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Abstract Boundary integral equations are an important class of methods for acoustic
and electromagnetic scattering from periodic arrays of obstacles. For piecewise ho-
mogeneous materials, they discretize the interface alone and can achieve high order
accuracy in complicated geometries. They also satisfy the radiation condition for
the scattered field, avoiding the need for artificial boundary conditions on a trun-
cated computational domain. By using the quasi-periodic Green’s function, appro-
priate boundary conditions are automatically satisfied on the boundary of the unit
cell. There are two drawbacks to this approach: (i) the quasi-periodic Green’s func-
tion diverges for parameter families known as Wood’s anomalies, even though the
scattering problem remains well-posed, and (ii) the lattice sum representation of the
quasi-periodic Green’s function converges in a disc, becoming unwieldy when obsta-
cles have high aspect ratio.

In this paper, we bypass both problems by means of a new integral representation
that relies on the free-space Green’s function alone, adding auxiliary layer potentials
on the boundary of the unit cell strip while expanding the linear system to enforce
quasi-periodicity. Summing nearby images directly leaves auxiliary densities that are
smooth, hence easily represented in the Fourier domain using Sommerfeld integrals.
Wood’s anomalies are handled analytically by deformation of the Sommerfeld con-
tour. The resulting integral equation is of the second kind and achieves spectral ac-
curacy. Because of our image structure, inclusions which intersect the unit cell walls
are handled easily and automatically. We include an implementation and simple code
example with a freely-available MATLAB toolbox.
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1 Introduction and problem formulation

A number of problems in wave propagation require the calculation of quasi-periodic
solutions to the Helmholtz or Maxwell equations in the frequency domain. A typical
example in two dimensions involves computing the field scattered by an infinite one-
dimensional array (a grating) of dielectric obstacles in response to an incoming plane
wave (Fig. 1) [38].

For the sake of simplicity, we will restrict our attention here to the analysis of the
two-dimensional (locally isotropic) Maxwell equations in what is usually called TM
polarization] [18, 19]. In this case, the full Maxwell equations for the electric and
magnetic fields E, H,

VxE=iouH,
V x H= —iweE,

take the simpler form
E(x,y,2) = E(x,y) = (0,0, u'(x, ),

1
H(-xa Y, Z) = H(.X, y) = ._(uty(x7 y)’ —M;()C, y)vo)a
Lo

where u' is a scalar field defined in R?. Here, € and 4 are the permittivity and perme-
ability, respectively, and we have assumed a time dependence of e~'®' at frequency
@ > 0. The index of refraction n = n(x, y) is defined to be n = /e x. We will concen-
trate on materials with piecewise constant index of refraction, and assume that units
are scaled so that n = 1 in the background material and n # 1 in the obstacles them-
selves (Fig. 1). In order to satisfy the full Maxwell equations, it is straightforward to
verify that u' must satisfy the scalar Helmholtz equations

(A +n’0®u'=0 inQy, (1.1
(A+oHu'=0 inR>\ Qy. (1.2)

Imposing the standard continuity conditions on the tangential components of the elec-
tric and magnetic fields [18, 19], we have

w—u T =t =T =0 ondQa, (1.3)

where the superscripts + (—) denote the limiting values on the surface approaching
from outside (inside), and u!, := du'/dn is the outward-pointing normal derivative.
Writing X = (x, y), the incoming plane wave with angle 6 takes the form

IThe reader should be warned that in this setting some authors [5] use TM and TE in the reversed sense.

@ Springer



Integral representation for quasi-periodic scattering 69

@ P
,,,,,, : ) ,-
W8 v C ok
d

| T
D D @ D @ " e Q Y (k1K) KzK

—n —n (5
Y Ll R 2n/d

(Ko ko)

' . evanescent propagating  evanescent

Fig. 1 (a) A simple 2D grating scattering geometry: a plane wave incident on a one-dimensional array
of obstacles with periodicity d. 6 € (—x, 0) is the angle of incidence with respect to the x-axis. Q C R2
denotes the single obstacle lying in the “unit cell” U := (—d/2,d/2) x (—00,00). 2, denotes the set
of all obstacles in the array, and R2 \ 2 denotes the background material. (b) Fourier (k-space) picture
showing construction of Rayleigh-Bloch wavevectors, the propagating ones of which give the angles of
Bragg diffraction orders
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where the wavenumber is k = («', k') := (wcos8, wsinh). Since [k| = w, u' satis-
fies the appropriate Helmholtz equation in the background material. We will make
frequent use of the following.

Definition 1 A function f : R?> — C is said to be quasi-periodic*> with phase o,
o] =1, if

fx+d,y)=af(x,y) V(x,y) R

We interpret o as the Bloch phase associated with translation by one period. In
particular, the incident wave is quasi-periodic with phase

L .
:emd — lwdcosG.

o e

(This condition reduces to true periodicity only when wd cos6 = 2nm for some inte-
ger n, such as when the incoming wave is normally incident, i.e. § = —/2.) By the
translational symmetry of the problem, the resulting total field ' must be similarly
quasi-periodic.

In the language of scattering theory, we may now write the total field as u' =
u' + u, where u is the scattered field. It is easy to see that u satisfies the homoge-
neous Helmholtz equations (1.1)—(1.2), and that (1.3) results in the inhomogeneous
interface conditions

ut —u” = —ul, wh —uy =—ul ondQ,. (1.5)

2 Also known as pseudoperiodic in some literature.
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Moreover, u is quasi-periodic.

Finally, u satisfies the following radiation condition [9]. Let yp > O be suffi-
ciently large that the rectangle (—d/2,d/2) x (—yo, yo) contains Q. Define «, =
k' +2mn/d, and k, = +/w? — k2 where the sign is taken as positive real or positive
imaginary. Then the plane wave with wavevector (k,, k) is quasi-periodic for each
integer n, and satisfies the Helmholtz equation at frequency w; a geometric construc-
tion for these wavevectors is given in Fig. 1(b). The radiation condition on u is that it
has uniformly-convergent upwards and downwards Rayleigh—Bloch expansions

u(x,y) = cheik’”eik”()’_y") y >y, x €R, (1.6)
nez

u(x,y) =Y dye e Y0y <y x eR. (1.7)
nez

The complex coefficients ¢, d,,, for n such that |«, | < w (propagating waves), are the
Bragg diffraction amplitudes at the grating orders. For all other n these give evanes-
cent components which do not contribute to the far field.

The above conditions result in the existence of a solution u for all frequencies
o and incident angles 6 [9, Thm. 3.2]. The solution is unique (i.e. the problem well-
posed) at all but a discrete set of frequencies w, for each fixed horizontal wavenumber
k' = wcosO [9, Thm. 3.4]. These discrete frequencies correspond to guided modes,
which propagate without loss along the grating. The only such modes relevant in the
scattering setting are nonrobust in the sense that they are embedded in the continu-
ous spectrum, and therefore disappear under generic perturbations [40]. Such modes
occur at isolated points in (w, k') parameter space, and may cause anomalous trans-
mission through the grating [41]. (There may also exist robust guided modes with
frequencies below the continuous spectrum corresponding to the mode’s horizontal
wavenumber, which are therefore inaccessible in the scattering setting.) If n < 1 and
2 is shaped such that the refractive index is non-decreasing with |y| then no guided
modes can exist [9, Thm. 3.5]. Conversely, for arbitrary €2 and n > 1, at least one
guided mode must exist [9, Thm. 4.4(2)] (although the existence of nonrobust modes
is not guaranteed). The above is carefully reviewed (in the three-dimensional setting)
by Shipman [40].

There is another entirely different type of “resonance” that may occur, first ob-
served experimentally by Wood [46]: there are parameters where the diffraction
intensities may change arbitrarily rapidly with respect to @ or 6. These so-called
Wood’s anomalies are now known to occur when, for some n, «,, = +w thus k, =0
and the nth Rayleigh—-Bloch mode in (1.6)—(1.7) is constant in y (a horizontally
traveling plane wave). It is also possible to have a double Wood’s anomaly, when
kn = —k;n = o for a pair of integers n, m; clearly this can only occur for integer
wd /2. A thorough analysis of Wood’s anomalies in the case of disc obstacles is
given by Linton—Thompson [27]. We emphasize that, unlike guided modes discussed
above, Wood’s anomalies do not prevent the boundary value problem for u from hav-
ing a unique solution. One of the key features of the method we present is that it
works at Wood’s anomalies.
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Integral representation for quasi-periodic scattering 71

Applications of the above diffraction problem are widespread, including grat-
ings, antennae, acoustic diffusers, and small-amplitude water waves [37]. General-
izing slightly to more than one inclusion per unit cell, one is able to study finite-
thickness photonic crystal slabs [41, 43], with applications to integrated optics and
signal processing. Moreover, we expect the tools we present here to generalize well
to a much larger class of technologically-important scattering problems, including
periodic layered media with inclusions. Modern applications include dielectric grat-
ings [8], process control in semiconductor lithography [30], efficient thin-film pho-
tovoltaic cells [4, 20], and integrated nano-scale optical devices [19]. Some of these
applications (e.g. photonic crystals, silicon microwire arrays [20]) demand structures
that are many periods deep, i.e. high aspect ratio.

A variety of existing numerical methods have been applied to periodic scattering
problems. Unfortunately, many of the popular methods are only low order accurate
and agree in test problems to only 1 digit of accuracy [45]. Finite difference approx-
imation to the time-domain wave equation (FDTD) [16, 42] is common; it has the
advantage of being quite general, but has the disadvantage of requiring large regions
of free space to be simulated, with significant dispersion error for electrically large
domains. FDTD methods also require non-reflecting boundary conditions and long
settling times for resonant structures. Moving to the frequency domain, finite ele-
ment methods [5, 30] require non-trivial grid generation, especially in three dimen-
sions, and also demand the discretization of substantial regions of free space together
with the imposition of non-local radiation conditions constructed from (1.6) and (1.7).
The engineering community has developed many other methods—including coupled
wave analysis, the waveguide method [45], the C method [24], and cylindrical (mul-
tipole) expansions [27, 37]—which are often based on uncontrolled approximations.

In this work we use integral equations (sometimes known as boundary element
methods). These have a rigorous mathematical foundation [11, 34], and have the
advantages of discretizing the material interfaces alone, of automatically enforcing
radiation conditions, and of high-order convergence, which allows high accuracies
to be reached very efficiently. The standard way to adapt integral equations to solve
periodic scattering problems is by replacing the free-space kernel (see (2.7)) by the
quasi-periodic Green’s function (the kernel appearing in (3.4) with P = 00); see [35,
36, 43]. Considerable effort has been spent on the tricky task of computing this quasi-
periodic Green’s function efficiently (see, for example, [3, 12, 25, 28, 31]). The state
of the art appears to be around 10™* to 10~ sec per evaluation at low frequencies
[3], and 107! sec at very high frequencies [23].

A much more serious problem is that the quasi-periodic Green’s function blows up
at Wood’s anomalies with a —1/2 power singularity [25, Eq. (2.13)—(2.14)], causing
any method using it to have divergent round-off error near to, and failure at, each such
anomaly. In the related case of periodic surface scattering, Zhang and Chandler-Wilde
[47] modified the Green’s function to that of a half-space, which cures this divergence
(this was implemented in [2]); however, this idea fails to help in our case of discon-
nected obstacles. A final problem is that the quasi-periodic Green’s function is often
computed using lattice sums [25, 26], which is natural when using fast multipole ac-
celeration in large-scale scattering problems [36]. However, since this representation
converges in discs (or spheres in 3D), it becomes cumbersome for high aspect ratio
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geometries. We believe that the above reasons highlight the need for the more robust
and flexible scheme that we present here.

We propose a periodizing scheme which builds upon the single-obstacle scattering
problem without changing the kernel, allowing existing code (quadrature, fast mul-
tipole schemes, etc.) to be used unaltered. Our scheme has much in common with
that of [7], except that we only have one dimension of periodicity, requiring Fourier
methods to handle the unbounded nature of the other dimension.

We review the non-periodic scattering scheme in Sect. 2, and present our new
method in Sect. 3. A simple numerical example, and then a high-aspect ratio one, are
demonstrated in Sect. 4, where we also compute Bragg diffraction amplitudes ¢, and
d, from (1.6)—(1.7). Slight modifications of the method allow handling of Wood’s
anomalies in Sect. 5 and obstacles which touch (wrap around) the unit cell walls in
Sect. 6. We conclude in Sect. 7, and give a short code example in the Appendix.

2 Transmission scattering from a single obstacle

The approach of this paper builds directly upon the boundary integral method for the
scattering problem for a single isolated obstacle €2, whose formulation and solution
we now review. Given the incoming wave u' given by (1.4), one seeks the scattered
wave u satisfying the Helmholtz equations

(A+n0®Hu=0 inQ, 2.1
(A+oHu=0 inR*\Q, (2.2)

the inhomogeneous boundary conditions (1.5) on the single boundary €2, and the
free space Sommerfeld radiation condition [10]

d
a_u —iou = o(rfl/z), ri=|x| = oo. 2.3)
,

To formulate this as a system of integral equations, we choose the standard Rokhlin—
Miiller scheme [33, 39],

S(na)) D(nw) : 97
"y : o+ T 1In 2.4)

S@Wo +D@Wr  inR?\Q,

where the usual single and double layer densities [10] at any wavenumber w > O are
defined by

(@) (x) = / G (x,y)o (y)dsy, 2.5)
Q2
3G(w)
(D(w)f)(x)zf 5 (x, y)t(y)dsy. (2.6)
aQ OJny

Here the kernel G (x, y) = G©@ (x —y) is the free-space Green’s function,

G@wzgﬁ%mm,er\m, 2.7
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where Hé]) is the outgoing Hankel function of order zero.

The representation (2.4) already satisfies (2.1)—(2.2) and (2.3). Taking limits on
the surface, using the standard jump relations for single and double layer potentials
[10, 14], we can evaluate the mismatch (boundary inhomogeneity),

wt —u=] _ ([1 0], [D@ —pwe)  ghe) _ g@) T
wr—u | = o 1|T| 7@ _700) puorr _ pex|]| o
=: Aon. (2.8)

Here 1 is the identity operator, while S and D are defined to be the limiting boundary
integral operators (maps from C(9€2) — C(9$2)) with the kernels S and D inter-
preted in the principal value sense, and D* is the adjoint of D. (S is actually weakly

singular so the limit is already well defined. A standard calculation [10, 14] shows that

a2
D is weakly singular as well). The hypersingular operator T has the kernel dag(g;z)

and is unbounded as a map from C(92) — C(3€2). In these definitions, as in (2.5)—
(2.6), it is implied that G inherits the appropriate superscripts from S, D and T.
Equating (2.8) with the known mismatch (1.5) gives the following linear equation for
the unknown densities 7 := [t; —0o],

i
Aoy = [ " '39] =:b. (2.9)
_un|3Q

Because only the difference of hypersingular T operators appears in (2.8), Ag is
a compact perturbation of the identity, and (2.9) is a Fredholm system of integral
equations of the second kind. Furthermore, it has a unique solution at all w [10,
Thm. 3.41].

We apply the Nystrom method to discretize (2.9) with N quadrature points {y; }?’:1
on 9€2, using the periodic trapezoid rule in the curve parametrization, corrected by
the Martensen—Kussmaul weight scheme to handle the weak diagonal singularities,
as proposed by Kress [21] (also see [7, Sect. 3.1]). This approximates (2.9) by the
2N-by-2N linear system

Aon=>

where 7 is the length-2N column vector of approximations to the densities [t; —o]
sampled at the quadrature points, and b the similar vector of samples of the right-
hand side of (2.9). This scheme gives spectral accuracy, that is, the sampled densities
tend to their exact values with error O (e¢V) for some ¢ > 0.

3 Quasi-periodizing scheme

We restrict attention to the single unbounded strip “unit cell” U := {(x,y) €
(—d/2,d/2) x (—oo, 00)}, in which we can reformulate the boundary value problem
for u (as in, e.g. [9]). Recall that in U, u satisfies the homogeneous partial differen-
tial equations (2.1)—(2.2) with inhomogeneous boundary conditions (1.5) on 9€2. We
introduce the discrepancy functions

fri=ulp — o ulg, (3.1)
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foi=unlL — o uy|r, (3.2)

which measure the failure of the scattered field to satisfy quasi-periodicity between
the left (L) and right (R) walls of U. Note that the normals on both walls are de-
fined in the positive x-direction (see Fig. 1(a)). Quasi-periodicity implies vanishing
discrepancy,

fO=m»=0, yeR (3.3)

Moreover, by the unique continuation of Cauchy data for the Helmholtz equation
[13], the converse holds. Thus the above conditions on #, combined with the radiation
conditions (1.6)—(1.7), are equivalent to that of Sect. 1. We may interpret this as a two-
port “channel” or waveguide scattering problem in U, with the radiation conditions
being that # has no incoming channel modes from either above or below.

3.1 Scattered field representation and linear system in spatial domain
Our representation builds on (2.4). We first include a direct sum of neighboring

phased copies of the obstacle which, as we shall see, will make the subsequent cor-
rection to enforce quasi-periodicity very simple. For this, we define

P
S@o)(x) = / > /G (x,y+ jd) o (y)dsy. (3.4)
02 ;. T7p
P
- G @
(D) (x) = / > o (x,y + jd) T(y)dsy, (3.5)
0Q ;""p dny
where d = (d, 0) is the lattice translation vector. P =0, 1, ... is a numerical para-

meter that we may adjust to improve the convergence rate of the scheme. We add
auxiliary densities on the unit cell walls as follows. We use the notation Sy and Dy
to denote the analogs of (2.5)—(2.6) on the curve W, where W is one of the two walls
L or R =L + d. We represent the scattered field in U by

_ {S("“’)a + Do)y in Q, 3.6)

S@Wg + D@ 4 (S, + aSp)u + (D +aDr)v inU\ L,

where © and v are unknown single- and double-layer density functions on the real

line {y € R}. We will stack these densities into the column vector & := [v; —pu].
Imposing the mismatch condition (1.5), and also the new quasi-periodicity con-

dition (3.3) in the form [f; f,,] = 0, gives the two block rows of a linear operator

T g e

where b is defined as before by (2.9). Notice that the lower part of the right-hand side
vector is zero because the incident wave contributes no discrepancy.
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Fig. 2 Cancellations in discrepancy occurring in C operator block, for the case P = 2. Each arrow repre-
sents the influence of a source density on a target segment. For Z = 0 (standard method), the effect of the
four source images (dotted) on L in (a) cancel the effect of the four source images on R in (b). For Z =1
(which handles intersection of 92 with unit cell walls) shown in (¢) and (d), now only two source images
cancel. See Sect. 6 for a discussion of the parameter Z

The four operators in the 2 x 2 blocks of E capture the various effects of the
obstacle and auxiliary densities on the mismatch on 9€2 and the discrepancy. In order
to describe them, we will need notation for the free-space boundary integral operators
from a source curve W to a (possibly distinct) target curve V,

(Sy.wo)(x) = / G%x,y)o(y)dsy xeV, (3.8)
w
3G (@)
(Dy,wt)(x) =/ 3 x,y)t(y)dsy xeV, (3.9
w Ony
G
(D;Wo)(x) :/ 5 (x,y)o(y)dsy xeV, (3.10)
w  onx
92G (@
(Tyv.wr)(x) :/ 3 x,y)t(y)dsy xeV. (3.1
w Onxony

When V = W, these operators are to be understood in the principal value sense. When
neither V nor W is given, they are both assumed to be 9€2, as in Sect. 2. By analogy
with (3.4), (3.5), versions of these operators whose kernels include the phased sum
over 2P + 1 images of the source curve will be indicated with a tilde (~). Note that
* no longer signifies operator adjoint, since the adjoint of Dy,w is Dy, .

We now give formulae for the four operator blocks in E. By analogy with (2.8),

(3.6) gives
N _ nho) (nw) _ ¢
A= I 0 " D~ D S SL '
0 I T — T(nw) D(na))* — D*

Since the j # 0 terms here involve only non-local interactions, A remains 2nd kind
for P > 0. The B block describes the auxiliary densities’ effect on the mismatch, and
follows easily from (3.6),
Dy, —Sio.L Dyo.r  —Ssq,Rr
= ’ ’ ' . 3.12
|:T39,L _DZ;Q,L] e [TaQ’R _D?;sz,R] G-12)

The C block describes the obstacle densities’ effect on the discrepancy functions
[f; fu] of (3.1)—(3.2). By translational symmetry, as shown in Fig. 2, there are can-

@ Springer



76 A. Barnett, L. Greengard

cellations of 2P terms in each subblock of C, leaving only

C—of Drp_pdase —SL—Pdao
TL—pd.o0 _szPd,aQ

D —
P [ L+(P+1)d,3Q Si+(P+l)d,8§2i| . (3.13)
Trvpnaoe  —Diipinase

The result is that C only involves interactions of distance at least Pd (this is similar
to cancellation in [7]). Thus, increasing P can improve the convergence rate of the
quadrature scheme for the solution of the full system (3.7).

Finally, the Q block gives the effect of auxiliary densities on the wall discrepancy
itself. Inserting the p and v terms of (3.6) into (3.1)—(3.2) one easily gets,

I 0 Drr —SLr _1{Dr. —Sr.L

o-lo Weelny o)l ] e
Now the reason becomes clear for choosing in (3.6) densities on the right wall
which are suitably phased copies of those on the left: cancellation of the wall L, L
and R, R self-interaction terms occurred in the above evaluation of Q, as shown in
Fig. 2(c), (d). This means that Q is the identity plus a convolution operator involving
interactions of distance at least d, hence that the linear integral equation system (3.7)
is of the 2nd kind. Note that, if densities were placed on L alone, by contrast, no can-
cellation would occur, and the L, L self-interaction would prevent (3.7) from being
2nd kind. Because the walls L and R are infinitely long, (3.7) is not usable in prac-
tice; however, we will presently transform it into a useful form. (We omit a rigorous
analysis of solvability. That requires some additional work, since E acts on functions

some of which live on unbounded domains and is not a compact perturbation of the
identity.)

3.2 Fourier representation of layer potentials and discrepancy

The wall densities u, v in a solution of (3.7) represent the field due to the remainder
of the infinite line of obstacle densities not accounted for by the direct sum in (3.6),
namely the obstacles labelled ..., P —2, P — 1 and P + 1, P 4+ 2, ... Since they
must represent Rayleigh—Bloch modes (1.6)—(1.7), these densities generally do not
decay as |y| — oo. Therefore any attempt to spatially truncate densities on L and
R would give very slow convergence. To avoid this, we will work instead with the
Fourier transform in the y direction, using the usual definitions

gk) = 2—/ e "g(y)dy, gy =/ e g(kydk, (3.15)
T J_c0 —0o0

where, as before, k denotes the y-wavenumber. We will also need the Cartesian spec-
tral representation for the free space Green’s function [32, Ch. 7.2],

. i 00 ity ei»\/a)z—k2 x|
W= | ek x=(y) (3.16)
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Here the square-roots are taken positive real or positive imaginary, which may be
achieved by taking the branch cuts of the function ~/w? — k2 in the k plane as
(=00, —w) U (w, +00) along the real axis, and a Sommerfeld contour passing from
the 2nd to 4th quadrants (see Fig. 3). Examining (3.16), we see that horizontal sep-
aration (|x| > 0) leads to exponentially decaying tails in the Fourier representation,
which we will be able to truncate with spectral accuracy.

We define “Fourier layer potentials” by inserting (3.15) and (3.16) into the defini-
tion of layer potentials living on a vertical wall W = {(xo, y) : y € R},

(Swit)(x) = ZE/ etk iV @ =k [x—xo = ————1(k)dk, (3.17)

wz_

(Dwd)(x) = 7sign(x2— *0) /OO R eIV R ol (1) gk
—0o0

0 A
=—8—(SW13)(X). (3.18)
X

Here (i and ¥ are the Fourier transforms of the single- and double-layer densities
w and v respectively, and xo = —d /2 or d/2 for W = L or R respectively. Equa-
tions (3.17)—(3.18) satisfy the usual jump relations on the wall.

From now on we will use é := [V, —a] as our unknown auxiliary densities,
and furthermore switch to using the Fourier transform of the discrepancy functions
[ f , f '] to enforce the second block row of our linear system. The obstacle densities
and mismatch remain as before. Thus (3.7) becomes,

[1]=[¢ oJE-[
E Al = A N Al = 319)
[s] [C o)1)= [o (
where A is as before. B is the analog of B with (3.17)—(3.18) in place of (2.5)(2.6).
By analogy with (3.8)—(3.9) let SV w and DV w denote (3.17) and (3.18) evaluated

on a target curve V. Their analytic derivatives in the normal direction at the target are
also easy to evaluate, analogous to (3.10)—(3.11),

R S L I
(D} i) = = / ¢k IV @~k lx—xo] (sign(x — X0)
—00

-nXx)ak)dk, xeV,
A =1 [ " RV R
, N

x (Vw? — k2, ksign(x — x)) -n(x) b(k)dk, x€eV.

k
' sz—k2>

With this notation, B is given by (3.12) but with A applied to each entry.
Conversely, it is easy get via (3.16) the Fourier transform of the field (or its normal
derivative) on the wall W due to densities on 9€2:

. i/ w2 —k2 |x—xo|
! / —iky €

(Sa/,aga)(k) = 4_ U(Y)dsy, y=(x,y),

FI9) w? —
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Fig. 3 (Color online) (a) Sommerfeld contour in the complex k (vertical wavenumber) plane, using basic
quadrature scheme (3.21)—(3.22) on a tanh curve. The pink navy lines denote branch cuts towards infinity

of 1/v/w? — k2. (b) Poles at the Rayleigh-Bloch vertical wavenumbers =k, and sinh-bunched nodes
(3.25) giving improved convergence

(Diy g0 (k) = o e~ iky iV @ =k Ix=xo|
90

k
X (— sign(x — xp), «/ﬁ) -n(y) T(y)dsy,

1 o
(Dy/y00) (k) = i eyl N @R =%l Gion (x — x0) o (y)dsy.
I

™ (k) = — e—ikyei w2 —k2 |x—xo|
Thaar® = | v

x (Vw? — k2, —ksign(x — x0)) - n(y) T(y)dsy.

Then C is given by (3.13) but with (- )" applied to each entry.

Finally, 0 maps from Fourier to Fourier variables. Since each of the 2 x 2 blocks
in Q is a convolution, the corresponding blocks in 0 are simply multiplication opera-
tors. By evaluating (3.17)—(3.18) between L and R, and using (3.15), (3.14) becomes

~ 10
o= 1]

eIV —kd i(o —a Y /Na? —k? —o—a”! (3.20)
2 o+o! il —a DV —k2]"

where the block is to be understood as multiplication operator in the vertical wave-
number variable k.

We now have explicit formulae for all blocks of the linear operator system (3.19) in
which Fourier variables have been used to represent the spatially-unbounded y coor-
dinate. We will proceed to truncate this in the kK wavenumber domain and numerically
approximate its solution.

+

3.3 Quadrature of the Sommerfeld contour integral

We now discretize (3.19) using the Nystrom method; for the densities on 9<2 this is
done as before in Sect. 2. However, the domain of the Fourier variable k is unbounded,
and the integrand has singularities, demanding a more specialized quadrature. Equa-
tion (3.16) serves as a model for the type of integrands we need to handle; we expect
this since, if our method is successful, the Fourier layer potentials on L and R must
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represent the effect of sources of the form (3.16) lying on neighboring copies of the
obstacles—more precisely, those labelled ..., P —2,P —land P+ 1,P +2,....
A complicating fact is that the infinite nature of the obstacle array sum produces
Rayleigh—Bloch waves of the form (1.6)—(1.7), each wave of which introduces poles
in the integrand at 4k, ; we postpone addressing this aspect until Sect. 5. Here we
present a scheme that we have found to be excellent for generic scattering parameters
(i.e., not close to a Wood’s anomaly).

The Sommerfeld integral (3.16) could be performed accurately on the real k axis
using the trapezoid rule with endpoint corrections [1] appropriate for the (—1/2)-
power singularities at +«w. However, for reasons of superior performance, of the ad-
ditional poles mentioned above, and of simplicity, we instead prefer the unit-slope
hyperbolic tangent contour

k(y)=y —iHtanh(y/H), y € (—00,00) (3.21)

shown in Fig. 3. H controls the size of the curve in the k plane; for unit period and
obstacles of radius no larger than 2, we have found that H = 4 is a good choice for a
wide range of w. Our basic quadrature scheme is the M -point periodic trapezoid rule
on the interval —K <y < K, that is,

yi=—K+2Kj/M, j=1,...,M, (3.22)

which we will see is exponentially convergent in M and K. The quadrature approxi-
mation is ffooo g(k)dk ~ ijzl w;g(k;) where k; = k(y;) and the weights are

; %k’

w; = i (yj):h<1 — i sech? V_};)

When |x| in the integrand (3.16) has a lower bound xp,ij,—Wwhich we expect due to
the horizontal separation of the unit cell walls from the nearest obstacle images—the
integrand has exponential tails. We get an estimate of a sufficient K by equating the

)2 K2 . . . .. _ ..
factor ¢!V @° K ¥min with machine precision gmach & 2 x 10 16, giving

1 2
K:J(M> + ol (3.23)
Xmin

In practice this works well; for example, approximating our model problem (3.16)
for w = 10 at the point x = xppip = 1, y = 2 yields K = 38, and gives a relative error
5 x 101 with M = 123 nodes, which improves to 3 X 10715 with M = 179. (In
comparison, to achieve 7 x 10! error using endpoint corrections on the real axis,
M = 138 is needed, and errors for larger M always exceed 2 x 10~14.) The extremely
rapid convergence in M just observed is actually geometric for 2K -periodic analytic
integrands (as a function of y ), with a constant of convergence inversely proportional
to the distance from the real axis of the nearest singularity [22, Thm. 9.28]. Despite
not being periodic, our integrand is exponentially small beyond +K, thus may be
treated as periodic with negligible error [44, Sect. 8].

When o is small, the singularities at =« approach the k-plane contour while K
stays large, causing a terrible convergence rate (e.g. for the above case with w = 0.1,
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M = 7000 points are needed to reach an error of 10~!4). This may be cured by bunch-
ing the nodes towards the origin as in Fig. 3(b) via the conformal transformation,

y(B) = Aésinh(B/A), B e (—00,00) (3.24)

where § controls of the width of the central uniform node region, and A controls
the geometric expansion rate outside this region. We apply the truncated periodic
trapezoid rule to 8,

Bj=—L+2Lj/M, j=1,...,M, L=xsinh~'(K/5)),

where L was chosen so that y (L) = =K. Back in the k plane this gives nodes and
(via the chain rule) weights

2L
kj=k(y(B))). wj = ﬁ)’/(ﬁj)k/()’(ﬁj))s (3.25)

where y’(B) = §cosh(B8/A). We have not yet fully analyzed the best choice of §
and A, but find good performance in the range 10~15 < w < 10% with § = min(w/4, 1)
and A = max((w/2)'2,2), with not much sensitivity to the particular constants cho-
sen here. For extreme frequencies, the M needed for good accuracy grows: M =
O(log(1/w)) asw — 0,and M = O (w) as w — oo (due to the growth of K = O (w)).
For instance, returning to w = 0.1, an error of 10715 is reached at M = 177, and
there is even improvement at @ = 10 to an error of 4 x 10™!5 at M = 137. This idea
of transformations to improve periodic trapezoid rule convergence is not new (for a
recent application and review of the literature, see Hale et al. [15]).

In summary, the Nystrom method is used to approximate (3.19) by a discretized
square linear system of size 2N + 2M,

g m = [2 g} m = [3] : (3.26)

For the upper and left blocks, the N quadrature nodes and weights on 92 are as
in Sect. 2. For the lower and right blocks we use quadrature in the Fourier variable
with nodes and weights (3.25). Although the latter were justified using the model
integrand (3.16), we will see in the next section that they perform very well for the
full problem.

4 Numerical examples

We now demonstrate the performance of the basic scheme presented above, away
from Wood’s anomalies and when 92 does not touch the walls L or R. (Both re-
strictions will later be removed, in Sects. 5 and 6 respectively.) In Fig. 4(a)—(b), we
show convergence with respect to N (number of obstacle nodes) and M (number of
Fourier nodes) of the scattered field value at a single point, for a grating of simple
smooth (analytic) trefoil obstacles defined in the caption, and shown in Fig. 1(a). The
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Fig. 4 Results for obstacle, index n = 1.5, with shape given by the polar function
r(¢) = 0.35 + 0.105cos3(¢ — 7/12) shown in Fig. 1(a), with d = 1, and incident plane wave
o =10 and 6 = —x /5. (a) Convergence in N of absolute error in field value at (x,y) = (0.2, 1),
with M = 170 fixed at its converged value. Three different P values and xpj, values are shown.
(b) Convergence in M of the same, with N = 110 fixed at its converged value. Errors are measured
relative to the converged value, being 0.19914162575818 + 0.24760159732486i to 14 digits. (c¢) Total
field (Re[ut])2 (i.e. electric energy density at one instant of time), plotted over three periods. Black
indicates large values, white zero (dark patches are half a wavelength apart). The arrow shows incident 6

convergence is exponential in both parameters. Increasing P includes more directly-
summed neighbors in the A block of the system, hence the fields due to these neigh-
bors no longer have to be represented by the Fourier layer potentials. Thus xp;, can
be increased, which increases the convergence rate in M, as shown in (b). (Changing
P has no effect on convergence in N, as (a) shows). Why then should the user not in-
crease P without limit? The answer is that computing the extra direct sums required
to fill the matrix elements in the A block, and evaluate the solution field, takes more
time. The optimal P will depend on the trade-off between matrix filling plus field
evaluation vs linear system solution time.

With P =2, xpin = 2, at parameters N = 110, M = 90, at which 14 digits of
the field value have converged, the CPU time required3 to fill the matrix is 0.5 sec,
and 0.1 sec to solve the complex dense linear system of size 2N + 2M = 400. The
scattered field is evaluated, using the discretized version of (3.6), on a grid (x- and
y-spacing 0.02, with 7500 grid points) in 6 sec, giving Fig. 4(c). We note that, in
contrast to the method of [7], there are no issues with evaluation of the Fourier layer
potentials close to the walls: dist(d€2, R) is only 0.056. The quadrature scheme is
accurate up to the boundary of the unit cell, as long as |y| is not too large (with these
parameters, less than about 2). However, as usual with boundary integral equations,

3Here, and elsewhere in this work, computation times are for a 2006-era laptop with 2 GHz Intel Core Duo
CPU and 2 GB of RAM, running MATLAB 2008a and MPSpack (see Appendix). There is also significant
overhead in the object-oriented code.
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full-accuracy evaluation up to the boundary of the obstacle would require specialized
methods.

The linear system (3.26) has cond(if) =9 x 10*. If we perform simple left and
right diagonal preconditioning of the system matrix E—first scaling rows to have
unit 2-norm, then scaling columns to have unit 2-norm—we get a new system with
matrix denoted by Ex which has a reduced condition number of 4 x 10%. This is
only a little larger than for the isolated-obstacle problem of Sect. 2, which here has
cond(Ap) =31.

What happens in this example if the frequency is changed? At the low frequency
w = 0.1, 14 digit accuracy is easily reached by increasing M to 180. As w — 0,
we observe cond(ES) = O (1/w) but note that, since u = O (w), an absolute error of
104 is still achieved. At the high frequency w = 50 (8 wavelengths per period), one
needs N = 230, but only M = 160, to achieve errors around 10~ 14; solution time is
2 sec to fill and 0.6 sec to solve, and cond(l:fs) is only 7 x 102

4.1 Extracting Bragg amplitudes and checking flux conservation

In applications it is crucial to know the far-field behavior, i.e., the amplitudes of the
propagating Bragg orders ¢, in (1.6) and d, in (1.7). We compute these from the
density vector [n; &], by using (3.6) to evaluate u and u,, on the horizontal lines
—d/2 <x <d/2,y ==%y9. (We choose yg to leave at least d /2 separation from 9€2.)
On the bottom side, for each mode n for which &, #£ 0,

|:d":| — l [1 _l/ikn:| d_l f,dé’?z u(x, —yo)e_i’(""dx @0
O R LR | PR PR

where the integrals extract Fourier series coefficients of the d-periodic field
u(x, —yo)e '@/ and its y-derivative. The 2 x 2 matrix projects this into down-
wards (d,) and upwards (b,) propagating amplitudes. Similarly, replacing —yg by
yo in (4.1) gives the pair [a,; ¢, ], namely the downwards and upwards amplitudes
on the top side (see Fig. 1(a)). Neither “incoming” amplitude a, nor b, is needed
here—they are zero for a scattered field obeying the radiation conditions—but one
will rear its head in Sect. 5. We approximate the integrals numerically via 20-point
Gaussian quadrature.

An independent test of the accuracy of the method is then given by the conserva-
tion of (energy) flux. For the exact full field it holds that total outgoing flux equals
total incoming flux [27, Eq. (40)], [40, p. 12], that is,

3 ka(leal® + Idy + 8.0e*202) = K, 42)
k>0

where the term with the Kronecker delta accounts for the unit-amplitude incident
plane wave in the n = 0 mode. In the above w = 10 example the “flux error” (differ-
ence between left and right hand sides of the above) is 3 x 10~!4, consistent with the
error estimated from convergence of u at a point; results are similar at the other w
values.
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Fig. 5 High aspect ratio obstacle: a tall wobbly ellipse given in Cartesians by
(0.25cos¢ + 0.075cos(5sin¢), 0.25sin¢), 0 < ¢ < 2x, with incident plane wave @ = 10 and
0 = —m/5 (shown by arrow). Total field Re[u'])? is plotted over three periods. The figure has been
rotated by — /2 to fit on the page

Table 1 Results for scattering from the wobbly ellipse grating of height 10 periods. “Conv. error” is the
approximate error estimated from convergence of a field value u'(0.2, 5.5)

10} N M Flux error Conv. error a1 tsolve cond(E) cond(Ey)
10 500 330 3e-13 le-13 9.5 sec 4.5 sec 6e6 1.6e4
20 900 450 2e-12 le-12 29 sec 18 sec 1.6e8 1.3e5

4.2 High aspect ratio example

One motivation for our work is handling high aspect ratio obstacles. Here we
present such an example. For tall obstacles many periods in height where ymax 1=
max,y)eaq |y > 1 (we assume d = 1), exponential growth of the factor ¢ in the
imaginary k direction causes undesirably large integrands along the Sommerfeld con-
tour, hence large matrix entries and large condition number. This leads us to reduce
the scale of the tanh curve (3.21); we choose the height H = min(4, 3/ ymax)- A side-
effect is that a larger M is needed since the contour comes closer to the singularities
on the real axis. Thus the choice of H is a trade-off between matrix size and condition
number.

In Fig. 5 we show the full field for the distorted ellipse of height 10 periods de-
scribed in the caption, at w = 10, computed using P = 2, xpyin = 2.5, and § = w/4.
Table 1 gives numerical parameters for this case, and also for higher wavenumber (at
o = 20 the scatterer is 32 exterior wavelengths long, and 48 interior wavelengths).
tqn is the time required to fill the matrix E , and fyo)ve the time to solve the dense
linear system of size 2N 4 2M. In both cases, the N required is almost identical to
the smallest N needed to achieve similar accuracy in the isolated obstacle scattering
problem (Sect. 2). The plot in Fig. 5 took 24 sec to evaluate (grid spacing 0.04, with
7500 points).

It is clear that condition numbers appear to be growing with w (this is also true
for the isolated obstacle, but to a lesser extent). As mentioned above, they can be
lowered, by about an order of magnitude, by decreasing H; however, this requires a
somewhat larger M. The values shown are a good compromise that achieves 12-digit
accuracy.
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Fig. 6 (Color online) (a) Deformed (translated) Sommerfeld contour; compare Fig. 3(b). The contour has
crossed the circled pole. (b) Outgoing flux fractions for all Bragg modes (—3 < n < 3, some labelled by
n) for the example of Fig. 4, as a function of incident angle 6 € (—mx, 0). The top group (above blue line)
are downwards (transmitted), the bottom group upwards (reflected). Note the square-root type cusps at
Wood’s anomalies (shown by vertical dotted lines). (c) Total field (Re[u‘])2 for kite-shaped obstacles of
index n = 1.5 and shape (0.32cos ¢ + 0.64cos2¢ — 0.2, 0.8 sin¢), which wrap around the unit cell; see
Sect. 6

5 Scattering parameters near to and at Wood’s anomalies

So far we have assumed that we are not close to or at a Wood’s anomaly, i.e. that no
k, is close to the origin. Let us take a moment to explain why, in the representation
of a scattered solution, there is generically a pole in the integrand (i.e. Fourier den-
sities ft(k) and D(k) in (3.17)—(3.18)) at k = =+k;,, for each n (both propagating and
evanescent); see Fig. 3(b). Distributionally, we have the following Fourier transform
pair, for k, € C,

1
P )= —
& (®) 27i(k — kp)
. 5.1)
o) etkpy, y >0, 0, y >0,
= or .
EplY 0, y <0, —etkpy, y <0,

where in the first (second) case the pole k), lies above (below) the contour.

(This is easily checked using Jordan’s lemma and the residue theorem.) Since both
Rayleigh—Bloch expansions (1.6) and (1.7)—thus the densities that produce them—
are represented by the same y-direction Fourier function, this function must have a
pole at each k,, in order to capture the outgoing amplitude for y > 0 but zero incoming
amplitude for y < 0. This pole must lie above the Sommerfeld contour to generate
this first case rather than the second. By a similar argument, there are poles at —k;,,
which must lie below the contour.

The astute reader will have noticed that these poles %k, are closer to the Sommer-
feld contour (3.21) than are +w, thus realize that they (rather than w) should control
the node bunching parameter § in (3.24). We have tested this idea, choosing e.g.
6 = min(|k,|)/2; however matrix condition number appears to grow as O(1/|ky|),
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losing digits of accuracy—in fact at the same rate as would a conventional quasi-
periodic Green’s function based method. This approach also requires large M and
fails to get more than a few correct digits when &, = 0.

Our proposal is to translate the Sommerfeld contour by O (1) along the positive
real axis, so as to move it to be a distance at least 1 away from the trouble at the origin
(and in fact from any other k, pole; see Fig. 6(a)). In doing so, the contour crosses a
pole, which we label by n = p. From the above discussion, this corresponds to solv-
ing for a field u with peculiar radiation conditions: the pth mode is incoming from
below (¢, = a, =0), instead of the usual outgoing from above (b, = a, = 0), whilst
all other modes n # p are as usual. To fix this we add to (3.6), the representation of
uin U \ Q, the quasi-periodic plane wave ae’*»*¢'*r¥ | where a is an additional un-
known. This accounts for the difference between the two cases in (5.1). An additional
constraint is then needed: we impose the correct mode incoming radiation condition
b, = 0. This adds to the linear system (3.26) a row whose entries are filled using
quadrature applied to the expression for b), in (4.1), giving,

A B ap n b
C 0 0 El=10], (5.2)
r, s, e 0] la 0

a square system of size 2N + 2M + 1. The column vector a, expresses the effect of
the new plane wave on the obstacle mismatch [u™ — u™; u;} — u, ] at the nodes on
Q2.

We apply the above whenever |k,| < 1 for some n, and when this occurs for two
values of n (close to a double Wood’s anomaly), we apply its natural generalization
to two extra degrees of freedom. Precisely at a Wood’s anomaly, k, = 0 and the
projection in (4.1) onto exponentials degenerates into a projection onto the functions
{1, v}, of which only the constant function is a valid radiation condition, thus we
replace the 2 x 2 matrix in this formula by the identity. Since the contour is now far
from any pole, we might hope that the convergence in M while close to or at a Wood’s
anomaly is as good as it was far from one. This is true: choosing the example of Fig. 4,
with @ = 10, and 6 = cos™!(1 — 27/wd) which is a single Wood’s anomaly for
mode n = 1, we achieve convergence at N = 110, M = 90 to 14 digit accuracy to the
value u'(0.2, 1) = —0.61990437785568 + 0.46197831200416i. Condition number
after left and right diagonal preconditioning is 3.4 x 10°, an order of magnitude larger
than before, but still very reasonable.

We thus have made our scheme immune to Wood’s anomalies. This lets us produce
Fig. 6(b) which shows the flux fractions (individual terms in (4.2) normalized to unit
total) in each of the modes, swept over all incident angles —w < 6 < 0. The idea of
adding extra discrete unknowns and conditions to an integral equation system dates
back at least to Mikhlin [29, §31]. A similar idea has been recently used for an array of
sound-soft or sound-hard discs, to 2 significant digits [27]. Removal of singularities
near a contour to improve convergence rates has also been used to evaluate periodic
Green’s functions [17].
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6 Obstacle intersecting unit cell walls

When 0€2 intersects L or R, the method presented so far fails, crudely speaking be-
cause parts of the obstacle see the fields on the wrong side of the wall layer potential.
However, we can fix the scheme to handle this case in the following simple way.
We redefine L to be the vertical line at location xg = —(1/2 4+ Z)d, and R at lo-
cation xo = (1/2 4+ Z)d, with Z =0, 1, ... a new method parameter. Discrepancies
(3.1)—(3.2) are redefined using @?Z+] 4 the phase instead of «, and thus measure
the difference from quasi-periodicity across a strip 2Z + 1 periods wide. We use the
representation (3.6), again replacing o by «?4*!. We ensure P > Z so that obstacle
images fill this wider strip. To construct the blocks of the linear system (3.7), we set
the mismatch on 92 as before, i.e. equal to b as defined in (2.9), and impose van-
ishing discrepancy, as before. Note that Z = 0 corresponds to the original method
presented in Sect. 3.

Conjecture 2 The method described above for Z > 0 has the same solution field u
in the strip (—d /2,d/2) x (—00, 00) as the method with Z = 0.

This is perhaps surprising since the mismatch is only enforced on one of the many
copies of 92 which fall within the wider strip. Pending a formal proof, we explain
this (away from Wood’s anomalies) as follows. Using the Schur complement of the
upper-left block in (3.19) we have

Agpn=b where Agp:=A — B(Q)"'C. (6.1)

As in [7], it is easy to check that Agp is now Ag of (2.8) but with quasi-periodic
Green’s functions ((3.4)—(3.5) with P = 00) in the exterior. This argument applies
forany Z =0, 1, ..., thus the solution 7, hence the full field, is independent of Z.

Implementing this gives the following changes in the operator system (3.7) and
hence (3.19): The phase « becomes «>4*! in B and Q, i.e. (3.12), (3.14) and (3.20).
Note that B now involves larger interaction distances of order Zd. For the C block,
less cancellation occurs, as shown in Fig. 2(c)—(d), generalizing (3.13) to

P —P-1+42Z
j|Pr—jase  —SrL—ja00

€= Z B YN To_jase —Di_,
j=P—2Z  j=—P-1 1% L=jd.o%

Z =1 is sufficient for wall-intersecting obstacles that are not much wider than d. It
was used, for example, in Fig. 6(c), where we compute diffraction from a grating of
kite-shaped obstacles which necessarily intersect any artificial vertical unit cell walls.
The frequency w = 50 is quite high, needing N = 550, but only M = 170, to achieve
convergence error of around 10~!3 and flux error 4 x 10~!%. Computation times are
11.5 sec to fill, 3 sec to solve, and 170 sec to evaluate u at 30000 points for the plot,
and cond(ES) is 8.8 x 10°.

In summary, by widening the scheme to one which quasi-periodizes across more
than one period, we have effectively made the artificial walls “invisible” to the obsta-
cle, without increasing the computational effort.

@ Springer



Integral representation for quasi-periodic scattering 87

7 Conclusions

We have quasi-periodized a scheme for dielectric obstacle scattering, converting it
into a scheme for an infinite grating of such obstacles, using only the free-space
Green’s function and auxiliary layer potentials based on Sommerfeld integrals on the
unit cell walls. For typical frequencies wd /2w = O (1), independently of the com-
plexity of the obstacle, this adds only around 200 extra unknowns to the linear sys-
tem, keeps condition number reasonable (the scheme is 2nd kind), and achieves errors
close to machine precision, uniformly in incident angle.

As far as we are aware, this is the first time an integral equation approach to this
problem has been formulated that works at Wood’s anomalies (for surfaces see [2]).
This is a promising alternative to the use of quasi-periodic Green’s functions, which
fail around Wood’s anomalies, can be complicated to evaluate, and are complicated
to use in high aspect ratio cells when based on lattice sums. We expect this advantage
to be more pronounced for doubly-periodic problems in 3D, and when the obstacle
scattering is accelerated by fast-multipole methods (FMM).

Some issues remain open for study, such as: (i) ill-conditioning for very low w
and high aspect ratios, (ii) better automated choice of method parameters H, A, §, P
and Z, and (iii) a proof of Conjecture 2 for all scattering parameters. There are several
acceleration ideas that we have not presented here. Since E is a matrix polynomial
in «, the coefficients can be pre-computed and used to fill the matrix quickly for
multiple incident angles. We have only presented results using dense linear algebra
(not even using the fact that 0 is diagonal), so assessing GMRES convergence in
large-scale examples with FMM acceleration is a next step.

We also note that the discretized version of the Schur complement (6.1) seems like
a good O(N%M) way to compute N evaluations of the quasi-periodic Green’s func-
tion, should they be required in a more conventional solver. In the case of Fig. 4, for
example, this allows each entry to be filled in around 10~ sec, which is competitive
with the 10™* to 1073 sec recently reported [3].

The algorithm we present is available through a free toolbox for MATLAB, as
shown in the Appendix. Barring a few subtleties, we expect the method to generalize
to multi-layered media with periodic inclusions, opening up a wealth of technological
applications; we will study this in a future paper.
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Appendix: Simple MATLAB code example in MPSpack

MPSpack is an object-oriented MATLAB toolbox for solving 2D Helmholtz PDE
problems recently developed by Betcke and one of the authors [6]. The methods of
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the present paper have been incorporated into version 1.1 beta of MPSpack. The
package is freely available at http://code.google.com/p/mpspack. The download sec-
tion of that Web page also includes an extensive tutorial and a technical manual.
Below we give a short, 12-line, human-readable code which implements the methods
of this paper to achieve 14 digits of accuracy in solving the quasi-periodic scatter-
ing problem of Sect. 4. The gpscatt class has been written in such a way that it
builds upon the layer-potential scheme for the non-periodic scattering problem. The
integer parameter P is called nei, and Z is called buf. Handling more complicated
obstacles is quite easy; this, and other details, are explained in the tutorial.

% Time-harmonic scattering of plane wave from grating of dielectric obstacles

d=1.0; % problem period

N = 110; s = scale(segment.smoothstar(N, 0.3, 3), 0.35); % smooth closed curve
di = domain(s, 1); di.setrefractiveindex(1.5); % obstacle, refractive index
de = domain([], [], s, -1); % obstacle’s exterior

.addinoutlayerpots(‘d’); s.addinoutlayerpots(’s’); % add Rokhlin LP scheme
.setmatch(’diel’, 'TM’); % TM dielectric continuity

= gpscatt(de, di, d, struct(’'nei’,2,’buf’,1,’'M’,90)); % numerical parameters
incident wavenumber
incident plane wave angle
fill matrices and solve
Bragg order efficiencies
plot Re part of full field

s
s

D

p.setoverallwavenumber (10) ;
p.setincidentwave (-pi/5) ;
D
[
b

0P o0 —

o0

.solvecoeffs;
u d n] = p.braggpowerfracs (struct(’table’,1));
.showfullfield(struct(’ymax’, 1));

o0 oe
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