

)

.

We solve this for λ:

λ = 1

q − 1

⎛

⎝
δ

w−wq
q

0 + ∑L
�=1 δ

s+w−wq
q

�

ε − δ
qs
L

⎞

⎠

q
q−1

.

The sample numbers M� are given by

M� =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
δ

w−wq
q

0 +∑L
j=1 δ

s+w−wq
q

j

ε−δ
qs
L

⎞

⎠

1
q−1

δ
s+w
q

� , � > 0,

⎛

⎝
δ

w−wq
q

0 +∑L
j=1 δ

s+w−wq
q

j

ε−δ
qs
L

⎞

⎠

1
q−1

δ
w
q
0 , � = 0,
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and the bound for the overall work becomes

WL :=
L

∑

�=0

M�δ
−w
�

=
⎛

⎜
⎝

δ

w−wq
q

0 + ∑L
j=1 δ

s+w−wq
q

j

ε − δ
qs
L

⎞

⎟
⎠

1
q−1 (

δ

w−wq
q

0 +
L

∑

�=1

δ

s+w−wq
q

�

)

=
(

1

ε − δ
qs
L

) 1
q−1

(

δ

w−wq
q

0 +
L

∑

�=1

δ

s+w−wq
q

�

) q
q−1

.

Now choose ε � δ
qs
L , i.e., ε = 2δqsL , to balance the two error contributions and obtain

WL = δ
− qs

q−1
L

(

δ

w−wq
q

0 +
L

∑

�=1

δ

s+w−wq
q

�

) q
q−1

.

Now let us assume again that δ� � 2−α� with some α > 0, i.e., the δ� are geometrically
decreasing to zero. We distinguish three cases:

1. Case s + w − wq < 0 (⇔ q > s
w

+ 1): Then

WL � δ
− qs

q−1
L δ

s+w−wq
q−1

L = δ
−(s+w)
L ;

hence
(ErrL)1/q � δsL � W

− s
s+w

L .

2. Case s + w − wq = 0 (⇔ q = s
w

+ 1): Then

WL � δ
− qs

q−1
L L

q
q−1 ;

hence

WL(logWL)
− q

q−1 � δ
− qs

q−1
L

(ErrL)1/q � δsL �
(

WL(logWL)
− q

q−1

)− q−1
q � W

− q−1
q

L logWL .

3. Case s + w − wq > 0 (⇔ q < s
w

+ 1): Then

WL � δ
− qs

q−1
L

(

δ

w(1−q)
q

0

) q
q−1

= δ
− qs

q−1
L δ−w

0 ,
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Note that δ−w
0 � W0,det. Hence,

(ErrL)1/q � δsL � (WLW
−1
0,det)

− q−1
q .

For the MLMC front-tracking method, this implies according to Proposition 3.1 for
q = 2,

Err1/qL �

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W−1/2
L logWL , d = 1, convex flux,

W−1/3
L , d = 1, nonconvex flux,

W
− 1

2+2d
L , d > 1, convex flux components,

W
− 1

3+2d
L , d > 1, nonconvex flux components.
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