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Abstract We are concerned with stability of numerical methods for delay differ-
ential systems of neutral type. In particular, delay-dependent stability of numerical
methods is investigated. By means of the H -matrix norm, a necessary and sufficient
condition for the asymptotic stability of analytic solution of linear neutral differential
systems is derived. Then, based on the argument principle, sufficient conditions for
delay-dependent stability ofRunge–Kutta and linearmulti-stepmethods are presented,
respectively. Furthermore, two algorithms are provided for checking delay-dependent
stability of analytical and numerical solutions, respectively. Numerical examples are
given to illustrate the main results.
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1 Introduction

We are concerned with linear delay differential system of neutral type with a single
delay described by

u̇(t) = Lu(t) + Mu(t − τ) + Nu̇(t − τ) for t ≥ 0 (1.1)

with the condition

ρ(N ) < 1, (1.2)

where u(t) ∈ R
d , parameter matrices L , M, N ∈ R

d×d and delay τ > 0. Throughout
the present paper, the NDDE system refers to Eq. (1.1) with (1.2).

Stability of delay and neutral systems can be divided into two categories according
to its dependence upon the size of delays. The stability which does not depend on
delays is called delay-independent, otherwise it is referred to as delay-dependent (they
are discussed in [1,2,4,9–11,19]). Each case is extended to the neutral type and the
reader can refer to [2,10] for the delay-independent and to [2,9,11,19] for the delay-
dependent case. Then, the stability of numerical methods is also divided into delay-
independent and delay-dependent according to which system the method is applied
to. The present paper is devoted to study the delay-dependent stability of numerical
methods for the systems of neutral type, for we believe it gives more precise insight
of the methods.

Although numerical delay-independent stability has been discussed in [1,2,10],
only a few works have been reported for the delay-dependent case [2,7,13,18]. The
literature [2,7,18] proposed the delay-dependent stability of numerical methods for
the system

u̇(t) = Lu(t) + Mu(t − τ), (1.3)

and called it as D-stability. However, as pointed out in [2], delay-dependent stability
of numerical methods for the system is a real challenge. In fact, in [18] it is proved that
for any A-stable natural Runge–Kutta method for system (1.3) and for any step-size
h = τ/m (m is a positive integer), there exists an asymptotically stable linear system
of dimension d = 4 for which un → 0 as n → ∞ does not hold. Later, the same
negative result for d = 2 is obtained in [7]. In short, no A-stable natural Runge–Kutta
method for system (1.3) is D-stable.

This suggests that the definition of D-stability is too restricted. Its definition requires
the resulting difference system from a Runge–Kutta method is asymptotically stable
for all asymptotically stable system (1.3) and for all the step-sizes. Hence almost all
the standard Runge–Kutta methods are excluded in the D-stability sense. However,
practical computations shows it is not the case. Our experiences are as follows. When
we numerically solve an asymptotically stable NDDE system, it is possible that by
carefully choosing a small step-size h = τ/m numerical solutions by a standard
Runge–Kutta or linear multi-step method exhibit an asymptotically stable behaviour.
Thus we are motivated to present a relaxed definition for delay-dependent stability of
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Delay-dependent stability of numerical methods for… 733

numerical methods. We will give a new definition of delay-dependent stability, which
only requires the conditions of asymptotically stable difference system derived from
a numerical method for an asymptotically stable NDDE system with a certain integer
giving the step-size h = τ/m.

This paper is organized as follows. A necessary and sufficient condition for the
asymptotic stability of analytic solution of linear neutral differential systems is derived
in Sect. 2. In Sect. 3, the new delay-dependent stability of Runge–Kutta and linear
multi-step methods are discussed, respectively. Numerical examples in Sect. 4 are
provided to illustrate the main results. Conclusions are given in Sect. 5.

Throughout the paper, for a complex matrix F, ‖F‖ means any matrix norm. The
Hermitian conjugate of a complex vector or matrix is denoted by x∗ or F∗. The j th

eigenvalue of F is denoted by λ j (F). The symbol ρ(F) represents its spectral radius.
Re z and Im z stand for the real and the imaginary parts of a complex number z,
respectively. The open left half-plane {s : Re s < 0} is denoted by C

− and the right
half-plane {s : Re s ≥ 0} by C+.

2 Preliminaries

In this section, several lemmas and definitions are reviewed which will be used in
Sects. 3 and 4.

A function P(s) is said to bemeromorphic in a domain D if it is analytic throughout
D except poles. The following argument principle is well-known.

Lemma 2.1 (e.g. [5]) Suppose that

(i) a function P(s) is meromorphic in the domain interior to a positively oriented
simple closed contour γ ;

(ii) P(s) is analytic and nonzero on γ ;
(iii) counting multiplicities, Z is the number of zeros and Y is the number of poles of

P(s) inside γ.

Then

1

2π
�γ arg P(s) = Z − Y,

where �γ arg P(s) represents the change of the argument of P(s) along γ .

The following result is useful to check the existence of inverse matrix.

Lemma 2.2 (e.g. [17]) For a complex matrix F, if ρ(F) < 1, then the matrix (I −
F)−1 exists and

‖(I − F)−1‖ ≤ 1

1 − ‖F‖ .

Now we review the H -matrix norm based on Stein Eq. [12].
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734 G.-D. Hu, T. Mitsui

Definition 2.1 (e.g. [17]) A matrix F ∈ C
d×d is said to be stable with respect to the

unit circle if all its eigenvalues λi (F) (1 ≤ i ≤ d) lie inside the unit circle, that is,
|λi (F)| < 1 holds for all 1 ≤ i ≤ d.

Lemma 2.3 (e.g. [17]) Assume F, V ∈ C
d×d and furthermore V be positive definite.

Thematrix F is stable with respect to the unit circle, if and only if there exists a positive
definite matrix H satisfying Stein equation

H − F∗HF = V . (2.1)

Furthermore, the matrix Eq. (2.1) has a unique solution H if and only if λi (F∗) ·
λ j (F) 
= 1 holds for all possible indices i and j .

Then, the Lemma guarantees the unique existence of H in our case of Lemma
2.3, for we assume a stable matrix F with respect to the unit circle. Furthermore,
we note that the matrix H is computable in our case and computing algorithms have
been developed (e.g. [6]). In fact, the software Matlab has the functions slstst (for
stable Stein equations) and slgest (for generalized Stein equations) ([3]). Thus an
introduction of H -norm by the following definition is meaningful in conjunction with
the stable matrix with respect to the unit circle.

Definition 2.2 (e.g. [12]) For any vector x, any matrix F and any positive definite
matrix H , the H -norm of x and F are defined, respectively, by

‖x‖H = √
x∗Hx, ‖F‖H = max

x 
=0

‖Fx‖H
‖x‖H . (2.2)

By the above definition, we have the following formula for estimating the H -norm of
F .

Lemma 2.4 For any matrix F ∈ C
d×d and any positive definite matrix H, we intro-

duce the positive Cholesky decomposition of H as H0 = √
H and put F̃ = H0FH0

−1.
Then we have

‖F‖H =
√

λmax(F̃∗ F̃), (2.3)

where λmax(W ) stands for the maximal eigenvalue of a symmetric matrix W.

Proof By Definition 2.2, we can calculate

‖F‖2H = max
x 
=0

‖Fx‖2H
‖x‖2H

= max
x 
=0

x∗F∗HFx
x∗H x

= max
x 
=0

x∗F∗H∗
0 H0Fx

(H0x)∗(H0x)

= max
x 
=0

(H0x)∗(H0FH0
−1)∗(H0FH0

−1)(H0x)

(H0x)∗(H0x)

= λmax(F̃
∗ F̃) ,

which is the desired result. �
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For a stable matrix, the following Lemma asserts an evaluation of its H -norm by
ρ(H).

Lemma 2.5 [12] If a matrix F ∈ C
d×d is stable, then there exists a unique positive

definite matrix H which satisfies the following Stein equation

H − F∗HF = I (2.4)

and the equality

‖F‖H =
√
1 − 1

ρ(H)
(2.5)

holds.

Proof Because of the condition ρ(F) < 1, Lemma 2.3 gives the positive definite
matrix H satisfying the equation F∗HF − H = −I . Then, by virtue of Definition
2.2 we can obtain

‖F‖2H = max
x 
=0

‖Fx‖2H
‖x‖2H

= max
x 
=0

x∗F∗HFx
x∗H x

= max
x 
=0

x∗(H − I )x
x∗H x

= max
x 
=0

(
1 − x∗x

x∗H x

)
= 1 − 1

ρ(H)

which implies the assertion of (2.5). �


3 Stability criterion

In this section, by means of the H -matrix norm, a necessary and sufficient condition
for asymptotic stability of the NDDE system is presented to extend the results in [11].
We will consider the stability of the system (1.1). Its characteristic equation reads

P(s) = det[s I − L − M exp(−τ s) − sN exp(−τ s)] = 0, (3.1)

whose root is called a characteristic root. The asymptotic stability of theNDDE system
is determined by the location of the characteristic roots. That is, the system is asymp-
totically stable if and only if all the characteristic roots lie in the open left complex
half-plane C− [9].

If there exists unstable characteristic roots of (3.1), i.e., P(s) = 0 for Re s ≥ 0,
they are bounded due to the following result.

Theorem 3.1 Assume that condition ρ(N ) < 1 holds. Let s be an unstable charac-
teristic root of Eq. (3.1) of system (1.1), i.e., Re s ≥ 0, then there exists a positive
definite matrix H, satisfying Stein equation H − N∗HN = I , which gives the bound
of s as
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736 G.-D. Hu, T. Mitsui

|s| ≤ β
def= ||L||H + ||M ||H

1 − ||N ||H . (3.2)

Remark 3.1 Taking Lemmata 2.3, 2.4 and 2.5 into consideration, we can calculate
the H -norm of matrices L , M and N in the following manner. Put H0 = √

H , L̃ =
H0LH0

−1 and M̃ = H0MH0
−1, then we have

‖L‖H =
√

λmax(L̃∗ L̃), ‖M‖H =
√

λmax(M̃∗M̃) and ‖N‖H =
√
1 − 1

ρ(H)
.

(3.3)

Proof of Theorem 3.1 Since N is a stable matrix, by means of Lemma 2.5, there is
a positive definite matrix H giving ‖N‖H < 1. The matrix H is determined by the
Stein equation. As we are discussing an unstable root, we assume Re s ≥ 0 throughout
the proof. Since the identity λ j (N exp(−τ s)) = exp(−τ s)λ j (N ) is obvious for j =
1, . . . , d, we can estimate as

|λ j (N exp(−τ s))| = | exp(−τ s)λ j (N )| ≤ |λ j (N )|.

Hence we have ρ(N exp(−τ s)) ≤ ρ(N ) < 1, which assures the existence of (I −
N exp(−τ s))−1 by Lemma 2.2. Introduction of

W (s) = (I − N exp(−τ s))−1(L + M exp(−τ s))

rewrites P(s) as

P(s) = det[s I−L−M exp(−τ s) − sN exp(−τ s)]
= det ([I − N exp(−τ s)][s I − W (s)]) .

Since ρ(N exp(−τ s)) < 1, the equation

det[s I − W (s)] = 0 (3.4)

must hold. This implies the s is an eigenvalue of the matrix W (s) and there exists an
integer j (1 ≤ j ≤ d) such that

s = λ j (W (s)), (3.5)

Since Re s ≥ 0, we have

0 ≤ ‖N exp(−τ s)‖H ≤ ‖N‖H (3.6)
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Fig. 1 Set Dβ
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According to (3.5) and (3.6), we can estimate

|s| = |λ j (W (s))| ≤ ‖W (s)‖H = ‖(I − N exp(−τ s))−1(L + M exp(−τ s))‖H
≤ ‖(I − N exp(−τ s))−1‖H‖(L + M exp(−τ s))‖H
≤ ‖L + M exp(−τ s)‖H

1 − ‖N exp(−τ s)‖H ≤ ‖L‖H + ‖M‖H
1 − ‖N‖H .

Thus the proof is completed. �

The theorem means that there is a bounded region in the right-half complex plane

C
+ which includes all the unstable characteristic roots of (3.1).

Remark 3.2 Since ρ(N ) ≤ ‖N‖ holds generally, the condition ρ(N ) < 1 in Theorem
3.1 is weaker than the condition ‖N‖ < 1 in [11]. Hence the theorem is an extension
of the results in [11].

Definition 3.1 Assume that the conditions of Theorem 3.1 hold and the bound β is
obtained. The half-disk Dβ in s-plane is the closed set given by

Dβ = {s : Re s ≥ 0 and |s| ≤ β}.

Moreover, the boundary of Dβ is denoted byΓβ . See Fig.1, where d1 = iβ, d2 = −iβ.

By means of the argument principle, a computable criterion for system (1.1) can be
derived. Now we present the main result in this section. The following theorem will
exclude all the unstable characteristic root of Eq. (3.1) from the set Dβ .
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738 G.-D. Hu, T. Mitsui

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold and the bound β is
obtained. Then the system (1.1) is asymptotically stable if and only if the two conditions

P(s) 
= 0 for s ∈ Γβ (3.7)

and

�Γβ arg P(s) = 0 (3.8)

hold, where P(s) is defined by (3.1) and�Γβ arg P(s) has the samemeaning in Lemma
2.1. See Fig. 1.

Proof Suppose the system is asymptotically stable. All zeros of P(s) are located on
the left half plane C

−. It means that P(s) 
= 0 when Re s ≥ 0. By the argument
principle, we have that (3.7) and (3.8) hold.

Conversely, assume that the conditions (3.7) and (3.8) hold. According to Theorem
3.1, it means that P(s) never vanishes for Re s ≥ 0. Hence (3.7) and (3.8) imply the
system (1.1) is asymptotically stable. Thus the proof completes. �


Now we describe an algorithm to check the stability due to Theorem 3.2.

Algorithm 1

Step 0 Solve Stein equation

H − N∗HN = I

and obtain the positive definite matrix H. Put H0 = √
H , L̃ = H0LH0

−1 and
M̃ = H0MH0

−1, and calculate

‖L‖H =
√

λmax(L̃∗ L̃), ‖M‖H =
√

λmax(M̃∗M̃), ‖N‖H =
√
1 − 1

ρ(H)

and

β
def= ||L||H + ||M ||H

1 − ||N ||H .

Then as the boundary of Dβ we have the curve Γβ , which consists of two
parts, i.e., the segment {s = i t; −β ≤ t ≤ β} and the half-circle {s; |s| =
β and − π/2 ≤ arg s ≤ π/2}.

Step 1 Take a sufficiently large integer n ∈ N and distribute n node points {s j } ( j =
1, 2, . . . , n) on Γβ as uniformly as possible. For each s j , we evaluate P(s j )
by computing the determinant as

P(s j ) = det
[
s j I − L − M exp

(−τ s j
) − s j N exp

(−τ s j
)]

.

Also we decompose P(s j ) into its real and imaginary parts.
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Step 2 We examine whether P(s j ) = 0 holds for each s j ( j = 1, . . . , n) by checking
its magnitude satisfies |P(s j )| ≤ δ1 with the preassigned tolerance δ1. If it
holds, i.e., s j ∈ Γβ is a root of P(s), then the NDDE system is not asymptot-
ically stable and stop the algorithm. Otherwise, to go to the next step.

Step 3 We examine whether �Γβ arg P(s) = 0 holds along the sequence {P(s j )} by
checking |�Γβ arg P(s)| ≤ δ2 with the preassigned tolerance δ2. If it holds, it
means that the change of the argument is 0 along the sequence {P(s j )}, then
the system is asymptotically stable, otherwise not stable.

Remark 3.3 Algorithm 1 avoids a computation of the coefficients of the characteristic
polynomial P(s). Instead it evaluates the determinant P(s
) through the elementary
row (or column) operations which are relatively efficient ways [14].

4 Delay-dependent stability of numerical methods

In this section, a delay-dependent stability of both Runge–Kutta (RK) and linearmulti-
step (LM) methods for linear delay differential systems of neutral type is discussed.
Based on the argument principle, sufficient conditions for delay-dependent stability
of the numerical methods are presented.

First, we assume the numerical solution we are now discussing gives a sequence
of approximate values {u0, u1, . . . , un, . . .} of {u(t0), u(t1), . . . , u(tn), . . .} of (1.1)
on certain equidistant step-values {tn(= nh)} with the step-size h. We introduce the
following new definition of delay-dependent stability of numerical methods for system
(1.1).

Definition 4.1 Assume that theNDDEsystem is asymptotically stable for givenmatri-
ces L , M, N and a delay τ . A numerical method is called weakly delay-dependently
stable for system (1.1) if there exists a positive integer m such that the step-size
h = τ/m and the numerical solution un with h satisfies

un → 0 as n → ∞

for any initial function.

Remark 4.1 In [2,7,18], the definition of delay-dependent stability, which is called
D-stability there, is too restricted since it requires for all asymptotically stable delay
differential system (1.3) and for all the natural numbers m the resulting numerical
solution is asymptotically stable. Therefore, almost all the standard RK methods are
excluded in the D-stability sense. It is obvious that Definition 4.1 is weaker than
D-stability in the literature.

4.1 Runge–Kutta case

For the initial value problem of ordinary differential equations (ODEs)

ẏ(t) = f (t, y(t)), for t ≥ 0 (4.1)
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740 G.-D. Hu, T. Mitsui

an s-stage (implicit) Runge–Kutta method for ODEs (4.1) is defined (e.g., [16]) by

ki = f

⎛
⎝tn + ci h, yn + h

s∑
j=1

ai j k j

⎞
⎠ (i = 1, 2, . . . , s) (4.2)

with

yn+1 = yn + h
s∑

i=1

bi ki . (4.3)

We associate the s-square matrix A and the s-dimensional vector b as

A
def= (ai j ) and b

def= (bi ).

We analyse RK method which is extended to apply to the NDDE system. Taking
advantage of the constant step-size h = τ/m, we can employ the so-called natural
Runge–Kutta scheme [1,2] for (1.1) given by

Kn,i = hL

⎛
⎝un +

s∑
j=1

ai j Kn, j

⎞
⎠

+ hM

⎛
⎝un−m +

s∑
j=1

ai j Kn−m, j

⎞
⎠ + NKn−m,i (i = 1, 2, . . . , s) (4.4)

and

un+1 = un +
s∑

i=1

bi Kn,i , (4.5)

where the symbol K
,i means the i-th stage value of the RK at the 
-th step-point.

Lemma 4.1 The characteristic polynomial PRK (z) of the linear difference system
(4.4) and (4.5) is given by

PRK (z) = det

{[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

]
zm+1 −

[
0 h(e

⊗
L)

0 Id

]
zm

−
[
h(A

⊗
M) + Is

⊗
N 0

0 0

]
z −

[
0 h(e

⊗
M)

0 0

]}
, (4.6)

where the s-dimensional vector e is defined by e = (1, 1, . . . , 1)T.
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Proof The difference system (4.4) and (4.5) can be expressed with the Kronecker
product as follows:

[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

] [
Kn

un+1

]
−

[
0 h(e

⊗
L)

0 Id

] [
Kn−1
un

]

−
[
h(A

⊗
M) + Is

⊗
N 0

0 0

] [
Kn−m

un−m+1

]
−

[
0 h(e

⊗
M)

0 0

] [
Kn−m−1
un−m

]
= 0,

(4.7)

where the (ds)-dimensional vector Kn means

Kn = [KT
n,1, K

T
n,2, . . . , K

T
n,s]T.

Hence the dimension of the vector

[
Kn

un+1

]
becomes (s + 1)d.

Taking z-transform to (4.7) and introducing as Z

{[
Kn−m−1
un−m

]}
= V (z), we obtain

that
{[

Isd − h(A
⊗

L) 0
−bT

⊗
Id Id

]
zm+1 −

[
0 h(e

⊗
L)

0 Id

]
zm

−
[
h(A

⊗
M) + Is

⊗
N 0

0 0

]
z −

[
0 h(e

⊗
M)

0 0

]}
V (z) = 0.

Hence, the characteristic polynomial of difference system is given as desired. �

For an explicit RK method, that is, the one with ai j = 0 for i ≤ j , we have the

following result.

Theorem 4.1 For an explicit RK method, assume that

(i) the NDDE system is asymptotically stable for given matrices L , M, N and delay
τ (therefore, Theorem 3.2 holds);

(ii) the RK method is of s-stage and natural with the step-size h = τ/m;
(iii) The characteristic polynomial PRK (z) never vanishes on the unit circle μ =

{z : |z| = 1} and its change of argument satisfies

1

2π
�μ arg PRK (z) = d(s + 1)(m + 1). (4.8)

Then the RK method for the NDDE system is weakly delay-dependently stable.

Proof The difference system (4.7) is asymptotically stable if and only if all the charac-
teristic root of PRK (z) = 0 lie in the inner of the unit circle. Notice that the coefficient
matrix of the term zm+1 in PRK (z) = 0 is

[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

]
.
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742 G.-D. Hu, T. Mitsui

Since the Runge–Kutta method is explicit, λi (A) = 0 holds for i = 1, . . . , s. It means
that all the eigenvalues of matrix h(A

⊗
L) vanish because of

eigenvalue of (hA
⊗

L) = hλi (A)λ j (L) = 0

with i = 1, . . . , s and j = 1, . . . , d. Thus that matrix Isd − h(A
⊗

L) is nonsingular
by Lemma 2.2 and the matrix

[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

]

is also nonsingular. Since the degree of PRK (z) is d(s+1)(m+1), it has d(s+1)(m+1)
roots in total by counting their multiplicity. By the argument principle, the condition
(iii) implies that the condition |z| < 1 holds for all the d(s + 1)(m + 1) roots of
PRK (z) = 0. The proof completes. �


For an implicit RK method applied to the NDDE system, we derive the following
result.

Theorem 4.2 For an implicit RK method, assume that

(i) the conditions (i),(ii) and (iii) in Theorem 4.1 hold;
(ii) the product hλi (A)λ j (L) never equals to unity for all i (1 ≤ i ≤ s) and j (1 ≤

j ≤ d).

Then the RK method for the NDDE system is weakly delay-dependently stable.

Proof The proof can be carried out similarly to that of Theorem 4.1. Notice that the
condition (ii) ensures the matrix

[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

]

is nonsingular since the matrix Isd − h(A
⊗

L) is nonsingular. Thus the degree of the
polynomial PRK (z) becomes d(s + 1)(m + 1). �


4.2 Linear multi-step case

When applied to ODEs (4.1), a linear k-step method is given as follows (e.g., [16]):

k∑
j=0

α j yn+ j = h
k∑
j=0

β j fn+ j , (4.9)

where h stands for the step-size, α j , β j are the formula parameters satisfying αk = 1
and |α0| + |β0| 
= 0. and f j = f (t j , y j ). As in the case of RK method, in order to
apply the LMmethod to the delay differential systems of neutral type (1.1), we employ
the step-size h of an integral fraction of τ , i.e., h = τ/m for a certain m ∈ N.
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For the application to the linear system (1.1), we introduce the same reformulation
given by [10]. That is, with an auxiliary variable v(t) the system (1.1) is rewritten as
the simultaneous system:

u̇(t) = v(t) (4.10)

and

v(t) = Lu(t) + Mu(t − τ) + Nv(t − τ). (4.11)

Then, an application of the method (4.9) to (4.10) and (4.11) yields

k∑
j=0

α j un+ j = h
k∑
j=0

β jvn+ j , (4.12)

and

vn+ j = Lun+ j + Mun−m+ j + Nvn−m+ j . (4.13)

This reformulation can ease the derivation of its characteristic polynomial.

Lemma 4.2 The characteristic polynomial of (4.12) and (4.13) is given by

PLM (z) = det

⎡
⎣

k∑
j=0

(
(α j I − hβ j L)zm − α j N − hβ j M

)
z j

⎤
⎦ . (4.14)

Proof Equation (4.12) derives

hN
k∑
j=0

β jvn−m+ j = N
k∑
j=0

α j un−m+ j ,

which, together with (4.12) and (4.13), leads

k∑
j=0

α j un+ j = h
k∑
j=0

β j (Lun+ j + Mun−m+ j + Nvn−m+ j )

= h
k∑
j=0

β j (Lun+ j + Mun−m+ j ) + hN
k∑
j=0

β jvn−m+ j

= h
k∑
j=0

β j (Lun+ j + Mun−m+ j ) + N
k∑
j=0

α j un−m+ j . (4.15)
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The above is the difference equation to be solved after eliminating v’s. Taking its
Z -transform and putting Z{un−m} = U (z), we obtain

⎡
⎣

k∑
j=0

α j z
m+ j

⎤
⎦U (z) =

⎡
⎣h

k∑
j=0

β j (Lz
m+ j + Mz j ) + N

k∑
j=0

α j z
j

⎤
⎦U (z).

Hence, the characteristic polynomial is given as desired. �

For delay-dependent stability of an LM method, we have the following result.

Theorem 4.3 Assume that

(i) the NDDE system is asymptotically stable for given matrices L , M, N and delay
τ ;

(ii) for the underlying LMmethodwith the step-size h = τ/m, thematrixαk I−hβk L
is nonsingular;

(iii) the characteristic polynomial PLM (z) never vanishes on the unit circle μ = {z :
|z| = 1} and its change of argument satisfies

1

2π
�μ arg PLM (z) = d(k + m). (4.16)

Then the LM method for the NDDE system is weakly delay-dependently stable.

Proof The difference system (4.15) is asymptotically stable if and only if all the
characteristic roots of PLM (z) = 0 lie in the inside of the unit circle. Because of
the condition (ii) the parameter matrix αk I − hβk L of the term zm+k in (4.14) is
nonsingular. Therefore, we know that the degree of PLM (z) is d(k + m). Hence
PLM (z) = 0 has d(k + m) roots. By means of the argument principle, the condition
(iii) means that all the d(k + m) roots of PLM (z) = 0 lie inside of the unit circle
|z| = 1. �

Remark 4.2 When LM methods are explicit, βk = 0, we have that αk I − hβk L = I
for αk = 1, i.e., condition (ii) of Theorem 3.3 holds automatically.

Now we can describe an algorithm to check the conditions of Theorems 4.1, 4.2
and 4.3. This is parallel to Algorithm 1.

Algorithm 2

Step 1 Taking a sufficiently big n ∈ N, we compute n nodes {z0, z1, . . . , zn−1}
upon the unit circle μ of z-plane so as arg z
 = (2π)
/n. For each z
 (
 =
0, 1 . . . n − 1), we evaluate the characteristic polynomials of the numerical
scheme. That is, in RK case, we evaluate it by computing the determinant

P(z
) = det

{[
Isd − h(A

⊗
L) 0

−bT
⊗

Id Id

]
z


m+1 −
[
0 h(e

⊗
L)

0 Id

]
z


m

−
[
h(A

⊗
M) + Is

⊗
N 0

0 0

]
z
 −

[
0 h(e

⊗
M)

0 0

]}
,
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while in LM case by computing the determinant

P(z
) = det

⎡
⎣

k∑
j=0

(
(α j I − hβ j L)zm
 − α j N − hβ j M

)
z j


⎤
⎦ .

Also we decompose P(z
) into its real and imaginary parts.
Step 2 We examine whether P(z
) = 0 holds for each z
 (
 = 0, 1, . . . , n − 1)

by checking its magnitude satisfies |P(z
)| ≤ δ1 with the preassigned small
positive tolerance δ1. If it holds, i.e., z
 ∈ μ is a root of P(z), then the numer-
ical scheme for the NDDE system is not asymptotically stable and stop the
algorithm. Otherwise, to go to the next step.

Step 3 We examine whether 1
2π �μ arg P(z
) = d(s + 1)(m + 1) in RK case (or

d(k + m) in LM case ) holds along the sequence {P(z
)} by checking
| 1
2π �μ arg P(z
)−d(s+1)(m+1)| ≤ δ2 in RK case ( or | 1

2π �μ arg P(z
)−
d(k + m)| ≤ δ2 in LM case ) with the preassigned tolerance δ2. If it holds,
it means that the change of the argument along the sequence {P(z
)} is
d(s + 1)(m + 1) in RK case (or d(k + m) in LM case ), then the numerical
scheme for the NDDE system is asymptotically stable, otherwise not stable.

Remark 4.3 From the above three theorems, in order to solve numerically an asymp-
totically stable delay differential system of neutral type by an RK or LM method, it
is enough for us to choose a positive integer m such that the resulting difference sys-
tem is asymptotically stable. When the positive integer m is determined, the step-size
h = τ/m is obtained such that the RK or LM method can work. Theorems 4.1, 4.2
and 4.3 do not contradict the results reported in [7,18] which assert for any A-stable
natural RK method for system (1.3) and for any step-size h = τ/m, (where m is
a positive integer) there exists an asymptotically stable linear system for which the
resulting system is not asymptotically stable, i.e., un → 0 as n → ∞ does not
hold.

Remark 4.4 Both Schur–Cohn and Jury stability criteria [15] need information of
all the coefficients of the characteristic polynomial PRK (z) (or PLM (z)). It is a
well-known ill-posed problem to compute all the coefficients of the characteristic
polynomial for a high dimensional matrix [8]. Although Schur–Cohn and Jury sta-
bility criteria can be applied to the resulting difference systems from RK and LM
methods in theoretical sense, they can not work well in practice when m or d are big.
Algorithm 2 avoids computation of the coefficients of the characteristic polynomial
PRK (z) (or PLM (z)). It evaluates the determinant PRK (z
) or PLM (z
) through the
elementary row (or column) operations which are relatively efficient ways [14].

5 Numerical examples

In this section, two numerical examples are given to demonstrate the main results in
Sects. 2 and 3. The matrix norm ‖F‖2 is defined by

‖F‖2 = √
λmax(F∗F),
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which is equal to the special case of the H -norm for H = I , i.e., ‖F‖I = ‖F‖2 holds.
The number of significant digits is 4, and all the equality signs hold in this sense. The
classical fourth-order RK formulas for ODEs (4.1), which is given as

k1 = f (tn, yn),

k2 = f (tn + h

2
, yn + h

2
k1),

k3 = f (tn + h

2
, yn + h

2
k2),

k4 = f (tn+1, yn + hk3),

yn+1 = yn + h

6
(k1 + 2k2 + 2k3 + k4),

is our underlying scheme of the natural RK for (1.1).

Example 1 The two-dimensional linear neutral system (1.1) with the parameter matri-
ces

L =
[−2 0

0 −0.9

]
, M =

[−1 0
−1 −1

]
, N =

[
0.9 0.45
0 0.05

]
.

We have that ρ(N ) = 0.9 < 1, i.e, condition (1.2) holds. Since ‖N‖2 = 1.0065 > 1,
we have to solve Stein equation to obtain a matrix H such that ‖N‖H < 1. We have
that

H =
[
5.2632 2.2320
2.2320 2.1717

]
and H0 =

[
2.2942 1.4940
1.4940 1.4737

]
.

Furthermore,

‖L‖H = 5.8109, ‖M‖H = 4.0785 and ‖N‖H = 0.9190.

Since ‖N‖H < 1, we have that

β = ||L||H + ||M ||H
1 − ||N ||H = 122.0731.

Let the initial vector function be

u(t) =
[
sin t − 2
t + 2

]
for t ∈ [−τ, 0].

The case of τ = 1.1. Algorithm 1 is employed to check stability of the system.
As we have �Γβ arg P(s) = 0 along the curve Γβ , Theorem 3.2 tells that the
system with the given parameter matrices is asymptotically stable. Now using
Algorithm 2 with n = 3.2 × 105 to check delay-dependent stability of the
RK method for the system. When m = 100, we obtain that �μ arg PRK (z) =
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Fig. 2 Numerical solutions are asymptotically stable when m = 100 for τ = 1.1 in Example 1

d(s + 1)(m + 1) = 2(4 + 1)(100 + 1) = 1010. Theorem 4.1 asserts the RK
method is weakly delay-dependently stable. The numerical solution, which is
converging to 0, is depicted in Fig. 2. Conversely, when m = 10, we obtain
�μ arg PRK (z) = 97 
= d(s + 1)(m + 1) = 2(4 + 1)(10 + 1) = 110 and the
theorem does not hold. The numerical solution is divergent and its behaviour is
shown in Fig. 3.
The case of τ = 3.0. Again we employ Algorithm 1 to check stability of the
system. As we have�Γβ arg P(s) = 2 along the curveΓβ , Theorem 3.2 tells that
the system with the given parameter matrices is not asymptotically stable. Then
the assumptions of Theorem 4.1 do not hold and the numerical solution is not
guaranteed to be asymptotically stable. In fact, its figure given in Fig. 4 shows a
divergence for m = 100. We also carried out several numerical experiments for
m > 100, whose numerical solutions are still divergent.

Example 2 We take the following four-dimensional linear neutral system with the
parameter matrices given by

L =

⎡
⎢⎢⎣

0 1 −1 0
−3.346 −2.715 2.075 −2.007

−4 0 −2 0
−3 0 0 −6

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣

−1 2 2 −1
3 3 −2 0
1 2 −1 1
2 3 1 −3

⎤
⎥⎥⎦ ,
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Fig. 3 Numerical solutions are not stable when m = 10 for τ = 1.1 in Example 1
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Fig. 4 Numerical solutions are not stable when m = 100 when τ = 3 in Example 1
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N = 0.1 ×

⎡
⎢⎢⎣

0.2 −0.1 0.5 −0.1
−0.3 0.09 −0.15 −0.027

−3.333 0.1 0.2 1
−1 2 0.5 1

⎤
⎥⎥⎦ .

We have ρ(N ) = 0.08540 < 1, i.e, the condition (1.2) holds. Furthermore,

‖L‖2 = 8.0597, ‖M‖2 = 6.3230 and ‖N‖2 = 0.3848.

Since ‖N‖2 < 1, we can take H = I and we have

β = ||L||2 + ||M ||2
1 − ||N ||2 = 23.3782.

Let the initial vector function be

u(t) =

⎡
⎢⎢⎣
2 sin t + 1
cos t − 2
t + 2 sin t
3t + cos t

⎤
⎥⎥⎦ for t ∈ [−τ, 0].

The case of τ = 0.1. The procedure goes similarly to Example 1. Since our
computation gives �Γβ arg P(s) = 0 along the curve Γβ, according to Theo-
rem 3.2, we can confirm that the system with the given parameter matrices is
asymptotically stable.
Now using Algorithm 2 with n = 3.2 × 105 to check delay-dependent stability
of the RKmethod for the system. In the case ofm = 100, our computation gives
that �μ arg PRK (z) = d(s + 1)(m + 1) = 4(4 + 1)(100 + 1) = 2020. Thus,
by Theorem 4.1, the RKmethod is weakly delay-dependently stable. In fact, the
numerical solution is convergent as shown in Fig. 5. Even when m = 1, we can
compute �μ arg PRK (z) = d(s + 1)(m + 1) = 4(4 + 1)(1 + 1) = 40. Hence
again the RK method is weakly delay-dependently stable and the numerical
solution is convergent as shown in Fig. 6.
The case of τ = 0.3. Since the computation inAlgorithm1gives�Γβ arg P(s) =
2 along the curve Γβ, according to Theorem 3.2, we can confirm that the sys-
tem with the given parameter matrices is not asymptotically stable. Then, the
assumptions of Theorem 4.1 do not hold and the numerical solution is divergent
for m = 100, whose computed results are shown in Fig. 7. We also carried out
several other numerical experiments for m > 100, but the numerical solutions
are still divergent.

The two numerical examples show that our main results work well in the actual
computations. Therefore, we can employ them to seek a step-size h so as to give numer-
ically stable solution by Runge–Kutta or linear multi-stepmethod. That is, assume that
we are given an asymptotically stable system (1.1), then we can select an appropriate
natural number m for the step-size h = τ/m which yields an asymptotically stable
numerical solution by utilizing our criterion.
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Fig. 5 Numerical solutions are asymptotically stable when m = 100 for τ = 0.1 in Example 2
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Fig. 6 Numerical solutions are asymptotically stable when m = 1 for τ = 0.1 in Example 2
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Fig. 7 Numerical solutions are not stable when m = 100 for τ = 0.3 in Example 2

6 Conclusions

For the asymptotic stability of analytical solution of theNDDE system (1.1) with (1.2),
Theorem 3.2 provides a novel necessary and sufficient condition, which extends the
results in the literature. Then, we present a relaxed definition, Definition 4.1, for delay-
dependent stability of numerical methods. By applying this, Theorems 4.1, 4.2 and 4.3
provide sufficient conditions for delay-dependent stability of RK and LM methods,
respectively. They show that it is possible to seek a step-size h = τ/m such that the
resulting difference system by a standard RK or a LMmethod is asymptotically stable
for an asymptotically stable NDDE system. Theorems can not guarantee an existence
of such a step-size h = τ/m for all asymptotically stable NDDE systems. However,
for many cases of the system the theorems can hold. Furthermore, two algorithms are
provided for checking delay-dependent stability of analytical and numerical solutions,
respectively.
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