
BIT Numer Math (2017) 57:433–462
DOI 10.1007/s10543-016-0642-9

Structural analysis based dummy derivative selection
for differential algebraic equations

Ross McKenzie1 · John Pryce1

Received: 31 March 2016 / Accepted: 8 November 2016 / Published online: 17 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The signature matrix structural analysis method developed by Pryce pro-
vides more structural information than the commonly used Pantelides method and
applies to differential-algebraic equations (DAEs) of arbitrary order. It is useful to
consider how existing methods using the Pantelides algorithm can benefit from such
structural analysis. The dummy derivative method is a technique commonly used to
solve DAEs that can benefit from such exploitation of underlying DAE structures
and information found in the Signature Matrix method. This paper gives a technique
to find structurally necessary dummy derivatives and how to use different block tri-
angular forms effectively when performing the dummy derivative method and then
provides a brief complexity analysis of the proposed approach. We finish by outlining
an approach that can simplify the task of dummy pivoting.

Keywords DAEs · Numerical Analysis

Mathematics Subject Classification 34A09 · 65L80

1 Introduction

Differential-algebraic equations (DAEs) arise from the equation based modelling of
physical systems, such as those found in engineering or physics, with problems arising,

Communicated by Anne Kværnø.

B Ross McKenzie
mckenzier1@cardiff.ac.uk

John Pryce
prycejd1@cardiff.ac.uk

1 Cardiff University, Cardiff, Wales

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-016-0642-9&domain=pdf
http://orcid.org/0000-0003-3156-0820

434 R. McKenzie, J. Pryce

for instance, from chemical engineering [21], electronic circuits [1] and robotics [2].
Models are now frequently built interactively using different components from large
libraries in environments such as gPROMS and Simulink, as well as MapleSim and
other tools that use the Modelica language. This way of modelling can lead to large
DAEs [4]. A common notion in DAE theory is the differentiation index—which is
equal to the number of times all or part of the system has to be differentiated in order
to solve the problem as an ODE. It is well known that solving a high index (larger
than one) DAE directly is numerically difficult, hence modelling tools usually perform
some structural analysis (SA) to determine the index of the problem. This analysis is
usually based on Pantelides’ algorithm [14], although we will be using the (equivalent
for DAEs of order 1) Signature Matrix method [18] for the duration of this paper, as
it applies to DAEs of arbitrary order and provides us with extra structural information
we wish to exploit. As such if we talk about structural analysis of a DAE we mean
information obtained by applying the Signature Matrix method to that DAE. After
finding a DAE’s index, different packages handle high index DAEs very differently,
for example gPROMS [16] reports a set of equations and variables that are causing the
high index, whereas Dymola [3] performs an index reduction algorithm (specifically
dummy derivatives [8]) to form a new equivalent index 1 DAE, which it then solves.
We are interested in the latter approach. We shall consider a DAE given by:

fi (t, the x j and derivatives of them), i = 1, . . . , n

where x j (t), j = 1, . . . , n are state variables and functions of some independent
variable t , usually considered to be time. DAEs we consider can be fully non-linear
but must be solvable, i.e. have a unique smooth solution when given a sufficient set
of consistent initial conditions. The functions fi must be least smooth enough to find
derivatives required by the method to succeed, usually three times differentiable is
sufficient in practical examples.

2 A review of the signature matrix method

We begin by providing the reader with a needed background in the Signature Matrix
method, for a more detailed explanation see [18] and [20].

2.1 Basic Structural information

Take a DAE as above, we begin by finding the problem’s Signature Matrix Σ , with
entries:

σi, j =
{
order of highest derivative of x j in fi if x j occurs in fi
−∞ if not.

Then find a highest value transversal (HVT). A transversal, T , is any choice of n
positions (i, j) in an n× n matrix, such that only one entry in each row and column is

123

Structural analysis based dummy derivative selection… 435

selected. If we consider a transversal T , then we say Val(T) = ∑
(i, j)∈T σi, j . A HVT,

say T , is such that Val(T) ≥ Val (T) for all transversals T—we denote Val (T) as
Val(Σ). We call a DAE structurally well posed if Val(Σ)is finite, i.e. there exists a
HVT with corresponding entries in Σ all finite. If the DAE is structurally well posed
(SWP) and solvable, see [13], Val(Σ)is equal to its degrees of freedom (DOF). In this
paper we only consider SWP DAEs.

We then find non-negative integer valued vectors, c and d satisfying:

σi, j ≤ d j − ci with equality on a HVT (1)

called valid offset vectors. There exists a unique elementwise smallest choice of c and
d termed the canonical offset vectors. It is easily seen that such canonical offsets must
have mini ci = 0. Unless otherwise stated we use canonical offsets throughout the
paper. Finding a HVT and offsets is a linear assignment problem [18].

Example 1 Consider the simple pendulum:

�
�

�
��

�

� �

�
y

x

Pendulum bob, mass=1

A(t) = ẍ(t) + λ(t)x(t) = 0

B(t) = ÿ(t) + λ(t)y(t) − G = 0

C(t) = x2(t) + y2(t) − L2 = 0

⎫⎪⎬
⎪⎭ (2)

Equations A and B are from Newton’s second law, since we are measuring to the
right in the x direction and downwards in the y direction. We keep the length of the
pendulum fixed, which is how we get equation C . Displacement in the horizontal and
vertical directions is measured by x and y respectively, λ is a multiple of tension in
the rod. Gravity and rod length are given by G and L respectively. This is an index
3 formulation of the pendulum, if we differentiate equation c twice we can solve for
ẍ and ÿ but λ is undifferentiated, so we must differentiate each equation once more,
hence the problem is index 3. One can see from this simple example that it’s easy
to construct a high index DAE. One may think this problem is rather artificial, since
changing to polar coordinates yields an ODE, however for large scale models found
in practice such a manipulation is usually not obvious.

We form the problem’s signature matrix as above, with canonical offsets around
the side:

Σ =

x y λ ci()A 2• −∞ 0◦ 0

B −∞ 2◦ 0• 0

C 0◦ 0• −∞ 2

d j 2 2 0

There are two HVTs, marked by • and ◦ in the signature matrix above. Comparing the
offsets of the problem with what made the problem index 3 we see we have a scheme
of which equations to differentiate and what their highest order variables will be. We
go in to more detail on the ordering of this scheme in Sect. 2.2.

123

436 R. McKenzie, J. Pryce

2.2 Structural analysis stages

The example above leads us to the concept of a structural index νs , defined as:

νS = max
i

ci +
{
1 if any d j is zero,
0 if not.

The +1 if a d j = 0 case is needed to add a first order derivative of otherwise undiffer-
entiated variables, see λ in Example 1. If the DAE is SWP νS is known to be an upper
bound on the differentiation index, and in many applications they are equal, which is
why we suggest using it as a basis for an index reduction algorithm such as DDs later.
We now differentiate each equation in stages specified by c. Initially the approach
given by the Signature Matrix method was to solve parts of the DAE in stages via
Taylor series, see [12], however we just focus on the equations used at each stage and
the variables being solved for.

We briefly inform the reader of how we denote derivatives. Consider for instance
variables x and y, both of which depend on t , and some function f which is a function
of t , x and y and perhaps some first order derivatives of x , i.e. f = f (x, ẋ, y, t).
Then:

ḟ = ∂ f

∂x
ẋ + ∂ f

∂ ẋ
ẍ + ∂ f

∂y
ẏ + ∂ f

∂t
.

This example shows wemean ordinary derivative with respect to t unless otherwise
stated.

The offsets of a DAE provide us with a staged solution process starting at stage
k = −max j d j = kmin and increasing by one at subsequent stages where at each stage
we use equations

f (k+ci)
i ∀i such that k + ci ≥ 0 (3)

to solve for variables
x

(k+d j)

j ∀ j such that k + d j ≥ 0. (4)

Let mk be the number of i such that k + ci ≥ 0 and nk be the number of j such that
k + d j ≥ 0, so that at stage k we solve mk equations for nk unknowns. Note: for
k < −max j d j we have mk = nk = 0 and for k ≥ 0 we have that mk = nk = n.

Example 2 Consider again the simple pendulum (2), it has SA stages as given in
Table 1.

We now make use of the following Lemma, found in [5].

Lemma 1 (Griewank’s Lemma) Suppose f (x1, x2, . . . , xn) is a smooth function that
contains derivatives of x j not exceeding order m j . Then the (m j + 1)st derivative of
x j occurs linearly in ḟ = d f

dt , and

∂ ḟ

∂x
(m j+1)
j

= ∂ f

∂x
(m j)

j

.

123

Structural analysis based dummy derivative selection… 437

Table 1 Stages for the simple pendulum

k Equations being used Variables being found Using variables mk nk

−2 C x, y N/A 1 2

−1 Ċ ẋ, ẏ x, y 1 2

0 A, B, Ċ ẍ, ÿ, λ ẋ, ẏ x, y 3 3

1 Ȧ, Ḃ,C(3) x(3), y(3), λ̇ ẍ, ÿ, λ ẋ, ẏ x, y 3 3

. 3 3

We have the following formula for the System Jacobian J, with first equality coming
from Lemma 1—as shown in [18]:

Ji, j (ci , d j) = ∂ f (ci)
i

∂x
(d j)

j

= ∂ fi

∂x
(d j−ci)
j

=
{

∂ fi/∂x
(σi, j)

j if d j − ci = σi, j

0 elsewhere.
(5)

Note: J depends on the choice of offsets, unless otherwise stated by the context we
use canonical offsets. If there exists a consistent point at which J is non singular then
the method succeeds and the DAE is locally solvable. Each stage k of SA listed above
uses an mk × nk submatrix of J, denoted by Jk , containing the rows and columns for
equations and variables used at stage k from (3) and (4).

Example 3 Consider again the simple pendulum. Let J<i be taken to mean all Jaco-
bians used in stages i −1, i −2, . . . and similarly for J>i , we have the following stage
wise system Jacobians for the simple pendulum, where [] denotes an empty matrix:

J = J0 =
ẍ ÿ λ()A 1 0 x

B 0 1 y
C̈ 2x 2y 0

,

J−1 =
ẋ ẏ()

Ċ 2x 2y , J−2 =
x y()

C 2x 2y , J<−2 = []

2.3 SA based Block Triangular Forms

We discuss block forms natural to the Signature method, for more detail see [19].
A natural sparsity pattern for a DAE is the set where the entries of Σ are finite:

S = {(i, j) | σi, j > −∞} (the sparsity pattern of Σ). (6)

A more informative BTF comes from the sparsity pattern of the system Jacobian J:

S0 = S0(c, d) = {(i, j) | d j − ci = σi, j } (the sparsity pattern of J). (7)

123

438 R. McKenzie, J. Pryce

S0(c, d) ⊆ S for any c, d.

In applications a Block Triangular Form (BTF) based on S0 is usually significantly
finer than one based on S and as such we call a BTF based on S the coarse BTF and
on S0 the fine BTF. We now define the concept of a local offset:

Definition 1 (Local offsets) We denote canonical local offsets of the fine BTF as ĉ
and d̂, that is the offsets found by treating each fine block as a stand alone DAE.

We have following theorem from [20]:

Theorem 1 The difference between local and global offsets is a constant over a fine
block

We call the difference between local and global offsets the lead time of a block l and
denote it Kl .

Example 4 Consider a modified double pendulum DAE:

f1 = ẍ1 + x1x3 =0

f2 = ẍ2 + x2x3 − G =0

f3 = x21 + x22 − L2 =0

f4 = ẍ4 + x4x6 =0

f5 = (x (3)
5)2 + x5x6 − G =0

f6 = x24 + x25 − (L + cx3)
2 + ẍ3 =0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

We present the different BTFs (produced by DAESA) indicated by dotted lines in
Figs. 1, 2 and 3, where a blank means −∞.

3 A review of the dummy derivative method

We provide the reader with a background in the dummy derivative (DD) method, for
a more detailed explanation we defer to [7,8].

3.1 The idea behind DDs

The usual manner of solving a DAE involves differentiating parts of the DAE in order
to reveal the so called hidden constraints of the problem, as demonstrated above in the
pendulum example. The DD method takes an n× n smooth DAE and adds the hidden
constraint equations to the system directly, as opposed to solving them stage-wise as
above. The issue with this is that the system is now over-determined. To get a square
system again the DD method adds extra dependent variables to the system for each
constraint equation, specifically the method finds a subset of appearing derivatives
of variables to be considered algebraic. It is shown in [8] that such a formulation
has the same solution as the original DAE. The advantage of this approach is by
solving the resulting index 1 DAE we satisfy all constraint equations of the original

123

Structural analysis based dummy derivative selection… 439

Fig. 1 Modified double
pendulum structural analysis

DAE automatically. The solution of index 1 DAEs has been greatly studied in the
literature and there are several tools that efficiently solve such problems, for example
SUNDIALS [6],DASSL [15] and recently theMATLABODEsolvers, such as ode15i,
ode15s and ode25t.

3.2 The DD algorithm

Firstly we note that although originally the algorithm was given using a block lower
triangular (BLT) formwe shall, at least initially, consider the algorithm over one block.
This simplifies notation and allows us to note interactions between blocks to find a
reduced BTF with which to find DDs.

Consider a DAE to be written as Fx = 0, where F is a (column n-vector)
differential-algebraic operator (DAO), following the notation of [7]:

1. ν(F), a columnn-vector of non-negative integers, containing theminimumnumber
of differentiations of each equation needed to get at least an index 1 DAE, usually
found by Pantelides’ Method [14] or equivalently the c in SA, see [18].

2. Dν = diag(dν1

dtν1 , . . . , dνn

dtνn), regarded as a DAO.
3. The differentiated problem Gx = Dν(F)Fx = 0.
4. A symbolic vector function, g, of equations in Gx = 0.

123

440 R. McKenzie, J. Pryce

Fig. 2 Modified double
pendulum structural
analysis—coarse BTF

5. A symbolic vector, z, of highest order derivatives (HODs) of x in the differentiated
problem, with first entry equal to the HOD of x1 etc...

6. Equations in Gx = 0 are written as g(z) = 0

There are three main stages in finding DDs:

1. Get ν(F).
2. Obtain a differentiated problem Gx = 0.
3. Perform the index reduction algorithm. Loop through steps that select derivatives

to be considered as algebraic variables in the solution process.

For ease of analysis later we will also assume, without loss of generality, that
the equations (and variables) have been sorted into descending order with respect
to number of differentiations needed, i.e. have been sorted with descending d j (and
ci)—since d j ≥ c j this gives us each stage Jacobian a submatrix of previous stage
Jacobians. We consider each stage by the superscript [κ]. To make it simpler to draw
comparisons between SA and DDs we reorder the index reduction part of original
algorithm as presented in [7] to Algorithm 1. The main changes between the original
Algorithm and Algorithm 1 are a new numbering starting from 0 and removing the
appearance of the matrix M [κ], since G[κ+1] = M [κ]. We also now compute H at the
end of a stage as opposed to G, for more details see [11].

123

Structural analysis based dummy derivative selection… 441

Fig. 3 Modified double
pendulum structural
analysis—fine BTF

Algorithm 1 The Reordered Dummy Derivative Algorithm

Require: z = z[0], g(z) = g[0](z[0]), κ = 0
1: if κ = 0 then

2: G[0] = ∂g[0]
∂z[0]

3: Let m be the number of differentiated equations in g[0](z[0])
4: Let H [0] be the first m rows of G[0]
5: κ = κ + 1
6: else
7: while H [κ−1] 	= [] do
8: Let G[κ] be m columns of H [κ−1] such that we have a non-singular matrix
9: Make the corresponding variables used in G[κ] into DDs
10: Omit one differentiation to get z[κ], g[κ](z[κ])
11: (where we only consider variables and equations in G[κ])
12: Let m be the number of differentiated equations in g[κ](z[κ])
13: Let H [κ] be the first m rows of G[κ],...
14: (the rows using differentiated equations in g[κ](z[κ]))
15: κ = κ + 1
16: Consider the new system using all equations g[κ](z[κ]),where κ ≥ 0,...
17: and dummy derivatives for z[κ], where κ > 0, as well as all original variables.

Example 5 We use an example found in [8] and apply Algorithm 1 to find DDs.
Consider the linear constant coefficient DAE, with known smooth forcing functions
u1(t), . . . , u4(t):

123

442 R. McKenzie, J. Pryce

Fx = F

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ =

f1(t) = x1 +x2 +u1(t) = 0
f2(t) = x1 +x2 +x3 +u2(t) = 0
f3(t) = x1 +ẋ3 +x4 +u3(t) = 0
f4(t) = 2ẍ1 +ẍ2 +ẍ3 +ẍ4 +u4(t) = 0

⎫⎪⎪⎬
⎪⎪⎭ . (9)

We need a number of differentiations for each equation, to do this we’ll compute the
signature matrix and find c:

Σ =

x1 x2 x3 x4 ci⎛
⎜⎝

⎞
⎟⎠

f1 0• 0 −∞ −∞ 2

f2 0 0• 0 −∞ 2

f3 0 −∞ 1• 0 1

f4 2 2 2 1• 0

d j 2 2 2 1

.

The HODs are z[0] = (ẍ1, ẍ2, ẍ3, ẋ4), the current equations are g[0](z[0]) =
(f̈1, f̈2, ḟ3, f4)T .

Stage 0: Initialise and then remove undifferentiated equations, since m = 3 we get:

G[0] = ∂g[0]

∂z[0]
=

ẍ1 ẍ2 ẍ3 ẋ4⎛
⎜⎝

⎞
⎟⎠

f̈1 1 1 0 0
f̈2 1 1 1 0
ḟ3 0 0 1 1
d 2 1 1 1

and

H [0] =
ẍ1 ẍ2 ẍ3 ẋ4()f̈1 1 1 0 0

f̈2 1 1 1 0
ḟ3 0 0 1 1

.

Stage 1: We now have two possibilities for selecting columns to get a non-singular
matrix. Choosing to omit column 2 gives G[1] below. Therefore ẍ1, ẍ3 and ẋ4 are
made DDs, denoted by x ′′

1 , x
′′
3 and x ′

4. Reducing the order of differentiation by 1 gives
z[1] = (ẋ1, ẋ3, x4), current equations are g[1](z[1]) = (ḟ1, ḟ2, f3)T , so m = 2 and we
get H [1] as below:

G[1] =
ẍ1 ẍ3 ẋ4()f̈1 1 0 0

f̈2 1 1 0
ḟ3 0 1 1

and H [1] =
ẋ1 ẋ3 x4()

ḟ1 1 0 0
ḟ2 1 1 0

.

123

Structural analysis based dummy derivative selection… 443

Stage 2: We now have only one possibility, so must have:

G[2] =
ẋ1 ẋ3()

ḟ1 1 0
ḟ2 1 1

.

Thus ẋ1 and ẋ3 are made DDs, denoted by x ′
1 and x ′

3. Reducing the order of differen-
tiation by 1 gives z[2] = (x1, x3), the current equations are g[2](z[2]) = (f1, f2)T , so
m = 0 and H [2] = [] and the algorithm ends, yielding an index 1 system equivalent
to the one found in [7]:

f1(t) = x1 +x2 + u1(t) = 0

f2(t) = x1 +x2 + x3 + u2(t) = 0

}

ḟ1(t) = x ′
1 +ẋ2 + u̇1(t) = 0

ḟ2(t) = x ′
1 +ẋ2 + x ′

3 + u̇2(t) = 0

f3(t) = x1 + x ′
3 +x4 + u3(t) = 0

⎫⎪⎬
⎪⎭

f̈1(t) = x ′′
1 +ẍ2 + ü1(t) = 0

f̈2(t) = x ′′
1 +ẍ2 + x ′′

3 + ü2(t) = 0

ḟ3(t) = x ′
1 + x ′′

3 +x ′
4 + u̇3(t) = 0

f4(t) = 2x ′′
1 +ẍ2 + x ′′

3 +x ′
4 + u4(t) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

The zeros in the third column of H [1] mean we never choose x4 as a DD, this is
always the case for undifferentiated variables, as explained in the following section.
Also, the variables and equations used in G[κ] are just Dz[κ] and Dg[κ](z[κ]).

4 Structural analysis based dummy derivatives

If we consider H [κ] to be a matrix of size nκ ×mκ , then from the algorithm in Sect. 3
we have

(mκ

nκ

)
potential index 1 systems at stage κ + 1. Thus the potential number of

index 1 systems obtainable by the method can be very large for practical examples.
We would like to use the structural analysis of Sect. 2 to inform our choice of DDs
and thus limit the potential number of systems considered at each stage. See Sect. 5
for other ways of achieving numerical speed up.

4.1 Similarities in the methods

There are several similarities between Signature Matrix based SA and DDs. Firstly,
as was said above, the ν(F) used in DDs is the same as c in SA, as from [18] we
see that Pantelides algorithm [14] and SA can be used interchangeably. Therefore we
have that Dν(F) = diag(dc1

dtc1 , . . . , dcn
dtcn) and the following equality:

123

444 R. McKenzie, J. Pryce

Gx = Dν(F)Fx = DcFx .

We are differentiating each equation fi , ci times, so the maximum derivative for
each variable x j in Gx = 0 will equal maxi (σi, j + ci); from (1) this is d j . Hence, the
0th stage system in DDs is the 0th stage system in SA. Thus the differentiated problem
can be written:

f (ci)
i (t, x

(d j)

j ; lower order derivatives) = 0, for i, j = 1, . . . , n.

Therefore we must have that:

z[0] = (x (d1)
1 , . . . , x (dn)

n).

The formula for the DD Jacobian matrix G[0] can now be written in this SA based
notation to show it actually equals the stage 0 SA Jacobian J.

G[0] = ∂g[0]

∂z[0]
=

⎛
⎝ ∂ f (ci)

i

∂x
(d j)

j

⎞
⎠ = J. (11)

Going to the next stage in DDs by reducing the order of differentiation by 1 is
equivalent to reducing the offset vector c by 1 (and consequently reducing d by 1
also). Therefore at stage 1 in DDs we will be considering the equations used in stage
−1 of SA, since SA increases the order of differentiation by one at each stage. This
leads us to the following observation.

Lemma 2 The equations used at stage k in SA are equal to those used at stage κ = −k
in DDs (when writing down G[κ]), for each stage k between kmin and 0.

Proof We have already shown that at stage 0 both methods use the same equations. In
DDs we now remove all equations such that ci = 0. We then omit one differentiation
and repeat. Hence we remove, at stage 1, equations such that ci − 1 = 0, and by
induction, at stage κ equations such that ci − κ = 0, where κ is the stage number.
From (3) these are exactly the equations considered at stage −κ = k in SA. ��

Due to the above theorem we will now use the term ‘equivalent stage’ to mean
DD stage κ when talking about SA stage −k = κ and vice versa. We now take
notation from [18] in order to write down the kth stage Structural Jacobian found in
SA. Consider each variable x j as a function of an independent variable t and let x jl
represent x (l)

j (t). Then for an n × n DAE we have the index set:

J = {(j, l) | j = 1, . . . , n; l = 0, 1, . . . },

similarly for the equations we use the set:

I = {(i, l) | i = 1, . . . , n; l = 0, 1, . . . }.

123

Structural analysis based dummy derivative selection… 445

Table 2 The results of SA on
the linear DAE (9)—also
showing DDs by a prime

k Equations being used Variables being found

−2 f1, f2 x1, x2, x3

−1 ḟ1, ḟ2, f3 x ′
1, ẋ2, x

′
3, x4

0 f̈1, f̈2, ḟ3, f4 x ′′
1 , ẍ2, x

′′
3 , x ′

4

This gives us a notation for the variables used at each stage in the SA, that is:

Ik = {(i, l) ∈ I | l = k + ci }
Jk = {(j, l) ∈ J | l = k + d j }

where the offsets are taken to be canonical unless otherwise stated. At each SA stage
we have:

mk =| Ik |=| { j | d j + k ≥ 0} |, nk =| Jk |=| {i | ci + k ≥ 0} | .

We write f Ik to mean the set of equations used at stage k in SA and f I≤k to mean the
set of equations used between k stage kmin and k—i.e. f Ikmin

∪ f Ikmin+1 ∪ · · · ∪ f Ik ,
similarly for the variables.

Again, from [18] we have that the system Jacobian used at stage k in SA is given
by:

Jk = ∂ f Ik
∂xJk

. (12)

Recall the note at the end of Sect. 3.2, giving us the following Lemma:

Lemma 3 In DDs if at stage κ , d j = κ + 1 then column j cannot be in G[κ+1].

Proof If 1 ≤ i ≤ mk and j > mk then k + ci > 0 and k + d j ≤ 0, hence d j − ci < 0
and thus cannot be equal to σi, j , so that (Jk)i j = 0 due to the definition of the System
Jacobian in Equation (5). Since we have G[0] = J0 = J and the DD algorithm is
reducing the order of differentiation by one at each stage, if the column referring to
x j appears in Jk and H [−k−1] then its entries must be the same. Thus columns with
d j = κ + 1 cannot be selected to form G[−k], as they will be columns of structural
zeros. ��

Thus columns representing variables that are undifferentiated cannot be chosen as
DDs, as one would expect.

Example 6 Consider example 5 and recall the index 1 system given in Eq. (10). Com-
pare this with the SA results in Table 2, the variables that became DDs are marked by
prime notation. In Example 5 we make a subset of the variables found at stage k in
SA into DDs at stage −k + 1 = κ + 1 in the DD scheme, using the same equations in
both cases, see Table 2.

123

446 R. McKenzie, J. Pryce

The total number of DDs introduced will be
∑

i ci , since this is the total number of
new equations introduced and we identify one DD with each new equation. At each
stage the variables that produced DDs are a subset of the variables that produced DDs
at the previous stage (necessarily excluding those with d j = κ + 1), of size mk−1,
with each variable being differentiated one time less than in the previous stage. So,
the DDs will be a subset of the variables solved for at the equivalent stage +1 of SA,
thus we have the following:

Theorem 2 The matrix G[κ] is a submatrix of (it may be equal to) Jk , where κ = −k.

Before going in to a deeper comparison we consider the 0 DOF case.

4.2 DDs and SA in the 0 DOF case

We begin with the following observation.

Lemma 4 If a square non-singular DAE has 0DOF and a HVT on the main diagonal
of Σ then d = cT .

Proof Immediate from (1) equality on a HVT constraint. ��

This gives us the following Theorem:

Theorem 3 If we have 0 DOF then G[−k] = Jk for each stage k between kmin and 0.

Proof Wehave no choice in our selection ofG[κ] since H [κ−1] (of sizem×n say)must
contain onlym columns of structural non-zeros, since n−m other columns correspond
to undifferentiated variables due to Lemma 4. Noting that J0 = G[0] completes the
proof. ��

Example 7 In [2] the authors introduce a DAE for modelling a robot arm. It is refor-
mulated to be SWP (i.e. have finite Val(Σ)) in [17]. We shall use the 6×6 formulation
introduced in [17] and arrange the equations and variables such that we clearly illus-
trate the block triangular structure of the problem. Structural Jacobian, signaturematrix
and offsets (with a HVT marked by • and −∞ entries left blank) for this DAE are,
where Fw means ∂F/∂w and so on:

Σ =

x1 x3 w x2 u2 u1 ci⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

G 0• 0 4

H 0 0• 4

D 2 1 0• 0 2

F 1 2 0 0• 2

E 1 1 0 2 0• 0

K 0 0 0• 0

d j 4 4 2 2 0 0

,

123

Structural analysis based dummy derivative selection… 447

J =

x (4)
1 x (4)

3 ẅ ẍ2 u2 u1⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

G(4) Gx1 Gx3 0 0 0 0
H (4) Hx1 Hx3 0 0 0 0
D̈ Dẍ1 0 Dw Dx2 0 0
F̈ 0 Fẍ3 Fw Fx2 0 0
E 0 0 0 Eẍ2 Eu2 0
K 0 0 0 0 Ku2 Ku1

.

For later observations it’s useful to note the above signature matrix has four coarse
(also fine) blocks, two of size 2 × 2 and two of size 1 × 1. Working through the DD
algorithm yields ν(F) = (4, 4, 2, 2, 0, 0), and thus the differentiated system G is:

G(4) = 0, H (4) = 0,

D(2) = 0, F (2) = 0,

E = 0, K = 0.

Stage 0: The vector of HODs is z[0] = (x (4)
1 , x (4)

3 , ẅ, ẍ2, u2, u1)T and g[0] =
(G(4), H (4), D(2), F (2), E, K)T .

Thus we have a DD Jacobian of the form:

∂g[0]

∂z[0]
= G[0] =

x (4)
1 x (4)

3 ẅ ẍ2 u2 u1 ci⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G(4) G(4)

x (4)
1

G(4)

x (4)
3

0 0 0 0 4

H (4) H (4)

x (4)
1

H (4)

x (4)
3

0 0 0 0 4

D̈ D̈
x (4)
1

0 D̈ẅ D̈ẍ2 0 0 2

F̈ 0 F̈
x (4)
3

F̈ẅ F̈ẍ2 0 0 2

E 0 0 0 Eẍ2 Eu2 0 0

K 0 0 0 0 Ku2 Ku1 0

d j 4 4 2 2 0 0

.

By Griewank’s Lemma 1 this is equivalent to J. Removing equations with ci = 0
yields:

H [0] =

x (4)
1 x (4)

3 ẅ ẍ2 u2 u1 ci⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

G(4) G(4)

x (4)
1

G(4)

x (4)
3

0 0 0 0 4

H (4) H (4)

x (4)
1

H (4)

x (4)
3

0 0 0 0 4

D̈ D̈
x (4)
1

0 D̈ẅ D̈ẍ2 0 0 2

F̈ 0 F̈
x (4)
3

F̈ẅ F̈ẍ2 0 0 2

d j 4 4 2 2 0 0

.

123

448 R. McKenzie, J. Pryce

Stage 1:We are now forced to remove the last two columns of H [0] to get a non-singular
matrix, choosing x (4)

1 , x (4)
3 , ẅ, ẍ2 as DDs and reducing the order of differentiation:

G[1] =

x (4)
1 x (4)

3 ẅ ẍ2 ci⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

G(4) G(4)

x (4)
1

G(4)

x (4)
3

0 0 4

H (4) H (4)

x (4)
1

H (4)

x (4)
3

0 0 4

D̈ D̈
x (4)
1

0 D̈ẅ D̈ẍ2 2

F̈ 0 F̈
x (4)
3

F̈ẅ F̈ẍ2 2

d j 4 4 2 2

,

H [1] =

x (3)
1 x (3)

3 ẇ ẋ2 ci⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

G(3) G(3)

x (3)
1

G(3)

x (3)
3

0 0 3

H (3) H (3)

x (3)
1

H (3)

x (3)
3

0 0 3

Ḋ Ḋ
x (3)
1

0 Ḋẇ Ḋẋ2 1

Ḟ 0 Ḟ
x (3)
3

Ḟẇ Ḟẋ2 1

d j 3 3 1 1

.

Stage 2: Since H [1] is square G[2] = H [1]. As ci − κ = 0 no rows (and therefore no
columns) are removed at this stage, so that:

H [2] =

ẍ1 ẍ3 w x2 ci⎛
⎜⎝

⎞
⎟⎠

G̈ G̈ ẍ1 G̈ ẍ3 0 0 2

Ḧ Ḧẍ1 Ḧẍ3 0 0 2

D Dẍ1 0 Dw Dx2 0

F 0 Fẍ3 Fw Fx2 0

d j 2 2 0 0

.

Stage 3: Again, H [2] is already square so G[3] = H [2].

H [3] =
ẋ1 ẋ3 w x2 ci()

Ġ Ġ ẋ1 Ġ ẋ3 0 0 1

Ḣ Ḣẋ1 Ḣẋ3 0 0 1

d j 1 1 0 0

,

123

Structural analysis based dummy derivative selection… 449

Table 3 DDs and SA stages for the robot arm

DD stage SA stage Equations being used Variables being found DDs selected

4 −4 G, H x1, x3 x ′
1, x

′
3

3 −3 Ġ, Ḣ ẋ1, ẋ3 x ′′
1 , x ′′

3

2 −2 G̈, Ḧ , D, F ẍ1, ẍ3, w, x2 x(3)
1 , x(3)

3 , w′, x ′
2

1 −1 G(3), H (3), Ḋ, Ḟ x(3)
1 , x(3)

3 , ẇ, ẋ2 x(4)
1 , x(4)

3 , w′′, x ′′
2

0 0 G(4), H (4), D̈, F̈, E, K x(4)
1 , x(4)

3 , ẅ, ẍ2, u2, u1 N/A

Stage 4: Then:

G[4] =
ẋ1 ẋ3 ci()

Ġ Ġ ẋ1 Ġ ẋ3 1

Ḣ Ḣẋ1 Ḣẋ3 1

d j 1 1

Finally we get H [4] = [] and the algorithm terminates. By Griewank’s Lemma 1 we
haveG[−k] = Jk for all k between−4 and 0 inclusively.We list a comparison between
the SA and DD algorithms in Table 3.

The DDs are equivalent to the differentiated variables solved for at each prior stage
in SA as expected, due to the 0 DOF in this example.

4.3 Structurally necessary dummy derivatives

Because the equations used in each equivalent stage of DDs and SA are the same and
variables in each DD stage are a subset of those in the SA stage we have the following
Theorem:

Theorem 4 If we have an equal number of variables nk and equations mk used at
stage k in the SA then we will have no choice when finding G[−k+1] in the DD scheme,
i.e. H [κ] is square.

Corollary 1 If mk=nk in the SA scheme at stage k then all subsequent derivatives of
variables in z[k] used by the DD scheme at stage κ = −k must be DDs in the final
index 1 system, i.e. Dz[k], . . . , D(−k)z[k] must be DDs.

Definition 2 (Structurally necessary DDs) If there exists a k such that mk = nk
and d j − k ≥ 0 then x

(d j−k+1)
j , . . . , x

(d j)

j are termed structurally necessary dummy
derivatives.

This gives us the following improved DD algorithm, where we can identify struc-
turally necessary DDs without computing numerical Jacobians:

123

450 R. McKenzie, J. Pryce

Algorithm 2 mK = nK Algorithm
1: for K = kmin : −1 do
2: Find SA solution scheme
3: Note stages where mK = nK
4: Make subsequent derivatives of such variables DDs
5: for K = 0 : −kmin do
6: Work through DDs algorithm, but:
7: keep columns for already known DDs from step 4 when finding G[K]

For 0 DOF systems this identifies all DDs as one might expect. Clearly Algorithm 2
finds all structurally necessary DDs. Applying the first half of Algorithm 2 (finding
structurally necessary DDs) to the robot arm gives us the following staged solution
scheme, produced by an extension (not yet released) to the authors’ code DAESA
[10]:

Do a pass through the Structural Analysis scheme:
K = -4: Make the following derivatives into dummy

derivatives
x1’, x1’’, x1’’’, x1’’’’, x2’, x2’’, x2’’’,
x2’’’’

K = -3: No dummy derivatives can be discovered
structurally at this stage

K = -2: Make the following derivatives into dummy
derivatives
x3’, x3’’, x4’, x4’’

K = -1: No dummy derivatives can be discovered
structurally at this stage

One should compare this with Table 3 to convince themselves of the result.

Example 8 Recall themodifieddouble pendulumDAE (8) and the associated signature
matrix and offsets in Fig. 1. Table 4 gives the SA solution stages for this problem. In
Table 4 we see all higher order derivatives of variables found at stage 4 in DDs will be
made DDs (i.e. those used in SA stages −3,−2,−1 or DD stages 1, 2, 3). Consider
now the different BTFs as shown in Fig. 1. Applying Corollary 1 corresponds to us

Table 4 SA stages for Eq. (8)
SA stage mk nk

−6 1 2

−5 1 2

−4 3 3

−3 3 4

−2 4 5

−1 4 5

0 6 6

123

Structural analysis based dummy derivative selection… 451

Table 5 Dummy derivative stages for Eq. (8)

Dummy derivative
stage κ

z[κ] g[κ](z[κ])

0 (x(6)
1 , x(6)

2 , x(4)
3 , x(3)

5 , ẍ4, x6) (f (6)
3 , f (4)

1 , f (4)
2 , f̈6, f4, f5)

T

1 (x(5)
1 , x(5)

2 , x(3)
3 , ẍ5) (f (5)

3 , f (3)
1 , f (3)

2 , ḟ6)
T

2 (x(4)
1 , x(4)

2 , ẍ3, ẋ5) (f (4)
3 , f̈1, f̈2, f6)

T

3 (x(3)
1 , x(3)

2 , ẋ3, x5) (f (3)
3 , ḟ1, ḟ2)

T

4 (ẍ1, ẍ2, x3) (f̈3, f1, f2)
T

5 (ẋ1) (ḟ3)
T

6 (x1) (f3)
T

solving the first coarse block as a stand alone system and then using it to solve the
second coarse block. Compare this with the z[κ] and g[κ](z[κ]) found in DDs in Table 5
(we have re-ordered equations and variables so they correspond with the coarse block
ordering).

Due to our ordering in the DD algorithm we introduce DDs for Dz[κ] at stage κ ,
e.g. at stage 4 we are left with the 3 × 3 system given by the first coarse block in our
BTF as expected. We note this algorithm for structurally necessary DDs looks similar
to solving for DDs based on the coarse BTF, see Sect. 4.4 for why this is not quite
true.

Example 9 This improved DD algorithm does indeed achieve our goal of reducing
the total number of potentially needed index 1 systems: Consider again the DAE
(8), working through the structural analysis we see that at stage k = −4 we have
mk = nk . At stage −4 we are solving for ẍ1, ẍ2, x3, so we know to keep columns
corresponding to these variables when working through DDs. For example, with •
indicating a structural non-zero and a blank indicating a structural zero we have G[0]
and H [0]:

x (6)
1 x (6)

2 x (4)
3 ẍ4 x (3)

5 x6 ci⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

f (4)
1 • • 4

f (4)
2 • • 4

f (6)
3 • • 6

f4 • • 0

f5 • • 0

f̈6 • • 2

d j 6 6 4 2 3 0

123

452 R. McKenzie, J. Pryce

x (6)
1 x (6)

2 x (4)
3 ẍ4 x (3)

5 x6 ci⎛
⎜⎜⎝

⎞
⎟⎟⎠

f (4)
1 • • 4

f (4)
2 • • 4

f (6)
3 • • 6

f̈6 • • 2

d j 6 6 4 2 3 0

.

We must keep the first three columns and hence only have to check 3 matrices for
non-singularity (in practice best condition number), as opposed to the 15 we would
otherwise have to check—although clearly in this case inspection tells us we choose
the first 4 columns.

4.4 Block based dummy derivatives

Using a block decomposition may yield a way of reducing the size of potential G[κ]
matrices at each stage, which should offer computational speed up when checking the
condition number of each Jacobian when doing dummy pivoting, see Sect. 5. Before
giving an algorithm for findingDDs on blockswe ask if Algorithm 2was already doing
something similar to a BTF for us. We consider a fine block decomposition (which is
itself a BTF within the coarse BTF) and ask if we could further reduce potential index
1 choices when considering mk being equal to nk during our SA stages.

Theorem 5 If given an n × n DAE and there exists a k ∈ {kmin, . . . ,−1} such that
nk = mk = μ for some 0 < μ < n, then the DAE must decompose in to at least 2
coarse blocks of size μ and (n − μ).

Proof Similar to the proof of Lemma 3 one partitions the matrix into the following
and then notes the top right block is empty by (1).

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

k + d j ≥ 0 k + d j < 0
...

k + ci ≥ 0 k + ci ≥ 0
μ

μ + 1

k + d j ≥ 0 k + d j < 0
...

k + c j < 0 k + c j < 0
n

1 . . . μ μ + 1 . . . n

.

��
This means, we cannot have a coarse block irreducible DAE with nk = mk , unless

k ≥ 0 or k < kmin and therefore nk = mk never occurs when solving via fine blocks

123

Structural analysis based dummy derivative selection… 453

unless the DAE has m fine blocks and we are solving fine block m, i.e. are at global
stage 0. Hence we turn our attention to the interactions between blocks rather than
trying to optimise further within a block. We define local offsets associated with an
arbitrary block form:

Definition 3 (Block Local Offsets) We denote the canonical local offsets associated
with an arbitrary block form, were its blocks treated as a stand alone systems, as či
and ď j .

Given a block form of Σ with L blocks we have Algorithm 3. In the following

Algorithm 3 Block based Dummy Derivatives
1: for l = 1, . . . , L do
Require: z[0]l , g[0]

l (z[0]l), κl = 0
2: if j = 0 then

3: G[0]
l = ∂g[0]

l

∂z[0]l

4: Let m be the number of differentiated equations in g[0]
l (z[0]l)

5: Let H [0]
l be the first m rows of G[0]

l
6: κ = κ + 1
7: else
8: while H

[κl−1]
l 	= [] do

9: Let G
[κl]
l be m columns of H

[κl−1]
l such that we have a non-singular matrix

10: Make the corresponding variables used in G
[κl]
l DDs

11: Omit one differentiation to get z
[κl]
l , g

[κl]
l (z

[κl]
l),...

12: (where we only consider variables and equations in G
[κl]
l)

13: Let m be the number of differentiated equations in g
[κl]
l (z

[κl]
l)

14: Let H
[κl]
l be the first m rows of G

[κl]
l ,...

15: (the rows using differentiated equations in g
[κl]
l (z

[κl]
l))

16: κl = κl + 1

17: Consider the new system using all equations g
[κl]
l (z[κl]),where κl ≥ 0,...

18: and dummy derivatives for z
[κl]
l , where κl > 0 and original variables,...

19: as well as all equations g(č)
l , . . . , g(c)

l ,...

20: and dummy derivatives for all variables x
(ď j)
j , . . . , x

(d j)
j .

discussion we will call DDs block necessary dummy derivatives if they are found at
the end of Algorithm 3, i.e. if they can be found by using a block form’s local offsets
and the global canonical offsets. There is no explicit interaction between blocks in
Algorithm 3 (the inter block dependencies are taken in to account on lines 19 and
20) and therefore the majority of the algorithm could be performed in parallel. In our
discussions that follow we will restrict ourselves to thinking about coarse and fine
BTFs, as described in Sect. 2.3, as these tend to be the most natural when using the
signature matrix method.

To prove Algorithm 3 gives a suitable choice of DDswewould like an analogue of a
Theorem in [20] that asserts the difference between local and global offsets is constant

123

454 R. McKenzie, J. Pryce

on a fine block form to hold for an arbitrary block form. This would mean that we
introduce only as many DDs as differentiated equations when taking the interactions
between blocks in to account. Consider however the following example:

Example 10 Consider a DAE with the following signature matrix:

ci či[]0 1 0 0

0 0 1 0

0 1 0 0

d j 0 1 1

ď j 0 0 1

.

Herewe are block triangularising over coarse blocks. There is not a constant difference
between coarse local and global offsets, so it’s possible we introduce more DDs than
we do equations when using Algorithm 3.

The potential problem in Example 10 is actually not a problem at all:

Theorem 6 Given a BTF of Σ the difference between the sum of any block’s local
offsets and global offsets is equal with respect to c and d.

Proof Take an n × n signature matrix Σ and put its HVT on the main diagonal. Let S
be any subset of {1, . . . , n} and č and ď be any valid offsets. Then, since ďi − či = σi,i
we have: ∑

i∈S
ďi −

∑
i∈S

či =
∑
i∈S

σi,i = Val(S)

which is independent of č and ď. So, for any other valid offsets, say c and d we have:

∑
i∈S

ďi −
∑
i∈S

di =
∑
i∈S

či −
∑
i∈S

ci = Val(S)

��
This is not what one might first expect: in our coarse block algorithm one might

expect to differentiate an entire block a number of times to solve a later block, this
Theorem shows that actually you may only need to differentiate some parts of the
block to retain a square index 1 system using lines 19 and 20 in Algorithm 3.

Theorem 7 Algorithm 3 gives a suitable choice of DDs that could otherwise have
been found by considering the entire system and original DD algorithm.

Proof If one is able to do the above algorithm then we have a block form whose
diagonal sub-matrices are structurally non-singular. Because each block’s coarse local
offsets are a constant away from the global, by Lemma 1 we must have a non-singular
Jacobian at each global stage of DDs if we have a non-singular Jacobian at each coarse
local stage. Again, by Lemma 1 we see that a valid choice for the global stage DD

123

Structural analysis based dummy derivative selection… 455

algorithm is an amalgam of variables found at positive and negative local stages, using
each block’s lead times (if we consider adding variables and equations at the end of
the algorithm as doing local stages 0, . . . ,max j (d j − ď j)). ��

Due to Theorem 5 and Example 7 one may think when restricting to coarse blocks
Algorithm 3 is just a restating of Algorithm 2—consider a DAEwith signature matrix:

x1 x2 x3 x4 x5 x6 ci⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

f1 5 0 0

f2 0 4 0

f3 0 0 0 4

f4 0 0 6

f5 2 0 4

f6 2 0 4

d j 5 0 4 6 6 4

k −6 −5 −4 −3 −2 −1
mk 1 1 4 4 4 4
nk 2 3 5 5 5 5

Looking for stages where mk = nk we find no structural DDs. However, using Algo-
rithm3wefind block necessaryDDs for x (3)

4 , . . . , x (6)
4 , x (3)

5 , . . . , x (6)
5 and ẋ6, . . . , x

(4)
6 .

We see that Algorithm 3 restricted to the coarse BTF yields a valid set of DDs that
could be found using the global offsets and no BTF. All we’ve done is take a BTF, so
one might assume in general it generates all possible sets of valid DDs that could be
obtained globally, as certainly seems to be asserted in the original paper [7]. Consider
however:

Example 11 Consider a DAE with signature matrix as follows:

Σ =

x1 x2 x3 x4 x5 ci⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

f1 1 0 0 1

f2 2 1 0

f3 1 0 2

f4 2 1 0 1

f5 2 1 0

d j 2 1 3 2 1

Note that the coarse BTF given above is the same as the fine BTF and c = č = ĉ and
d = ď = d̂. Algorithm 3 will give a DD for either ẍ1 or ẋ2 from the first block, that is
Algorithm 3 cannot find a set of DDswhere neither of ẍ1 and ẋ2 are selected. However,
if we carry out the original DD algorithm we see that there is an index one system
that uses only derivatives of variables x3, x4 and x5 as DDs. Thus there are index 1
systems we may ‘miss’ using a BTF that would otherwise be available if considering
the DAE as a whole.

123

456 R. McKenzie, J. Pryce

4.5 Fine block based dummy derivatives

We now show that the choice of block form does directly affect the number of block
necessary DDs as defined in Sect. 4.4. We assert the fine BTF is a good choice. Before
giving an example of Algorithm 3 using the fine BTF we wonder if there exists a more
informative version of Algorithm 2 based on the fine BTF. Consider again Eq. (8), its
signature matrices in Fig. 1 and its stages in Table 5. For stages −2 and −1 mk 	= nk
because we have to introduce initial values for ẍ5 and ẋ5. If we did not have to do this
we would again have a square system, this time with 4 equations—the original coarse
block containing equations 1, 2, 3 and variables 1, 2, 3 and a fine block containing
equation 6 and variable 4. We note that variable 5 does not actually appear in the
DD solution scheme until stage 0 because it does not have an associated equation.
Therefore we can ignore any variables that must be specified as IVs and are left with
the following definition

Definition 4 Fine block local numbers of equations and variables are written as:

m̂k,l =
∣∣∣∣{ j in block l | d̂ j + k ≥ 0}

∣∣∣∣, n̂k,l =
∣∣∣∣{i in block l | ĉi + k ≥ 0}

∣∣∣∣
where k is taken to be a local SA stage associated with a fine block.

Doing this we end up with an improved fine block based analogue of Algorithm 2.
For each fine block l do the following (where k̂min,l is the −max j d j such that j is in
block l):

Algorithm 4 Fine BTF based structural DD algorithm
1: for K = k̂min,l : −1 do
2: Find SA solution scheme
3: Note stages where m̂k,l = n̂k,l
4: Make subsequent derivatives of such variables DDs
5: for K = 0 : −k̂min,l do
6: Work through DDs algorithm, but:
7: keep columns relating to already known DDs from step 4 when finding G[K]

Knowing this it motivates us to continue using the fine BTF to find DDs, since we
have a better set of structural DDs (wewill term suchDDs block structurally necessary
DDs) than was previously found using the entire signature matrix.

Example 12 Consider again the DAE in Example 4. We carry out Algorithm 3 on this
DAE to illustrate the advantages of the fine BTF. The local offsets tell us that we must
have DDs shown in Table 6—found by comparing the offsets via lines 19 and 20 of
the Algorithm.

The only block we have to select DDs in is block 4 (equivalent to the simple
pendulum). For ease of checking the Jacobians that follow we now consider this as a
stand alone DAE (as would be done should Algorithm 3 be done in parallel over fine
blocks) and give the differentiated problem Gx = 0:

123

Structural analysis based dummy derivative selection… 457

Table 6 DDs from the fine blocks for example (8)

Block number Fine block structural DDs

1 No dummy derivatives for this block

2 No dummy derivatives for this block

3 ẋ4, ẍ4

4 x(3)
1 , x(4)

1 , x(5)
1 , x(6)

1 , x(3)
2 , x(4)

2 , x(5)
2 , x(6)

2 , ẋ3, ẍ3, x
(3)
3 , x(4)

3

Table 7 Possible DD choices
from (8)

Stage 1 Stage 2

x ′′
1 x ′

1

x ′′
2 x ′

2

f1 = ẍ1 + x1x3 = 0

f2 = ẍ2 + x2x3 − G = 0

f3 = x21 + x22 − L2 = 0

⎫⎪⎬
⎪⎭

ḟ3 = f4 = 2ẋ1x1 + 2ẋ2x2 = 0

f̈3 = f5 = 2ẍ1x1 + 2ẋ21 + 2ẍ2x2 + 2ẋ22 = 0

}

Performing the DD algorithm gives two possible index 1 systems, where the choice
of DDs is given in Table 7. We are able to find 14 block necessary DDs without ever
having to compute a numerical Jacobian and reduced our problem size by half at the
outset.

A brief complexity analysis follows. Assume the DAE decomposes into L fine
blocks labelled by a subscript l. At each stage of DDs the original algorithm has a
complexity of order:

kmin∑
k=−1

(nk)3

because the selection of DDs is usually done via a QR decomposition in practice,
which is an O(n3) operation. The proposed algorithm has a complexity of order:

L∑
l=1

⎛
⎝ k̂min,l∑

k=−1

(̂nk,l)
3

⎞
⎠

where ĉi in the second summation is taken to be in block l. Assuming the system
decomposes into relatively small fine blocks, i.e. n̂ � n and some ĉi < ci—from test
models in DAESA this is usually the case—this should offer good numerical speed
up.

123

458 R. McKenzie, J. Pryce

Importantly the large reduction in potential DDs and problem size makes dummy
pivoting less problematic, since we will have to consider smaller systems of equations
with a reduced number of potential variables to choose from, see Sect. 5 for more
detail.

Consider again Example 11, we are reminded that there are index 1 systems we
may ‘miss’ using a fine BTF that would otherwise be available if considering the DAE
as a whole. Whilst this seems like a rather large oversight of our method, this potential
‘oversight’ will never make an otherwise solvable (by DDs) DAE unsolvable:

Theorem 8 If the DAE is solvable then Algorithm 3 restricted to the fine BTF will
always be able to select a valid set of DDs.

Proof If the system is solvable then there must exist DD matrices globally, i.e. there
is a choice G[0], . . . ,G[maxi ci] for which each matrix is non-singular. We also know
that there exist global SA system Jacobian J0, . . . , J−maxi ci that have full row rank. If
the SA scheme succeeds globally then it succeeds over fine-blocks. That is, over each
fine block l there are J0,l , . . . , J−maxi ĉi ,l that have full row rank. Since we have that
any J0 = G[0] and subsequent DD matrices are sub matrices of previous SA matrices
it must be possible to select a non-singular DD matrix on each fine block if each SA
Jacobian has full row rank in that block. ��

Thus, although it is possible to find non-singular choices of DDs globally that
cannot be found over a fine block, these choices are somehow a redundant selection—
although admittedly it might be possible the global selections have better condition
numbers there will exist a fine block selection if the DAE is solvable.

5 Dummy pivoting

We briefly discuss the issue of dummy pivoting as first examined in [8]. When pro-
ceeding along a numerical solution it is possible that some chosen matrices G[κ] will
become singular. It is therefore necessary to change our choice ofG[κ] as our numerical
solution evolves with time. Such a change is called dummy pivoting or dynamic selec-
tion of states [9]. The main problemwith making such a change is that changing aG[κ]
will (frequently, but not necessarily) produce a need to change all subsequent G[κ+i].
This problem is made worse when the DAE is of larger index (there will be multiple
stages and thus more potential G[κ] to change) or when the problem is large (this
will result in estimating condition numbers of potentially large matrices frequently
throughout the solution process). One method of avoiding the former problem is to
start by attempting to reduce the order of the problem and block triangularising as in
Sect. 4.5, a technique that in practice frequently reduces the order. Another alternative
is to select which states must or cannot be chosen as DDs, this is implemented in
some tools, such as is done in Dymola with each variable given a stateSelect
parameter that can beprefer,default oravoid. Selecting dynamic states before
solving however needs to be informed by problem specific knowledge, which it is not
always possible a user will have. It is also dangerous as the user may avoid choosing
necessary DDs if they are not careful. We offer an insight into the number of different
potential Jacobians G[κ] gained by the following example.

123

Structural analysis based dummy derivative selection… 459

Example 13
f1 = ẍ21 + ẋ25 + u1(t) = 0

f2 = ẍ24 + ẍ22 + u2(t) = 0

f3 = ẋ21 + x23 + u3(t) = 0

f4 = x24 + x23 + u4(t) = 0

f5 = ẋ25 + ẋ22 + u5(t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

Here u1(t), . . . , u5(t) are arbitrary driving functions. The non-linearity gives stages
in the DD algorithm that may need pivoting. This DAE (13) has signature matrix and
offsets:

G[0] =

x1 x2 x3 x4 x5 ci⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

f1 2• 1◦ 1

f2 2• 2◦ 0

f3 1◦ 0• 2

f4 0◦ 0• 2

f5 1◦ 1• 1

d j 3 2 2 2 2

This is irreducible and has two HVTS, marked by • and ◦. Every entry of Σ

corresponds to a structurally non-singular entry in each Jk and their related DD stage
Jacobians. For ease of checking entries in the DD stage Jacobians that follow we
present all equations and their derivatives specified by c:

f1 = ẍ21 + ẋ25 + u1(t) = 0

f2 = ẍ24 + ẍ22 + u2(t) = 0

f3 = ẋ21 + x23 + u3(t) = 0

f4 = x24 + x23 + u4(t) = 0

f5 = ẋ25 + ẋ22 + u5(t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

ḟ1 = f6 = 2x (3)
1 ẍ1 + 2ẍ5 ẋ5 + u̇1(t) = 0

ḟ3 = f7 = 2ẍ1 ẋ1 + 2ẋ3x3 + u̇3(t) = 0

ḟ4 = f8 = 2ẋ4x4 + 2ẋ3x3 + u̇4(t) = 0

ḟ5 = f9 = 2ẍ5 ẋ5 + 2ẍ2 ẋ2 + u̇5(t) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

f̈3 = f10 = 2x (3)
1 ẋ1 + 2ẍ21 + 2ẍ3x3 + 2ẋ23 + ü3(t) = 0

f̈4 = f11 = 2ẍ4x4 + 2ẋ24 + 2ẍ3x3 + 2ẋ23 + ü4(t) = 0

}
.

123

460 R. McKenzie, J. Pryce

Stage 0: In the DD algorithm, we have an initial Jacobians:

G[0] =

x (3)
1 ẍ2 ẍ3 ẍ4 ẍ5 ci⎛

⎜⎜⎜⎝
⎞
⎟⎟⎟⎠

ḟ1 2ẍ1 0 0 0 2ẋ5 1

f2 0 2ẍ2 0 2ẍ4 0 0

f̈3 2ẋ1 0 2x3 0 0 2

f̈4 0 0 2x3 2x4 0 2

ḟ5 0 2ẋ2 0 0 2ẋ5 1

d j 3 2 2 2 2

,

H [0] =

x (3)
1 ẍ2 ẍ3 ẍ4 ẍ5⎛

⎜⎝
⎞
⎟⎠

ḟ1 2ẍ1 0 0 0 2ẋ5
f̈3 2ẋ1 0 2x3 0 0
f̈4 0 0 2x3 2x4 0
ḟ5 0 2ẋ2 0 0 2ẋ5

.

Stage 1: We need to find G[1]. We do this by choosing any 4 columns, since all 5
possibilities are (at least structurally) non-singular. Numerically one potentially has
to pivot between different systems, for example say you chose columns 1, 2, 3, 4 and
ẋ2 → 0 at some time t then you would pivot to the system with columns 1, 3, 4, 5.
Choose columns 1, 2, 3, 4 giving DDs for x (3)

1 , ẍ2, ẍ3 and ẍ4. The new Jacobians are:

G[1] =

ẍ1 ẋ2 ẋ3 ẋ4⎛
⎜⎝

⎞
⎟⎠

f1 2x ′′
1 0 0 0

ḟ3 2ẋ1 0 2x3 0
ḟ4 0 0 2x3 2x4
f5 0 2ẋ2 0 0

. and

H [1] =
ẍ1 ẋ2 ẋ3 ẋ4()

ḟ3 2ẋ1 0 2x3 0
ḟ4 0 0 2x3 2x4

.

Stage 2: Choose two columns from H [1] to form a square non-singular matrix. There
are three choices. As above it may be necessary to pivot chosen DDs numerically.
Say we choose columns 1 and 3, then we introduce DDs for ẍ1 and ẋ3 and get the
following Jacobian:

G[2] =
ẋ1 x3()

f3 2ẋ1 2x3
f4 0 2x3

.

Removing undifferentiated equations yields H [2] = [] and the algorithm terminates.
Note: we have selected the following dummies: x ′′

1 , x
(3)
1 , x ′′

2 , x
′
3, x

′′
3 and x ′′

4 . If we

123

Structural analysis based dummy derivative selection… 461

Table 8 Possible DD index 1
systems from (13)

Stage 1 Stage 2

x(3)
1 , x ′′

2 , x
′′
3 , x

′′
4 x ′′

1 , x
′
3 or x ′′

1 , x
′
4 or x ′

3, x
′
4

x(3)
1 , x ′′

2 , x
′′
3 , x

′′
5 x ′′

1 , x
′
3

x(3)
1 , x ′′

2 , x
′′
4 , x

′′
5 x ′′

1 , x
′
4

x(3)
1 , x ′′

3 , x
′′
4 , x

′′
5 x ′′

1 , x
′
3 or x ′′

1 , x
′
4 or x ′

3, x
′
4

x ′′
2 , x

′′
3 , x

′′
4 , x

′′
5 x ′

3, x
′
4

do not check for non-singular matrices at each stage we would have
(5
4

)(4
2

) = 30
possible index 1 systems at the end of the algorithm. If however we check for structural
singularity at each stage (as is done above) we get 9 possible index 1 systems. Listed
in Table 8 are selected DDs.

If one thinks of the number of possible DD index 1 systems as a tree diagram, with
stage 1 producing the root and each subsequent stage producing branching nodes it
is possible to make pivoting easier. In applications where the DAE is usually of large
size but (relatively) low index the tree will likely be wide but shallow. Pivoting can
then be done across nodes on each level, i.e. you can pivot between all nodes at one
level (restricting yourself to nodes coming from one parent node), starting at the node
that gives you a singular matrix G[κ] and considering its leaves, then if no nodes at
the current level give a non singular matrix go up a level and repeat. Storing such
a diagram may take a lot of memory, but it’s highly likely many nodes will in fact
have the same G[κ]. Consider Table 8. We see there are actually only three distinct
nodes at stage 2, so we only have to store 3 Jacobians, not 9 and check 3 Jacobians
for non-singularity in the worst case.

6 Conclusions

In this paper we have outlined the Signature matrix method of [18] in Sect. 2 and a
reordered version of the Dummy Derivative method of [7] in Sect. 3 to draw parallels
between the approaches and develop a method of doing DDs that is structurally well
informed. The concept of structurally necessary DDs has been defined and explored
for different block forms in Sect. 4. Such analysis should help those using the DD
algorithm for index reduction to better understand the underlying restrictions on their
reformulated index 1 system. We have also expanded upon the original description
of block based DDs and demonstrated that one can restrict their potential index 1
system choices by using a block form, although such a restriction will not make a
DAE unsolvable if it was otherwise solvable. We believe such a rigorous analysis of
DDs using SA as a base will help modellers understand the subtleties inherent in this
index reduction procedure and give them some insights when developing their models.
We believe the complexity analysis for our revised algorithm will drive modellers to
use it on their problems where they were previously using a different index reduction

123

462 R. McKenzie, J. Pryce

procedure. It is our opinion that dynamic selection of states is not a widely understood
topic in the DAE community. We hope that Sect. 5 is useful to modellers that have to
incorporate dummy pivoting into their codes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Brenan, K., Campbell, S., Petzold, L.: Numerical solution of initial-value problems in differential-
algebraic equations. SIAM, Philadelphia (1996)

2. Campbell, S., Griepentrog, E.: Solvability of general differential algebraic equations. SIAM J. Sci.
Comput. 16(2), 257–270 (1995)

3. Dynasym AB, Dymola Dynamic Modeling Laboratory, User’s Manual, http://www.inf.ethz.ch/
personal/cellier/Lect/MMPS/Refs/Dymola5Manual (2004)

4. Fritzson, P.: Principles of object-orientedmodeling and simulation withModelica 3.3: a cyber-physical
approach. wiley-ieee press, Hoboken (2015)

5. Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM,
Philidelphia (2000)

6. Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: SUNDIALS:
suite of nonlinear and differential/algebraic equation solvers. ACMTrans.Math. Softw. 31(3), 363–396
(2005)

7. Mattsson, S., Söderlind, G.: A New Technique for Solving High-Index Differential-Algebraic Equa-
tions Using Dummy Derivatives, Computer-Aided Control System Design (1992)

8. Mattsson, S., Söderlind, G.: Index reduction in differential-algebraic equations using dummy deriva-
tives. SIAM J. Sci. Comput. 14, 677–692 (1993)

9. Mattsson, S., Olsson, H., Elmqvist, H.: dynamic selection of states in DYMOLA (2000)
10. McKenzie, R., Nedialkov, N., Pryce, J., Tan, G.: DAESA User Guide, Department of Computing and

Software. McMaster University (2013)
11. McKenzie, R.: Exploiting underlying DAE structures using the Signature Matrix method for index

reduction (PhD Thesis), Department of Mathematics, Cardiff University (2016)
12. Nedialkov, N., Pryce, J.: Solving differential-algebraic equations by Taylor series (I): computing Taylor

coefficients. BIT 45, 561–591 (2005)
13. Nedialkov, N., Pryce, J.: Solving differential-algebraic equations by Taylor series (III): the DAETS

code. JNAIAM 3, 61–80 (2007)
14. Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM. J. Sci. Stat. Com-

put. 9, 213–231 (1988)
15. Petzold, L.: Description of DASSL: a differential/algebraic system solver. http://www.osti.gov/scitech/

servlets/purl/5882821 (1982)
16. Process Systems Enterprise Ltd., gPROMS Introductory User Guide. http://eng1.jcu.edu.au/Current
17. Pryce, J.: Solving High-Index DAEs by Taylor Series. Numer. Algorithms 19, 195–211 (1998)
18. Pryce, J.: A simple structural analysis method for DAEs. BIT 41(2), 364–394 (2001)
19. Pryce, J., Nedialkov, N., Tan, G.: Graph theory, irreducibility, and structural analysis of differential-

algebraic equation systems, Cardiff University. McMaster University. In: preparation (2015)
20. Pryce, J., Nedialkov,N., Tan,G.:DAESA—amatlab tool for structural analysis of differential-algebraic

equations: theory (2015). ACM Trans. Math. Softw. 41(2), 1–20 (2015)
21. Washington, I., Swartz, C.: On the numerical robustness of differential-algebraic distillation models,

61st Canadian Chemical Engineering Conference. Ontario, Canada, London (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://www.inf.ethz.ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual
http://www.inf.ethz.ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual
http://www.osti.gov/scitech/servlets/purl/5882821
http://www.osti.gov/scitech/servlets/purl/5882821
http://eng1.jcu.edu.au/Current

	Structural analysis based dummy derivative selection for differential algebraic equations
	Abstract
	1 Introduction
	2 A review of the signature matrix method
	2.1 Basic Structural information
	2.2 Structural analysis stages
	2.3 SA based Block Triangular Forms

	3 A review of the dummy derivative method
	3.1 The idea behind DDs
	3.2 The DD algorithm

	4 Structural analysis based dummy derivatives
	4.1 Similarities in the methods
	4.2 DDs and SA in the 0 DOF case
	4.3 Structurally necessary dummy derivatives
	4.4 Block based dummy derivatives
	4.5 Fine block based dummy derivatives

	5 Dummy pivoting
	6 Conclusions
	References

