
BIT Numer Math (2017) 57:901–926
DOI 10.1007/s10543-017-0657-x

Using interval unions to solve linear systems
of equations with uncertainties

Tiago Montanher1 · Ferenc Domes1 ·
Hermann Schichl1 · Arnold Neumaier1

Received: 8 September 2016 / Accepted: 7 April 2017 / Published online: 22 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract An interval union is a finite set of closed and disjoint intervals. In this
paper we introduce the interval union Gauss–Seidel procedure to rigorously enclose
the solution set of linear systems with uncertainties given by intervals or interval
unions.Wealso present the interval unionmidpoint andGauss–Jordanpreconditioners.
The Gauss–Jordan preconditioner is used in a mixed strategy to improve the quality
and efficiency of the algorithm. Numerical experiments on interval linear systems
generated at random show the capabilities of our approach.

Keywords Interval union arithmetic · Interval union linear systems · Interval union
Gauss–Seidel · Rigorous numerical linear algebra

Mathematics Subject Classification 65F10 · 65G20 · 65G30 · 65G40

Communicated by Lars Eldén.

This research was partially supported through the research Grants P25648-N25 of the Austrian Science
Fund (FWF), 853930 of the Austrian Research Promotion Agency (FFG) and CNPQ-205557/2014-7 of
the Brazilian council of research (CNPQ).

B Tiago Montanher
tiago.de.morais.montanher@univie.ac.at

Ferenc Domes
ferenc.domes@univie.ac.at

Hermann Schichl
hermann.schichl@univie.ac.at

Arnold Neumaier
arnold.neumaier@univie.ac.at

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-017-0657-x&domain=pdf
http://orcid.org/0000-0001-9730-5748

902 T. Montanher et al.

1 Introduction

In traditional interval arithmetic, division by an interval containing zero overestimates
the range when the latter is disconnected. Treating this using complements of intervals
(see e.g, [23]) only postpones the problem a little, while interval union arithmetic,
introduced by [24] as arithmetic on finite ordered sets of disjoint closed, possibly
unbounded intervals, allow a mathematically and computationally natural approach
to this problem. Indeed, the collection of interval unions (treated as closed sets in
the obvious way) is closed under set-theoretic addition, subtraction, multiplication,
division (after adding end points in case of an unbounded divisor), and all continuous
elementary operations.

Many theoretical results from interval analysis remain valid for interval unions. For
example, elementary operations and standard functions are inclusion isotone and the
fundamental theorem of interval analysis also generalizes to interval unions. On the
other hand, properties based on convexity (like the interval mean value theorem) do
not apply to interval unions.

In this paper we study the rigorous solution of interval union linear systems of
equations (IULS). We denote interval unions and vectors of interval unions by bold
calligraphic letters (such as a, x), while matrices of interval unions are denoted by
capital bold calligraphic letters (e.g., A, B). Let A and b be a matrix and a vector
with interval union entries respectively. If x is a given initial interval union vector,
we are interested in finding an enclosure of the solution set for the family of equa-
tions

Ax = b, (A ∈ A, b ∈ b, x ∈ x). (1)

This problem has several applications in rigorous numerical analysis. Since interval
linear systems are embedded into the interval union framework, any algorithm that
relies on the rigorous solution of interval linear systems can benefit from the methods
discussed in this paper. For example, constraint propagation methods [5] and the
interval Newton operator [20,21] can be significantly improvedwith the use of interval
union techniques. Moreover, interval union linear systems of equations can be used to
define an interval union branch and bound framework for rigorous global optimization.
This application will be detailed in a future work.

Related work: A closely related concept is that of multi-intervals, introduced inde-
pendently by Yakovlev [28] and Telerman (see Telerman et al. [26]). According to
[27], they are defined as a union of closed intervals that are not necessarily disjoint,
making them slightly more general from the interval unions of the present paper.

Multi-interval arithmetic is (a not separately accessible) part of the publicly avail-
able softwareUnicalc [1,22] for solving constraint satisfaction problems and nonlinear
systems of equations. Another implementation of multi-intervals is described in [25].
Parallel algorithms for interval and multi-interval arithmetic are the subject of [17].
Kreinovich et al. [18] use multi-intervals to study the existence of algorithms to solve
algebraic systems. No systematic performance evaluation seems to be known. Multi-
intervals were also applied to the analysis of analog circuits [7], to the modeling of
financial models under partial uncertainty [19], and to bit-width optimization [2].

123

Using interval unions to solve linear systems… 903

Another variant of interval unions are the discontinuous intervals by Hyvönen
[11], applied in [12,13] to simple constraint satisfaction problems and spreadsheet
computations. They are disjoint unions of closed, half-open, or open intervals. In
our opinion, the extra bookkeeping effort to distinguished between closed and open
endpoints is not warranted in most applications.

Content: We organized this paper as follows: Sect. 2 summarizes the fundamentals
of the interval union arithmetic. In Sect. 3, we define interval union matrices, vectors
and linear systems of equations.

In Sect. 4, we introduce two forms of the interval union Gauss–Seidel procedure
to solve (1): the partial form and the complete form. In the partial form, we update
only the variable corresponding to the main diagonal entry of A at each iteration. In
the complete form, we update all variables in each row.

Preconditioner heuristics are the subject of Sect. 5. Interval algorithms usually
precondition the initial interval linear system to improve the quality of the solution.
We extend the idea of preconditioning to interval unions and study two different
preconditioning heuristics. The first one is the midpoint method: it takes the inverse of
the midpoint of the hull matrix of the systemA as the preconditioner. The second one
is the Gauss–Jordan preconditioner which is based on the Gauss–Jordan elimination
as discussed in [6].

Since solving large systems—due to the cost of the matrix multiplication required
in the preconditioning heuristics—becomes intractable, we propose a mixed strategy
that combines the original system with its preconditioned form.

Section 6 presents results of our numerical experiments. We consider randomly
generated interval linear systems in order to compare traditional interval methods with
the our new approach. We take linear systems with n ∈ {2, 3, 5, 10, 15, 20, 30, 50}
where entries of A, b and x have radius r ∈ {0.1, 0.2, . . . , 2.9, 3.0}.

The experiment shows that interval union methods produce better enclosures than
their interval counterparts. The interval union Gauss–Seidel procedure with and with-
out preconditioners produce enclosures up to 25% sharper than those obtained by
interval methods. Moreover, there are no significant differences between the execu-
tion time of intervals and interval union methods.

Notation: We denote the vector space of all m × n matrices A with real entries Aik

(i = 1, . . . ,m, k = 1, . . . , n) by R
m×n . The vector space of all column vectors v of

length n and entries vi is denoted by R
n = R

n×1.
The n-dimensional identity matrix is given by I . We denote the set of induces

1, . . . , N by 1 : N and write Ai : and A: j to denote the i-th row and j-th column of
the matrix A respectively.

We assume that the reader is familiar with basic interval arithmetic. A comprehen-
sive approach to this subject is given by [21]. For the interval arithmetic notation, we
mostly follow [16]. Let a, a ∈ R with a ≤ a then a = [a, a] denotes an interval with
inf(a) := min(a) := a and sup(a) := max(a) := a. The set of nonempty compact
real intervals is given by

IR := {[a, a] | a ≤ a, a, a ∈ R}.

123

904 T. Montanher et al.

We will allow the extremes of the intervals to assume the ideal points −∞ and ∞,
and define IR as the set of closed real intervals and write

IR := {[a, a] ∩ R | a ≤ a, a, a ∈ R ∪ {−∞,∞}} ,

The width of the interval a ∈ IR is given by wid(a) := a − a, its magnitude by
|a| := max(|a|, |a|) and its mignitude by

〈a〉 :=
{
min(|a|, |a|) if 0 /∈ [a, a],
0 otherwise.

The midpoint of a ∈ IR is ǎ := mid(a) := (a + a)/2 and the radius of a ∈ IR is
â := rad(a) := (a − a)/2. An interval is called degenerate if wid(a) = 0.

For any set S ⊆ R, the smallest interval containing S is called the interval hull
of S and denoted by
�S. The notions of elementary operations between intervals and
inclusion properties are the same as presented in [21]. If a,b ∈ IR then the extended
division is defined as follows (see e.g, [23])

a/b :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ∗ [1/b, 1/b] if 0 /∈ b,

(−∞,+∞) if 0 ∈ a ∧ 0 ∈ b,

[a/b,+∞) if a < 0 ∧ b < b = 0,
(−∞, a/b] ∪ [a/b,+∞) if a < 0 ∧ b < 0 < b,
(−∞, a/b] if a < 0 ∧ 0 = b < b,
(−∞, a/b] if 0 < a ∧ b < b = 0,
(−∞, a/b] ∪ [a/b,+∞) if 0 < a ∧ b < 0 < b,
[a/b,+∞) if 0 < a ∧ 0 = b < b,
∅ if 0 /∈ a ∧ b = b = 0.

(2)

An interval vector x = [x, x] is the Cartesian product of the closed real intervals
xi := [xi , xi] ∈ IR. We denote the set of all interval vectors of dimension n by IR

n
.

We denote interval matrices by capital bold letters (A, B, …) and the set of all m × n

interval matrices is given by IR
m×n

.
For some applications, the interval subtraction may over-estimate the range of the

real computation. For example, since −a := 0 − a = [− sup(a),− inf(a)] then

b := a + (−a) = [inf(a) − sup(a), sup(a) − inf(a)]

and b = [0, 0] only if inf(a) = sup(a). In order to cope with this situation we also
define inner subtraction for intervals. If a,b ∈ IR then

a � b :=
{ [inf(a) − inf(b), sup(a) − sup(b)] if wid(a) ≥ wid(b)

[sup(a) − sup(b), inf(a) − inf(b)] otherwise.
(3)

For a comprehensive review of inner operations, see [3].

123

Using interval unions to solve linear systems… 905

2 Interval unions

This section introduces the basics of interval unions. For more details on the topics
covered in this section see [24].

Definition 1 An interval union u of length l(u) := k is a finite set of k intervals of
form

u := (u1, . . . ,uk) with
ui ∈ IR ∀ i = 1, . . . , k,
ui < ui+1 ∀ i = 1, . . . , k − 1.

We denote by Uk the set of all interval unions of length ≤ k. The set of all interval
unions is then U := ⋃

k≥0 Uk where we define U0 := ∅.
If u ∈ U is an interval union with l(u) = k then for any x ∈ R we say

x ∈ u ⇔ there exists a 1 ≤ i ≤ k such that x ∈ ui .

The relation above extends naturally for intervals and another interval unions, so
that if v is an interval union then

v ⊆ u ⇔ for all v ∈ v there exists a 1 ≤ i ≤ k such that v ⊆ ui .

Let S be a set of k intervals with k < ∞. The smallest interval union with respect
to inclusion that satisfies a ⊆ u for all a ∈ S is called the union creator U(S) of S.
Formally we have

U(S) := {u ∈ R | u ∈ ∪k
i=1Si }. (4)

Clearly, U(S) ∈ Uk , U(U(S)) = U(S) and S1 ⊆ S2 implies U(S1) ⊆ U(S2). The
interval hull of a union u ∈ U is denoted by
�u := [u1, ul(u)].

Let u ∈ Uk \ {∅}. The magnitude and mignitude of u are given by

|u| := max(|u1|, . . . , |uk |) = max(|u1|, |uk |)

and

〈u〉 := min(〈u1〉 , . . . , 〈uk〉).

The maximum, minimum and maximum width of the non-empty interval union u

are defined by

max(u) := uk, min(u) := u1

and

maxwid(u) := max(wid(u1), . . . ,wid(uk)).

123

906 T. Montanher et al.

The projection of the point x ∈ R into the interval union u ∈ Uk is given by

proj(x,u) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x if x ∈ u

ui if x ∈]ui ,ui+1[and x − ui < ui+1 − x,
ui+1 if x ∈]ui ,ui+1[and x − ui ≥ ui+1 − x,
uk if x > uk,
u1 if x < u1.

Definition 2 Let x ∈ IR be an interval, u := (u1, . . . ,uk) and s := (s1, . . . st)
interval unions and let ◦• ∈ {+,−, /, ∗,�} be an elementary interval operation with
the division operator given by (2) and the inner subtraction by (3).

(i) The elementary interval union operation ◦� : U × IR → U is given by

u ◦� x := U({u1 ◦• x, . . . ,uk ◦• x}).

(ii) The elementary interval union operation ◦� : U × U → U is given by

u ◦ s := U({u ◦� s1, . . . ,u ◦� st }).

The following result gives basic properties of interval union arithmetic, see [24].

Proposition 1 Let u, v and s be interval unions. Then for ◦ ∈ {+,−, /, ∗},

u ⊆ u′, s ⊆ s′ �⇒ u ◦ s ⊆ u′ ◦ s′ (5)

u(v ± s) ⊆ uv ± us. (6)

a(u + v) = au + av for a ∈ R, (7)

3 Interval union vectors, matrices and linear systems

Definition 3 An m × n interval union matrix is a rectangular array of interval unions
with m rows and n columns. We denote interval union matrices by capital bold calli-
graphic letters (A, B, …) and the (i, j)—element of the interval union matrix A is
given byAi j . The set of m × n interval union matrices is given byUm×n . In a similar
way, n×1 interval union matrices are called interval union vectors.We denote interval
union vectors by bold calligraphic letters (u, x, …) and the set of all n-dimensional
interval union vectors is given by Un . We denote the set of n-dimensional vectors u
satisfying l(ui) = ki by Un

k1,...,kn
.

Given a set of interval vectors {u1, . . . , up}, the union creator vector is denoted by
v := U({u1, . . . , up})where the union creatorU defined in (4) is applied component-
wise. Let u be an n-dimensional interval union vector satisfying l(ui) = ki and
p = ∏n

i=1 ki . If we denote the Cartesian product between two interval unions by ×
then the mapping S : Un

k1,...,kn
→ (IRn)p given by

S(v) := v1 × v2 × · · · × vn

123

Using interval unions to solve linear systems… 907

splits the interval union u into a set of p disjoint interval vectors. Notice that interval
union vectors can be used to represent p disjoint interval vectors storing only

∑n
i=1 ki

elements. This is a clear advantage over traditional interval arithmetic, especiallywhen
n is large. ThemappingS and the definition of union creator can be naturally extended
to matrices.

Interval union matrices and vectors follow the usual definition of arithmetic oper-
ations. Formally, ifA,B ∈ Um×n and C ∈ Un×p then

(A ± B)i j := Ai j ± Bi j (8)

and

(AC)i j :=
n∑

k=1

AikCk j . (9)

Proposition 2 Let A,A′,B,B′ ∈ Um×n and C,C′ ∈ Un×p. Then

A′ ⊆ A, B′ ⊆ B ⇒ A′ ± B′ ⊆ A ± B,

A′ ⊆ A, C′ ⊆ C ⇒ A′C′ ⊆ AC,

A(C + C′) ⊆ AC + AC′,
A(C + C′) = AC + AC′ for A ∈ R

m×n,

(A + A′)C = AC + A′C for C ∈ R
n×p.

Proof Follows from Relations (5)–(7) applied to Definitions (8) and (9).
�
An interval union linear system of equations (ILLS) with coefficients A ∈ Un×n

and b ∈ Un is the family of linear equations

Ax = b (A ∈ A, b ∈ b). (10)

This paper deals only with square systems though the generalization to systems of
form m × n is straightforward. The solution set of (10) is defined by

Σ(A, b) := {x ∈ R
n | Ax = b for some A ∈ A, b ∈ b}. (11)

As in the interval case, (11) can be a non-convex or disconnected set. Let x0 ∈ Un

be an interval union vector. The truncated solution set of (10) is

Σ(A, b) ∩ x0 := {x ∈ x0 | Ax = b for some A ∈ A, b ∈ b}. (12)

The following proposition states that (11) is identical to the union of solution sets
from the interval components of A and b.

Proposition 3 Let A ∈ Un×n and b ∈ Un. Then

⋃

Ai∈S(A)
b j∈S(b)

Σ(Ai ,b j) ≡ Σ(A, b).

123

908 T. Montanher et al.

Proof Let x ∈ ⋃
Ai∈S(A)
b j∈S(b)

Σ(Ai ,b j). Then for some i and j there exist A ∈ Ai and

b ∈ b j such that Ax = b. Since Ai ∈ A and b j ∈ b j follows that x ∈ Σ(A, b).
Conversely, if x ∈ Σ(A, b) then Ax = b for some A ∈ A and b ∈ b. The result
follows from the definition of S(A) and S(b).
�

Let A and b be an interval matrix and vector respectively. The problem of finding

�Σ(A,b) and
�Σ(A,b) ∩ x0 is known to be N P–hard (see, e.g., [8,18]). There-
fore, Proposition 3 implies that finding U(Σ(A, b)) and U(Σ(A, b) ∩ x0) are also
N P–hard problems. This paper focuses on algorithms to enclose U(Σ(A, b) ∩ x0).
Formally, we are interested in finding nontrivial vectors y (i.e y �= x0) satisfying

U(Σ(A, b) ∩ x0) ⊆ x0 ⊆ y.

Proposition 3 gives a natural approach to this problem. It consists in the application of
the interval Gauss–Seidel procedure described in [9,14,21] to each system obtained
by splitting A and b.

Let p = ∏
i=1:N ,
j=1:N

l(Ai j), q = ∏
i=1:N l(bi) and r = ∏

i=1:N l(xi). The method

proposed above requires the solution of p ·q ·r interval linear systems of equations and
does not take the structure of the interval union matrix and vector into account. The
next section presents extensions of the Gauss–Seidel procedure to interval unions. We
show that even in problems where A ∈ Un×n

1 and b ∈ Un
1 , interval union algorithms

give better results than their interval counterparts.
The interval union matrix A ∈ Un×n is said to be regular if every real matrix

A ∈ A is nonsingular. The interval union inverse of a regular matrixA is given by

A−1 := U
({

A−1 | A ∈ A
})

.

Proposition 4 Let A ∈ Un×n be a regular matrix and b ∈ Un×1. Then

Σ(A, b) ⊆ A−1b := U({x ∈ R
n | x = A−1b for some A ∈ A, b ∈ b}).

Proof Let x ∈ Σ(A, b). Then there are A ∈ A and b ∈ b such that Ax = b. Since
A is regular, A−1 is well defined and therefore x ∈ A−1b.
�

4 The interval union Gauss–Seidel method

Let A ∈ Un×n , b ∈ Un and x0 ∈ Un . In this section we introduce the interval union
Gauss–Seidel procedure to rigorously enclose the solution set of

Ax = b (A ∈ A, b ∈ b, x ∈ x0).

We first discuss the univariate interval union Gauss–Seidel operator and show its
properties using the definitions and results from [21].

For higher dimensions, we present two versions of the Gauss–Seidel procedure. In
the first version, called the partial form, we update only the variable corresponding to

123

Using interval unions to solve linear systems… 909

Ai i in the i th row. In the second, named complete, we consider all variables at each
iteration.

4.1 Interval union Gauss–Seidel operator

Let a, b,x ∈ U. The interval union linear system in this case reduces to

ax = b (a ∈ a, b ∈ b, x ∈ x).

As in the Definition (12), the truncated solution set is given by

Σ(a, b) ∩ x := {x ∈ x | ax = b for some a ∈ a, b ∈ b}. (13)

The univariate interval union Gauss–Seidel operator is defined by

Γ (a, b,x) := U({x ∈ x | ax = b for some a ∈ a, b ∈ b}). (14)

Proposition 5 Let a, b,x ∈ U then

Γ (a, b,x) = b

a
∩ x, (15)

Σ(a, b) ∩ x ≡ Γ (a, b,x) ⊆ x, (16)

Γ (a, b,x) ≡ ∅ ⇒ Σ(a, b) ∩ x ≡ ∅, (17)

0 /∈ b − ax ⇒ Σ(a, b) ∩ x ≡ ∅, (18)

0 ∈ a, 0 ∈ b ⇒ Σ(a, b) ∩ x ≡ x, (19)

a′ ⊆ a, b′ ⊆ b, x′ ⊆ x ⇒ Γ (a′, b′,x′) ⊆ Γ (a, b,x). (20)

Proof From Definition 2, we have

b

a
= U({x ∈ R | ãx = b̃ for some ã ∈ a, b̃ ∈ b})

and (15) follows from taking the intersectionwithx. To prove (16) note thatDefinitions
(13) and (14) imply that Σ(a, b) ∩ x ⊆ Γ (a, b,x). Conversely, if x ∈ Γ (a, b,x)

then Definition (4) implies that x is contained in some component of {x ∈ x | ax =
b for some a ∈ a, b ∈ b} and therefore Γ (a, b,x) ⊆ Σ(a, b) ∩ x. Relation (17)
follows immediately from (16). If 0 /∈ b−ax then there is no a ∈ a, b ∈ b and x ∈ x

such that ax = b. Therefore {x ∈ x | ax = b for some a ∈ a, b ∈ b} is empty and
Relation (18) holds. Relations (19) and (20) follow immediately from the extended
division in Definition (2) and the inclusion property respectively.
�

Let A ∈ Un×n , b ∈ Un , A ∈ A and b ∈ b. If Aii �= 0 and x̃ ∈ x is an
approximation of the solution of Ax = b then the Gauss–Seidel iteration is given by

123

910 T. Montanher et al.

x̃ ′
i := bi − ∑i−1

j=1 Ai j x̃ ′
j − ∑n

j=i+1 Ai j x̃ j

Aii
.

Since all elementary operations are inclusion isotone we have

x̃ ′
i ∈ bi − ∑i−1

j=1Ai jx
′
j − ∑n

j=i+1Ai jx j

Ai i
. (21)

Note that the right side of (21) truncated to x can be written in form of the Gauss–
Seidel operator Γ . Denote by yi the improved interval union enclosure obtained from
xi and let

yi := Γ

⎛

⎝Ai i , bi −
i−1∑

j=1

Ai jy j −
n∑

j=i+1

Ai jx j ,xi

⎞

⎠. (22)

Finally, we denote by Γ (A, b,x) the Cartesian product of variables y1, . . . ,yn
and we have the following result

Proposition 6 Let A ∈ Un×n, b ∈ Un and x ∈ Un. Then

A′ ⊆ A, b′ ⊆ b, x′ ⊆ x ⇒ Γ (A′, b′,x′) ⊆ Γ (A, b,x). (23)

x̃ ∈ Σ(A, b) ∩ x ⇒ x̃ ∈ Γ (A, b,x), (24)

Proof Relation (23) follows from the component-wise application of (20). Since x̃ ∈
Σ(A, b) ∩ x, there are A ∈ A and b ∈ b such that Ax̃ = b. Relation (24) follows
from (21) and Definition (22).
�

4.2 Partial form

We implement the partial Gauss–Seidel procedure that is based on the Gauss–Seidel
operator (15) in Algorithm 1. We incorporate Relations (18) and (19) to the algorithm
in order to avoid unnecessary divisions. We stop the algorithm when the following
criteria are reached for εAbs > 0 and εRel > 0

maxwid(x) − maxwid(y) < εAbs and 1 − maxwid(y)

maxwid(x)
< εRel . (25)

Example 1 Let A, b and x be given by

A =
({[−2.0, 2.0]} {[0.5, 1.0]}

{[0.5, 1.0]} {[−3.0, 3.0]}
)

, b =
({[8.0, 8.0]}

{[12.0, 12.0]}
)

and x = ({[−3, 2]}, {[−5, 6]})T . The solution set Σ(A, b) ∩ x for this problem as
well as the enclosures obtained by interval and interval union algorithms are shown
in Fig. 1. Since Ai j , bi ,xi ∈ U1 for every i and j , we can compare the performance
of Algorithm 1 with the traditional interval Gauss–Seidel procedure.

123

Using interval unions to solve linear systems… 911

Algorithm 1 Interval union Gauss–Seidel—Partial update
Input: The interval union matrix A and interval union vectors b and x. The tolerances εAbs > 0 and

εRel > 0. The maximum number of iterations K .
Output: The interval union vector y such that Σ(A, b) ∩ x ⊆ y ⊆ x.
1: for k = 1, . . . K do
2: for i = 1, . . . , n do
3: s ← bi − ∑i−1

j=1Ai jy j − ∑n
j=i+1Ai jx j ;

4: if 0 /∈ s − Ai ixi then
5: y ← ∅;
6: return y;
7: end if
8: if 0 ∈ s, 0 ∈ Ai i then
9: yi ← xi ;
10: continue;
11: end if
12: yi ← Γ (Ai i , s,xi);
13: if yi == ∅ then
14: y ← ∅;
15: return y;
16: end if
17: end for
18: if maxwid(x) − maxwid(y) < εAbs and 1 − maxwid(y)

maxwid(x)
< εRel then

19: return y;
20: end if
21: x ← y;
22: end for
23: return y;

Fig. 1 Solution set of
Example 1 and enclosures
obtained with the partial form of
the Gauss–Seidel procedure.
The initial box is given in the
outer dotted line. The enclosure
obtained with one iteration of
the interval Gauss–Seidel is
given by the dashed box (an
improvement of 63% in volume
and 54% in the maximum width
w.r.t the the initial box). The
enclosures obtained by the
interval union Gauss–Seidel
procedure with K = 1 are given
in solid lines (an improvement
of 76% in volume and 60% in
the maximum width w.r.t the
initial box)

123

912 T. Montanher et al.

The interval Gauss–Seidel procedure applied to the permuted matrix gives

xI = ([−3, 2], [2, 6])T .

This is an improvement of 63% involume and54% in themaximumwidth compared
to the initial box.Wedescribe now the application ofAlgorithm1 to the problem. In this
case, the interval union Gauss–Seidel procedure solves the problem directly, without
any permutation.

In the first iteration (i = 1) we have

s = {[8.0, 8.0]} − {[0.5, 1.0]}{[−5, 6]} = {[2.0, 13.0]} .

Since A11x1 = {[−6.0, 6.0]} follows that 0 ∈ s − A11x1 and 0 /∈ s. Applying the
Gauss–Seidel operator we obtain

y1 = {[−3,−1], [1, 2]}

and conclude the first iteration. The second iteration (i = 2) starts with

s = {[10, 11.5], [12.5, 15]} .

In this case,A2x2 = {[−18, 18]} and applying the Gauss–Seidel operator we have

y2 = {[−5,−3.3333], [3.3333, 6]}

and we finish the internal loop. The interval union Gauss–Seidel procedure produces 4
disjoint boxes representing an improvement of 76% in volume and 60% in maximum
width compared to the initial box. There is no improvement in y1 and y2 if we set
K = 2 in Algorithm 1.

4.3 Complete form

Algorithm 1 is said to be partial since it considers only the variable corresponding
to the diagonal entry at each iteration. In the following, we present the complete
Gauss–Seidel procedure. It applies the Gauss–Seidel operator to all variables at each
iteration.

The solution set obtained by the complete Gauss–Seidel procedure is at least as
good as those given by the partial version. On the other hand, the complete procedure
requires more calculations and may be prohibitive in higher dimensions.

In order to improve the efficiency of the complete Gauss–Seidel, we apply inner
subtraction to each row. Note that the Gauss–Seidel operator applied to the variable
x j in the i th row is given by

123

Using interval unions to solve linear systems… 913

Γ

⎛

⎜⎜
⎝Ai j , bi −

n∑

k=1
k �= j

Aikxk,x j

⎞

⎟⎟
⎠ .

Considering the auxiliary variable s := bi −∑n
k=1Aikxk , the Gauss–Seidel operation

becomes

Γ
(
Ai j , s � Ai jx j ,x j

)

where � is interval union generalization of the inner subtraction defined by Equation
(3).Algorithm2gives the complete formof the interval unionGauss–Seidel procedure.
It also implementsRelations (18) and (19) to avoid unnecessary divisions. The stopping
criteria adopted to this algorithm are the same as in the Algorithm 1.

Algorithm 2 Interval union Gauss–Seidel—Complete update
Input: The interval union matrix A and interval union vectors b and x. The tolerances εAbs > 0 and

εRel > 0. The maximum number of iterations K .
Output: The interval union vector y such that Σ(A, b) ∩ x ⊆ y ⊆ x.
1: for k = 1, . . . , K do
2: for i = 1, . . . , n do
3: s ← bi − ∑n

k=1Aikxk ;
4: for j = 1, . . . , n do
5: s j ← s � Ai jx j ;
6: if 0 /∈ s j − Ai ixi then
7: y ← ∅;
8: return y;
9: end if
10: if 0 ∈ s j , 0 ∈ Ai j then
11: y j ← x j ;
12: continue;
13: end if
14: y j ← Γ

(
Ai j , s j ,x j

)
;

15: if y j == ∅ then
16: y ← ∅;
17: return y;
18: end if
19: end for
20: end for
21: if maxwid(x) − maxwid(y) < εAbs and 1 − maxwid(y)

maxwid(x)
< εRel then

22: return y;
23: end if
24: x ← y;
25: end for
26: return y;

Example 2 (Example 1 revisited) Let A, b and x be given as in Example 1. The
solution sets obtained by the application of the complete form of the interval and
interval union Gauss–Seidel procedures are given in Fig. 2.

123

914 T. Montanher et al.

Fig. 2 Solution set of Example 1 with complete interval union Gauss–Seidel. The solution obtained with
one iteration of the interval Gauss–Seidel is given by the dashed box. The solution obtained by the interval
union Gauss–Seidel with K = 1 is given in solid lines

The complete interval Gauss–Seidel procedure produces the same result as the
partial form and therefore xI = ([−3, 2], [2, 6])T .

Applying the complete form with interval unions we obtain

y1 = {[−3,−1], [3.3333, 6]} and y2 = {[1, 2], [3.3333, 6]}

representing an improvement of 85% in volume and 72% in the maximum width
compared to the initial box. Note that the complete form removes two interval boxes
that do not contain any solution and that could not be deleted with the partial form
(see Figs. 1 and 2). Again, there is no improvement in y1 and y2 if we set K = 2 in
Algorithm 2.

4.4 Gap filling

The number of boxes produced by Algorithms 1 and 2 may increase exponentially
by the number of divisions with intervals containing zero. A similar phenomenon
was already observed by Hyvönen [11] for the propagation of discontinuous intervals;
however, the remedy proposed there—simply to take the interval hull—unnecessarily
discards useful information. As a more flexible remedy, [24] introduced the notion
of gap filling. In this section we describe a gap filling strategy that (among several
strategies tried) proved useful for the interval union Gauss–Seidel procedure.

123

Using interval unions to solve linear systems… 915

A gap filling is a mapping g : Uk → Uk satisfying x ⊆ g(x) and
�x ≡
�g(x) for
any x ∈ Uk . Two possible, trivial gap filling would be g(x) = x and g(x) =
�x. The
gap filling g(x) = x however does not avoid the exponential increase on the number
of boxes produced by Algorithms 1 and 2. In contrary, the gap filling g(x) =
�x
do not lead an increased number of boxes, but also loses valuable gap information.
Therefore in Algorithm 3 we propose a gap filling that controls the maximum number
of gaps produced.

Algorithm 3 Gap filling: maximum number of gaps
Input: The interval union x and the maximum number of gaps n.
Output: the interval union y such that x ⊆ y and
�x ≡
�y.
1: if l(x) ≤ n then
2: return x;
3: end if
4: while l(x) > n do
5: Find the gap g of x with smallest width;
6: x ← x ∪ g;
7: end while

Algorithm 3 can be modified to also handle interval union vectors and matrices. In
this case we look for the gap with the smallest width in the whole vector or matrix
and fill it in the while loop (Lines 4–7) of the algorithm. Note that using a multi-map
data structure in the implementation of the gap filling for vectors and matrices allows
faster access to the smallest gaps, improving the overall speed of the algorithm.

5 Preconditioners

In this section we present the midpoint and Gauss–Jordan preconditioners for interval
union linear systems. It is usually necessary to precondition interval union linear
systems of equations to obtainmeaningful bounds on the solution set. A preconditioner
is any real non-singular matrix C .

Given A ∈ Un×n , b ∈ Un and x0 ∈ Un , we are interested in preconditioners
satisfying

Σ(A, b) ∩ x0 ⊆ Γ (CA,Cb,x0) ⊆ Γ (A, b,x0).

Since any non-singular matrix can be chosen as preconditioner, there are several
heuristics to determine C according to the application. In the interval case, the mid-
point preconditioner is the common choice in a number of problems. Optimal linear
programming preconditioners are designed by [14] in the context of the interval New-
ton operator and the Gauss–Jordan preconditioner is proposed by [6]. See also [10]
and [15] for recent methods on optimal preconditioning.

The midpoint preconditioner in the interval union framework takes the form

C = proj(mid(
�A),A)−1

where the midpoint and proj operators are applied component-wise.

123

916 T. Montanher et al.

The Gauss–Jordan preconditioner is based on the real Gauss–Jordan elimination
algorithmwith pivot search. Given a square matrix A ∈ R

n×n , the algorithm computes
C and a permutation matrix P ∈ R

n×n such that

CAP = I.

In this paper we take A = proj(mid(
�A),A). It is worth to note that due to the
permutation matrix we apply the Gauss–Seidel procedure to the modified problem

My = r (M ∈ CAP, r ∈ Cb, y ∈ x0P). (26)

Example 3 Let A, b and x be given by

A =
({[0.00, 0.14]} {[0.54, 1.23]}

{[−0.06, 1.67]} {[0.31, 1.02]}
)

, b =
({[1.73, 1.73]}

{[6.76, 6.76]}
)

and x = ({[2.5, 3.5]}, {[3.0, 4.0]})T . Applying the partial form of the Gauss–Seidel
operator to each variable without preconditioner gives

y1 = {[2.5, 3.5]} ∩ U

([−3.19, 0.11]
[0, 0.14]

)
= {[2.5, 3.5]}

and

y2 = {[3.0, 4.0]} ∩ U

([0.9150, 6.9701]
[0.31, 1.02]

)
= {[3.0, 4.0]}

On the other hand, the Gauss–Jordan preconditioner presented in this section gives

C =
(

1.20894 −0.10512
−0.99869 1.32908

)
, P =

(
0 1
1 0

)
.

The permuted system is given by

M =
({[0.545, 1.454]} {[−0.175, 0.175]}

{[−0.816, 0.816]} {[−0.219, 2.219]}
)

, r =
({[1.380, 1.380]}

{[7.256, 7.256]}
)

andx′ = ({[3.0, 4.0]}, {[2.5, 3.5]})T .We obtain the following boundswith theGauss–
Seidel procedure applied to the permuted system

y′
1 = {[3.0, 4.0]} ∩ U

([0.7663, 1.9953]
[0.5455, 1.4545]

)
= {[3.0, 3.65]}

123

Using interval unions to solve linear systems… 917

and

y′
2 = {[2.5, 3.5]} ∩ U

([4.2712, 10.2425]
[−0.2196, 2.2196]

)
= {[2.5, 3.5]}.

The new enclosure represents an improvement of 34% in volume compared to the
initial box. Note that we must apply the inverse permute to y′

1 and y
′
2 in order to obtain

the correct enclosure. In this example, the same result would be obtained by applying
the midpoint preconditioner.

The matrix C is dense in general. Therefore, preconditioner strategies may be
prohibitive in large linear systems of equations. Moreover, systems of form (26) may
overestimate the solution set in some problems. For example, letA, b and x be given
by

A =
({[−2.0, 2.0]} {[0.5, 1.0]}

{[0.5, 1.0]} {[2.0, 3.0]}
)

, b =
({[6.0, 6.0]}

{[6.0, 6.0]}
)

and x = ({[−3, 2]}, {[−6, 6]})T . If we apply the Algorithm 1 with εAbs = εRel =
10−4 and K = 1 to theoriginal system,weobtainyUNP = ({[−3, 2]}, {[1.333, 4.5]})T .
The resulting interval union vector represents an improvement of 73% in volumewhen
compared with the initial box. On the other hand, applying the Algorithm 1 with the
same parameters to the corresponding system of form (26), obtained with the Gauss–
Jordan preconditioning gives yGJ = ({[−3,−0.7826], [0.9729, 2]}, {[0, 6]})T . The
solution vector yGJ is an improvement of 67% in volume when compared with the
initial box.

We introduce a mixed strategy that combines the original linear system with its
preconditioned form. Given A ∈ Un×n , b ∈ Un and x ∈ Un we alternate between
the solution of the original system and the preconditioned form (26) until one of the
following: (1) we prove that there is no solution in x, (2) the maximum number of
iterations is reached, or (3) we have not enough gain in the last solution of both the
original and preconditioned systems.

Algorithm 4 implements the mixed strategy using the partial or complete forms
of the interval union Gauss–Seidel procedure. The boolean variables gainUnprec and
gainGS control the next iteration of the algorithm. If both are false then neither the
Gauss–Seidel procedure without preconditioning nor the same procedure with precon-
ditioning gave a substantial improvement on the current box and the mixed algorithms
stops. Algorithm 4 can be modified to apply the midpoint preconditioner instead of
the Gauss–Jordan method.

6 Numerical experiments

In this sectionweperformnumerical experiments to compare the interval unionGauss–
Seidel procedure with its interval counterpart. We consider the partial and complete
forms of the Gauss–Seidel procedure as well as the midpoint and the Gauss–Jordan

123

918 T. Montanher et al.

Algorithm 4Mixed preconditioner strategy
Input: The interval union matrix A and interval union vectors b and x. The tolerances εAbs > 0 and

εRel > 0. The maximum number of iterations K .
Output: The interval union vector y such that Σ(A, b) ∩ x ⊆ y ⊆ x.
1: y ← GS(A, b,x, εAbs , εRel , 1);
2: if y == ∅ then
3: return y;
4: end if
5: gainUnprec ← true;
6: if Relations (25) are satisfied then
7: gainUnprec ← false;
8: end if
9: (C, P) ← Gauss-Jordan(A);
10: M ← CAP; r ← Cb;
11: gainGJ ← true; iterateGJ ← true;
12: for i = 2, . . . , K do
13: if iterateGJ == true then
14: y ← GS(M, r,yP, εAbs , εRel , 1);
15: y ← yP−1;
16: iterateGJ ← false;
17: if Relations (25) are satisfied then
18: gainGJ ← false;
19: else
20: gainGJ ← true; gainUnprec ← true;
21: end if
22: else
23: y ← GS(A, b,y, εAbs , εRel , 1);
24: iterateGJ ← true;
25: if Relations (25) are satisfied then
26: gainUnprec ← false;
27: else
28: gainGJ ← true; gain ← true;
29: end if
30: end if
31: if y == ∅ or (gainGJ == false and gainUnprec == false) then
32: return y;
33: end if
34: end for
35: return y;

preconditioners. In this test, we take only interval linear systems of equations into
account. The experiment is described in Algorithm 5.

In this section, we set the parameters of the Algorithms 1 and 2 as εAbs = εRel =
10−4 and K = 2 for the partial form and K = 1 for the complete form. In the gap
filling Algorithm 3, we set the maximum number of gaps in an interval union as g = 2
and the maximum number of boxes for interval union vectors to 64.

In Algorithm 5, we setR := {0.1, 0.2, . . . , 2.9, 3.0},N := {2, 3, 5, 10, 15, 20, 30,
50} and T = 100. The entries of A, b and x have radius given by r ∈ R and satisfy
the rules described in Table 1.

Figures 3, 4 and 5 summarize the results of the experiment. For each point in these
graphs we have the average of the maximumwidth gained with the methods in a set of
4000 problems taken at random (100 for each n ∈ N and for each one of the 5 cases

123

Using interval unions to solve linear systems… 919

Algorithm 5 Performance analysis
Input: The set of radii R, the set of sizes N and the number of trials T .
Output: The average maximum width gained and elapsed time for each combination of Gauss-Seidel

procedure form and preconditioner.
1: for r ∈ R do
2: for n ∈ N do
3: for i = 1 : T do
4: Generate the random matrix A of size n and such that rad(A) = r ;
5: Generate vectors b and x of size n and such that rad(b) = rad(x) = r ;
6: Run the instance with all variants of the Gauss-Seidel procedure;
7: Save the data;
8: end for
9: end for
10: end for

Table 1 Description of the processes that generate matrices and vectors A, b and x

Case A b x

1 Ǎi i ∈ [−1, 1], Ǎi j ∈ [−5, 5] b̌ ∈ [−1, 1] Ǎ−1b̌ ∈ x

2 Ǎi i ∈ [−5, 5], Ǎi j ∈ [−1, 1] b̌ ∈ [−1, 1] Ǎ−1b̌ ∈ x

3 Ǎi j ∈ [−1, 1] b̌ ∈ [−1, 1] x̌ ∈ [−1, 1]
4 Ǎi j ∈ [−1, 1] b̌ ∈ [n, 10n] x̌ ∈ [−1, 1]
5 Ǎi i ∈ [−1, 1], Ǎi j ∈ [−5, 5] b̌ ∈ [n, 10n] x̌ ∈ [−1, 1]
The number n stands for the dimension of the linear system

Fig. 3 Averagemaximumwidth gainedwith eachmethod in problems of size n ∈ {2, 5, 10, 15, 20, 30, 50}.
All possible forms of the Gauss–Seidel procedure without preconditioning

displayed in Table 1). Tables 2 and 3 show the average elapsed time for each method.
All the algorithms were implemented in JGloptlab [4], a Java implementation of the
state of the art global optimization algorithms. We run the experiment in a corei7
processor with 6Gb of RAM memory.

It is clear that the interval unionGauss–Seidel procedure produces better enclosures
than the interval method. Tables 2 and 3 show that there are no significant differences

123

920 T. Montanher et al.

Fig. 4 Averagemaximumwidth gainedwith eachmethod in problems of size n ∈ {2, 5, 10, 15, 20, 30, 50}.
All possible forms of the Gauss–Seidel procedure with the midpoint preconditioner

Fig. 5 Averagemaximumwidth gainedwith eachmethod in problems of size n ∈ {2, 5, 10, 15, 20, 30, 50}.
All possible forms of the Gauss–Seidel procedure with the Gauss–Jordan preconditioner

Table 2 Average elapsed time (in seconds) for the partial form

n Interval Union

Unprec. Midpoint Gauss–Jordan Unprec. Midpoint Gauss–Jordan

15 0.001 0.001 0.001 0.001 0.03 0.012

20 0.001 0.39 0.404 0.001 0.538 0.515

30 0.001 3.135 3.23 0.001 3.621 3.726

50 0.001 15.806 16.752 0.001 16.72 17.772

Unprec. stands for algorithms without preconditioning

between the execution time of the Gauss–Seidel procedure with intervals and interval
unions.

Figure 6 show the effect of the dimension on the quality of the computed enclosures
considering the Gauss–Jordan preconditioner.

123

Using interval unions to solve linear systems… 921

Table 3 Average elapsed time (in seconds) for the complete form

n Interval Union

Unprec. Midpoint Gauss–Jordan Unprec. Midpoint Gauss–Jordan

15 0.001 0.003 0.001 0.001 0.041 0.043

20 0.001 0.396 0.408 0.001 0.696 0.655

30 0.009 3.163 3.266 0.001 3.812 3.898

50 0.004 15.986 16.89 0.001 17.689 18.644

Unprec. stands for algorithms without preconditioning

Fig. 6 Average maximum width gained with each method in the same problems used on Fig. 5 as function
of the dimension

Fig. 7 Maximum number of boxes generated during the execution of the partial form of the interval union
Gauss–Seidel procedure in average. MP stands for the midpoint precoditioner and GJ denotes the method
with the Gauss–Jordan preconditioner

The exponential increase in the number of boxes produced by Algorithms 1 and
2 is one of the main concerns regarding the use of the interval union arithmetic. We
note that the maximum number of boxes produced in during the interval union Gauss–
Seidel procedure is, in average, never greater than 3 as showed by Figs. 7 and 8.

123

922 T. Montanher et al.

Fig. 8 Maximum number of boxes generated during the execution of the complete form of the interval
union Gauss–Seidel procedure in average. MP stands for the midpoint preconditioner and GJ denotes the
method with the Gauss–Jordan preconditioner

Fig. 9 Averagemaximumwidth gainedwith eachmethod in problems of size n ∈ {2, 5, 10, 15, 20, 30, 50}.
The figure displays the partial form of the interval union Gauss–Seidel without preconditioner, with the
Gauss–Jordan preconditioner and the mixed strategy

Moreover, we reach the maximum number of boxes prescribed in Algorithm 3 during
the execution of the procedure only in 10% of the 120,000 instances with the complete
form. We never reach the maximum number of boxes with the partial form.

6.1 Mixed preconditioner strategy

It is clear from Tables 2 and 3 that the interval union Gauss–Seidel procedure without
preconditioner is several times faster than the same method with preconditioners.
Moreover, there are problems where the preconditioner leads to poorer bounds than
the solution of the original system.

We finish this section comparing Algorithms 1 and 2 with the mixed strategy pro-
posed in Algorithm 4. In this experiment we set the parameters of all algorithms as

123

Using interval unions to solve linear systems… 923

Fig. 10 Average maximum width gained with each method in problems of size n ∈
{2, 5, 10, 15, 20, 30, 50}. The figure displays the complete form of the interval union Gauss–Seidel without
preconditioner, with the Gauss–Jordan preconditioner and the mixed strategy

Table 4 Average elapsed time (in seconds) for the partial and complete forms

n Partial Complete

Unprec. Gauss–Jordan Mixed Unprec. Gauss–Jordan Mixed

15 0.015 2.583 0.919 0.121 6.479 2.835

20 0.026 16.582 12.765 1.125 21.56 16.471

30 0.106 59.697 50.741 12.361 73.247 66.726

50 2.9 285.19 252.845 54.105 325.764 314.148

Unprec. is the interval union Gauss–Seidel without preconditioner and Mixed is the strategy described in
Algorithm 4

εAbs = εRel = 10−4 and K = 2. We perform the experiment in the same test set
described previously.

Figures 9 and 10 show the results of the experiment. Table 4 compares the average
elapsed time for each method.

The figures show that the mixed strategy produces bounds that are, in average,
sharper than those obtainedwith simplemethods. It can be explainedby the observation
that there is no dominant preconditioner strategy. The Gauss–Jordan preconditioner
is better suited to cope with some problems (for example, ill conditioned problems)
while the original system provides better solutions in other classes of interval linear
systems (for example, diagonally dominant). On the other hand, Table 4 shows that
the mixed strategy is not faster than the Gauss–Jordan preconditioner. It is due to the
fact that in many problems the second iteration of the Algorithm 4 is needed.

123

924 T. Montanher et al.

7 Concluding remarks

In this paper, we introduce the interval union Gauss–Seidel procedure to rigorously
enclose the solution set of

Ax = b (A ∈ A, b ∈ b, x ∈ x0).

The Gauss–Seidel procedure is presented in two forms; the partial one (Algorithm
1) and the complete one (Algorithm 2). At each iteration, in the former we update only
the variable corresponding to the main diagonal of the matrixA, whereas in the latter
every variable is updated.

We also studied two preconditioner heuristics for the interval union Gauss–Seidel
procedure. Themidpoint preconditioner takes the inverse of themidpoint of the interval
hull of A and the Gauss–Jordan preconditioner that is based on the interval version
of this method discussed by [6]. We also propose a mixed strategy that combines the
original system and the Gauss–Jordan preconditioner to improve the efficiency and
the quality of solutions, see the Algorithm 4.

Numerical experiments show that the interval union Gauss–Seidel procedure pro-
duces better enclosures than its interval counterparts. We performed tests on 120,000
problems generated at random as described by Table 1. Figures 3, 4 and 5 demon-
strate that interval union procedures produce bounds that are up to 25% sharper than
those obtained by the interval implementation of the method. Tables 2 and 3 show that
there is no disadvantage in computation time when using interval union methods as
compared to interval ones.

The potential increase in the number of boxes produced by Algorithms 1 and 2
is one of the main concerns in the use of interval union methods. We propose a gap
filling strategy based on the ideas described by [24]. The resulting method is given
by 3. We show that the maximum number of boxes produced by the complete form
of the Gauss–Seidel procedure is reached only in 10% of instances. We never reach
the maximum number of boxes with the partial form. The average number of boxes
generated in this experiment is given by Figs. 7 and 8.

We note that themixed strategy described inAlgorithm 4 is faster andmore accurate
than the interval union Gauss–Seidel procedure with Gauss–Jordan preconditioner. It
also produces better enclosures than those obtained with the method without pre-
conditioner. On the other hand, if the maximum radius of A, b and x are small
enough then it is more efficient to turn off the preconditioning as suggested by Figs. 9
and 10.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Using interval unions to solve linear systems… 925

References

1. Babichev, A., Kadyrova, O., Kashevarova, T., Leshchenko, A., Semenov, A.: Unicalc, a novel approach
to solving systems of algebraic equations. Interval Comput. 2, 29–47 (1993)

2. Carreras, C., López, J.A., Nieto-Taladriz, O.: Bit-width selection for data-path implementations. In:
Proceedings of the 12th International Symposium on System Synthesis, 1999, pp. 114–119. IEEE
(1999)

3. Dimitrova, N., Hayes, N., Markov, S.: Motion 12: Inner Addition/Subtraction Over Intervals (2014).
http://grouper.ieee.org/groups/1788/email/pdfa3iJjAu21f.pdf

4. Domes, F.: JGloptLab—A Rigorous Global Optimization Software (2016). http://www.mat.univie.ac.
at/~dferi/publications.html (in preparation)

5. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429
(2010). http://www.mat.univie.ac.at/~dferi/research/Propag.pdf

6. Domes, F., Neumaier, A.: Rigorous filtering using linear relaxations. J. Glob. Optim. 53, 441–473
(2012). http://www.mat.univie.ac.at/~dferi/research/Linear.pdf

7. Dreyer, A.: Interval Analysis of AnalogCircuits with Component Tolerances. Ph.D. Thesis, Technische
Universitat Kaiserslautern, Kaiserslautern, Germany (2005)

8. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with
Inexact Data. Springer, Berlin (2006)

9. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (1992)
10. Hladík, M.: Optimal Preconditioning for the Interval Parametric Gauss–Seidel Method, pp. 116–125.

Springer, Berlin (2016)
11. Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach.

Artif. Intell. 58(1–3), 71–112 (1992)
12. Hyvönen, E., De Pascale, S.: Interval computations on the spreadsheet. In: Kearfott, R.B., Kreinovich,

V. (eds.) Applications of Interval Computations, pp. 169–209. Springer, Boston, MA (1996)
13. Hyvönen, E., De Pascale, S.: InC++ library family for interval computations. In: International journal of

reliable computing. Supplement to the internationalworkshop on applications of interval computations,
pp. 85–90. El Paso, Texas (1995)

14. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dor-
drecht (1996)

15. Kearfott, R.B.: A comparison of some methods for bounding connected and disconnected solution sets
of interval linear systems. Computing 82(1), 77–102 (2008)

16. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized
notation in interval analysis. In: Proceedings of the XIII Baikal International School-seminar “Opti-
mization Methods and Their Applications”, vol. 4, pp. 106–113. Institute of Energy Systems, Baikal,
Irkutsk (2005)

17. Kreinovich, V., Bernat, A.: Parallel algorithms for interval computations: an introduction. Interval
Comput. 3, 3–6 (1994)

18. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data
Processing and Interval Computations, vol. 10. Springer, Berlin (1998)

19. Kuznetsov, N.: Development of financial models under partial uncertainty. Econ. Ann XXI 9–10(2),
49–52 (2014)

20. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
21. Neumaier, A.: IntervalMethods for Systems of Equations, Encyclopedia ofMathematics and its Appli-

cations, vol. 37. Cambridge University Press, Cambridge (1990)
22. Petunin, D., Semenov, A.: The use of multi-intervals in the unicalc solver. In: Scientific Computing and

Validated Numerics. Proceedings of the International Symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics SCAN-95, Wuppertal, Germany, September 26–29, 1995, pp.
91–97. Akademie Verlag, Berlin (1996)

23. Ratz, D.: Inclusion isotone extended interval arithmetic. Technical Report, Institut für Angewandte
Mathematik, Karlsruhe (1996). http://digbib.ubka.uni-karlsruhe.de/volltexte/67997

24. Schichl, H., Domes, F., Montanher, T., Kofler, K.: Interval Unions (2015). http://www.mat.univie.ac.
at/~dferi/publications.html (in preparation)

25. Shvetsov, I., Telerman, V., Ushakov, D.: Nemo+: object-oriented constraint programming environment
based on subdefinite models. In: International Conference on Principles and Practice of Constraint
Programming, pp. 534–548. Springer (1997)

123

http://grouper.ieee.org/groups/1788/email/pdfa3iJjAu21f.pdf
http://www.mat.univie.ac.at/~dferi/publications.html
http://www.mat.univie.ac.at/~dferi/publications.html
http://www.mat.univie.ac.at/~dferi/research/Propag.pdf
http://www.mat.univie.ac.at/~dferi/research/Linear.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/67997
http://www.mat.univie.ac.at/~dferi/publications.html
http://www.mat.univie.ac.at/~dferi/publications.html

926 T. Montanher et al.

26. Telerman, V., Ushakov, D.: Data types in subdefinite models. In: International Conference on Artificial
Intelligence and Symbolic Mathematical Computing, pp. 305–319. Springer (1996)

27. Walker, I.D., Carreras, C., McDonnell, R., Grimes, G.: Extension versus bending for continuum robots.
Int. J. Adv. Robot. Syst. 3(2), 171–178 (2006)

28. Yakovlev, A.G.: Computer arithmetics of multiintervals. Problems of cybernetics. Problem-oriented
computer systems, pp. 66–81 (1987) (In Russian)

123

	Using interval unions to solve linear systems of equations with uncertainties
	Abstract
	1 Introduction
	2 Interval unions
	3 Interval union vectors, matrices and linear systems
	4 The interval union Gauss–Seidel method
	4.1 Interval union Gauss–Seidel operator
	4.2 Partial form
	4.3 Complete form
	4.4 Gap filling

	5 Preconditioners
	6 Numerical experiments
	6.1 Mixed preconditioner strategy

	7 Concluding remarks
	Acknowledgements
	References

