
Biology & Philosophy (2022) 37: 23
https://doi.org/10.1007/s10539-022-09858-x

Abstract
Constructive Neutral Evolution (CNE) theory provides selectively neutral explana-
tions of the origin and maintenance of biological complexity. This essay provides an 
analysis of CNE as an explanatory strategy defined by a tripartite set of conditions, 
and shows how this applies to cases of the evolution of complexity at higher-levels 
of the biological hierarchy. CNE was initially deployed to help explain a variety of 
complex molecular structures and processes, including spliceosomal splicing, try-
pansomal pan-editing, scrambled genes in ciliates, duplicate gene retention and fun-
gal ATP synthetase structure. CNE has also been generalized to apply to phenom-
ena at the cellular level, including protein-protein interaction network modularity, 
obligate microbial symbioses, eukaryogenesis and microbial unculturability. This 
essay further extends CNE to cases of complexity at levels of organization higher 
than the molecular and cellular. These are (1) multicellular phenotypic complexity, 
(2) multicellular ecological complexity and, (3) some cases of cultural complexity.

Keywords  Constructive neutral evolution · Neutral evolution · Evolution of 
complexity · Obligate symbiosis · Cultural complexity

Introduction to CNE

Some complexity of evolving systems results from processes of Evolution by Natural 
Selection (ENS) resulting in increases in fitness and producing adaptations. How-
ever, some evolving systems come to be more complex without thereby resulting 
in increases in fitness or producing adaptations. Sometimes evolutionary processes 
are constructive (resulting in increased complexity) while nonetheless being neutral 

Received: 25 January 2022 / Accepted: 24 May 2022 / Published online: 23 June 2022
© The Author(s) 2022, corrected publication 2022

Higher level constructive neutral evolution

T. D. P. Brunet1

	
 T. D. P. Brunet
T.D.P.Brunet@exeter.ac.uk

1	 Department Sociology, Philosophy and Anthropology, University of Exeter, Amory 
Building, Rennes Drive, EX4 4RJ Exeter, United Kingdom

1 3

http://orcid.org/0000-0002-7609-7254
http://crossmark.crossref.org/dialog/?doi=10.1007/s10539-022-09858-x&domain=pdf&date_stamp=2022-8-5


T. D. P. Brunet

(resulting in no net benefit). One theory about how this can occur is Constructive 
Neutral Evolution (CNE) (Stoltzfus 1999; Gray et al. 2010; Brunet and Doolittle 
2018; Wideman et al. 2019; Brunet et al. 2021; for similar, see also Starr et al. 
2017/18, Shah et al. 2015; Brandon and McShea 2020; McShea and Brandon 2010; 
Schank and Wimsatt 1986). Disentangling CNE and ENS is theoretically interesting 
and empirically challenging. Many authors have shown the broad range of molec-
ular and cellular cases of biological complexity to which CNE is applicable (see 
Muñoz-Gómez et al. 2021); this essay examines some cases that sit higher in the 
biological organizational hierarchy: cases from multicellular, ecological and cultural 
complexity.

This section describes CNE then attempts to pre-empt some common misconcep-
tions. Arlin Stoltzfus (1999) coined the term CNE to explain, inter alia, the origin of 
an all-things-considered obscure process in an obscure organism: RNA editing in try-
panosomes.1 Trypanosomes are a group of unicellular algae that express their genes 
in a complex way (Benne 1989). Ordinarily gene expression has the following over-
all structure: a stretch of DNA is transcribed into a piece of mRNA by an enzyme, 
which is either a pre-mRNA that is cut into smaller pieces and spliced back together 
into a mature mRNA by a series of proteins and other guide RNAs, or left as is, then 
the resulting mRNA is translated into protein by the ribosome. This is the so-called 
Central Dogma of molecular biology: DNA is transcribed into pre-mRNA, which is 
spliced into mRNA, which is translated into protein. In Trypanosoma there is an extra 
step: a large portion of the mRNA is edited2 by a complex of proteins that change 
some nucleotides of the sequence before translation.3 If this editing step did not occur 
then translation would not produce functional protein. Trypanosomal RNA editing 
is “discordant to the rules of the Central Dogma” (Benne 1989 p.136). Explaining 
how RNA editing evolved has far-reaching implications for our understanding of the 
evolution of molecular complexity.

Here are the fundamentals of the evolutionary explanation for RNA editing. A 
straightforward explanation by ENS is possible, but not well supported. That expla-
nation goes as follows: the genes of the trypanosome acquired mutations that made 
them produce non-functional protein, subsequently an editing system evolved to 
correct these mutations at the mRNA stage and this restored or corrected function 
that was previously lost. This explanation involves hypothesizing a state prior to the 
evolution of the editor where the trypanosome has a (possibly very significant) loss 
of function mutation (see Fig. 2 in Brunet and Doolittle 2018). It is unclear why this 
loss of function mutation would not be corrected by a reversion more easily than by 
the evolution of a complex editing apparatus. In short, the explanation by ENS for a 

1 Patrick Covello working as a postdoc with Michael Gray and in consultation with Ford Doolittle, pub-
lished the first instance of an evolutionary explanation using CNE, though without using the term ‘CNE’, 
in Covello and Gray (1993). Subsequently, Arlin Stoltzfus generalized the sort of evolutionary explana-
tion given in Covello and Gray (1993), and coined the term ‘CNE’ in Stoltzfus (1999).

2  Ordering of transcription, editing and splicing is unclear. Some editing processes occur co-transcription-
ally (see Hsiao et al. 2018).

3  Editing is prima facies similar to splicing, where parts of the mRNA are cut out and the remaining parts 
are rejoined (spliced) back together. However, editing characteristically involves the insertion of RNA 
residues. Interestingly, both of these processes have been explained as cases of CNE (more below).

1 3

23  Page 2 of 22



Higher level constructive neutral evolution

function restoring mutation correcting a mutational problem requires us to assume an 
unlikely (selectively disadvantaged) intermediate state. This makes the ENS explana-
tion an unlikely fit.

A different explanation of RNA editing is possible and more likely, ceteris pari-
bus. It differs importantly in the temporal order in which the editing system and 
the loss of function mutations occur. In the explanation by ENS the loss of func-
tion mutation occurs first and is corrected or (post-)suppressed by the editing system 
which evolves second. It is possible however to provide an explanation where the 
editing system appeared first, while the edit-requiring mutations appear second. If the 
editing system was already in place, then any other mutation that it can correct may 
then occur without loss of fitness.4 In this case, the mutation is no longer a loss of 
function mutation, since the consequences of the mutation are “neutralized” or (pre-)
suppressed by the editor. However, once a significant number of editing sites emerge, 
the preexisting editing system becomes essential. The loss of the editor would result 
in the expression of non-functional proteins, which could be deleterious or lethal. 
This explanation does not involve an intermediate state where there are non-edited 
mutations leading to loss of function, so no significant reductions in fitness along the 
evolutionary trajectory. For that reason it is more likely than the explanation above 
using ENS alone. This latter sort of explanation for the origin of RNA editing is one 
of the prototypical cases of CNE.

If we abstract away from the molecular details of editing and describe this as a 
general sort of evolutionary process, then there are a remarkable number of examples 
of CNE. For the purposes of this essay, any system S containing some entities or 
classes A and B (traits, components, processes or organisms) is evolving by CNE just 
in case the following general conditions hold.

(1)	 Presuppression: There is a pre-existing entity A that has the capacity to presup-
press (edit, neutralize, reverse) subsequently occurring mutations in B. Entity A 
presuppresses B-mutations.

(2)	 Construction: There is an accumulation of mutations in B that are (near) neutral 
for S due to the presence of A. Entity A suppresses a series of B-mutations.

(3)	 Dependence: After sufficiently many B mutants emerge the loss of A becomes 
deleterious (in extreme cases loss of A is lethal), since loss of A would lead to the 
failure to suppress accumulated B-mutations.

I will indicate these conditions for CNE, in examples, with (1), (2) and (3) throughout 
the text.5 Muñoz-Gómez et al. (2021) provide a comprehensive list of molecular and 
cell-level phenomena that have been explained in part by CNE.

4  It is also important to note that the initial emergence of the editor may have been adaptive. Perhaps it 
indeed evolved to correct some specific non-lethal mutation. However, that does not imply that the entire 
process of accumulating editing sites was adaptive.

5  Versions of this generalization appear elsewhere (Stoltzfus 1999; Brunet and Doolittle 2018; Muñoz-
Gómez et al. 2021; Brunet et al. 2021). (1)-(3) are approximately what are termed (a) pre-suppression, (b) 
ratcheting and (c) locking-in, in Brunet and Doolittle (2018) and Stoltzfus (1999) described CNE as, “(i) 
the presence of excess capacity in biological systems, (ii) biases in the production of variants, and (iii) a 
compounding of selective constraints due to epistatic interactions with neutrally evolving sites.” It should 
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[T]he ribosome, the replisome, the proliferation of transposons in eukaryotic 
genomes, the interdependence between endosymbiotic organelles and their host 
cells, the metabolic division of labor in insect nutritional symbionts, mitochon-
drial respiratory complexes, light-harvesting antennae in algae, protein folding 
and import machinery, the cytoskeleton and its associated motors, gene-regula-
tory network architecture, and trans-splicing in diverse eukaryotes (e.g., round-
worms, kinetoplastids, and dinoflagellates) … CNE has recently been extended 
to higher levels of biological organization, including the topology and degree 
of modularity in protein–protein interaction networks, the complexification of 
the eukaryotic cells, and the division of labor in microbial communities…—
Muñoz-Gómez et al. (2021) Sect. 3, see their Table 1.

The purpose of this paper is to extend CNE again to higher levels of organization. 
This time, to (Neutral evolution of multicellular complexity) the physiology and 
anatomy of multicellular organisms, (Neutral evolution of multicellular ecological 
complexity) communities and groups of macrobes and, most contentiously, (Neutral 
evolution of cultural-level complexity) to artefacts and human cultural level phenom-
ena. The remainder of this section addresses common misconceptions about CNE, 
before turning to new potential cases in the following sections.

Common misconceptions about CNE

First, it would be a misunderstanding to see CNE in conflict with the initial adaptive 
effects of the presuppressing entity. The presuppressor may have been a fully-fledged 
adaptation while nonetheless the subsequent construction of complexity and emer-
gence of dependence is a neutral (or even mildly deleterious) process. It is important 
to note this early, since a common sort of objection to CNE evolutionary narratives 
(see Speijer 2006 and response in Gray et al. 2010) is to point to a plausible ENS 
account of the origin of the presuppressing entity. This should not refute CNE. The 
editosome may have evolved by ENS for the function of editing, and indeed that 
would explain why it is an effective editor. Nonetheless, the occurrence of hundreds 
of edit-requiring sites thereafter was effectively neutralized, making subsequent evo-
lution of editing sites potentially an episode of CNE, not ordinary ENS. CNE and 
ENS are not in general contradictory narratives about the long-term evolution of a 
trait; actual evolutionary episodes may oscillate between CNE and ENS.

The initial coinage of CNE (Stoltzfus 1999) focused on the “constructive” – mean-
ing relative complexity increasing – aspects of the process. Complexity is notoriously 
difficult to define directly (though for an account relevant to neutral evolution see 
McShea and Venit 2000; McShea 2021). Comparisons of complexity are easier. Here 
is a working definition of comparative complexity: A is more complex than B if A 
contains a larger collection of processes, parts and/or interactions than B. CNE does 
often result in the net increase in complexity. However, CNE can lead to net-negative 

also be clear that the choice of the word “presuppression” (1) over “excess capacity” (i) is immaterial, 
indeed Stoltzfus (1999 p.178) noted that, depending on the case, the words “buffering,” “tolerance,” or 
“unrealized potential” might feel more appropriate.
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complexity changes.6 In light of this, it is better to focus on the portion of complex 
dependencies that is increased, since CNE always leads to increases in the complex-
ity of dependencies between entities. In the examples considered here, the important 
change generated by CNE is an increase in the proportion of those processes, parts 
and interactions which are interdependent.

Moreover, since CNE applies to the evolution of entities that may already be vari-
ously adapted, there is a corresponding variety of types of dependence between enti-
ties that can be generated. In some cases, CNE can even produce essential traits: 
those that a system is so powerfully dependent on that their loss or reduction would 
lead to death or strongly negative fitness impacts. Depending on the preexisting 
dependencies in a system, the constructive aspect of CNE can lead to different depen-
dence relationships later on. I describe these in brief.

CNE can lead to conditional dependence: given a pair of entities A and B the loss 
of A alone results in fitness reduction, but the loss of both A and B recovers near-
normal fitness. This can happen famously in cases of toxin-anti-toxin pairs, where A 
is the “anti-toxin” without which B, the “toxin” negatively impacts fitness. CNE can 
also lead to unconditional dependence: the loss of some entity A has negative fitness 
effects, yet there is no entity B that might be lost to rescue fitness. This can happen 
when the presuppressive effect of A is “distributive” over a very wide range of other 
entities, so that no single entity B is presuppressed (the broad range of editing sites 
in trypanosomes is an example). This can also happen when the mutations that are 
presuppressed by A (e.g. leading to misfolding, plaque formation etc.) appear in some 
already essential B, so that loss of B is lethal for other reasons (e.g. loss of metabolic 
potential). Finally, CNE can lead to change of dependence: the fitness consequences 
of mutation in some B prior to evolution by CNE are transferred over to an entity 
A. In extreme cases, CNE can transfer essentiality. This can happen when, suppos-
ing B is essential for some effect F, the emergence of some A that presuppresses 
reductions in F can result in total loss or non-functionalization of B. In these cases, 
the presuppressor effectively deessentializes B. We will see one example of this in 
amino-acid biosynthesis and another in energy acquisition in aphotosynthetic plants 
in Neutral evolution of multicellular ecological complexity. Of course, ENS can also 
lead to each of these sorts of dependencies, yet what is interesting about CNE is that 
it explains dependency without evoking positive selection.

Third, we should be careful to distinguish CNE from other theories used to explain 
the neutral origin and maintenance of biological complexity. Notably, the Zero Force 
Evolutionary Law (ZFEL), due to Brandon and McShea (2020), McShea and Bran-
don (2010) and McShea et al. (2019), and to the more recent work on contingency 
and entrenchment by Shah et al. (2015) and Starr et al. (2017; 2018). Moreover the 
notion of presuppression is similar to Gould and Vrba’s (1982) notion of a “pre-
aptation”, although the latter comes with the requirement of being fitness enhancing 
(see ibid. pg.11). For some connection between these views see Brunet et al. (2021, 

6  Although assessing relative complexity is a perennial difficulty, there are plausible cases of CNE where 
an entire synthetic apparatus has been lost, damaged, or pseudogenized after the introduction of a com-
paratively simple presuppressor (see case of heterotrophic plants in Sect. 3). In these cases net complex-
ity at the organism level is reduced, but the proportion of essential complexity is increased.
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Sect. 4). Since the present connection deals with CNE in the context of macrobes, 
the relationship between CNE and the theory of generative entrenchment (GE) due 
to Wimsatt and colleagues (Shank and Wimsatt 1986) merits attention. Though their 
consequences for organisms are similar, GE is a special case of CNE. Mostly obvi-
ously, this is because CNE applies to cases that are not developmental systems.

To characterize the relationship between GE and CNE in the case of organisms 
it helps to have a model of developmental dependencies. At each stage of develop-
ment s there is a set of expressed traits T(s). Let us say a trait B depends on a trait 
A if the loss or reduction of function of A causes a loss or reduction of function of 
B. Supposing A and B are both traits in T(s), then either A depends on B, B depends 
on A, both are codependent, or neither one depends on the other. However, across 
developmental stages, given temporal asymmetry, the possible sorts of dependencies 
are reduced (Shank and Wimsatt 1987 p.42; see Rasmussen 1987). Supposing A is a 
trait of T(s1) and B a trait of T(s2), where s2 is a later stage than s1 (i.e., s1 < s2), then 
either B depends on A or it does not—A may not depend on a trait occurring only at 
a later stage of development. With this sketch of development we can characterize 
generative entrenchment. The following definition is given in Shank and Wimsatt 
(1986, p.38): “[features are] ‘generatively entrenched’ in proportion to the number 
of ‘downstream’ features which depend upon them”. Take D(A) to be the size of the 
set of downstream traits B such that B depends on A. Then A2 is more generatively 
entrenched than A1 iff D(A1) < D(A2). GE is then the claim that traits tend to become 
more generatively entrenched over time. This provides a powerful developmental 
constraint on evolutionary trajectories.

Wimsatt and colleagues have provided an impressive list of consequences and 
corollaries of GE, so it is natural to wonder whether CNE is among them. However, 
notice that this sketch of development is sufficient to show that GE follows from 
conditions (1)-(3) for CNE. CNE is occurring in a developmental system whenever 
there is some A satisfying (1)-(3) relative to any B occurring at the same or later stage 
as A. For (1), consider any presuppressing trait A. In (2), a presuppressing trait A is 
expected to accumulate dependencies with other traits B (which must be at the same 
or a later stage). After the point of satisfying (3), if A1 is an ancestral version of A 
prior to construction and A2 is a version of the trait after construction, then A2 has 
gained some dependencies. At that point D(A1) < D(A2), that is, that A has become 
generatively entrenched.

The remainder of this essay deals with cases of complex dependencies formed at 
higher levels of biological organization. CNE has already been extended to apply to 
multimeric macromolecular complexes and, higher still, to ecological interactions 
among microbes; the following section extends it further to macrobes (2.1-2), then to 
macrobe ecologies (3.0) and to social or cultural-level complexity (4.0).

Neutral Evolution of Multicellular Complexity

The evolution of complex organs is for good reason considered a paradigm of evolu-
tion by positive natural selection leading to complex adaptations. However, there is 
growing appreciation of the fact that non-adaptive processes can also shape complex-
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ity at the organism level—e.g., Gould and Vrba’s (1982) ad/ex/pre-aptation distinc-
tion—and moreover that many of the same explanatory strategies used in cases of 
genes and genomic complexity can apply at the level of organs and organismal com-
plexity (Gregory 2008). The origin of CNE as a neutral explanation for molecular 
complexity might mislead us into thinking that it is only useful as a theory of com-
plexity at that level. However, the conditions 1–3 for CNE are general, and likewise 
apply when the presuppressing entity is, e.g., a tissue or organ. This section shows 
how we can see CNE at the organism level as a natural progression from consider-
ation of CNE at the level of microbial communities. I argue for this extension of CNE 
in principle, describe how CNE can be applied at the organism level, then examine 
some cases of organismal complexity that may have evolved by CNE.

To motivate CNE at higher levels, consider first that CNE may apply to collections 
of molecular interactions. CNE can apply when many different molecules contribute 
to the trait A, such as how multiple proteins contribute to the capacity for a cell to 
edit RNA or to chaperone the proteome. In these cases it is not specific molecules, 
but a host of them that contribute to the presuppressive capacity of the system and the 
presuppressed mutations do not occur in one single gene product but across the pro-
teome. This is how that might work in the case of the chaperone system—a chaper-
one is a protein that “assists” in the folding of other proteins during their maturation. 
If a protein is self-folding, requires no chaperoning, then the additional complexity 
of the chaperone system will at first contribute nothing to it (or may even be mildly 
deleterious). However, once chaperone dependent folding-assistance is available, 
proteins are free to mutate in ways that can be presuppressed by the chaperone. After 
this occurs, loss of the chaperone is deleterious whatever its initial fitness effect. The 
same reasoning can be applied to the entire collection of proteins requiring folding 
assistance and the entire barrage of chaperones. That is, CNE can explain some por-
tion of the complexity of the entire proteome. This section argues that it can likewise 
apply to the entire physiology of multi-cellular organisms.

In a way, we already know that CNE likely plays a role in the physiology of 
macrobes: plants have RNA editing systems (Takenaka et al. 2013) and these likely 
contribute to the essentialization of genomic complexity by CNE and affect overall 
physiology. Similarly, Novick (forthcoming in the Cambridge Elements) raises the 
interesting possibility that CNE might have a role to play in the structural evolution 
of animal life generally, due to the impact of CNE type processes on morphological 
regulatory hox genes. However, to show that CNE is genuinely organism-level, this 
section considers entities that are macroscopic parts of organisms such as tissues and 
organs.

One canonical form of molecular CNE is the process of subfunctionalization of 
duplicate genes (Stoltzfus 1999). Sometimes gene duplication results in neofunc-
tionalization: an adaptive divergence where each duplicate evolves, by ENS, new 
features that contribute positively to fitness in different ways. However, subfunction-
alization obtains when each gene takes on a portion of the function of the original, 
such that both are required for a task formerly done by a single gene. Importantly, 
this might occur if the duplicates take on a subset of the set of functions performed 
by the original. It might also occur in terms of dosage, quantity, or activity levels. 
For example, the duplicates may each take on the role of producing a fraction of 
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the quantity of protein produced by the original, so that neither duplicate performs 
a different function and both must contribute to performing the same function. In 
such cases, each duplicate acts as a presuppressor of the reductions in function of the 
other. Since requiring two genes is more complex than requiring only one, and since 
after subfunctionalization neither gene can be lost without loss of fitness, this process 
generates the complex dependence that is the hallmark of CNE.

Indeed, genes are not the only things that duplicate and diverge in a way allow-
ing for subfunctionalization and thus CNE. Brunet and Doolittle (2018) argued that 
a similar process can occur between groups of similarly functional cells in micro-
bial populations (demes), so that one group will lose a functional capacity that is 
compensated for in another. When this is overall neutral7, it is a case of CNE at the 
community level. Macrobes are, in both a physiological and evolutionary sense, sorts 
of well-constituted microbial communities; macrobial demes are tissues and organs. 
This suggests a direct analogy: macrobes too may evolve by duplication and sub-
functionalization when tissues or organs take on a subset of the roles present in some 
ancestral homologous structure.

When discussing the evolution of complex organs, Gregory (2008 p.362-4) makes 
a similar analogy. His list of types of exaptation, for example, include the case “Two 
organs (or genes) perform the same function and then one becomes more specialized 
for the original function while the other takes on a different role” (p.362 my empha-
sis). Gregory (2008 p.363) also indirectly raises the possibility of subfunctionaliza-
tion after duplication, or “furcation”, of organs themselves. For example, a mutation 
in a developmental gene might lead to the duplication of a tissue layer, each member 
of which might immediately take on a subset of the functions of the original, without 
this distribution of labour resulting in any fitness increase. Subfunctionalization can 
also take place long after organs (or tissues) have adaptively diverged, that is, sub-
functionalization can occur after neofunctionalization.

Consider the liver as a possible example. Specifically, consider why the liver 
has so many functions. The liver has an impressive variety of functions (see Kmiec 
2001). Some combination of these are also essential since total liver failure is lethal. 
Of course, many organs are polyfunctional and their loss is lethal, but this is par-
ticularly interesting and merits explanation in the case of the liver because it is not 
clear that an organism requires a specialized organ to perform these functions. Livers 
are peculiar to chordates, where they may have ultimately originated from a modi-
fied yolk-sac in a chordate ancestor (Subbotin 2017). All non-chordates go without a 
liver, for example echinoderms such as starfish and sea cucumbers, which are close 
chordate relatives. Even assuming that each function the liver performs is or was an 
adaptation, we still require an explanation for the location of that function, for why 
that function is performed specifically by the liver, especially since many liver func-
tions are carried out, to some extent, by other cells outside the liver (e.g. gluconeo-
genesis and amino-acid synthesis). Of course, an explanation by ENS is possible and 
may explain the localization of many such functions; perhaps specialization of the 
liver for synthetic capacities is overall more metabolically efficient and thus localiza-

7  As opposed to being an example of selectively driven gene loss, as in the BQH (Morris et al. 2012).
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tion of functions to the liver is an adaptation. Nonetheless a CNE explanation is also 
available and may explain the localization of some functions.

On a CNE explanation for the localization of functions in the liver, (1) the pres-
ence of a liver (or its precursor) presuppressed the reduction of functions in other 
organs or tissues. In case of microbial communities, for a function to be compen-
sated for by another community member, another group of cells, that function must 
be “leaky”: the benefits of performing the function are also shared locally by other 
cells. The canonical example for Morris et al. (2012) is the metabolic breakdown of 
peroxide: when one community member can degrade peroxide, the others benefit 
without themselves possessing the capacity. In the case of the liver, the connection of 
the liver to a filtered blood supply effectively allows its metabolic activities to have 
effects throughout the body, since it is connected “locally” via the circulatory system. 
Due to random mutation of tissue and organ specific metabolic expression profiles, 
(2) given non-liver tissues or organs will eventually lose or reduce their capacity to 
perform some of the functions that the liver presuppresses. This is the construction of 
a complex physiology. Finally, (3) once other organs or tissues have lost or reduced 
their functional capacities, the whole organism now has a dependence on the liver to 
perform these functions. Importantly, whether this narrative is correct may vary by 
particular hepatic function, and there may have been extensive secondary adaptation 
in liver cells. However, the CNE narrative shows that it is not necessary to assume 
that localization to the liver was initially an adaptation.

In addition to explaining the distribution of functions in organs, CNE can also 
play a role in explaining the persistence of organs despite their apparent loss of func-
tion. A number of organic structures of macrobes have been proposed to be non-
adaptive, vestigial, or otherwise degenerated. In humans, the usual example is the 
appendix, but other examples include the palmaris longus muscle (a muscle visible in 
the wrist, when present), waxy secretions of the ear (Komai 1968), vibrissal capsular 
muscles of the upper lip (the muscles attached to the base of whiskers in other ani-
mals) (Tamatsu et al. 2007), as well as various structures associated with the human 
tailbone and occasional emergence of a vestigial tail (Dao and Netsky 1984). The 
human hymen, insofar as this is a recognizable human organ at all, is another often 
suggested example of a vestigial trait.8 In dinosaurs the diminished forelimbs of the 
Tyrannosaurs are the perennial example—so striking that Gould and Lewontin made 
it the topic of their infamous quip about the adaptationist programme: “male tyran-
nosaurs may have used their diminutive front legs to titillate female partners, but 
this will not explain why they got so small” (Gould and Lewontin 1979, p.1)—and a 
host of potential vestigial dinosaur traits are reviewed in Senter (2010). For examples 
from flowering plants see Wilson (1982), who treats the particularly interesting case 
of internal floral vascular structures which are retained in development despite the 
loss or vestigial reduction of the morphological features they originally supplied.

These sorts of traits were, presumably, created by selection. They have their ori-
gin in ENS, however, they are not likely to be now maintained by positive selection 
(see Linquist et al. 2020) so come to degrade over evolutionary time. For some of 

8  I owe this example to discussion with Eftihia Mihelakis. The vestigial nature of the human hymen 
remains contested.
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these traits the populations containing them are small and their coefficient of selec-
tion weakly negative, so selection may have been too powerless to eliminate them, 
yet. What CNE adds to this assessment of non-functionality of anatomical features 
is another explanation of why relics and vestiges might persist, despite prima facie 
uselessness or even physiological costliness. That explanation proceeds by assuming 
that the relic, or some feature of the relic, continues to have some presuppressive 
effect or complex organism-level dependency, so that loss or further reduction of the 
relic would be deleterious. In terms of the conditions (1)-(3) for CNE given above, 
this involves (1) assuming that the ancestral organism S had a trait Apre−vestige with an 
organism-level presuppressive effect (e.g., compensating for changes in surrounding 
tissue characteristics, or detoxifying a biochemical product of another organ), then 
(2) changes (loss, mutation) of another organism-level Bdependent accumulate, and (3) 
eventually these changes result in a dependency of S on Apre−vestige. If Apre−vestige also 
undergoes relaxed selection for whatever function it had, it must still remain in S 
in a vestigial state Avestige, potentially reduced, yet sufficient for it to serve its pre-
suppressive role. Put another way, a given trait may be functionally vestigial while 
still being presuppressive of disfunction elsewhere in the organism. Indeed, this is a 
generalization of developmental allometry9 to include cases where one of a pair of 
allometrically coupled traits is under mere maintenance selection, instead of positive 
selection.

An interesting example comes from cetacean hip bones, which have recently 
been proposed to retain some functional role and perhaps be under positive sexual 
selection. Indeed, a given “relic” may not be entirely so, and may retain some adap-
tive significance for the organism containing it. Dines et al. (2014) propose such 
an hypothesis for the maintenance of cetacean hip bones, explaining persistence of 
the trait as a consequence of continued sexual selection for the role of hip bones in 
anchoring tissues important in testes and penis function. However, cetaceans may use 
their hip bones to support penis function, but that need not explain how they became 
anchored to important tissues. A dependency between hip bones and penis function 
may explain the maintenance or persistence of these bones by purifying selection 
alone (Linquist et al. 2020; Brunet et al. 2021), since their loss would have negative 
impacts on sexual function, though hip bones never need to have had any positive 
effect on penis function during their origin to be used in such a maintenance expla-
nation. The only feature required for a maintenance explanation is that loss of hip 
bones would be deleterious. Indeed, in cetaceans, the hip bones remain attached to a 
particular muscle the damage of which, in human and rat at least, results in erectile 
disfunction (Dines et al. 2014 and references therein). In CNE terms, in this case, 
contingent (A) attachments of hip bones to testes and penis tissues may have initially 
been neutral (they might have been lost without loss of fitness), however, once reduc-
tions in (B) hip bones took place, they may have been essentialized.

9  I owe this connection to developmental allometry to conversation with Adrian Currie.
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Neutral Evolution of Multicellular Ecological Complexity

The purpose of this section is twofold. Firstly, I argue that many cases of ecological 
complexity are appropriately and helpfully understood as cases of CNE. These are 
cases where one community member (the presuppressor) is “preadapted for”, “per-
mits”, “allows” or “facilitates” a change in another member that leads to dependence. 
Second, that some cases of ecological complexity that are described as ENS favour-
ing dependence are better understood as cases of CNE.

The formulation of conditions 1–3 for CNE to take place has thus far been applied 
so that the system S is some organism, while A and B are some of its parts. However, 
the conditions are general enough for organisms to satisfy it as entities A and B, so 
that the containing system S might in principle be a microbial community, group, 
symbiotic association, holobiont or ecosystem. There are cases in which a pre-exist-
ing presuppressive relationships between two organisms and a constructive muta-
tional change within one of them leads that organism to become dependent on the 
presuppressor, sometimes to the point of being unable to return to solitary life. This 
sort of change leading to essential dependence between organisms, to obligate sym-
biosis, has been used in microbiology to explain rampant unculturability. The initially 
motivating example of this was taken from evolved metabolic interdependencies in 
microbial ecologies, specifically the (selection driven) dependencies resulting from 
loss of a gene in one organism that is presuppressed by the presence of an analogous 
gene in another community member (see the black queen hypothesis of Morris et 
al. 2012, and the derivatively named gray queen hypothesis in Brunet and Doolittle 
2018). It is tempting to construe this as unique to microbial life with its compara-
tively fast pace of gene loss (Iranzo et al. 2019). Nonetheless, analogous processes 
can occur in ecological relationships among macrobes, ourselves included.

An illuminating and simple example comes from the loss of vitamin C synthe-
sis. Vitamin C is an essential part of animal physiology. However, some bats, some 
birds, some fish, guinea pigs and humans have lost the ability to synthesize their own 
vitamin C. We must obtain this from our diet or else suffer from scurvy. Interest-
ingly, some bat and bird lineages that have lost vitamin C synthesis have occasionally 
regained it, though seemingly without effect on diet or fitness. Neutrality of vitamin 
C loss can be explained, by CNE, as a dependence on pre-existing organisms that 
serve as C rich foodstuffs and thus presuppress loss of the C synthesis pathway.

[C]urrent evidence favors the hypothesis that the multiple gains and losses in 
the ability to synthesize vitamin C are random, as would be expected for a neu-
tral trait…The neutrality of vitamin C loss is a function of the environment in 
which the species lives. Individuals from a species which have lost the ability 
to make their own vitamin C will not be selected against as long as their diet 
contains sufficient quantities of vitamin C.—Drouin et al. (2011) p.377.

A more complex and interesting example comes from the concerted loss of multiple 
biosynthetic pathways. Consider Payne and Loomis (2006) on the loss of amino acid 
biosynthesis pathways in heterotrophs,

1 3

Page 11 of 22  23



T. D. P. Brunet

When an organism becomes a consumer by eating other organisms, all of the 
amino acids are available in the diet and no longer need to be synthesized. 
Unless amino acid biosynthetic pathways serve other essential functions besides 
providing amino acids, they are unnecessary and dispensable. Genes in dis-
pensable pathways accumulate deleterious mutations, lose the ability to encode 
functional enzymes, and are eventually deleted from the genome.–Payne and 
Loomis (2006).

Heterotrophy deessentializes amino acid biosynthesis, unless the pathway is bifunc-
tional, playing some role in another essential process. Autotrophs presuppress muta-
tions in synthesis pathways of heterotrophs. Whether or not the additional complexity 
of a heterotrophic lifestyle was initially an adaptation, once amino acid synthesis 
pathways are lost, the heterotroph depends on autotrophs—heterotrophy becomes 
essential—and a return from heterotrophy to autotrophy is unlikely. Here is the CNE 
narrative for the origin of heterotrophy: (1) an initially facultative heterotrophy in 
the presence of autotrophs presuppressed loss of function in synthesis pathways, (2) 
loss of function mutations emerged in synthesis pathways from random mutation, 
essentializing heterotrophy, and (3) loss of function in genes required for heterot-
rophy would negatively impact fitness, so heterotrophy is maintained by purifying 
selection. This is a case of CNE as described above, by taking the containing system 
S to be some collection of (initially facultative) heterotrophs (B) and autotrophs (A).

This process of amino acid pathway degradation differs by lineage. Humans, for 
example, are able to synthesize only eleven of the twenty amino acids, and only 
ten amino acid biosynthesis pathways are conserved across animal life. Heterotro-
phy has emerged multiple times, in both contemporary organisms and, potentially, 
at the origins of life in hydrothermal vents (Schönheit et al. 2016). Which pathways 
are conserved and which lost during CNE moreover depends on environmental and 
lifecycle constraints. Humans retain the phenylalanine synthesis pathway (in healthy 
organisms), while the parasite Cryptosporidium lacks the phenylalanine degradation 
pathway. Payne and Loomis (2006) hypothesize that this was facilitated by the fact 
that phenylalanine can be rapidly exchanged with its host. If loss of this pathway was 
facilitated (1) by the additional capacity to exchange phenylalanine with the host, 
brought on by the complexities of parasitic lifestyle (2), and if this loss indeed con-
tributes to why Cryptosporidium cannot free-live (3), then this complex and essential 
relationship with the host (requiring the host rather than simply benefiting from one) 
is an instance of a parasite-host ecological relationship generated by CNE. Parasit-
ism, as a special sort of heterotrophy, is perhaps particularly liable to result in presup-
pression of parasite functions.

Here is the general description: a symbiotic pair S consisting of partners A and 
B may interact facultatively up to and including a time when A comes to have a 
presuppressive effect on some trait of B. However, if B mutates in a way that is 
neutralized by its association with A, then the association is no longer facultative: 
isolated B has lower fitness compared to B in symbiotic association with A. There has 
been a great deal of work attempting to explain the origins of obligate symbioses via 
advantages or adaptations favouring symbiotic associations, either individually or as 
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groups.10 However, the CNE narrative does not require adaptive individual or group 
level explanations; it explains obligate associations by coordinated loss of function. 
I submit that many obligate symbioses may have emerged by CNE rather than ENS 
favouring association. I now turn to a class of examples from fungal-plant symbioses.

Consider the odd niche of the achlorophyllic flowers Monotropa uniflora and 
Monotropa hypopitys. M. uniflora is also known as the ghost flower due to its white 
translucence. This flower almost entirely lacks chlorophyll and consequentially can-
not photosynthesize. Instead, it is physiologically connected to the hyphae of nearby 
fungi that are themselves physiologically connected to nearby trees. Photosynthetic 
products of the trees are ultimately funneled through the hyphal network and metabo-
lized by the ghost flower. The relationship is often characterized as parasitic (Ogura-
Tsujita et al. 2009), since the flower does draw energetic compounds from the fungus. 
However, it is best at this point to remain neutral about the adaptive significance of 
the fungus-flower relationship; it is not known whether the fungus derives any ulte-
rior non-energetic benefit from the floral association and it is difficult to imagine the 
associated tree is negatively affected. Other explanations for the association are adap-
tive, from the flower’s perspective, including that this association allowed the flower 
to colonize low-light environments (Bidartondo 2005).

Let us assume that the initial association between M. uniflora and the fungus (and 
tree) was facultative. This is reasonable both from a theoretical position and com-
paratively. The ancestor of the flower was a “free living” angiosperm, capable of 
photosynthesis (for phylogeny see Liu et al. 2020), and saltational leaps to obligate 
aphotosynthetic mycoheterotrophy are unlikely. Moreover, there are other faculta-
tive nearly aphotosynthetic organisms for comparison, such as the albino orchids 
and “phantom orchids” (Klinkenberg and Klinkenberg 1991). Similar achlorophyl-
lous relationships also obtain in the liverwort Cryptothallus mirabilis (see Wickett 
and Goffinet 2008 for phylogeny). For example, Suetsugu et al. (2021 p.9) studied 
green and albino orchids Cypripedium debile, finding that the former facultatively 
associated with fungal hyphae, and moreover suggested that high degree of orchid 
dependence on fungal carbon “probably facilitate the emergence of albino mutants”.

Here is a CNE narrative for the emergence of obligate from facultative association 
between achlorophyllous or albino partners in fungal symbioses. (1) The availability 
of carbon from the fungus A presuppressed reductions in autonomous photosynthetic 
capacity in the flower B. (2) Mutations subsequently emerged in the photosynthetic 
apparatus of the flower, for instance, by reductions in chloroplast genes (see Liu et 
al. 2020) or loss of the chloroplast genome (Molina et al. 2014).11 Finally (3) once 
a significant mutation of photosynthetic capacity occurred in the flower, leading to 
its ghostly or albino appearance, the flower was dependent on the fungus; the fun-
gus became an essential ecological partner for the flower. In the specific case of M. 
uniflora, Logacheva et al. (2016 p.4) report that “all genes encoding components of 

10  Too much to give due credit, but see Lean (2018) for a conceptual framework for understanding sym-
bioses as potentially evolving individuals.
11  Pseudogenization of formerly essential genes without reductions of size are possible. Indeed, if relaxed 
selection on photosynthesis gene content drives pseudogenization, this may even occur by transposon 
proliferation, so may result in increased plastid genome size.
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the photosynthetic apparatus [have been] lost or pseudogenized,” suggesting that the 
process of CNE has been carried to complete dependence of flower on fungus. At 
the end stage, the loss of photosynthesis in mycoheterotrophs is just like the loss of 
amino acid synthesis in heterotrophs: both are plausible instances of CNE leading to 
essentialization of ecological interactions following presuppression of would-be loss 
of function mutations in synthetic capacities.

I take these cases to show that a neutral explanation of cases of ecological depen-
dence are readily available and some are well supported by the available evidence. 
Nonetheless, there is a tendency to interpret these symbioses as necessarily adap-
tive, and this often requires assumptions that are not well supported. Often the only 
difference between a CNE and ENS narrative is whether the (presuppressed, entity 
B) dependent member of the association is assumed to have initially derived some 
benefit from the loss of some capacity. For example, in a recent review of mutualis-
tic dependence, Chomicki et al. (2020) describe a number of plausible evolutionary 
pathways that can lead to symbiotic dependence. One of those pathways is evolution 
via trait loss (ibid. p.414), which can “lock a species into an obligate relationship” 
and “relax selection” on maintenance for traits with functions reliably provided by 
symbiotic associations. In order to characterize this as a pathway to mutualism, Cho-
micki et al. (2020) claim that it was “presumably costly” to maintain the lost traits, 
so that their loss would have been an advantage. Indeed, many mutualistic depen-
dence relationships may have evolved like this. However, when trait loss leads to an 
obligate dependence on an imperfectly reliable community member, it is difficult to 
maintain that the costliness of maintaining a trait (e.g. the energetic costs of express-
ing a gene) outweighs the costliness, lethality, of being isolated from that community 
member. In these cases, it is better to drop the assumption that trait loss was selected 
for and adopt the CNE explanatory strategy instead.

Neutral Evolution of Cultural-Level Complexity

In this final section I examine some cases of the emergence of essential complex-
ity in human affairs with the aim of showing that CNE applies to some cases more 
familiar to humanists and social scientists. The purpose of this section is not to bol-
ster any theory of cultural evolution. The explanatory utility of cultural adaptations 
is questionable, and cultural evolution is a topic that provokes reasonable scepticism 
from both evolutionists and cultural theorists alike (Chellappoo 2022; Lewens 2015; 
Godfrey-Smith 2012; Fracchia and Lewontin 2005; Wilkins and Bourrat 2001). It is 
enough for my purposes that there are historical processes that lead to complexity in 
human affairs and that these historical processes sometimes lead to complex depen-
dency relationships without apparent advantage. This section aims to show that the 
three part explanatory strategy of CNE applies well to some of these cases of com-
plexity; in particular, to networks of human interactions and to complex interactions 
between humans and technologies. Indeed, insofar as CNE does apply to cultural 
phenomena, their status as cultural adaptations is even more questionable.
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Note that molecular-level CNE has often been characterized in terms of analogies 
to cultural level complexity. For example, when Gray et al. (2010) advanced a CNE 
interpretation of some genome level complexity.

[A]lthough complexity in biology is generally regarded as evidence of “fine 
tuning” or “sophistication,” large biological conglomerates might be better 
interpreted as the consequences of runaway bureaucracy—as biological par-
allels of nonsensically complex Rube Goldberg machines that are over-engi-
neered to perform a single task.—Gray et al. (2010)

The biologists who initially developed CNE turned to seemingly unnecessary or det-
rimental complexity in cultural or technological entities—to runaway bureaucracies, 
over-engineering and Rube Goldberg machines—when looking for helpful analogies 
or metaphors to describe the complexity generated by CNE in molecular systems.12 
Trypanosomal RNA editing is already described in the metaphorical information lan-
guage common to molecular biology, and this makes analogies with cultural infor-
mation more or less direct. This in mind, I begin with the example of text editing 
technologies, such as spellcheck (‘autocorrect’ or ‘spell-check’). If trypanosome 
RNA editing had been discovered in a different technological era perhaps it would 
have been named ‘transcriptcheck’.

I take spellcheck assistance to be a case of cultural complexity meriting histori-
cal explanation. As with RNA editing, a system requiring error-correction is more 
complex than a system that does not require a correction step, ceteris paribus, so the 
process leading to this state was a constructive one. The difficult question is whether 
it was a neutral process. As with RNA editing there is an evident positive or adaptive 
narrative to be told about the wide and apparently essential use of spellcheck: it exists 
because it provides the advantage of correcting spelling errors. David Sparshot viv-
idly exemplifies this in The Fasinatng… Fascinating History of Autocorrect, claim-
ing that without spellcheck we could not “compose windy love letters from stadium 
bleachers, write novels on subway commutes, or dash off breakup texts while in line 
at the post office”, or indeed use the highly inaccurate touchscreens characteristic of 
smartphones.

Here is a dry reconstruction of the adaptive narrative explaining spellcheck. A 
problem exists in the population of spellers: spelling is difficult to do at the quality 
or rate demanded by modern economies. To resolve this problem a technology was 
developed to detect and correct spelling errors. Perhaps the first was Blair (1960), 
though see Mitton (2010). This made spelling easier and improved the quality of 
writing and the rate of production. Because this improvement was noticed by many, 
spellcheck technology was intentionally propagated to new contexts (e.g., word pro-
cessing software, phones, voice-to-text correction), and was developed to a stage of 
greater effectiveness. Overall, quality of spelled work has improved. This narrative 

12  Gray et al. (2010) use the analogy to bureaucracies and borrow the Rube Goldberg analogy from San-
car’s (2008) work on the eukaryotic molecular clock. Similarly, Schank and Wimsatt (1987) and Rasmus-
sen (1987) both use artefacts, locking mechanisms and automobiles, to illustrate generative entrenchment.
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has the advantage of being a success story of technological progress and the disad-
vantage of being probably false.

What is doubtful about the narrative is when the problem of spelling at a given 
quality and rate is dated with respect to the advent of spellcheck technology. The 
adaptive narrative positions this problem prior to the origin of spellcheck as a prob-
lem to be resolved, but it may also be a problem that emerged or worsened after the 
origin of spellcheck. Indeed, the types of common errors have changed since the 
introduction of word processing software, with spelling errors now less common 
in spellchecked work, and this is probably due in part to the introduction of spell-
check assistance (see Lunsford and Lunsford 2008 p.796). However, typists prior to 
spellcheck were competent. Plenty of typed documents were produced; spellcheck 
is not essential for the production of written works. Moreover, spellcheck may also 
have had a negative effect on our unassisted spelling abilities; some of those who 
learned to spell before spellcheck may have since learned to be poorer spellers, and 
some of the rest poorly learned to spell. There is anecdotal evidence that spellcheck 
introduced new types of errors, e.g., the “Cupertino”, an error of selecting the first 
suggested spelling without attention to context (Mitton 2010).13 There is also survey 
based evidence that spellcheck may have affected the types of errors made. Con-
nors and Lunsford (1992 p.418) report that, “papers that were word processed with-
out spell-checking contained far more misspellings per paper than did our original 
sample [of 3,000 handwritten or typewritten essays]…[there were] slightly more than 
twice as many misspellings”. In our pre-edited transcriptions, there are probably now 
more errors than there were before. Overall, if the quality of unassisted spelling has 
worsened in groups with access to spellcheck software—just as the number of edit-
requiring sites have increased in organisms with an RNA editing system—then spell-
ers are in part dependent on spellcheck software.

Here is a CNE explanation of this process of cultural change, analogous to the 
origin of RNA editing. Consider a system consisting of spellcheck software and the 
spellers that use it. (1) Spellcheck was created with the intention to resolve problems 
with spelling while typing, it is an intentional form of presuppression. Either it suc-
ceeded or it did not – there is plenty anecdotal evidence that it also introduced a series 
of uncommon errors. However, it did correct common mistakes and was installed on 
updated Windows systems (Mitton 2010). (2) At this point there is reduced impetus 
for spellers to manually correct errors that can be corrected by spellcheck and spell-
ers tend to produce more mistakes in the initially written text. Moreover, contem-
porary spellcheck software also learns from newly observed mistakes. This process 
is constructive and feed-forward, so that increases in the number or types of errors 
spellcheck can correct tends to encourage an increase in the production of more such 
errors in pre-edited text. (3) At a later stage, perhaps once there is an “epistatic” 
change that makes accurate initial spelling more difficult (e.g. by having buttons 

13  For comedic example consult the unattributed spellcheck poem, appearing in Thomas, S. P. (1999, 
p.439), beginning with the lines, “Eye halve a spelling chequer // It came with my pea sea // It plainly 
marques four my revue // Miss steaks eye kin knot sea… ”. A similar variant of the beginning of the poem, 
also unattributed, appears in Mitton (2010).
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smaller than fingertips), spellers become dependent on the technology, so that any 
loss of spellcheck capacity would have a negative effect on the system.

Importantly, a negative effect of loss of automation of spelling can occur even if 
there was no net benefit of the origin of the technology. Likewise there is nothing 
about this narrative that prevents there being certain benefits of the technology – to 
users or their corporate suppliers – on occasion. It does however suggest that the cur-
rent state of complex dependence on the technology is not explained by benefits. On 
a CNE explanation, typographical benefits are not the cause of our dependence on 
spelling automation.

In Stoltzfus (1999), the initial cases of CNE were taken from editing, but also from 
subfunctionalization of duplicate genes.14 I conclude this section with two examples 
of the origin of cultural complexity that are analogous to subfunctionalization: (1) 
roles within institutions and (2) networks of information flow.

Here is the three step narrative explaining some of the complexity that exists 
within bureaucracies as a form of neutral subfunctionalization of roles.15 Initially, (1) 
a task X must be performed that is difficult for any given individual I1, so someone 
partitions the responsibility for completing X to two individuals I1 and I2. Since the 
task is divided between I1 and I2, neither individual is ever tasked with the entire 
completion of X. Both individuals presuppress the other’s loss of ability or author-
ity to complete X. As time passes, (2) either or both of I1 and I2 progressively lose 
the ability to complete X. Perhaps they forget how to do X. Eventually, (3) I1 and 
I2 lose the ability or authority to complete X alone, so can complete X only when/if 
co-operating. In this situation, I1 and/or I2 have been subfunctionalized. Moreover, 
supposing X is essential to the system of roles in which I1 and I2 work, then both 
have become essentialized by this process. Since the system containing I1-2 and X is 
more complex, and no benefit in doing X has obtained, this is directly analogous to 
molecular cases of CNE by duplication and subfunctionalization.

Although it is tempting to construe cases like the above as intentional consequences 
of human reason, in most cases it is only the initial use that is intended, rather than 
the complex form of dependence that is subsequently engendered. Although there is 
an initial intention for the subfunctionalization of a role to lead to ease or efficiency, 
there is nothing naturally ensuring that this happens—it might just as well complicate 
things so that goals are achieved at the same or a lower standard. The subfunctional-
ization of roles need not actually achieve its intended effect. Moreover, the outcome, 
dependence upon a larger number of roles, was clearly not an intended effect. So this 
production of essential complexity should not be explained as an effect of beneficent 
intention.

Here is a similar example of subfunctionalization. Work on gene regulatory net-
works, modelled as networks of Boolean functions, have shown that network com-
plexity and modularity that appears functional can arise merely from constructively 
neutral duplication and divergence events (see Wang and Zhang 2007). Though there 

14  Scrambling and unscrambling of exons is also an initial example. There are adaptive explanations of 
scrambling, such as in Buhrman et al. (2013). However, these seem to provide only moderate advantages 
(Flegontov et al. 2010) in the biological systems where they have been observed.
15  Recall the general characterization of subfunctionalization in Sect. 1.
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is reasonable grounds for doubt that real gene regulatory networks are strictly Bool-
ean, this can be taken by analogy as an argument that some gene regulatory networks 
are shaped and complicated by CNE (Brunet and Doolittle 2018). However, it can 
also be taken directly: CNE processes of subfunctionalization can explain the emer-
gence of complexity in Boolean networks, the objects used as models of subfunc-
tionalization, duplication and divergence. Insofar as Boolean networks are used in 
technologies, we have direct reasons to believe that CNE processes explain some 
complexity in those technologies. Indeed, much of the organization of contemporary 
technosociety is based on Boolean networks, built up using unsupervised methods,16 
so CNE may explain a portion of the complexity in technological arrangements.

Whenever parts or processes are added to systems (biological or technological) 
with the only requirement for their perpetuation being that they suffice for some task 
X (are not eliminated by purifying selection for X), interactions between new and 
existing parts can produce essential dependencies between parts—for reasons having 
little to do with X. Kitcher’s (1993) example of a screw which accidentally contrib-
utes to the overall workings of a machine is such a case.

It is possible that you do not know everything about the conditions of operation 
of your machine. Unbeknownst to you, there is a connection that has to be made 
between two parts if the whole machine is to do its intended job [X]. Luckily, as 
you were working, you dropped a small screw into the incomplete machine, and 
it lodged between the two pieces, setting up the required connection.—Kitcher 
(1993).

Kitcher intends this example to speak in favour of an account of biological func-
tion; I remain ambivalent about whether parts generated by CNE have proper func-
tions. Regardless of their functional designation, it is clear that the capacity for CNE 
to essentialize initially non-advantageous parts has wide ranging implications, both 
in biology and technology. Moreover, technologies provide especially compelling 
examples of what CNE can accomplish.

Consider milking dairy cows. Automated milking has become a staple of dairy 
farming. Suppose a farmer B operating a farm S must accomplish M, daily milking 
their cows. Suppose B is just able to do this by hand, given their resources and other 
necessary task constraints. Now, (1) suppose we introduce A, an automated milking 
machine. A + B should initially be able to extract more milk or at least accomplish 
M. However, since A is automated, it presuppresses any loss in the ability of B to M. 
At this point B may discard A with no net negative cost. Over time, (2) B is free to 
change their practices within S once assisted by A. Suppose they do this by partition-
ing their time differently, so that they devote less to M and more to some other task 
T, perhaps the upkeep of another farm animal. After this change to their practices 
has become entrenched by the addition of many more changes like T, (3) B cannot 

16  Large networks built for some purpose but without supervision naturally tend to contain a large number 
of features that are unnecessary or redundant for that purpose (Mozer and Smolensky 1989). Contempo-
rary artificial neural networks for example tend to grow large, complex, and difficultly understood, unless 
something is done to them to make them less so (see Erasmus et al. 2020, Sect. 4.1).
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discard A without incurring net negative consequences, since they cannot accomplish 
both M and these other tasks without automated assistance from A.

In this and similar cases the automation technology A has been essentialized by 
subfunctionalization17 of manual labour B, and the techno-system S has increased in 
dependent complexity by CNE. Although A may have been initially advantageous, 
after reduction in function of B (by also performing some other task T), the persis-
tence of A need not be explained entirely by that advantage. Indeed, there are ways 
to intentionally remove or compensate for unintentional loss of automation technolo-
gies. Human techno-societies do not need to wait around for complexity-reducing 
changes to occur by natural mutation, as organisms do. However, when automation 
technologies have a strong pre-suppressive effect on the redistribution of resources 
elsewhere in the system then their loss is costly. This makes the intentional reversion 
to prior, less complex, dependence relationships with these technologies unlikely, or 
less likely than their continued maintenance.

It is difficult to assess exactly how much of modern techno-society owes its con-
tinued existence to dependencies generated by CNE. Perhaps, on the extreme end, the 
entire edifice of technology might be something that (1) presuppressed or facilitated 
the loss or reduction of our non-technological capacities, (2) constructed forms of 
human-technological interaction, and (3) results in complex forms of our dependence 
on technology (Kaczynski 2016). Perhaps CNE is rarely involved in technological 
change. I take this section to show that CNE is a good background evolutionary 
theory in which to situate analysis of the origin of cultural level complexity in some 
cases.

Conclusion

This essay contributes to the extension of the explanatory scope of constructive neu-
tral processes by examination of cases that sit at higher levels of biological orga-
nization. While past biological theory and philosophy has focused on CNE as an 
evolutionary process important in molecular biology and microbiology, this essay 
provides cases from physiological (Neutral evolution of multicellular complexity), 
ecological (Neutral evolution of multicellular ecological complexity) and cultural-
level complexity (Neutral evolution of cultural-level complexity).

Here CNE is characterized as a general evolutionary phenomenon satisfying three 
conditions on the fitness effects of interactions between two sorts of entities (Sect. 1). 
Once characterized generally and independently of its molecular beginnings, a new 
variety of examples can be seen as cases of CNE. The examples discussed here are a 
heterogeneous collection, including duplicate organs, localization of functions, main-
tenance of vestigial traits, loss of biosynthetic capacities, obligate parasitism, myco-
heterotrophy, automation technologies, institutional division of labour and Boolean 
networks (Sects. 2–4). They were intentionally drawn from different domains of biol-
ogy, and a rich diversity of cases is what we should expect from an evolutionary 
process that can take place across levels of the biological hierarchy.

17  This is properly the closely related process of “subneofunctionalization” (see Lynch and Force 2000).
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The rise of molecular biology has encouraged a growing appreciation (and justifi-
able scepticism) of the use of molecular evidence within more traditionally organis-
mal or ecological investigations. Many are also coming to appreciate that biological 
theory developed in the context of molecular biology can be brought out and used 
fruitfully at higher levels of organization in biology (see Gregory 2008). Of particular 
importance is the neutral theory of molecular evolution (Kimura 1983). The origin 
and development of CNE within molecular biology was spurred by the important 
realization that neutral evolution could not only result in an increase in diversity, but 
also in an increase in essential complexity, in the number of parts maintained by puri-
fying selection. The mechanisms and processes leading to this neutral construction 
of complexity are likewise a diverse lot—gene duplication and divergence has not 
prima facie much in common with RNA editing. But this diversity of molecular pro-
cesses can be helpfully condensed into the tripartite characterization of the conditions 
for CNE (e.g. Stoltzfus 1999; Brunet and Doolittle 2018; Sect. 1). Once characterized 
with sufficient generality, CNE is another product of molecular biology that can help-
fully be brought into applications within organismal biology and ecology.
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