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effects of Cd because of the plethora of uptake path-
ways available. Pertinent to their broad substrate 
spectra, ABC transporters represent a major cellu-
lar efflux pathway for Cd and Cd complexes. In this 
review, we summarize current knowledge concerning 
transport of Cd and its complexes (mainly Cd bound 
to glutathione) by the ABC transporters ABCB1 
(P-glycoprotein, MDR1), ABCB6, ABCC1 (multi-
drug resistance related protein 1, MRP1), ABCC7 
(cystic fibrosis transmembrane regulator, CFTR), and 
ABCG2 (breast cancer related protein, BCRP). Poten-
tial detoxification strategies underlying ABC trans-
porter-mediated efflux of Cd and Cd complexes  are 
discussed.

Keywords  ABC transporters · Toxicity · Transition 
metal · Metal speciation · Membrane transport

Introduction

Human exposure to cadmium (Cd) mainly arises 
from natural sources, such as volcanic eruptions, 
weathering and erosion, and river transport as well 
as from human activities, such as tobacco smoking, 
mining, smelting and refining of non-ferrous met-
als, fossil fuel combustion, incineration of munici-
pal waste, manufacture of phosphate fertilizers, and 
recycling of Cd-plated steel scrap and electronic 
waste (WHO 2019). Mammalians either inhale Cd-
containing particles (e.g. Cd-oxide), with cigarette 

Abstract  Cellular responses to toxic metals depend 
on metal accessibility to intracellular targets, reach-
ing interaction sites, and the intracellular metal con-
centration, which is mainly determined by uptake 
pathways, binding/sequestration and efflux pathways. 
ATP-binding cassette (ABC) transporters are ubiqui-
tous in the human body—usually in epithelia—and 
are responsible for the transfer of indispensable phys-
iological substrates (e.g. lipids and heme), protection 
against potentially toxic substances, maintenance of 
fluid composition, and excretion of metabolic waste 
products. Derailed regulation and gene variants of 
ABC transporters culminate in a wide array of patho-
physiological disease states, such as oncogenic mul-
tidrug resistance or cystic fibrosis. Cadmium (Cd) 
has no known physiological role in mammalians and 
poses a health risk due to its release into the environ-
ment as a result of industrial activities, and eventually 
passes into the food chain. Epithelial cells, especially 
within the liver, lungs, gastrointestinal tract and kid-
neys, are particularly susceptible to the multifaceted 
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smoking as the main source, or ingest Cd complexes 
with food and drinks. Cd is more concentrated in 
food items, such as shellfish, offal and crops (e.g. 
rice, soybeans or wheat), which accumulate Cd 
from contaminated soils and water. In the body, Cd 
forms high-affinity complexes with metalloproteins 
[e.g. metallothionein (MT)] and estrogen recep-
tor, but it also interacts at low affinity with zinc-
finger proteins, iron-binding proteins, and various 
low- and high-molecular weight plasma proteins 
(reviewed in Maret and Moulis 2013; Moulis 2010; 
Thévenod and Wolff 2016). Moreover, Cd forms 
complexes with a variety of organic molecules with 
relevance to biological systems (Carballo et  al. 
2013), including sugar residues, nucleobases (Sigel 
et al. 2013), amino acids, and peptides (Sovago and 
Varnagy 2013).

ATP-binding cassette (ABC) transporters com-
prise one of the largest and most ancient pro-
tein families expressed in living organisms. They 
operate as molecular machines by coupling ATP 
binding, hydrolysis, and phosphate release to the 
directional transport of a multitude of structurally 
diverse substrates across membranes (Thomas and 
Tampe 2020). Their substrates range from vita-
mins, steroids, lipids, and ions to peptides, proteins, 
polysaccharides, but also xenobiotics (Thomas and 
Tampe 2018). Because of their ubiquitous pres-
ence in nature and diverse physiological functions, 
mutations of ABC proteins cause various human 
diseases, e.g. cystic fibrosis, hypercholesterolemia, 
retinal degenerations, and lipid trafficking disor-
ders (Moore et  al. 2023). In addition, ABC trans-
porters are responsible for multidrug resistance 
(MDR), which leads to antibiotic resistance in bac-
teria (Orelle et  al. 2019) and cancer chemotherapy 
resistance (Robey et  al. 2018). Interestingly, the 
plant genome encodes for more than 100 ABC 
transporters, largely exceeding that of other organ-
isms. These ABC transporters are involved in many 
aspects of plant life, including development and 
survival (Kang et al. 2011). 

Because several ABC transporters are involved 
in detoxification and/or extrusion of environmental 
toxins and xenobiotics,  they are often expressed in 
plasma membranes of cellular layers lining internal 
or external surfaces, such as epithelia and endothelia 
(Glavinas et  al. 2004),  to protect organs and organ-
isms from the harmful effects of toxic compounds.

Cadmium (Cd)

Speciation

According to the International Union of Pure and 
Applied Chemistry (IUPAC), the chemical species 
of an element is the “specific form of an element 
defined as to isotopic composition, electronic or oxi‑
dation state, and/or complex or molecular structure” 
(McNaught and Wilkinson 1997). In the context 
of metals, these can be found in free ionic or bound 
states, with various donor ligands, and differing oxi-
dation states. More often than not, metals are present 
in multiple species that are ultimately determined by 
the composition of the surrounding environment, for 
example, inorganic ions/ligands, other metals, organic 
compounds, temperature and pH. Metal speciation 
changes its chemico-physical properties and thus has 
large impact on how animals, plants and humans are 
affected by metals and metals mixtures.

Cd is a soft metal and contains two valence elec-
trons in its outer shell therefore leading to +2 oxida-
tion state (Cd2+) in compounds, as these two elec-
trons are generally lost. It prefers forming stable 
complexes with soft donor atoms, such as S, N and 
O (Andersen 1984). In fact, Cd exhibits coordination 
numbers varying from three to eight in complexes 
with nucleobases, proteins, phosphoric groups, lipids, 
amino acids, sugars, vitamins, and thiols (Carballo 
et  al. 2013), amongst others. In humans, Cd compl-
exation with thiol groups [in cysteine and glutathione 
(GSH)] is of particular importance in its toxicology 
and pathophysiological effects. The multifaceted 
complexity of Cd speciation seems to have hampered 
systematic measurements of contaminated environ-
mental sources as well as in human bodily fluids and 
tissues.

Several studies highlight the variability of Cd spe-
cies present in atmospheric air, water and soils. In 
the atmosphere, Cd is found on particulate matter 
less than 2.5  µm in diameter (PM2.5), particularly 
in urban areas (Kermani et al. 2021; Li et al. 2022), 
primarily resulting from cigarette smoke and tyre 
wear dust. Industrial activities, such as incineration 
and metal production, release Cd in inorganic com-
pounds (CdCl2, CdS, CdSO4), or bioinorganic com-
plexes when organic material is present (Crea et  al. 
2013). In natural freshwater, ionic cadmium (Cd2+) 
represents approximately half of Cd species whereas 



Biometals	

1 3
Vol.: (0123456789)

in seawater, cadmium chloride complexes (CdCl+, 
CdCl2, CdCl3−) dominate (Crea et  al. 2013). Typi-
cal soils comprise of minerals, organic matter, water 
and air yet this varies greatly across different environ-
ments. Trace element speciation is usually affected by 
soil pH, minerals and organic matter but also by time/
aging, temperature and movement, and will determine 
the available amount of soluble and exchangeable 
Cd. Cd stabilization will decrease the exchangeable 
form and mobility of Cd and in turn decrease its bio-
availability, which has important consequences on its 
uptake into plants and other organisms. For example, 
increased chloride concentration results in increased 
Cd bioavailability to plants (Weggler et al. 2004), and 
low soil pH (Tian et  al. 2022), or soil flooding and 
drainage (Yan et al. 2021) increases exchangeable Cd. 
Due to the large variabilities in soil composition and 
thus their physicochemical properties, it is difficult to 
reconcile all observations reported and the reader is 
referred to the following reviews: (Crea et  al. 2013; 
Peana et al. 2021; Li et al. 2021).

In humans, knowledge about Cd speciation 
has primarily been derived from measurements 
made in blood plasma. A number of reports have 

demonstrated complexation of Cd in vitro or in vivo 
with organic molecules: MT, a zinc-binding protein, 
the antioxidant cysteine-containing tripeptide GSH, 
transferrin (Harris and Madsen 1988), cysteine, 
apolipoprotein A1 (Li et al. 2020), β2-microglobulin, 
albumin, lipocalin-2, and immunoglobulin G (Fels 
et  al. 2019) (Fig.  1). Intriguingly, Cd forms com-
plexes with bicarbonate and is transported by the 
HCO3

−/Cl− exchanger (SLC4A1) present in erythro-
cyte membranes in an anion exchange inhibitor DIDS 
(4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid)-sen-
sitive manner (Lou et  al. 1991), indicating bioinor-
ganic chemistry also contributes to Cd effects in the 
blood and beyond.

It is important to highlight the impact of organic 
molecules. In an exemplary study, Nair and Robinson 
predicted 97% Cd-chloro complexes and 3% free Cd 
in blood plasma of bivalves using an inorganic fluid 
composition. When a Cd-binding histidine rich gly-
coprotein was included, 86.8% was protein bound, 
11.6% was present as Cd-chloro complexes and 1.3% 
as Cd (Nair and Robinson 2000). Despite the complex 
and dynamic compositions of human bodily fluids, 
predictions made with key metal-binding molecules 
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Fig. 1   Cadmium speciation, target organs and ABC trans-
porter expression. Cadmium is present in the environment 
and in living organisms in different forms. Cadmium chlo-
ride (CdCl2) dissociates mostly into chloro-complexes. Once 
ingested, cadmium can bind to various ligands, including 
metallothionein (MT), beta-2-microglobulin (B2M), albumin 

(Alb), immunoglobulin G (IgG), lipocalin-2 (LCN2), and glu-
tathione (GSH). Organs and tissues affected by cadmium toxic-
ity and their ABC transporter expression are depicted. Based 
on current knowledge, it is not possible to allocate cadmium 
species as substrates to each specific ABC transporter. Please 
refer to the main text for details
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in the fluid composition would give crucial informa-
tion regarding the major Cd species and complexes.

Initial observations regarding Cd speciation and 
uptake into mammalian cells (renal proximal tubule 
LLC-PK1) demonstrated CdSO4 salts were more 
toxic than CdCl2 salts in serum- and bovine serum 
albumin (BSA)-free medium whereas no difference 
in uptake was observed  between the compounds in 
serum or BSA-containing medium. Furthermore, 
uptake into cells was dependent on protein uptake 
rates, therefore increased uptake was achieved in 
BSA-medium (~ 26%) in contrast to only ~ 17% 
uptake in serum-medium (Barrouillet et  al. 2001). 
Interestingly, pH did not affect Cd cytotoxicity even 
though higher pH levels result in increased Cd toxic-
ity in bacteria (Worden et al. 2009), further reiterating 
the need for advanced studies for analysis of Cd spe-
ciation in different biological systems.

Toxicity

Acute toxicity

The symptoms of acute high-dose Cd intoxica-
tion depend on the route of ingestion (reviewed 
in  (Thévenod and Lee 2013b)). Inhalation of fumes 
in an industrial setting affects the lungs and results in 
acute pneumonitis, pulmonary edema with respira-
tory failure, and possibly death (Yates and Goldman 
1990; Ellenhorn and Barceloux 1996; WHO 1992). 
Ingestion of high doses of Cd is rare and either acci-
dental or intentional. Acute high-dose Cd intoxication 
mainly damages the liver, which is the cause of death 
(Buckler et  al. 1986; Bernard and Lauwerys 1986; 
WHO 1992). Cardiovascular collapse may also occur 
with ensuing acute organ failure (kidneys, heart, 
lungs, liver), which may also cause death (Buckler 
et  al. 1986; Bernard and Lauwerys 1986; Ellenhorn 
and Barceloux 1996; WHO 1992). Acute Cd intoxica-
tion may also induce necrosis of the testes and other 
reproductive organs and result in infertility (Kumar 
and Sharma 2019; Siu et al. 2009). At the molecular 
level, oxidative stress plays a major role in cellular 
damage of these organs (Liu et al. 2008). Disruption 
of the cellular GSH system, inflammatory processes 
in the liver, and the Fenton reaction driven by iron 
mainly contribute to reactive oxygen species (ROS) 
formation in acute hepatotoxicity induced by Cd 
(reviewed in (Liu et  al. 2009)). Although no similar 

data are available for lungs, analogous molecular 
mechanisms may be responsible for acute pulmonary 
toxicity (Xiong et al. 2019).

Chronic toxicity

The kidneys and liver combined contain ~ 85% of the 
Cd body burden, and more than 60% was found in 
the kidneys in the age range of 30–60 years (Salmela 
et  al. 1983). The accumulation of Cd in the kidney 
and its very long biological half-life may explain the 
increased susceptibility of the kidney to the toxic 
effects of Cd (Buchet et  al. 1990; Jarup and Alfven 
2004). This may also account for increased incidence 
of chronic kidney disease and end-stage renal failure 
in populations with chronic low Cd exposure (CLCE) 
(Satarug 2018; Hellstrom et  al. 2001). Damage and 
dysfunction of many other organs are also induced 
by CLCE, such as the liver, respiratory system, bone, 
cardiovascular, reproductive and nervous system, 
endocrine glands, or hematopoiesis (Thévenod and 
Lee 2013b) (Fig. 1), which increases the risk of mor-
tality (reviewed in (Larsson and Wolk 2016)).

Teratogenic and epigenetic effects of environ-
mental Cd in humans and acute or chronic exposure 
(mainly subcutaneous or intraperitoneal injection of 
CdCl2) in experimental animals have been recently 
reviewed (Jacobo-Estrada et  al. 2017; Geng and 
Wang 2019; Lawless et  al. 2023). Exposure to Cd 
exposure during human pregnancy induces damage 
to the mothers (e.g. preeclampsia with kidney damage 
and secondary effects, such as imbalance of hormonal 
status, ion and fluid homeostasis, or bone calcifica-
tion). Cd also causes placental toxicity with oxidative 
stress and alterations of copper and zinc homeostasis 
in rodents. Abnormal fetal development also occurs 
(e.g. growth deficiencies; alterations of central nerv-
ous system, kidneys, liver and bone; increased oxi-
dative stress/impairment of anti-oxidative system; 
altered homeostasis of iron, zinc, copper and cal-
cium) (Jacobo-Estrada et  al. 2017). The coexistence 
of placental and embryonic toxicity of Cd in different 
species suggests similar toxicological mechanisms. 
Hence, comparable epigenetic alterations within 
cord blood, placenta, and fetal tissue upon Cd expo-
sure may lead to pregnancy complications, such as 
preeclampsia and poor fetal growth. These biologi-
cal disruptions viewed in the fetal and neonatal stages 
may lead to premature death of the fetus, persist into 
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childhood, but may also result in various systemic 
diseases during adulthood, such as hypertension, obe-
sity, and diabetes (Geng and Wang 2019). Further-
more, epigenetic alterations within germ cells pose 
multigenerational adverse effects on the reproductive 
system. Interestingly, sex-specific effects on epige-
netic mechanisms also occur, such as gene hyper-
methylation in male offspring and hypomethylation in 
females, as demonstrated in humans exposed to envi-
ronmental Cd (reviewed in (Lawless et al. 2023)).

Cd exposure has been linked to tumors of multi-
ple organs/tissues in humans and animals (reviewed 
in Nawrot et al. 2010; Huff et al. 2007; WHO 2019). 
An association between Cd exposure and the occur-
rence of cancer in the lung (Nawrot et  al. 2015; 
Adams et al. 2012) has led the International Agency 
for Research on Cancer (IARC) to classify Cd as a 
human carcinogen (WHO 2019; IARC 1993). Cd 
exposure in humans is also associated with increased 
incidences of renal cancers (Il’yasova and Schwartz 
2005; DFG 2006; reviewed in (WHO 2019)). The 
evidence for Cd-associated development of prostate 
cancer in humans is, however, less consistent (WHO 
2019; Verougstraete et  al. 2003). Case–control stud-
ies suggest that other cancer sites, such as the blad-
der, the mammary gland, and the endometrium may 
show increased risks associated with dietary or res-
piratory Cd exposure (Akesson et al. 2008; McElroy 
et  al. 2006; Kellen et  al. 2007; reviewed in (WHO 
2019)). Moreover, Cd can induce tumors of the lung, 
prostate, testis, pancreas, adrenals, liver, kidney, pitu-
itary, and hematopoietic system in mice, rats, or ham-
sters (reviewed in (Goyer et al. 2004; Huff et al. 2007; 
Waalkes 2003)).

Current evidence indicates that Cd is not directly 
genotoxic. Rather multiple indirect mechanisms 
underlie CLCE-induced carcinogenesis, such as alter-
ations in gene expression patterns, interference with 
the cellular DNA damage repair systems, and oxida-
tive stress (Hartwig 2013; Chen et al. 2019; Zhu and 
Costa 2020). Evidence for the latter mechanism is 
strong (reviewed in (Hartwig 2013; Nair et al. 2013; 
Nemmiche 2017)), although not uncontested (Liu 
et  al. 2009). Significant work emphasizes the con-
tribution of epigenetic mechanisms to CLCE-medi-
ated carcinogenesis (Waalkes 2003; Arita and Costa 
2009; Martinez-Zamudio and Ha 2011; Humphries 
et  al. 2016; Chen et  al. 2019; Zhu and Costa 2020; 
Zhao et  al. 2022) or interference with pro-apoptotic 

mechanisms (Thévenod and Lee 2013a; b; 2015; 
Chen and Costa 2017).

At the molecular and cellular level Cd interferes 
with redox and calcium signaling, and essential tran-
sition metal ion homeostasis, such as iron, copper, 
zinc and manganese, which has been described in 
detail elsewhere (Thévenod and Lee 2013a; Thévenod 
2009; Moulis 2010).

ABC transporters

General structure and function

The evolutionary-conserved ABC transporter super-
family is a large group of transmembrane (TM) 
transporters that utilize energy to translocate various 
substrates across membranes. Functional ABC trans-
porters typically consist of at least two TM domains 
(TMDs) and two nucleotide binding domains (NBDs) 
(Ambudkar et  al. 2003), either synthesized from 
a single polypeptide chain for a full transporter or 
from two separate chains with each forming a half 
transporter harboring one TMD and NBD that come 
together to form a full transporter (Baril et al. 2023; 
Alam and Locher 2023).

In the resting, pre-transport or apo-state, ABC 
transporters are typically found in a “triangular” 
inward-facing conformation where the bundles are 
in close proximity on the side where substrates are 
expulsed and the NBDs on the other side of the lipid 
bilayer are separated by up to approximately 40  Å. 
The substrate binding pocket is facing inward and 
may be open to both cytoplasm and inner leaflet of 
the lipid bilayer, as in the case of ABCB1/Pgp (Chen 
et al. 2001; Aller et al. 2009), but usually not to the 
extracellular compartment or the outer leaflet.

With a few notable exceptions, including the ion 
transporter ABCC7/CFTR and ion channel regula-
tors ABCB8, ABCC8, ABCC9, ABC transporters 
function as unidirectional exporters of multiple sub-
strates harnessing the energy from ATP hydrolysis to 
fuel conformational changes and substrate transport 
against energetically unfavorable concentration gradi-
ents. A diverse array of endogenous and physiologi-
cal substrates is recognized and translocated, contrib-
uting to homeostasis, transfer between compartments, 
cellular and tissue protection, and excretion of excess 
or unwanted compounds. Exogenous substrates and 



	 Biometals

1 3
Vol:. (1234567890)

xenobiotics are also translocated by some members 
of the ABC transporter family, which constitute the 
group of multidrug resistance transporters, of which 
ABCB1/Pgp, ABCC1/MRP1 and ABCG2/BCRP 
have the most significance. Together, they prevent 
passage of potentially toxic substances to protect sus-
ceptible tissues, such as the brain and testis (Glavinas 
et al. 2004; Leslie et al. 2005).

Mechanisms of substrate transfer

Movement of substrates from one side of the mem-
brane to another necessitates a coordinated sequence 
of events. Binding of the substrate(s) in the substrate 
binding pocket and ATP hydrolysis in the NBDs 
induce a conformational change and move the sub-
strate from high-affinity to low-affinity binding, from 
where the substrate is released into the surrounding 
space, facilitated by ATP hydrolysis or by the law of 
mass action, and the transporter returns to its pre-
transport state. Dynamic structural changes require 
strict choreography of the TMDs and the NBDs as 
well as maintaining its tertiary structure during these 
changes. Recent evidence from molecular dynam-
ics simulations support an increasing role of TMD-
connecting loops and linker regions in initiation and 
execution of the so-called catalytic or transport cycle 
through recognition sequences and elastic spring-like 
properties (Zolnerciks et  al. 2014; Khunweeraphong 
et  al. 2017; Dehghani-Ghahnaviyeh et  al. 2021; 
Locher 2016).

Several models have been proposed for the exact 
mechanism of substrate recognition and trans-
fer (Locher 2016). The simplest model describes 
substrate access from the aqueous phase, recogni-
tion and binding in the inward-facing confirmation 
and ATP hydrolysis-driven large structural change 
to the outward-facing conformation (van Meer 
et  al. 2006). Further concepts describe a “vacuum 
cleaner” model wherein substrates partition in the 
lipid bilayer and access the binding pocket from 
the hydrophobic portion of the membrane (Chen 
et al. 2001; Qu and Sharom 2002), or the “flippase” 
model wherein substrates partitioned in the lipid 
bilayer are taken up through the cytoplasmic leaf-
let and “flipped” to the other membrane side (Eck-
ford and Sharom 2005). Finally, it has been pro-
posed that ABC transporters continuously cycle and 

substrates stochastically access the binding pocket 
during the inward-facing confirmation phase (Eytan 
2005; Rauch 2011).

Since ABC transporters are largely found in lipid 
rafts within these membranes, it can be appreciated 
that lipid composition plays an integral role in their 
functionalization. Indeed, depletion of cholesterol 
and disruption of lipid rafts lead to loss of transport 
activity or reduction in ATP hydrolysis (reviewed 
in (Sharom 2014; Klappe et  al. 2009; Hendrich and 
Michalak 2003; Lee and Kolesnick 2017)).

Tissue expression and specific functions

Ubiquitously expressed ABC transporters provide 
essential functions in phospholipid and sterol homeo-
stasis (e.g. ABCA1, ABCA7), mitochondrial func-
tion (ABCB8, ABCB10), or fatty acid transport (e.g. 
ABCD3). For further details, the reader is referred 
to recent reviews (Alam and Locher 2023; Thomas 
and Tampe 2018; 2020) and Fig.  1. Below, spe-
cific expression and function in major epithelia are 
described.

Liver

The major functions of the liver are metabolism, 
detoxification, excretion, storage and synthesis of 
metabolic substances. Together with several solute 
carriers, the luminal canalicular membrane has the 
capacity to transport organic anions (ABCC2/MRP2, 
ABCG2/BCRP), bile salts and acids (ABCC2/MRP2, 
ABCB11/BSEP [bile salt export pump]), the hae-
moglobin degradation product bilirubin (ABCC2/
MRP2), organic cations (ABCB1/Pgp), and choles-
terol (ABCG5/MOAT-C, ABCG8) that make up the 
major components of bile (Kroll et al. 2021; Interna-
tional Transporter et al. 2010) (Fig. 1). At the hepato-
cyte basolateral membrane, the presence of ABCC4/
MOAT-B (bile acids and salts, GSH), ABCB4 
(phospholipids), ABCC3/MRP3/cMOAT2, ABCC4/
MOAT-B, (both drugs and metabolites), and ABCC6 
(ATP) permit extrusion of substrates into the extra-
cellular compartment and diffusion into the blood-
stream. Lastly, ABCC7/CFTR mediates chloride 
transport in the bile duct membrane to maintain fluid 
homeostasis.
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Respiratory tract and lung

The upper respiratory tract is continuously exposed 
to the harsh external environment through inhaled 
air. Accordingly, the luminal membrane of bronchial 
epithelial cells harbors multiple ABC transport-
ers involved in detoxification and drug resistance 
(ABCB1/Pgp, ABCC2-6, ABCC10-11) (Chai et  al. 
2017) (Fig.  1). ABCC1/MRP1 is found in the baso-
lateral membrane. ABCB1/Pgp also protects the air-
way epithelium from organic cations and the ABCC 
family members extrude organic anions. Creating an 
osmotic pressure through chloride transport, ABCC7/
CFTR is responsible for increasing fluidity of viscous 
mucus secretions (van der Deen et al. 2005). The role 
of ABCC4/MOAT-B is not clear; it has been postu-
lated to interact with ABCC7/CFTR to modulate 
cAMP signaling and potentiate ABCC7/CFTR activ-
ity (Nguyen et al. 2021).

Gastrointestinal tract

After mechanical, chemical and enzymatic break-
down of ingested food in the upper digestive tract, 
the small intestine is the major reabsorptive site for 
the transfer of essential energy-harboring substances 
from the lumen to the blood where they are further 
transported and processed for storage in the liver, fat 
and muscle. In addition, the intestine has a secretory 
and excretory function. Apical ABCB1/Pgp, ABCC2/
MRP2, and ABCG2/BCRP in the enterocytes remove 
unwanted substances into the intestinal lumen where 
they can be excreted from the human body (Dietrich 
et al. 2003; Mutch et al. 2004) (see Fig. 1). Basolat-
eral ABCC1/MRP1, ABCC3/c-MOAT2, ABCC4/
MOAT-B, and ABCB5/MOAT-C move substrates 
into the blood. Similar to the aforementioned epithe-
lia, ABCC7/CFTR is responsible for cAMP-depend-
ent chloride secretion and fluidity of secretions 
(reviewed in De Lisle and Borowitz 2013).

Kidney

Blood filtration, detoxification, excretion, salt and 
water homeostasis, and reabsorption are the main 
functions of the kidneys executed by the functional 
unit, the nephron. In the proximal tubule (PT)  of 
the nephron, ABCB1/Pgp extrudes organic cati-
ons whereas ABCC2/MRP2, ABCC4/MOAT-B 

and ABCG2/BCRP excrete organic anions into the 
tubular lumen for removal via the urine (Maser-
eeuw and Russel 2012; Torres et  al. 2021) (Fig.  1). 
All are expressed in the luminal membrane. Move-
ment of these substances from the blood is mediated 
by members of the solute carrier (SLC22) family 
(organic anion and cation transporters) (Nigam 2018) 
in the basolateral membrane. Other ABC transporters 
expressed along the nephron after the PT have a less 
significant role in the handling of organic substances 
(Masereeuw and Russel 2012; Torres et  al. 2021; 
Berg et al. 2021).

Blood‑tissue barriers

To sustain life, neurons and glial cells of the brain 
and germ cells in reproductive tissues need to be 
safeguarded against potentially damaging agents. In 
the blood-–brain-barrier, the endothelial cells in the 
blood vessels use luminal ABCB1/Pgp, ABCG2/
BCRP, ABCC4/MOAT-B, and ABCB5/MOAT-C 
to protect the brain (Miller 2010). With the excep-
tion of ABCB5/MOAT-C, the same transporters are 
expressed in the blood-retina-barrier (Chapy et  al. 
2016; Tagami et  al. 2009). The blood-testis-barrier 
is formed by Sertoli cells in the seminiferous tubules 
where sperm production takes place. ABCB1/Pgp, 
ABCC1/MRP1, ABCG2/BCRP, ABCC11, ABCC12 
in the Sertoli cells form the protective barrier for 
developing spermatozoa (Su et  al. 2011; Miller 
and Cherrington 2018). In contrast, ABCB1/Pgp, 
ABCC1/MRP1, ABCC2, and ABCG2 expressed 
in placental syncytiotrophoblasts serve to shield the 
developing fetus from damaging agents (Yamashita 
and Markert 2021) (Fig. 1).

Subcellular distribution

Generally, ABC transporters are found in the luminal 
membrane of polarized epithelial cells where they 
execute vectorial substrate transport into the extra-
cellular space. There are some exceptions to the rule, 
such as ABCC1/MRP1 in the basolateral membrane. 
In some cells and under some pathophysiological 
states, ABC transporters are also found in intracel-
lular membranes, such as trafficking vesicles, mito-
chondria, peroxisomes, Golgi or nuclei, depending 
on their substrate specificity and/or function. Their 
orientation within intracellular membranes is highly 
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likely determined by the presence of the NBDs in 
the cytosolic compartment where ATP is in abun-
dance. This has been experimentally evidenced for 
ABCB1/Pgp in acidic vesicles (Shapiro et  al. 1998; 
Yamagishi et al. 2013) in addition to ABCC1/MRP1 
(Jungsuwadee et al. 2009) and ABCB7 (Pearson and 
Cowan 2021) in mitochondria (reviewed in (Schae-
dler et al. 2015). Without organelle-specific localiza-
tion sequences (in contrast to mitochondria-targeted 
ABC transporters), how ABC transporters reach 
these unintended sites of expression is currently not 
known though cellular membrane dynamics, such as 
microvesicle biogenesis, endo-/exocytosis, interorga-
nellar communication or membrane lipid changes, are 
expected to be major contributing factors.

ABC transporters and Cd

ABCB1/Pgp

ABCB1/Pgp was first identified in drug-resistant cell 
lines, though subsequent studies ascertained it is, in 
fact, expressed physiologically, and not only under 
pathological conditions (Fojo et  al. 1987; Thiebaut 
et  al. 1987). Its expression is under transcriptional 
regulation (Scotto 2003; Lee et al. 2013) and subject 
to modifications by single nucleotide polymorphisms 
(SNPs) (Sauna et  al. 2007; Wolking et  al. 2015). 
ABCB1/Pgp is predominantly found at important epi-
thelial linings, sites of demarcation between “inter-
nal” and “external” environments in the body, as well 
as in capillary endothelial cells at the blood-brain 
and blood-testis barriers. Epithelial cells lining the 
gut, liver, kidney, pancreas in addition to endothelial 
cells in blood-tissue barriers express high levels of 
ABCB1/Pgp in a highly-polarized fashion directing 
expulsion of physiological metabolites and xenobiotic 
compounds into a secretory duct or luminal system 
for excretion from the body (Thiebaut et al. 1987) or 
into blood, protecting tissues from damage (Fromm 
2004).

Plasma membrane ABCB1/Pgp can transport 
a wide range of structurally-unrelated substrates 
directed towards the extracellular compartment: 
hydrophobic, amphiphilic, neutral or cationic com-
pounds ranging from 300 to 4000  Da (Ambudkar 
et al. 2003; Chen and Simon 2000; Shapiro and Ling 
1998; Alvarez et al. 1995; Aller et al. 2009). ABCB1/

Pgp is also a lipid translocase with broad specificity 
(van Helvoort et  al. 1996), extruding sphingomyelin 
(SM), glucosylceramide (GluCer), phosphatidylcho-
line (PC) and phosphatidylethanolamine (PE) (Eck-
ford and Sharom 2005; Lee et al. 2011; Lee and Kole-
snick 2017).

ABCB1/Pgp is found strongly expressed in intra-
cellular compartments. Numerous studies locate func-
tional ABCB1/Pgp to an acidic vesicular pool (Ger-
vasoni et  al. 1991; Shapiro et  al. 1998; Yamagishi 
et al. 2013; Crivellato et al. 1999) where it sequesters 
cytosolic drugs and is sensitive to pharmacological 
inhibition (Shapiro et al. 1998; Crivellato et al. 1999; 
Yamagishi et al. 2013).

Cd and ABCB1/Pgp

ABCB1/Pgp is sensitive to stress signaling pathways. 
Upregulation of ABCB1/Pgp upon Cd exposure has 
been well-evidenced starting from the first observa-
tion by the Gottesman group (Chin et al. 1990). Since 
then, several transcription factors activated by Cd 
to govern ABCB1/Pgp expression have been identi-
fied, such as nuclear factor-kappa B (Thévenod et al. 
2000), β-catenin/T-cell factor 4 (TCF4) (Chakraborty 
et  al. 2010), paired-like homeodomain transcrip-
tion factor 2 (PITX2) (Lee and Thévenod 2019), and 
c-myc (Thévenod et al. 2007), in addition to ABCB1/
Pgp protein stabilization through heat shock protein 
90 (Bertram et al. 1996).

Enhanced cell survival and decreased apoptotic 
cell death ensued elevated ABCB1/Pgp levels by Cd. 
Metal detoxification mediated by ABCB1/Pgp and 
other ABC transporters occurs in various models 
(e.g. (Callahan and Beverley 1991)), yet the under-
lying mechanism was not understood. To this end, 
it was hypothesized that Cd or Cd complexes would 
be effluxed by ABC transporters and hence remove 
toxic Cd to prevent cell death occurrence. In renal 
cell lines stably overexpressing ABCB1/Pgp, there 
are conflicting data alluding to the transport of Cd by 
ABCB1/Pgp. Sakata and colleagues used the porcine 
LLC-PK1 cell line transfected with human ABCB1/
Pgp (LLC-GA5-COL150). Initial studies demon-
strated enhanced accumulation of 109CdCl2 by up to 
twofold in LLC-PK1, LLC-GA5-COL150 and OK 
cells after preincubation with the functional ABCB1/
Pgp antibody UIC2 or pharmacological ABCB1/Pgp 
inhibitors. Unexpectedly, co-incubation of inhibitors 
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and 109CdCl2 did not result in 109CdCl2 accumulation 
in LLC-PK1 cells despite use  of a 100-fold excess 
of the competitive inhibitor verapamil (100 µM ver-
sus 1  µM 109CdCl2) (Endo et  al. 2002). In a further 
study using permeable supports, basolateral-to-apical 
transport of 109CdCl2 was augmented in LLC-GA5-
COL150 compared to parental cells and was attenu-
ated by the ABCB1/Pgp inhibitor cyclosporin A or 
UIC2 (Kimura et al. 2005). Both studies suggest Cd 
transport by ABCB1/Pgp though other effects of the 
modulators used cannot be ruled out.

In our own studies using MDCK cells stably 
overexpressing human ABCB1/Pgp or by increas-
ing ABCB1/Pgp by constitutively active β-catenin, 
no inhibitory effect of UIC2, cyclosporin A and val-
spodar/PSC833 on 109CdCl2 efflux after 15–30  min 
were observed despite accumulation of 109CdCl2 
into cytosolic and membrane fractions and rever-
sal of ABCB1/Pgp-mediated cadmium resistance 
by valspodar/PSC833 in cell viability assays (Lee 
et  al. 2011). Rather, the pro-apoptotic sphingolipid 
ceramide, and its glycosylated form glucosylcera-
mide, were effluxed ~ twofold more by ABCB1/Pgp-
MDCK compared to MDCK cells, and abolished by 
valspodar/PSC833 (Lee et al. 2011), which does not 
impact cellular ceramide levels per se (Dahdouh et al. 
2014). This is in line with ABCB1/Pgp’s function as 
a lipid translocase (van Helvoort et  al. 1996). Dis-
crepancies between the two sets of studies could be 
a result of different cell lines as well as differences 
in experimental procedures, such as pre-incubation 
versus co-incubation or washing cells to remove cell 
surface bound Cd. Examining the chemical nature 
of ABCB1/Pgp substrates, metal ions appear to be 
unlikely candidates because of their hydrophilicity 
and inorganic chemistry. Electrophysiological stud-
ies using the patch clamp method and substrate cavity 
mutation studies would provide definitive evidence 
for Cd transport by ABCB1/Pgp.

ABCB6

The ABCB6 half-transporter has several physio-
logical roles in various tissues. Research has largely 
focussed on its capability to transport porphyrins (for 
e.g. heme synthesis) in multiple cell types (Krishna-
murthy et  al. 2006; Kim et  al. 2022; Fukuda et  al. 
2016), its expression as the Langereis (Lan) blood 
group antigen on red blood cells (Helias et al. 2012), 

and its role in cell survival, primarily in cancer-
ous cells derived from the liver (Zhang et  al. 2020; 
Polireddy et  al. 2011) and blood (Yin et  al. 2023; 
Lynch et al. 2009). Emerging roles for ABCB6 have 
been linked to iron and iron-dependent cell death (fer-
roptosis) (Yin et al. 2023; Zhang et al. 2020) as well 
as offering protection against drugs (Minami et  al. 
2014; Murakami et  al. 2020) and oxidative stress 
(Lynch et al. 2009).

Similar to other ABC transporters, ABCB6 can 
transport a wide range of substrates, including por-
phyrin and GSH (Polireddy et  al. 2012). Substrate 
binding and substrate translocation seem to take place 
in two distinct cavities separated by a loop “plug”, 
serving as a restrictive barrier between an open cyto-
plasmic-accessible cavity-1, wherein substrates bind, 
and closed cavity-2, wherefrom substrates are translo-
cated to the opposite compartment. Hydrophobic and 
basic amino acids line cavity-1 creating a hydropho-
bic and positively-charged environment that is favour-
able for hydrophobic and negatively-charged mole-
cules (Song et al. 2021; Wang et al. 2020). In contrast 
to ABCB1/Pgp, the conformation of the TMD helices 
in ABCB6 prevents substrate uptake through the lipid 
membrane therefore ABCB6 recruits its substrates 
via the cytoplasmic side (Wang et al. 2020).

GSH is a tripeptide antioxidant particularly impor-
tant in detoxification and cellular stress prevention, 
for example, in metal exposures. GSH, in addition to 
its oxidized form glutathione disulfide (GSSG) and 
GSH conjugates, is transported by ABCC1/MRP1, 
ABCC7/CFTR, and ABCG2 (Brechbuhl et al. 2010) 
(and possibly ABCC2 and ABCC4; see “Other ABC 
transporters”). Hence, it was hypothesized GSH is 
also a substrate for ABCB6 based on similar sub-
strate binding pocket characteristics to ABCC1/
MRP1. Wang et al. demonstrated direct GSH binding 
to ABCB6 using bio-layer interferometry, yet ATPase 
activity was not altered by GSH alone. Rather, por-
phyrin binding and consequent ATPase activity was 
strongly enhanced in the presence of GSH (Wang 
et al. 2020). In contrast, Song et al. observed a ~ two-
fold increase in ATPase activity by GSH, which was 
abolished by mutation of substrate binding amino 
acids S322A and T323A (Song et al. 2021).

Functional ABCB6 was originally located to the 
outer mitochondrial and plasma membranes in human 
leukemia and glioblastoma cell lines (Krishnamur-
thy et al. 2006; Paterson et al. 2007). More intricate 
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subcellular fractionation using additional organelle 
markers revealed ABCB6 in integrin (for plasma 
membrane), complex III (for mitochondria) and 
LAMP1 (for lysosomes) positive fractions.

Conflicting discussions regarding transporter ori-
entation has led to further investigation of the sub-
cellular localization of ABCB6 in various models. 
Endogenous ABCB6 was found largely in apical early 
and late endosomes of intestinal cells in C. elegans 
(Kim et  al. 2018), in melanosomes and lysosomes 
in an MNT-1 melanocyte cell line (Bergam et  al. 
2018), in plasma membranes of mature erythrocytes 
and in plasma membrane, exosomes and endosomes 
in reticulocytes (Kiss et  al. 2012). Overexpression 
of rat ABCB6 in the human colon adenocarcinoma 
line LoVo resulted in labeling of endo-/lysosomes 
(Jalil et al. 2008) and overexpressed human ABCB6 
in COS7 cells were localized to the ER and Golgi 
(Tsuchida et  al. 2008), and to the endo-lysosomal 
compartment in SNB-19 glioblastoma cells (Rakvacs 
et al. 2019). Transient overexpression has come under 
scrutiny since it is not known whether the reported 
organelles are the final destination for ABCB6 or 
whether overactive expression leads to a backlog in 
the synthesis pathway, resulting in false positive sig-
nals for ABCB6.

Cd and ABCB6

With sequence homology to heavy metal toler-
ance factor 1 (HMT1) found in Caenorhabditis ele‑
gans (Schwartz et  al. 2010) and other invertebrates, 
ABCB6 is considered as its human ortholog. Analo-
gous to stress-sensitive ABC transporters, ABCB6 
acts protectively against various stressors like perox-
ide and cyanide (Lynch et  al. 2009), drugs (Minami 
et  al. 2014) as well as selected metals (arsenite and 
Cd but not arsenate or copper) (Rakvacs et al. 2019; 
Kim et al. 2018). Multiple mechanisms appear to be 
involved in conferring protection. The simplest mech-
anism is accumulation of Cd and/or Cd complexes 
into organelles or extrusion across the plasma mem-
brane to the extracellular side. Indeed, Cd was found 
in vacuoles when SpHMT1/ABCB6 was expressed 
in the fungus Schizosaccharomyces pombe, confirm-
ing previous observations of vacuolar SpHMT1/
ABCB6 expression (Ortiz et  al. 1995). Further-
more, SpHMT1/ABCB6 could rescue Cd toxicity in 
SpHMT1/ABCB6-deficient strains, wherein vacuolar 

Cd was diminished (Rakvacs et  al. 2019). Intrigu-
ingly, ABCB6 overexpression conferred tolerance to 
Cd in glioblastoma cells, yet not in HeLa cells, and 
ABCB6 ATPase activity was not stimulated by Cd-
GSH complexes (Rakvacs et  al. 2019). Additional 
studies are required to ascertain the speciation of Cd 
that is transported by ABCB6 into endo-/lysosomes.

Localization of ABCB6 to endosomal recycling 
vesicles led to the hypothesis that it could take up 
potentially toxic by-products of Cd-heme interactions 
and extrude them from the cell (Kim et  al. 2018). 
Finally, genetic manipulation of ABCB6 revealed 
positive regulation of expression and activity of cata-
lase, a heme-containing enzyme that catalyzes the 
decomposition of hydrogen peroxide (Baker et  al. 
2023), suggesting increased availability of heme—
as a direct result of ABCB6-mediated porphyrin 
transport—stabilizes catalase and thus provides aug-
mented protection against oxidative stress (Lynch 
et al. 2009). This mechanism could be implicated in 
Cd toxicity, in which oxidative stress partly through 
inhibition of catalase is elicited (Lee et  al. 2024; 
Probst et al. 2021).

ABCC1/MRP1 (MRP1/multidrug 
resistance‑associated protein 1)

The multidrug resistance-associated proteins are 
members of the C subfamily of ABC transporters. 
The subfamily ABCC contains thirteen members 
and nine of these transporters are referred to as the 
multidrug resistance proteins (MRPs). The MRP pro-
teins are known to be involved in ion transport, toxin 
secretion, and signal transduction (Borst et al. 2000; 
Vore 2023), yet the physiological functions of many 
of them require further investigation. Some MRPs 
function as organic anion exporters and appear to 
have broad and partially overlapping substrate speci-
ficity. MRP1 encoded by ABCC1 was originally 
discovered as a cause of MDR in tumor cells (Cole 
et al. 1992), reviewed in (Cole 2014b). Although their 
degree of sequence homology is modest, the drug 
resistance pattern of ABCC1/MRP1 is much like that 
of ABCB1/Pgp and includes doxorubicin, daunoru-
bicin, vincristine, colchicine and several other com-
pounds (Xiao et  al. 2021). However, it is now clear 
that ABCC1/MRP1 serves a broader role than simply 
mediating the ATP-dependent efflux of drugs from 
cells. The physiological substrate profile of ABCC1/
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MRP1 differs significantly from that of ABCB1/Pgp 
(Sharom 2011; Cole 2014a). While ABCB1/Pgp sub-
strates are neutral or cationic lipophilic compounds, 
ABCC1/MRP1 can transport lipophilic anions like 
leukotriene C4, glucuronate conjugates and sulfated 
bile acids. In addition, ABCC1/MRP1 takes GSH-
conjugates as substrates, a property it shares with 
most other C subfamily members (MRPs) (Ballatori 
et  al. 2009). ABCC1/MRP1 is widely expressed in 
various tissues, including the respiratory system and 
gastrointestinal tract (as main entry pathways for 
entry of Cd and Cd-complexes), testis, kidney, heart, 
placenta, and to a lesser extent in the liver (Bakos and 
Homolya 2007; https://​www.​prote​inatl​as.​org/​ENSG0​
00001​03222-​ABCC1/​tissue). Moreover, contrary to 
ABCB1/Pgp, ABCC1 is expressed in the basolateral 
membrane in polarized epithelial cells.

Cd and ABCC1

The ABC transporter yeast cadmium resistance fac-
tor 1 (YCF1), the yeast ortholog of mammalian 
ABCC1 and ABCC2, mediates transport of GSH 
and bis(glutathionato)Cd, thereby conferring Cd 
resistance by its elimination from the cytosol and 
intracellular compartmentation into the yeast vacu-
ole (Li et  al. 1997). Human ABCC1/MRP1 can res-
cue Cd transport activity in a YCF1 deletion strain 
(Tommasini et  al. 1996). Therefore, it is very  likely 
that ABCC1/MRP1 is an efflux pump for Cd-GSH 
complexes.

This hypothesis is supported by the observa-
tion that inhibition of Abcc1 by MK571 results in 
increased tissue accumulation of Cd in zebrafish 
exposed to low micromolar Cd concentrations, as 
does Abcc1 knockout (Tian et al. 2017). Interestingly, 
ABCC1/MRP1 (as well as ABCC2) has been proven 
to transport arsenite (As3+) as a triglutathione con-
jugate, and with an apparent Km of 0.32 μM (Leslie 
et al. 2004). Recently, Grau-Perez et al. (Grau-Perez 
et al. 2021) investigated genetic determinants of urine 
Cd in American Indian adults. They found strong sta-
tistical evidence for a genetic locus at chromosome 
16 determining urine Cd concentrations. Among the 
top 20 associated SNPs in this locus, 17 were anno-
tated to ABCC1, supporting that urinary Cd levels 
are heritable and influenced by a quantitative trait 
locus (QTL) linkage on chromosome 16, which  may 
be  explained by genetic variation in ABCC1. Yet, it 

would be useful to directly show that ABCC1/MRP1 
transports Cd, e.g. by radioactive tracer studies.

ABCC7 (CFTR/cystic fibrosis transmembrane 
conductance regulator)

Based on its structure, function and regulation, CFTR 
is an ABC transporter (ABCC7) (Liu et  al. 2017); 
reviewed in (Csanady et al. 2019; Thomas and Tampe 
2020)). However, ABCC7/CFTR is a unique ABC 
transporter because it functions as a low conduct-
ance Cl−-selective channel gated by cycles of ATP 
binding and hydrolysis at its NBDs, and conduct-
ing Cl− anions down their electrochemical gradi-
ent, whereas most ABC transporters transport their 
substrates against a chemical gradient under ATP 
hydrolysis. ABCC7/CFTR-mediated anion flow is 
needed for normal function of secretory epithelia and 
the channel protein is located primarily in the api-
cal membrane of polarized epithelial cells (Crawford 
et  al. 1991; Denning et  al. 1992), such as those lin-
ing airways, the intestinal tract, pancreas, bile ducts, 
testes, sweat glands and kidney (Gadsby et al. 2006). 
ABCC7/CFTR is tightly regulated by an intrinsically 
disordered protein segment, which contains multi-
ple consensus phosphorylation sites and is termed 
the regulatory domain (Bozoky et  al. 2013). Muta-
tions in the ABCC7/CFTR gene cause cystic fibrosis 
(CF), the most common fatal hereditary lung disease 
among people of Northern European ancestry (Wang 
et al. 2014).

Cd and ABCC7/CFTR

Cd affects gating and inhibits ATP hydrolysis of 
ABCC7/CFTR without being transported (Annereau 
et  al. 2003; El Hiani and Linsdell 2014). Similar to 
other members of the ABC protein family, ABCC7/
CFTR mediates GSH export from cells (Kogan et al. 
2003; Linsdell and Hanrahan 1998). GSH is the 
major antioxidant in the extracellular lining fluid of 
the lung; consequently, reduced GSH transport due 
to ABCC7/CFTR mutations may contribute to the 
pathology of CF (Roum et  al. 1993). Accordingly, 
the prooxidant Cd and antioxidant  GSH have oppo-
site effects on redox signaling and affect ABCC7/
CFTR channel gating accordingly (Harrington et  al. 
1999). Concerning possible Cd transport function of 
ABCC7/CFTR, low micromolar concentrations of Cd 

https://www.proteinatlas.org/ENSG00000103222-ABCC1/tissue
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trigger ABCC7/CFTR-like Cl− currents and ABCC7/
CFTR-mediated GSH efflux in primary renal PT cells 
(L’Hoste et al. 2009). Once activated, ABCC7/CFTR 
appears to transport GSH and Cd-GSH conjugates 
because the authors showed that ABCC7/CFTR is 
directly involved in the efflux of Cd by comparing Cd 
efflux in cftr+/+ and cftr−/− cultured  cells, and the Cd 
efflux rate is correlated to the intracellular concentra-
tion of GSH. In PT cells, the increase of GSH per-
meation through ABCC7/CFTR could have at least 
two consequences: (1) direct exit of Cd-GSH conju-
gates that could contribute to a rapid detoxification 
of PT cells by pumping out cytosolic Cd; (2) deple-
tion of GSH that decreases the capacity of the cell to 
scavenge ROS produced by free Cd. Based upon their 
findings, the authors hypothesized that ABCC7/CFTR 
may extrude Cd-GSH as previously described in the 
case of the yeast cadmium resistance factor YCF1 (Li 
et  al. 1997). However, it should be emphasized that 
L’Hoste et  al. (L’Hoste et  al. 2009) did not provide 
direct  experimental evidence for ABCC7/CFTR-
mediated Cd-GSH transport. Sequence comparison 
of selected ABC transporters, such as ABCB1/Pgp, 
ABCC1/MRP1, ABCC2, ABCC7/CFTR, and YCF1 
proteins suggested that CFTR/MDR-like proteins 
(ABCB1/Pgp, ABCC7/CFTR) lack an N-terminal 
hydrophobic membrane-bound domain (TMD0) and 
a “lasso” motif (L0 linker) that both may be crucial 
for transport of typical organic anionic substrates, 
such as GSH (Tusnady et  al. 1997). However, sub-
sequent work did not confirm a role for TMD0 in 
GSH transport by ABCC1/MRP1 (Bakos et al. 1998). 
However, ABCC7/CFTR displays a L0 lasso motif 
that resembles that of ABCC1/MRP1 and could play 
a role in GSH transport and Cd resistance (Mason and 
Michaelis 2002).

ABCG2 (BCRP/breast cancer resistance protein)

ABCG2/BCRP is highly expressed in the luminal 
membrane of the intestine and renal tubule, endothe-
lial cells of the blood-brain-barrier, smooth muscle 
cells and reproductive tissue, in particular in  syncy-
tiotrophoblasts, the transporting epithelium of the 
placenta, and glandular cells of the seminal vesicle. 
Furthermore, together with ABCB1/Pgp and ABCC1/
MRP1, it is widely reported to be upregulated in mul-
tidrug resistant cancers from various tissue origins 
(Litman et al. 2000; Natarajan et al. 2012), with focus 

on breast cancer in which it was discovered (Modi 
et al. 2022; van der Noord et al. 2023). The spectrum 
of substrates transported by ABCG2/BCRP is very 
broad and overlaps substantially with, yet is distinct 
from, ABCB1/Pgp and ABCC1/MRP1. ABCG2/
BCRP favors organic anions, including sulfated GSH 
and glucuronide conjugates. It also transports sev-
eral chemotherapeutics and tyrosine kinase inhibitors 
(Mao and Unadkat 2015).

Cd and ABCG2/BCRP

With abundant ABCG2/BCRP expression, the pla-
centa has been the major focus of Cd in relation to 
this ABC transporter. Forming a filter, safety bar-
rier as well as the site of nutrient/waste/signal-
ing exchange, the syncytiotrophoblasts have to be 
well-equipped to perform these functions. Indeed, 
11 members of the ABC transporter family and 9 
members of the solute carrier (SLC) family have 
been confirmed in this tissue (Walker et  al. 2017; 
Taggi et al. 2022). In a study employing quantitative 
targeted proteomics, ABCG2/BCRP and ABCB1/
Pgp were the most abundant ABC transporters in 
human placental membranes with highest expression 
in the first trimester and decreasing by 55 and 69%, 
respectively, at full term (Anoshchenko et  al. 2020). 
Analogous to the renal PT, the plethora of transport-
ers makes the placenta susceptible to metal toxicity 
as there are many ways to cross the cell membrane. 
Accumulation of Cd in the placenta compared to the 
urine and umbilical cord blood has been reported 
in both rodents and humans (Kippler et  al. 2010; 
Jacobo-Estrada et al. 2017; Laine et al. 2015; Piasek 
et al. 2014) and can affect the uptake of essential ions, 
such as zinc (Kippler et al. 2010). Placental ABCG2/
BCRP seems to be negatively affected by Cd, which 
reduces functional activity, though not necessary in 
parallel with attenuated expression (Kummu et  al. 
2012; Liu et  al. 2016). Moreover, infants harboring 
the reduced function ABCG2/BCRP polymorphism 
C421A (Q141K) suffered from retarded fetal devel-
opment, smaller placentas and increased placental 
Cd (Barrett et  al. 2023). In ABCG2/BCRP-overex-
pressing HEK293 cells treated with 0.5 µM CdCl2 for 
30  min and incubated for 60  min after Cd washout, 
less Cd was accumulated compared to empty vec-
tor.  In support, kidneys from Abcg2−/− mice injected 
with 5.5  mg/kg CdCl2, i.p., Cd accumulation was 
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augmented, suggesting Cd is transported by ABCG2/
BCRP (Wen et  al. 2021). Moreover, oxidative stress 
markers and consequent apoptotic cell death induced 
by Cd were reduced in ABCG2/BCRP-expressing 
HEK293 cells compared to empty vector or ABCG2/
BCRP-Q141K transfected cells (Wen et  al. 2021). 
The speciation of the Cd that is hypothetically 
transported is not known. Previous transport stud-
ies imply GSH is not a substrate of ABCG2/BCRP 
(Gauthier et  al. 2013) and more recent structural 
studies point to ABCG2/BCRP transporting sub-
strates that are generally polycyclic and hydropho-
bic in nature proffered by two cholesterol molecules 
bound in the substrate pocket (Taylor et al. 2017; Yu 
et al. 2021), which do not reconcile with the chemis-
try of Cd. Alterations of ABCG2/BCRP may impact 
the cellular response to Cd and/or the expression of 
other transporters involved in Cd uptake and efflux, 
though Oct2/Slc22a2, Dmt1/Slc11a2, Zip8/Slc39a8, 
Zip14/Slc39a14, Mate1/Slc47a1 and Abcb1a/b tran-
scripts were not affected in Abcg2−/− mice (Wen et al. 
2021). An alternative explanation is the transport 
of an as-yet-unidentified substrate, which binds or 
affects Cd accumulation.

Other ABC transporters

In placental tissue of Cd-treated rats, ABCB4/MRP3 
was identified as a Cd target by differential gel elec-
trophoresis (DIGE) combined with matrix-assisted 
laser desorption/ionization time-of-flight tandem 
mass spectroscopy (MALDI-TOF/TOF MS). Down-
regulation of ABCB4 by Cd was confirmed by immu-
noblotting (Liu et  al. 2016). Little is known about 
ABCB4, though it has been implicated in cancer pro-
gression and multidrug resistance as well as in phos-
pholipid transport in the liver. Mutations in ABCB4 
result in diseases associated with defective gall blad-
der function and reduced bile flow (cholestasis) (Sti-
cova and Jirsa 2020).

Interestingly, Cd-resistant fibroblast-like zebrafish 
(ZF4-Cd) cells show increased expression of abcc2 
and abcc4 (but not abcc1) and exhibit decreased Cd 
content, enhanced MK571-dependent accumula-
tion of MRP substrates calcein-AM and rhodamine 
123 along with increased cellular GSH compared 
to Cd-sensitive cells as well as cross-resistance to 
mercury, arsenite and arsenate. This  suggests that 
ABCC2/4 transporters are involved in the efflux of 

Cd conjugated with cellular GSH and thus play cru-
cial roles in Cd detoxification of zebrafish cells (Long 
et al. 2011). In a subsequent study, functional expres-
sion of ABCC2/MRP2 and ABCC1/MRP1 was stud-
ied in zebrafish embryos at time points between 4 and 
72 h post-fertilization, which increased with time and 
correlated with an increased tolerance to the toxic-
ity caused by CdCl2. Moreover, MK571 significantly 
inhibited the efflux (as measured by atomic absorp-
tion spectrometry of Cd in the lysates) of Cd and 
increased its toxicity in zebrafish embryos (Yin et al. 
2016).

Concluding remarks and outlook

With the exception of ABCB6 (Rakvacs et al. 2019) 
and ABCC1/MRP1 (Tommasini et  al. 1996; Tian 
et al. 2017) (see Fig. 2), only weak evidence for efflux 
of Cd by mammalian ABC transporters exists. Hence, 
further research is required to clarify Cd transport by 
other ABC transporters and the transported chemical 
form, i.e. either as free ion or complexed to organic 
substrates of these ABC transporters (Fig. 2).

It is striking that with both ABCB6 and ABCC1/
MRP1, Cd efflux may only occur when it forms a 
complex with their physiological substrate, the trip-
eptide GSH (see “Cd and ABCB6” and “Cd and 
ABCC1”). Thus, this could represent a strategy for 
Cd detoxification. Indeed, this concept is not novel 
(Singhal et al. 1987), but has not been systematically 
investigated in vivo. The mechanism of detoxification 
may hence involve ABC transporter-mediated efflux 
of Cd-GSH complexes. Consequently, GSH syn-
thesis could be promoted by various means, includ-
ing addition of N-acetylcysteine (NAC) (Yim et  al. 
1994; Whillier et  al. 2009). Indeed, sporadic studies 
have confirmed the practicability of this therapeutic 
approach (Gil et al. 2011).

However, two caveats need to be considered: (1) 
Cd interferes with enzymes involved in the GSH anti-
oxidant system (reviewed in Waisberg et  al. 2003; 
Thévenod 2009) and  (2) this detoxification strategy 
could preferentially be useful for acute Cd intoxica-
tion, as GSH synthesis from NAC is rapid and occurs 
within minutes (Whillier et  al. 2009). Moreover, a 
problem with chronic Cd intoxication is the induc-
tion of Cd-chelating MT within cells, which leads to 
accumulation of potentially toxic high intracellular 
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Cd concentrations (Sabolic et  al. 2010). The affin-
ity of MT to Cd is significantly higher (~ 10-14  M) 
(reviewed in (Romero-Isart and Vasak 2002) than that 
of GSH (~ 10-10  M) (Perrin and Watt 1971), which 
could avert removal of Cd from cells via complexa-
tion with GSH and ABC transporter-mediated efflux.

An interesting clinically relevant approach is treat-
ment of acute Cd intoxication in rats with water-
dimercaprol (British anti-Lewisite) (Bernhoft 2013), 
the Cd chelating agent 2, 3-dimercapto-1-propane 
sulfonic acid (DMPS), in combination with cysteine 
or NAC, which improves Cd mobilization from extra-
renal tissues (e.g. liver) (Tandon et  al. 2002) com-
pared to DMPS alone, suggesting that ABC trans-
porter-mediated Cd efflux could contribute to Cd 
removal from those tissues by combined treatment. 
Unfortunately, Cd removal from the kidneys was not 
improved, indicating that Cd  mobilized from other 
body sites was redistributed to the kidneys.

Another potentially clinically relevant issue 
is the observation that the ABCG2 genetic vari-
ant Q141K exhibits altered membrane trafficking, 

which results in reduced efflux of ABCG2/BCRP 
substrates, including Cd (see “Cd and ABCG2/
BCRP” and (Wen et  al. 2021). Individuals exhib-
iting the ABCG2 genetic variant Q141K could be 
more sensitive to chronic exposure to Cd by food, 
tobacco smoking and environmental pollution and 
hence Cd  toxicity of the kidneys and other organs 
(including intestinal tract, brain, and placenta).

Nevertheless, it remains mandatory to elucidate 
other mechanisms of Cd efflux by ABC transport-
ers, either as free Cd or as Cd complexed to other 
yet unknown molecules (see Fig. 2), for detoxifica-
tion purposes.
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Fig. 2   Synopsis of cadmium-transporting ABC transporters. 
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to glutathione (Cd-GSH) or yet unidentified cadmium-com-
pounds (Cd-X) has been reported for ABCB1/Pgp, ABCB6, 
ABCC7/CFTR and ABCG2/BCRP in the luminal membrane 
of epithelial cells. ABCC1 transports Cd-GSH across the baso-

lateral membrane. Intracellular ABCB1/Pgp and ABCB6 have 
been localized to mitochondria and/or lysosomes where they 
could also potentially mediate transport of Cd2+ and Cd-GSH 
into the organelles. “(?)” indicates a postulated mechanism 
without definitive proof. Please refer to text for further details 
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