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Abstract The standard approach to computing an approximate SVD of a large-scale
matrix is to project it onto lower-dimensional trial subspaces from both sides, compute
the SVD of the small projected matrix, and project it back to the original space.
This results in a low-rank approximate SVD to the original matrix, and we can then
obtain approximate left and right singular subspaces by extracting subsets from the
approximate SVD. In this work we assess the quality of the extraction process in terms
of the accuracy of the approximate singular subspaces, measured by the angle between
the exact and extracted subspaces (relative to the angle between the exact and trial
subspaces). The main message is that the extracted approximate subspaces are optimal
usually to within a modest constant.
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1 Introduction

The SVD plays a central role in a vast variety of applications, primarily due to its best
low-rank approximation property [11, Thm. 7.4.9.1], which is valid in any unitarily
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invariant norm. Frequently in practice, the matrix is too large to compute the full
SVD, and computing a partial and approximate SVD A ~ U; XV} is of interest,
where Uj, V; are tall-skinny matrices.

The standard approach to computing an approximate SVD of a large-scale matrix
A € C"*" is to project A onto lower-dimensional trial subspaces spanned by U e
Cmxm § e Cnxn having orthonormal columns (how to choose U,Vis outside the
scope; we refer e.g. to [1,7]), compute the SVD of the small i x 7 . matrix A
U*AV = U V* and obtain an approximate tall-skinny SVD as A ~ (U U)E(V V)*
represented exphcltly as a low-rank (rank min (7, 7)) matrix. Some of the columns
of UU and VV then approximate the exact left and right singular vectors of A. This
process is an analogue of the Rayleigh—Ritz process for the symmetric eigenvalue
problem, sometimes called the Petrov—Galerkin method [2], since the residual R =
A — (UU)S(VV)* is orthogonal to U, V, thatis, U*R = 0, RV = 0.

For the Rayleigh—Ritz process for the symmetric eigenvalue problem, existing
results are available for bounding the accuracy of the computed eigenvectors, most
notably through results by Saad [20, Thm. 4.6], Knyazev [12, Thm. 4.3] and Stew-
art [21, Thm. 2]. Roughly speaking, these results show that the Rayleigh—Ritz process
extracts an approximate set of eigenvectors that are optimal (for a fixed subspace) up
to a certain constant factor, which depends on the residual norm and a gap between
the exact and approximate eigenvalues (Ritz values).

This work derives analogous results for the SVD by establishing bounds for the
accuracy of the computed left and right singular vectors, measured by the angle
between the computed and desired subspaces. In essence, the message is the same
as in the Rayleigh—Ritz process for eigenvalue problems: the projection algorithm
obtains approximate sets of left and right singular vectors that are optimal to within
a constant factor, again depending on the residual norm and a gap between exact and
approximate singular values. The vector case (m| = n; = 1 in the notation below)
was dealt with by Hochstenbach [10, Thm. 2.4]; the results here improve the bound
slightly, and generalize to subspaces m,n; > 1. A preliminary version appeared in
the author’s PhD dissertation [17, Ch. 10].

Let us clarify the problem formulation. Let A be an m X n matrix and U e
Cmxim Y e Cri (throughout, matrices U, V and the variants U,V,U,V have
orthonormal columns) represent trial subspaces that are hoped to respectively approxi-
mately contain the subspace spanned by a set of desired k < min(i, 77) exact singular
vectors U; and Vi, corresponding to some of the singular values, usually but not
necessarily the largest ones. That is,

= [U) U} [21 Z(J Vi Vi M

is an exact full SVD, with X; € Rk>k and the /s\irl\gular values are air\relr\lged in an
arbitrary (not necessarily decreasing) order. Let [U Uz] € C"*™ and [V V3] € C"*"
be square unitary matrices and (we are using the subscript 3 for consistency with what
follows)

(A=) [U UsT" ALV V3] = [? fj. )
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Accuracy of singular vectors obtained by projection... 1139

In practice we usually do not have access to ﬁg and V\g Accordingly we do not know
R or S, but their norms can be computed via ||S|| = ||Af/\ - ﬁf” and |R|| =
I U*A — SV* I, which hold for any unitarily invariant norm. Similarly, we will not
need to know Az, although the assumptions made in the results will have implications
on its singular values.

If |R|| = |IS]| = 0, then U and V correspond to exact left and right singular
subspaces. When R, § are both small we can expect U,V tobe good approximations
to some singular vectors. Bounds that assess the quality of the projection subspaces
U and V are derived in a classical result by Wedin [24].

The focus of this paper is the quality of the projection process as a means to
extract good singular vectors from the projection subspaces. Specifically, in practice,
it often happens that the whole projection space U is not very close to an exact
singular subspace, but a subspace of U is close to an exact singular subspace of lower
dimension (this is the case e.g. in the Jacobi—Davidson context [9], in which U , vV
contain approximate and search subspaces). In view of this, the hope is that if U
contains rich information in an exact singular subspace U; (which is usually of lower
dimension k than 1), then the projection method computes a good approximant U 1 to
U, . Quantifying this hope is the objective of this paper.

From the algorithmic viewpoint, we compute the projected matrix A=U*AV €
C"™*7 and its (full) SVD

F=0ea7 = (00 [ M 5 |7 7

where El is my x ni_ and 22 is (m — my) x (n — n1); hence U1 € Chxmi Uz €
Cmxm—m) V1 (C”X’“ Vy e Crxi—n), We do not impose any ordering in the
singular values 21, 22 Then, defining U = UU and V = VV fori = {1, 2}, we
have

e 0 R
A= [U1 U, U3]* A [Vl 1% V3] =10 2 Ry 3)
St S Az

The goal here is to assess the quality of the extracted subspaces by examining the angles
LUy, U 1) and Z(Vq, {/\1) the angles between extracted and exact singular subspaces,
as compared with Z(U 1, U ) and Z(Vl, V) the angles between the trial and exact
subspace Since span(Ul) - span(U) we trivially have Z(Uj, U) < /(Uy, U1) and
L(Vy, V) < L(Vy, Vl) The quallty of the extraction is measured by how far from best
possible the extracted subspace U 1 V] are: the extraction is considered near-optimal
if Z(Uy, ﬁ]) <c/l(Uy, ﬁ) and Z(Vq, f/\]) <cl(Vy, V) hold for a constant ¢ not much
larger than 1.

Let us recall the definition of angles between subspaces. The angles 6; between
two subspaces spanned by X € C"™*"X Y e C™ (nx < ny(< m)) with
orthonormal columns are defined by 6; = acos(o;(X*Y)); they are known as
the canonical angles or principal angles [5, Thm. 6.4.3]. These are connected
to the CS decomposition for unitary matrices [5, Thm. 2.5.3], [18], in which
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C
the matrix [Y YJ-]*X satisfies diag(Qj, Qz)([Y YJ-]*X)W = S |, where
0
Q1 € Cxx (y e CO—mO)xX=nx) W ¢ C"X*"X gre all square unitary and
C = diag(cos by, ...,cosby,), S = diag(sinb, ..., sin6,,). We write /(X,Y) =
diag(@1, ..., Ouy), andst(X Y)=2S.
Applying a unitary transformation in (3) and (1), we see that Z(Ul, Uy =

VA (Ul, |:{) :|) and Z(Vl, Vi) =<7 (Vl, [{)]), where U1, V1 are matrices of exact

singular vectors of Ain (3). We note that it is natural to take k = m| = ny, although
this is not necessary; k is an integer that one can choose from 1 <k <min(my,ny);
the upper bound is required for the extracted subspace Uy, Vi to contain the exact
subspaces.

Here is the plan of this paper. First in Sect. 2 we review the results for the Rayleigh—
Ritz process in symmetric eigenvalue problems. We then derive analogous results for
the SVD in Sect. 3.

Notation. U, V always respectively denote the left and right trial projection sub-
spaces. U, and V; are the approximate subspaces obtained via the projection method
and they satisfy span(U 1)Cs ’Pan(U ), span(Vl) c span(V) Uy, V) are certain exact
singular subspaces of A that U}, V; approximate. I, is the n x n identity matrix. X+
denotes the orthogonal complement of X. || - |2 denotes the spectral norm, equal to

the largest singular value. || - || ¢ is the Frobenius norm [|Al|F = /)", j A?j. Identities

and inequalities involving || - || without subscripts indicate they hold for any unitarily
invariant norm, and those involving | - ||2, 7 hold for both the spectral norm and the
Frobenius norm, but not necessarily for every unitarily invariant norm.

0i(A) denotes the ith largest singular value of A. For A € C"*", by a full SVD
we mean the decomposition A = UXV* where U, V are square unitary, hence ¥ is
m x n. We define omin(A) = Ominn,n)(A), and

o,(A) ifm =n,
O (A) = {O otherwise.

“)

In words, O (A) is equal to the smallest singular value when m = n, but 0
otherwise. A (A) denotes the set of eigenvalues of A. The key identity we use pertaining
0 0 (A) i |AB| = o (A)] B

min

2 The Rayleigh—Ritz process for Hermitian eigenproblems and theorems
of Saad, Knyazev and Stewart

The standard way of computing a subset of the eigenvalues and eigenvectors of a large-
sparse Hermitian (or real symmetric) matrix A € C"*" is to form a low-dimensional
subspace span(f(\ ) with X € C"*7 having orthonormal columns, which approximately
contains the desired eigenvectors, and then extract approximate eigenpairs (called the
Ritz pairs) from it by means of the Rayleigh—Ritz process [19, Ch 11]. This process
computes the eigendecomposition of the small Hermitian matrix X X*AX = XAX*,
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from which the Ritz values are taken as the diagonals of A and the Ritz vectors are the
columns of XX =: [)? 1 )?2]. The Ritz pairs (3:, X) thus obtained satisfy x € span()? ),
and AT — A% L X. Observe the similarity between the Rayleigh—Ritz process and the
Petrov—Galerkin projection method for the SVD.

A natural question is to ask how accurate the Ritz pairs are as approximation to
the exact eigenpairs. The starting point is an analogue of (3): the partitioning of the
projected A as

~ Kl 0 RT
(A=)[X1 X2 X3]"A[X1 X2 X31=| 0 A2 R, (5)
Ry Ry Aj

where [5(\1 3(\2 5(\3] is an orthogonal matrix, with 5(\1 e Cnxnm, 5(\2 € Crx=n1) and
X 3 € (C"* (=) The computable quantities are Xl, Kz and the norms of each column
of R, R;. In the context of the Ray1e1gh —Ritz process, span(j(\ ) = span([? 1 )?2]) is
the projection subspace, A(Al) and A(Az) are the Ritz values, and the goal here is to
examine the accuracy of X, as an approximate eigenspace X1 € C"** of A (or more
precisely, invariant subspace) such that AX| = X1 A;.

We note that bounding the eigenvalue accuracy can be done using standard eigen-
value perturbation theory: for example by Weyl’s theorem, the Ritz values A; match
some of those of A to within || R;||> fori = 1, 2. For individual Ritz values, the corre-
sponding residual norm || AX; —/):,‘E |l2 is a bound for the distance to the closest exact
eigenvalue. Moreover, by using results in [13,15] one can often get tighter bounds for
the eigenvalue accuracy, which scale quadratically with the norm of the residual.

2.1 Bounds for approximate eigenvector

Now we turn to eigenvectors and discuss the accuracy of the Ritz vectors. In the
single-vector n1 = k = 1 case, we bound the angle between approximate and exact
eigenvectors x and x. Saad [20, Thm. 4.6] proves the following theorem, applicable
to (5) in the case where Kl — Aisascalarand ¥ = )?1 is a vector ()? is still a subspace
of dimension > 1).

Theorem 1 Let A be a Hermitian matrix and let (A, x) be any of its eigenpairs. Let
(A X) be a Ritz pair obtained from the subspace span(X ), such that X is the closest
Ritz value to A. Suppose § > 0, where § is the distance between A and the set of Ritz
values other than . Then

sin Z(x,x) < sin Z(x, X)\l 1+ ”5”2

Recalling that sin Z(x,X) > sin Z(x, )?) holds trivially because x < span(f ), we
see that the above theorem shows that the Ritz vector is optimal up to the constant

113
V1+ 2

where r = AX — AX.
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1142 Y. Nakatsukasa

Remark 1 This does not necessarily mean, however, that performing the Rayleigh—
Ritz process is always a reliable way to extract approximate eigenpairs from a
subspace; care is needed especially when computing interior eigenpairs, in which &
can be very small or zero. One remedy is to use the harmonic Rayleigh—Ritz process.
For more on this issue, see for example [16] and [22, Sect. 5.1.4].

2.2 Bounds for approximate eigenspace

Knyazev [12, Thm. 4.3] derives an extension of Saad’s result (Theorem 1) to approxi-
mate eigenspaces, presenting bounds in the spectral norm applicable in the context of
self-adjoint linear operators in a Hilbert space. Stewart [21,22] proves an analogous
result applicable to non-Hermitian matrices.

Here we state a result specializing to Hermitian matrices. We give a proof since we
use the same line of argument later for the SVD; The bound below slightly improves
the classical ones in two ways: First, the term || Rz || in the bounds (6), (7) are ||[R1 R2]||
in [12]. Second, (6) holds for any unitarily invariant norm. Essentially the same
bound as (6) appears in [14, Thm. 4.1] (under relaxed conditions on the spectrum;
see “Appendix”).

Theorem 2 Let A be a Hermitian matrix. Let A be as in ), (K], )?1) is a set of Ritz
pairs with Kl € R"M_ Let (A1, X1) with Ay € RF*K k < ny be a set of exact
eigenpairs whose eigenvalues lle in the interval [ — d, ko + d] for some Ay and
d > 0. Suppose that § = min |A(A2) — Ao| —d > 0, where A2 € RO—n)x@—n) jg
as in (5). Then for any unitarily invariant norm

—~ ~ R
sin 2(x1, X)| < [[sin 2(X1, X (1 + %) ©6)

and for the spectral and Frobenius norms,

Jsin £CX1, R0, » < [sin 2061, B, o o1+ 122 ™
sin 1 XDy p = |Isin 1 2 F 2
Note that when applicable, (7) is slightly tighter than (6).
_ & N
Proof Let X = X be a set of eigenvectors of A in (5) with orthonormal columns.
X3
A key step is to note from the CS decomposition that
lIsin Z(X1, X) || = loi (XH* XD = || X3 ®)
and
. v Lk )?2
['sin Z(X1, X))l = lloi (X7)* XDl = IR ©)
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The second block of AX = X A gives
A Xs + Rik)NQ = XaA1,
which is equivalent to
A Xy — XoA| = —R3X;. (10)

We now use the following fact [23, p. 251]: Let F € C"™*™ and G € C"*" be such
that 1/||F~'||— |G| = § > 0. Then forany W € C"*", we have || W || < IL/=WCL
We note that many results in eigenvector perturbation theory can be derived using this
fact [23].

We use this in (10) as follows: Rewrite the equation as

Ay — holin)) X2 — Xa(Ay — holy,) = —R3 X3,

and take (Az — dli—p,) = F, X2 = W, and A — )»01,11 := G. Then by the
assumptions on the spectrum we have 1/[|F~!|| > min |A(A2) — Xo] = 8 +d and
G| <d,so1/|F~' = |G| = 8 > 0. Therefore, we obtain

-
1%al < "RzTX”'

Hence using the fact [8, p. 327] that | XY|| < || X|2]Y]l for any unitarily invariant
norm we obtain

[Ral2

1¥a0 < == 1%, (11)
Therefore, recalling (8) and (9) we have
I'sin Z(X1, XDl = H [)Zz] < I1Xall + 1X3]
<yl 2”2)||x3||—<1 ” 2”2)”5 XL DI (12)

which is (6). In the spectral or Frobenius norm we can use the inequality || [ 2 ] lo.F <

\/ A I|§ Ft+ B ||% > note that this does not necessarily hold for other unitarily invari-

ant norms, e.g. the nuclear (or trace) norm [|Allx = Y_; 0;(A).
We thus obtain the slightly tighter bound

| 2”2

Isin £(X1. R0l < IXl3 p +1X503 0 = )1+ 52 1 Kslla.r

Il sin(X 1, X) 2.5 (13)

IR 15
=1+ 5

which is (7). O
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As a historical sidenote, Theorem 2 (or more specifically the setup in (5)) is related
to Question 10.2 in the classical paper by Davis and Kahan [4], where they ask for
subspace angle bounds between three subspaces. Theorem 2 is related but not a direct
answer to their question, since it provides bounds not on the direct subspace angles
(as in Davis—Kahan’s sin 6, tan 6 theorems) but the relative quality of the extracted
subspace || sin Z (X1, 5(\1)||/|| sin Z (X1, Y)H, where dim X > dim X1. Note also that
the Rayleigh—Ritz process imposes a structure in the residual (the zero (1,2) and
(2, 1)-blocks) as in (5).

It is possible to relax the assumptions on the spectrum; in particular, we can allow
the eigenvalues of A; and A to interlace. To proceed straight to the main subject
SVD, we defer the discussion to the “Appendix”.

It is perhaps worth emphasizing that the “gap” § is the gap between some of the
Ritz values and some of the exact eigenvalues. In particular, the gap does not involve
the eigenvalues of A3, in contrast to the gap that arises in the context of quadratic
eigenvalue perturbation bounds [13,15]. The same holds for the results for the SVD
as we describe next.

3 Accuracy bounds for approximate singular subspaces

We now turn to our main subject SVD. Essentially, the goal is to derive the SVD
analogues of Theorem 2. Regarding the accuracy of the singular values, just as in the
symmetric eigenproblem, the errors can be bounded using standard perturbation the-
ory, most importantly Weyl’s bound; bounds that scale quadratically with the residual
are also known [13]. Our focus here is the accuracy of the singular vectors.

Two approaches are commonly employed for extending results for the symmetric
eigenproblem to the SVD of A € C™*" (the discussion here assumes m > n):

1. Work with the Gram matrices A*A and AA*, which respectively have V and
[U U] as the eigenvector matrices.

E3
2. Work with the Jordan—Wieldant matrix [2 1?) ]
along with |m — n| copies of 0. The eigenvectors are (assuming m > n)
[U U vt
V-v o0

and U+ € Cm>m=1) ig the orthogonal complement of U.

, whose eigenvalues are +0;(A),

], where U, V are the matrices of left and right singular vectors of A,

We avoid the Gram matrices because A* A have eigenvalues al.z (A), through which
the gap will be defined, and because of the squaring, the gap becomes smaller especially
in the small singular values, resulting in unnecessarily large bounds.

Working with the Jordan—Wieldant matrix is an effective approach, and would give

a bound on /([ %] [(‘i]) instead of Z(U, U) and /(V, V). By using the technique

employed in [23, p. 261] it is possible to deduce bounds on Z(Uj, ﬁl) and Z(Vy, \71).
Hochstenbach [10, Thm. 2.4] takes this approach to derive a bound for singular vectors
(the case m1 = n; = k = 1 in our setting). A slight issue with this approach is the
presence of the |m — n| extra eigenvalues at 0, which can result in the gap quantity
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(8 below) being unnecessarily small; indeed in [10, Thm. 2.4] the gap is defined
differently depending on whether m = n or not. Our result below shows that this
distinction is unnecessary (see remark at the end of Sect. 3.1). In addition, we remove
a factor 2 in the bound [10], and more importantly, extend the analysis to the subspace
casemi,ny, k > 1.

For the above reasons, in what follows we do not take the two approaches, and
instead work directly with the matrix A and its projection.

3.1 Main result

We shall prove the following, which is the main result of this paper.

Theorem 3 Ler A € (C’"X".,{:etﬁ = [171 ﬁz] eA(C’”X”A1 andV = [f/\l YQ]AG C"™7 have
orthonormal columns with U; € C"*" gnd Vi € C"*™  and let A, ¥;, R;, S;, A3
be as defined in (3), and let (1) be an exact SVD with a singular triplet (£1, Uy, V1),
with £1 € R¥**_ Define (recall the definition of o——in(4))

§ = max(omin(Z1) — 1222, 06—~ (22) — I 1]]2). (14)

min

If6 > 0, then

max (|| sin Z(Uy, U, || sin Z(V1, V)I|)

- (1 N max(lle(Islz, 152112)

)max(n sin Z(Uy, D), [ sin Z(Vi, V)I)  (15)

and

IsinZ Uy, )| + Il sin Z(Vy, V)|
_ (1 N max (|| Rzl2, [1S2112)

; )(n sin Z(Uy, O)|| + || sin Z(Vi, V)II) ~ (16)

in any unitarily invariant norm. Moreover, in the spectral and Frobenius norms
max(|| sin Z(Ur, U ll2,F, [I'sin £(Vi, Vi)ll2.F)

2
S\/l+maX(IIR2||2, 152112)

max (|| sin Z(Uy, O)lla. . | sin Z(Vi, V)ll2.F).

32
(17)
o ) [

Proof Let (21, Uy, Vi) be exact singular triplets of A and let V; = Vor |, U =

_ V31

Un

l@l , so that

Usi
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1146 Y. Nakatsukasa

fl Q Ry 211 Qll
0 % Ry || Va|=]|Ua |Z1, (18)
S1 S Az V31 Us;
and
o i] 0 R o
[Ul*l U3 U3*1] 0 X Ry | =2 [Vl*l Vi V3*1]- (19)
S1 S Az

As in (8), (9) we have

Uy

Isin Z(Uy. 0| = ”[1731}“ || sin Z(Vi, V)| = H[%}H (20)

and recalling that U= [L71 ﬁz] and V = [Vl Vz],
I sin Z(Uy, O)|| = |31, |I'sin Z(Vy, V)| = [ Va1 1)

To establish the theorem we shall bound || U21 || with respect to ||U31 I, and similarly
bound ||V21 || with respect to ||V31 II.
From the second block of (18) we obtain

SoVar + RaVay = U 3, (22)
and from the second block of (19) we get
U§ 504 U8, = 51 V5. (23)

Now suppose that § = opin(Z1) — ||f22||2 > 0. Then, taking norms and using the
triangular inequality and the fact || XY || < || X|2]|Y|l in (22) and (23), we obtain

1021 lomin(Z1) — Va1l 22112 < [|R2 Va1 |,

. ML oy (24)
121 lomin(E1) = 1Tl S2l12 < 1T a1

By adding the first inequality times omin(21) and the second inequality tlmes ||22||
we eliminate the ||V21 || term, and recalling the assumption opyin(X1) > ||22||2 we
obtain

omin(Z1) | R2Var || + ||22||2||U3152||

1021 < (25)
((Tmm(zl))2 - ”22”2
We can similarly obtain
= omin(EDNTS Sl + 1220201 R2 Vi |
Vo] < 2 31 . (26)

(omin(Z1)? — 12213
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Accuracy of singular vectors obtained by projection... 1147

Again using the fact | XY | < || X|2]|Y | we have

max(| U4, Sz, [ R2V311)
Tmin(Z1) — 122112
max (| U, I, | Va1 ) max([| Rz 12, 112 112)
Tmin(Z1) — 1222

max (|| Rz |2, [1S212) ~ ~
= 5 ax (U5 11, 1 Va1 ]). 27

max(||Uay ||, | Va1 ) <

Now if § = UETE(§2) — 1Z1]l2 > 0, we proceed similarly, replacing (24) with
IVaillo (B2) — 102111 Z1l2 < [IR2 V31l and [[Uz1 o5 () = IVl Z1ll2 <
U5, Szl (using the fact | XY || > [ X]lo—r (Y)) to arrive at the same conclusion (27).

Recalling (20) and (21), we obtain
L 31

)max<||l731||, V311

max (|| sin Z(Uy, Up). || sin £(V1, V)[)) = max <

< max(| U1 || + 1Ts1, | Var | + 1Vl
_ (1 L max(IRz . 15:112)

8

R, IS
_ <l+max(|| 222 152112)

)maX(II sin Z(Uy, D), || sin Z(Vi, V),

giving (15). In the spectral or Frobenius norm we use the inequality ||[g]||2, F <

[%]
F V31 2, F

)* max(|| sin Z(Uy, [Ty UaDlla.p I sin Z(Vy, (V) VaDlla. p).

\/||A||%’F + ||B ||%’F to obtain the slightly tighter bound

. ~ . > U
max ([ sin £(U1. Uiz, p. |l sin £(V1, VD)2, 7} = max (H [gji]

< max( /102113 p + 103113 g /172113 + 1753113, )

R LS
S\/1+(maX(II 222 152112)

To obtain (16), adding the two inequalities (25) and (26) we have

IR Va1 |+ 11U, Sa max (|| Rz 12, [1S2112)
o A < (1T +1 Va1l ,
——(Z1))2 =123 8
(28)

0211+ Va1 || < ||_(

min

where as

s = UTn\E(EZ) — ||El||2 Hence we have
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‘721
+ ~
7]
< Nl + U3l + 1 Varll + 1 V31l
max (|| Rzl2, [1S212) ~ ~
(1 + . U851+ 1511

_ (1 N maX(IIRz(Islz, 1S2112)

. 23 1 V. ﬁ
[ sin Z(Uy, U + [Isin £(Vy, VD)l = H [ﬁiﬂ

<

) (Isin Z(Uy, O) |+ sin £(Vi, V),

completing the proof. O

Theorem 3 shows that the computed singular vectors extracted by the projection
max (|| R 12,11 S2112) 2
1 + ( 252 2112 )

method is optimal up to the factor \/ in the spectral norm, and

the factor 1 + w in any unitarily invariant norm. Note the similarity of
these factors between Theorems 2 and 3.

The quantity § in the theorem plays essentially the same role as in the results in
Sect. 2, and is the SVD analogue of the spectral gap. In a typical situation where
the largest singular values are sought and m; = n; = k, we have fl ~ X with
3 containing the k largest singular values, and all the singular values of S, are
smaller than o;(A) = o——(%1), and thus § = o—(X1) — ||§2||2. Similarly,
when the smallest singular values are sought, fl ~ X with ¥; containing the
k smallest singular values, fz is square and all iLs singular values are larger than
Omin(m,n)—k+1(A) = [|X1]l2, and thus § = am(Ez) — IZ1|l2. It is perhaps worth
noting that when m # n, the gap quantity given in [10, Thm. 2.4] becomes (in our

notatlon) s = mln(o/n;;(Ez) — 12112, 1 Z11l2), which is unnecessarily small when

(2) > =11l

mm

3.2 When one-sided projection is used

Some of the state-of-the-art algorithms for an approximate SVD, such as [6,7], rely
on one-sided projection methods, instead of two-sided projection as described so far.
In this case one would approximate A ~ (UU)YSV*, where USV* = U*A is the
SVD of the m x n matrix, obtained by projecting A only from the left side by U (or
from the right by V' we discuss left projection for definiteness).

Although one-sided projection is merely a special case of two-sided projection (as
it corresponds to taking V=1, given its practical importance and the simplicities
that accrue, we restate the above results when specialized to one-sided projections. In
this case we do not have x73, and we start with the equation

> 0
A=) Ui U 3" AV V] =| 0 %, . (29)
ST S
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Corollary 1 In the notation of Theorem 3, suppose that span(f/\) = R". Then

. 23 1 v S
I sin Z(Uy, UDI + [Isin Z(V1, VDI = <1 + H 2”2

) Isin Z(Uy, O)|  (30)

in any unitarily invariant norm. Furthermore, in the spectral and Frobenius norms,

IS |I2 F

I'sin (U1, D)2,
€1y

max (|| sin Z(Uy, U)o,k | sin £(Vi, Vi) llo.r) <4/ 1+

Proof The bounds are obtained essentially by taking R; = 0 in Theorem 3, and noting
that Z(Vy, V) = 0 because V spans the entire space R". O

Note that the inequality corresponding to (15) becomes strictly weaker than (30),
thus omitted.

3.3 Subspace corresponding to smallest singular values

This work is expected to be relevant most in the context of finding an approximate
and truncated SVD, in which one approximates the largest singular values and its
associated subspaces. Nonetheless, the results obtained here are applicable to any set
of singular vectors: for example, Theorem 3 can be used when Uj, V| approximate the
singular subspaces corresponding to certain interior singular values. The same holds
for the smallest singular values.

However, practical difficulties arise when one is not looking for the largest singular
subspaces. The first difficulty is related to Remark 1 before Sect. 2.2; when computing
interior singular values, “spurious” approximate singular values can be very close to
an exact sought singular value, while having corresponding singular vectors that are
nowhere near the correct ones; this phenomenon would manifest itself as § being small.
As mentioned at the beginning of Sect. 3, using the Jordan—Wieldant matrix introduces
extra zero eigenvalues, resulting in unnecessarily small gaps for the smallest singular
values—worsening the issue with spurious singular values. We avoid this by working
directly with A. To remedy an (unavoidable) small gap, an approach analogous to
harmonic Rayleigh—Ritz [10] might be helpful; the analysis of such alternatives would
also be of interest.

Another difficulty is that even if the bounds in Theorem 3 are sufficiently small,
this does not guarantee that 0.V capture the whole left and right null space of
A: specifically, Uy, Vi in the theorems above may merely be a subset of the null
spaces, of the same size as U 1, V1 Unfortunately there appears to be no easy way to
check that U 1, V] contains the entire desired subspace (contrast thlS W1th when U 1, V1
approximate the largest singular subspaces, in which case A — U2V being small
indicates U 1 V1 contain the desired subspaces).
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3.3.1 Finding null space

One situation that Theorem 3 does not cover is when the null space is desired of a
(fat) rectangular matrix. For definiteness, suppose A € C"*" with m < n and one
wants to compute the n — m null vectors such that AV = 0. Then in the notation of
Theorem 3, we would like to take X to be the “0 x (n — m)” matrix of zeros, which
the theorem does not account for.

In this case we can modify the argument as follows.

Proposition 1 Let A € C™*" with m < n, and let AV, fi, 17,-, \7, R;, S;, Az be as
defined in (3). Let V| € C™k withk <n—m, k <my,n; be anull space of A such
that AVy = 0. Then

~ R —~
I'sin L(V1, V)| < (1 + m) I'sin L(V1, DI, (32)
Umin(EZ
and
. ~ IRl \?, . -
[l sin Z(Vi, VDllo,r </ 14+ | ——=— lIsin Z(Vi, V)2, F. (33)
O'min(ZZ

Proof We have

0 % Rof|Va|=0, (34)

Vll . %
where Y,Zl = [Vi Vo VL1*V,. The goal as before is to bound % =
V31 1,
‘721 5
ll [V31i| I/11Varll.

The second block of (34) gives ’2\2 Vm + Ry \73 1 = 0, from which we obtain (we
require that ¥, is square)

~ IRl =~
Va1l £ ——=—IIVal.
Omin(22)

Thus we obtain (32) and (33) using the same argument as in Theorem 3 as required. O

Acknowledgements I thank the referees for their helpful suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Accuracy of singular vectors obtained by projection... 1151

Appendix: When eigenvalues and Ritz values are interlacing

We revisit the eigenspace analysis in Sect. 2.2. As mentioned after Theorem 2, in
the Frobenius norm, one can relax the assumption on the eigenvalues A(A ) and Ritz
values A(A>3), to allow them to interlace.

Proposition 2 Let A be a Hermitian matrix, and let A be as in %), (K], 5(\1) is a set
of Ritz pairs with Ay € R"*™"_ Let (A1, X1) with Ay € R¥*¥ k < ny be a set of
exact eigenpairs such that 5§ = min [L(A2) — A(A1)| > 0, where Aj is as in (5). Then

~ ~ R
Jsin 21, R0 < [sin 2CX1, B (1 + 2l 82”2), (35)
2R
Isin £(X1, X)), < [sin (X1, )], 1+”—|| 522” (36)
- - R>|3
Jsin £GX1, R0 = sin 2061, D] 14 122 (37)

Proof The key too is the bound ([3], see also [14, Lem. 2 1]) for the Sylvester equation
c|AX — XB| = || X|| min|A(A) — A(B)|, where ¢ < 2 ,and ¢ = 1 in the Frobenius
norm. Using this in (10) we obtain

- PNV 1o o~ 5
[R3X3] = [[A2X2 — X2 Aq| = ;IIlel min [A(A2) — A(AD)| = ZI|X2||~

Hence, using | XY || < [|X||2]1Y || [8, p. 327] as before, we obtain || X> || < ¢ 1222 X5
Therefore, recalling (8) and (9) we obtain

| - X e IR ll>
I sin £(X1, Xl = H [;(ﬂ ’ = %2l + 1%50 = (1 +c ( Il

8
[R2 12 >
§(1+C( ))IIS L(X1, X,
which gives (35) by taking ¢ = /2. Moreover,

Falk
X3

2,F

IR2l2\2. ~
§(1+C< 5 MWX3ll2,F

=(1+c<” 2”2) Yl sin £ (X1, D)3 5.

Isin Z(X1, X3 5 = ‘

T2 F.112
= 1X2llz, F + 1X31l3, 7

Taking ¢ = 7 for the spectral norm gives (36), and ¢ = 1 for the Frobenius norm we
obtain (37).
O
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