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DOM (FDOM) component. We developed a parallel 
factor analysis (PARAFAC) model for the deconvo-
lution of FDOM data allowing to depict six underly-
ing FDOM constituents, which varied in source and 
biogeochemical reactivity on spatiotemporal scales. 
Tributary DOM, in comparison to lake DOM, was 
much more aromatic, of larger molecular weight, 
more humic, and contained less protein-like material. 
The distribution of humic and protein-like PARAFAC 
components was impacted by land-use and waste-
water influences. Supporting characterization of the 
chromophoric DOM (CDOM) and total DOM (on 
dissolved organic carbon basis) allowed differenti-
ating the influence of wetlands, which could not be 
depicted by spatiotemporally assessing the variabil-
ity of PARAFAC components. Temporal assessment 
revealed minor variabilities in tributary DOM quan-
tity and quality except in cases of point sources such 

Abstract Lake George (LG) is a temperate, oli-
gotrophic, medium-sized lake (114   km2) located in 
northeastern New York State (U.S.). Lakes are highly 
understudied environments where extensive dissolved 
organic matter (DOM) processing occurs. With this 
study we establish the foundation for researching the 
organic biogeochemistry of the LG watershed, in par-
ticular, the numerous tributaries flowing into the lake. 
Collected were 213 samples from 64 tributaries and 
12 lake locations. Some of the tributaries had unique 
wastewater, agricultural, or wetland influences. We 
employed fluorescence spectroscopy, a common bio-
geochemical technique, to characterize the fluorescent 
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as wastewater treatment facilities. Overall, this primer 
study establishes baseline understanding of the base-
flow levels of DOM constituents in the LG watershed, 
and more broadly, presents a PARAFAC model for 
the deconvolution of fluorescence spectra of DOM 
from temperate and oligotrophic lake watersheds such 
as LG.

Keywords Temperate watershed · Parallel factor 
analysis · Oligotrophic lake biogeochemistry

Introduction

Dissolved organic matter (DOM) is considered to 
be one of the most reactive and dynamic pools of 
organic material in the Earth’s system (Hansell and 
Carlson 2015; Hedges 2002). Lakes have key repro-
cessing functions in the global biogeochemical cycles 
of DOM (Tranvik et  al. 2009): In these environ-
ments, DOM is transformed into atmospheric gasses 
and molecular by-products via various photochemi-
cal, microbial, and other processes (e.g., dark Fenton 
reactions). These by-products (“reprocessed DOM”) 
are later exported to the global oceans via rivers or 
sequestered in lake sediments via flocculation and 
complexation processes. The magnitude of lake out-
gassing and DOM burial is on the same magnitude 
of carbon sequestration in the  oceans (Tranvik et al. 
2009) indicative of the importance of lake biogeo-
chemistry. However, the dynamics of DOM in lake 
systems remain understudied even for the largest 
lakes on Earth (Minor and Oyler 2021; Queimalinos 
et al. 2019; Zhou et al. 2016).

The focus of this study is Lake George (LG), a 
temperate, oligotrophic, medium-sized lake (114 
 km2) in northeastern New York State (U.S.). It is 
nicknamed the “Queen of American Lakes”. LG is 
a natural reservoir in a heavily forested watershed 
with a sporadic abundance of wetlands, agricultural 
farms, and urban developments. LG is a popular rec-
reational and tourist destination and its watershed is 
10% developed at present (Swinton et al. 2015). The 
urbanized areas contain old septic systems (Harrison 
et  al. 2021), which, in addition to three wastewater 
treatment facilities (WWTFs), contribute to enrich-
ment of DOM with biological material and nutrients 
(Lusk et al. 2017). The LG watershed contains at least 
140 tributaries (Sutherland et al. 2001), which range 

in size and discharge, and provide a unique opportu-
nity to study how DOM in temperate and oligotrophic 
lake systems is impacted by watershed characteristics 
(e.g., presence of wetlands) or anthropogenic activi-
ties (e.g., wastewater seepage, agriculture). LG has 
been extensively studied for more than 50 years via its 
monitoring programs conducted by the Darrin Fresh 
Water Institute. This institute was established with the 
primary goal to monitor water quality for sustaining 
the lake’s health and identifying key issues requiring 
scientific research to prevent ecological decline in the 
LG watershed. The majority of previous LG research 
was focused on nutrient loadings (nitrogen, phospho-
rus) along with introduced fish and plant species, but 
later the LG research program expanded to road salt 
and other contaminants (Boylen et  al. 2014). The 
onset of the “Jefferson Project” (https:// dfwi. rpi. edu/ 
jeffe rson- proje ct- lake- george) spurred the probing of 
lake biogeochemistry using in-situ sensors, as well as 
studying various other biogeochemical and ecological 
aspects such as harmful algal blooms. LG is aimed 
to become a “smart lake” due to the extensive in-situ 
monitoring of the lake, streams, and weather that has 
yielded a large abundance of research data.

Fluorescence sensors are one of the tools that 
have been used for historic monitoring of LG water 
quality. However, the composition of the fluorescent 
DOM (FDOM) fraction is complex and usually con-
tains multiple underlying components. In this study, 
we identify and quantify these components using par-
allel factor analysis (PARAFAC) modeling, a com-
mon approach for deconvoluting excitation-emission 
matrix (EEM) fluorescence spectra of DOM (Bro 
1997). We particularly focus on assessing FDOM in 
the tributaries of LG and hypothesize that FDOM 
composition will vary during different seasons (tem-
porally) and with different land use (spatially) as 
there are tributaries affected by agriculture, wastewa-
ter, and wetlands. The fieldwork was planned strategi-
cally to enhance the PARAFAC model for successful 
deconvolution of tributary EEM spectra. We con-
textualize FDOM composition with bulk DOM and 
chromophoric DOM (CDOM) measurements as dis-
solved organic carbon (DOC) and ultraviolet–visible 
spectra, respectively. Evaluating the composition of 
FDOM in the LG watershed will enhance the knowl-
edge of biogeochemistry of temperate lake water-
sheds and determine how different watershed features 
impact the reactivity and cycling of DOM, which 

https://dfwi.rpi.edu/jefferson-project-lake-george
https://dfwi.rpi.edu/jefferson-project-lake-george
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impact lake ecology and water quality. Furthermore, 
the developed PARAFAC model and resultant knowl-
edge of FDOM composition will allow for a better 
understanding of in-situ fluorescence data in future 
studies, which will provide a much more detailed 
picture of the spatiotemporal variability of DOM in 
this watershed. More broadly, as fluorescence spec-
troscopy is a highly popular analytical method to 
characterize tributary and lake waters, our developed 
PARAFAC model would be useful for deconvoluting 
EEM data and providing biogeochemical insights for 
other oligotrophic lake environments in temperate 
and even boreal forested environments similar to the 
LG watershed.

Materials and methods

Description of LG watershed and sampling sites

LG (43° 35′ N, 73° 35′ W) is a deep, dimictic, oli-
gotrophic lake in the Adirondack Mountains 
region of New York State, USA (size = 114   km2, 
mean depth = 18  m; maximum depth = 58  m; vol-
ume = 2.1   km3; Aulenbach et  al. 1981, Boylen et  al. 
2014). The watershed geology is mostly shallow 
sandy till overlaying bedrock, with many granite out-
crops and large boulders. It has a small drainage area 
of 492   km2 and receives 57% of its water as surface 
water inflow from tributaries, 25% from precipita-
tion directly on the lake, and 18% from groundwater 
(Shuster et  al. 1994). The catchment is heavily for-
ested with some urbanization around the lake’s shore-
line. There are 3 WWTFs as well as multiple wet-
lands and several horse farms. Further details on Lake 
George and its watershed can be found in Boylen 
et al. (2014) and Harrison et al. (2021).

There are 11 major tributaries (Northwest Bay 
Brook, Indian Brook, Hague Brook, West Brook, 
English Brook, Shelving Rock, Finkle Brook, East 
Brook, Sucker Brook, Pole Hill Brook, and Sunset 
Brook), and the remaining ~ 130 are minor, with ~ 50 
being ephemeral. For this study, 64 tributaries of var-
ious sizes were sampled (Fig. 1), with some sites hav-
ing unique wastewater, agricultural, or wetland influ-
ences. These influences are determined empirically 
based on the location of the tributary and sampling 
point (e.g., tributaries sampled downstream of a wet-
land are categorized as “wetland-influenced”). Most 

tributaries were sampled near the shoreline. Several 
major tributaries were sampled at numerous locations 
along their length. The lake itself was sampled at 12 
pelagic locations. The final dataset contained 213 
samples and 5 procedural blanks. Fieldwork consisted 
of 4 major sampling expeditions (one in November 
2020, two in May 2021, and one in September 2021) 
and 4 minor sampling expeditions (one in August 
2020, one in July 2021, one in September 2021, and 
one in October 2021). All sampling trips were at least 
5  days after a rain event to ensure baseflow DOM 
conditions. Stream hydrographs (if available) were 
checked to additionally confirm that water levels are 
at baseflow conditions. The numerous different trib-
utaries that were sampled in the 8 fieldwork expedi-
tions allowed for obtaining a sufficient spatiotemporal 
diversity of FDOM inputs into LG, which enhanced 
the dataset variance and improved the PARAFAC 
deconvolution (see “Parallel factor analysis (PARA-
FAC) modeling”  section of the SI). The supplemen-
tary Excel file contains information for all samples 
(labeled EEM 1 through EEM 218) such as the name 
of the tributary/site they were collected from, any 
specific influences (wetland, agriculture, wastewater), 
date/time of collection, as part of which sampling 
trip, and site characteristics from StreamStats (Ries 
Iii et al. 2017) such as forest coverage, annual precipi-
tation, etc.

Sample collection and processing

Grab surface samples were collected in acid-cleaned 
250-mL high-density polyethylene Nalgene™ bot-
tles after three bottle rinses in the field with sampled 
water. Samples were immediately transported to the 
laboratory for processing. Samples were filtered using 
pre-combusted glass-fiber filters (Pall Laboratory, 
Type A/E, 47 mm, pore size 1 µm at first and decreas-
ing with sample volume filtered). Future research 
should employ filters with narrower pore size 
(0.22 µm or less) to prevent colloidal organic matter 
that may affect fluorescence results. Our current data-
set remains comparable for future meta-analysis stud-
ies (Nimptsch et al. 2014). Filtrates were aliquoted in 
acid-cleaned and pre-combusted amber vials prior to 
instrumental analyses. Procedural blanks of ultrapure 
water assessing for background DOM contaminants 
were also included in the subdatasets of most sam-
pling trips. Between processing and analysis samples 
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were refrigerated at 4 °C for no more than 5 days to 
prevent sample degradation (Spencer et al. 2007).

Bulk and chromophoric DOM measurements

Dissolved organic carbon (DOC) and total dissolved 
nitrogen (TDN) were measured using a Shimadzu 
TOC-L analyzer following standard protocols. The 
instrument was calibrated using potassium hydrogen 
phthalate (for DOC) and potassium nitrate (for TDN). 

Samples were analyzed in triplicate with relative 
standard deviations no higher than 5%.

Ultraviolet–visible absorbance spectra were used 
for characterizing the chromophoric dissolved organic 
matter (CDOM) fraction. Spectra were acquired using 
a Horiba Aqualog spectrofluorometer along with the 
measurement of fluorescence spectra (see below). 
Absorbance spectra were acquired over 230–700 nm 
in 2  nm steps. CDOM was quantified based on the 
absorbance at 254 nm, which was converted to Napie-
rian units (on an ln-basis) and normalized to the 

Fig. 1  Map of the Lake George (LG) watershed showing the 
sampling sites, which are color-coded by specific influences. 
The three major wastewater treatment facilities (WWTFs) are 

also shown. The insert shows New York State and includes the 
outline of the Adirondack Park, with the LG watershed located 
in its southeast corner
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cuvette pathlength (1  cm). The spectral slope ratio 
was computed as the ratio of the spectral slope over 
275–295  nm to the spectral slope over 350–400  nm 
(Helms et  al. 2008). The specific ultraviolet absorb-
ance at 254 nm  (SUVA254) was calculated as the dec-
adic absorbance at 254 nm (on a  log10-basis) normal-
ized to DOC content (Weishaar et al. 2003).

Spectrofluorometry and data processing

Fluorescence was measured using a HORIBA 
Aqualog spectrofluorometer. When necessary, sam-
ples were analyzed using 2- or 3-fold dilution to 
ensure that UV absorbance at 230  nm was below 
0.3 to avoid uncorrectable inner-filter effects (Miller 
et  al. 2010). Three-dimensional EEM spectra were 
acquired using excitation at a gradient of 230–700 nm 
with 2  nm steps. Fluorescence emission was moni-
tored over emission wavelengths of 246.01 to 
828.00 nm in 2.33 nm steps (equivalent to a 4-pixel 
resolution) using integration time of 0.5  s and nor-
mal gain of the charged-coupled device detector. The 
software automatically corrected the EEM spectra for 
background contributions from an ultrapure labora-
tory water blank as well as for instrument-specific 
responses (Cory et al. 2010).

A water Raman scan for calibration to water 
Raman units (RU) was acquired for each instrument 
run using the default settings in the RU tool within 
the software: excitation at 350 nm, emission coverage 
at 246.01–828.00 nm in 0.58 nm steps (equivalent to 
1-pixel resolution), integration time of 30 s.

Data processing and PARAFAC deconvolution of 
EEM spectra

All data (EEM, UV–Vis, and water Raman spec-
tra) were exported and loaded in MATLAB. First, 
UV–Vis and water Raman spectra were reformatted 
using the TEnvR toolbox, version 2021, as described 
by Goranov et  al. (2023). All further processing 
(Raman normalization, inner-filter effect correc-
tion, scattering removal and interpolation) was done 
using the drEEM toolbox, version 0.6.3, as described 

by Murphy et al. (2013). Raw and processed EEMs, 
UV–Vis and water Raman spectra have been pub-
lished in the Mendeley Data repository (https:// doi. 
org/ 10. 17632/ yv9f3 z3xb6.2).

EEM deconvolution using PARAFAC modeling was 
done following Murphy et  al. (2013). Modeling was 
done in three different stages as described in Sect. 1.1 
of the SI. The final PARAFAC model, containing 197 
samples and developed with non-negativity constraints, 
was validated with a 4-split, 6-combination, and 3-test 
 (S4C6T3) alternating split-half analysis (Murphy et  al. 
2013) with a convergence criterion of 1 ×  10–8. The 
online repository OpenFluor (K. R. Murphy et  al. 
2014a, b) was used to find other PARAFAC models 
with similar components using Tucker congruence 
coefficients (Tucker 1951) of 0.95 in both excitation 
and emission dimensions. Our model was published in 
the OpenFluor repository under the name Goranov_
LakeGeorge (model ID: 11658). The second prelimi-
nary model (see supporting information, Sect.  1.1) 
was also published in the OpenFluor repository under 
the name Goranov_LakeGeorge_Prelim (model ID: 
11640). Further details about modeling and validation 
can be found in Sect.  1.2 of   the  SI. The component 
contributions (Fmax values) from the final 6-compo-
nent model can be found in the supplementary Excel 
file.

Statistics

As some of the evaluated sets of data were comprised 
of even numbers of samples, exclusive medians were 
used for box and whisker plots throughout this study. 
Data averages are reported as medians and the ± range 
is calculated as the difference between the upper and 
lower quartiles (i.e., Q3–Q1). Kruskal–Wallis tests 
were used to determine if significant differences existed 
among multiple subsets of samples. Sequential Tukey’s 
honestly significance difference post-hoc test was used 
to determine how subsets compared to each other. Prin-
cipal component analysis was done using the TEnvR 
toolbox, version 2021, as described by Goranov et al. 
(2023). All statistical evaluations were done in MAT-
LAB R2022a with a confidence level of 95% corre-
sponding to a significance p-value threshold of 0.05.

https://doi.org/10.17632/yv9f3z3xb6.2
https://doi.org/10.17632/yv9f3z3xb6.2
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Results and discussion

Overview of bulk DOM and CDOM in the LG 
watershed

Bulk DOM concentrations  in tributary and lake 
samples of the LG watershed, expressed as dis-
solved organic carbon (DOC), varied between 
0.6 and 9.0  ppm-C (mg-C  L−1), with a median of 
1.9 ± 1.1 ppm-C. Total dissolved nitrogen (TDN) lev-
els varied from 0.03 to 12 ppm-N (median 0.2 ± 0.1). 
The corresponding C/N ratio (mol DOC/mol TDN) 
varied 0.1 – 47.0 (median 13.6 ± 7.6). The aver-
age DOC of LG waters is lower than that of global 
lakes (5.7 – 9.6 ppm-C, Massicotte et al. 2017; Quei-
malinos et  al. 2019; Sobek et  al. 2007), but is com-
parable to the DOC of the oligotrophic Great Lakes 
nearby (Minor and Oyler 2021). This is likely due 
to the lower annual inputs of carbon though the 
biogeochemistry of such environments is highly 
understudied.

The chromophoric DOM (CDOM) is determined 
using ultraviolet–visible absorbance spectra. CDOM 
is commonly quantified as the Napierian absorbance 
at 254 nm, α254. CDOM varied 4 – 79 AU/cm, with 
a median 13 ± 10  AU  nm. The specific ultraviolet 
absorbance at 254 nm  (SUVA254) is a useful indicator 
of the abundance of CDOM per unit DOC (Weishaar 
et al. 2003).  SUVA254 varied 0.7 – 4.0, with a median 
of 3.0 ± 0.8. Lastly, the slope ratio  (SR) estimate 
obtained from the shape of the ultraviolet–visible 
absorbance spectra, can be used to judge the size of 
CDOM clusters (Helms et al. 2008).  SR ranged 0.18 
– 2.16, with a median of 1.90 ± 1.10. The ranges of 
DOM and CDOM measurements clearly indicate 
the abundance of outlier samples. These are samples 
with specific characteristics (e.g., wetland-influence, 
wastewater-influence) that are described in the sec-
tions below.

It is worth mentioning that all of these results are 
at baseflow conditions. It is expected that stormflow 
conditions will increase the DOM loadings (Buf-
fam et al. 2001; Garcia et al. 2023), which will likely 
be dependent on spatial watershed characteristics 
(Singh et al. 2015). Thus, with the increasing changes 
in climate towards warmer weather and increased 
storms in the LG watershed area (Walsh et  al. 
2014), it is expected that tributary and lake DOM 
will become browner. Thus, establishing baseflow 

conditions in this study would be critical for monitor-
ing and evaluating future changes to this watershed’s 
biogeochemistry.

Description of deconvoluted PARAFAC components 
in LG FDOM

A PARAFAC model was developed to explore the 
composition of FDOM and observe how the underly-
ing components vary across the LG watershed. The 
developed model successfully extracts quantitative 
measures of six separate components (C1-C6, Fig. 2). 
To assess the environmental implications of the vari-
ability in FDOM underlying substituents, PARA-
FAC components were assigned with a source and a 
biogeochemical function.

The first component (C1) emits fluorescence at 
long wavelengths  (> 400 nm), which suggests a 
highly aromatic fluorophore. Previous studies have 
identified the C1 fluorophore to be terrestrial in origin 
(Fellman et al. 2010; Lambert et al. 2016a, b; Moona 
et al. 2021; Wauthy et al. 2018) and likely represents 
lignin degradation products, such as syringaldehyde 
and other lignin phenols derived from plant litter 
(K.R. Murphy et al. 2014a, b; Stedmon et al. 2007a, 
b; Walker et al. 2009). In terms of reactivity, the C1 
fluorophore has been shown to be both bio-degrada-
ble (Yang et al. 2019) and photo-degradable (Du et al. 
2016; Zhou et  al. 2019). Thus, C1 does not appear 
to be an end-member and likely represents a myriad 
of aromatic, terrestrial organic matter degradation 
products, which explains why C1 has been previously 
observed in a large range of inland waters, including 
lakes and rivers in NY state (Wang et  al. 2022b, a; 
Wang et al. 2020, 2021).

The second component (C2) emits fluorescence 
at even  longer wavelengths (> 500 nm) suggesting a 
fluorophore of higher molecular weight relative to C1 
and likely originating from plant remnants/microbial 
biomass or detrital DOM (Osburn et  al. 2015). C2 
represents “humic-type” molecules that are environ-
mentally ubiquitous (Kowalczuk et  al. 2009; Obra-
dor et al. 2018) though more prominent in terrestrial 
environments such as sediments/soils (Kida et  al. 
2021; Moona et  al. 2021; Osburn et  al. 2012, 2016; 
Yamashita et  al. 2010a, b) and environments with 
high DOM loadings (Obrador et al. 2018). Based on 
its spectral properties C2 could represent large mol-
ecules containing reduced quinone moieties (Cory & 
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McKnight 2005). In terms of reactivity, C2 is highly 
photo-labile and of similar photo-reactivity to C1 
(Murphy et  al. 2018). C2 has been found to be bio-
degradable (Lambert et  al. 2016a, b; Wauthy et  al. 
2018), but it can be also microbially produced (Der-
rien et al. 2020). Lastly, C2 has been found in waste-
water-influenced DOM (Wunsch & Murphy 2021) as 
well as lake DOM in NY State (Wasswa et al. 2022).

The third component (C3) emits fluorescence 
at short wavelengths (< 400  nm) suggesting a low 
molecular weight fluorophore that possibly contains 
oxidized quinone moieties (Ishii & Boyer 2012; Pele-
ato et al. 2017). C3 is microbially produced in terres-
trial and marine aquatic environments (Graeber et al. 
2021; Gullian-Klanian et  al. 2021; Lambert et  al. 

2016a, b; Peleato et al. 2017; Tanaka et al. 2014) and 
is overall found in systems with high microbial activi-
ties (Fellman et  al. 2010; Meng et  al. 2013; Mur-
phy et al. 2011; Osburn et al. 2015; Yamashita et al. 
2008). C3 can be produced from non-fluorescent pre-
cursors in photo-bleached DOM (Bittar et  al. 2015) 
and has been observed in lake DOM (Chen et  al. 
2018; Wang et  al. 2020) and wastewater-influenced 
DOM (Wunsch & Murphy 2021). In terrestrial sys-
tems, C3 is in higher proportions in stream DOM rel-
ative to soil DOM (Eder et al. 2022) suggesting that 
its aquatic production outcompetes its production in 
soil systems. C3 has been found to be resistant to bio-
degradation (Bittar et al. 2015) suggesting it is not an 
intermediate fluorophore but a microbial end-product. 

Fig. 2  An example excitation-emission matrix (EEM) fluo-
rescence spectrum and the obtained six components (C1–C6) 
after parallel factor deconvolution (PARAFAC) modeling 
along with (1) Fluorophore type per the classification by Coble 
et al. (2014), (2) Potential structure, and (3) Assigned biogeo-

chemical role in the LG watershed. The shown EEM spectrum 
is of Finkle Brook (pristine tributary) sampled next to the Dar-
rin Fresh Water Institute (Bolton Landing, NY) on 08 August 
2020. White regions on the EEM spectrum represent spectral 
artifacts (noise or scattering bands) that have been removed
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As with many aromatic species, C3 is difficult to 
remove via bio-filtration additionally proving its 
biological recalcitrance (Peleato et al. 2016). This is 
why C3 has been suggested as a wastewater/nutrient-
enrichment tracer (Murphy et  al. 2011). Lastly, C3 
has been found to be labile to oxidation (Peleato et al. 
2017) indicating that while biologically refractory, it 
can be degraded by aquatic photochemical or other 
oxidative (e.g., Fenton) processes.

The fourth component (C4) appears to represent 
N-type fluorophores, with presently unknown chemi-
cal composition. These species appear to be environ-
mentally ubiquitous and are in highest abundance in 
forested and wetland environments (Fellman et  al. 
2010) though also observed in agriculturally influ-
enced DOM (Graeber et al. 2012; Hernes et al. 2009; 
Søndergaard et al. 2003), treated wastewater and algal 
DOM (Søndergaard et  al. 2003), and in limnologic 
environments (Du et al. 2016) including lakes in NY 
state (Wang et al. 2020). It has been suggested that C4 
is a product of heterotrophic microbes that consume 
terrestrial DOM as substrate (Lambert et  al. 2017). 
C4 has been suggested to be comprised of labile 
fluorophores associated with freshly produced DOM 
(Fellman et  al. 2010). It has been shown that C4 is 
a photochemical by-product but is also photoreactive 
and can be further photodegraded (Du et  al. 2016). 
Lastly, C4 has been found  in high concentrations in 
areas of high urbanization (Lambert et al. 2017).

The fifth component (C5) is a rare fluorescent spe-
cies observed only in two previous studies (Harjung 
et  al. 2018; Jutaporn et  al. 2020) based on spectral 
matching in OpenFluor (Tucker congruence coef-
ficients > 0.95). It has been identified in wastewater 
effluent DOM and natural surface DOM (Jutaporn 
et  al. 2020) as well as in forested streams (Harjung 
et al. 2018) suggesting that this is a terrestrial plant/
soil-derived fluorophore.

The sixth component (C6) appears to represent 
a mixture of proteinaceous tryptophan-like and 
tyrosine-like fluorophores (Coble 1996; Yamashita 
et  al. 2015; Yamashita et  al. 2010a, b; Zhou et  al. 
2019). C6 has been suggested to be biologically 
produced by phytoplankton (Coble 1996; Dall’Osto 
et al. 2022; Osburn et al. 2017; Stedmon and Mark-
ager 2005) as well as algal or from other microbes 
(Yamashita & Tanoue 2003). This claim has been 
supported by the observed significant correlations 
of C6 and chlorophyll (Goncalves-Araujo et  al. 

2016). However, another study has shown an insig-
nificant correlation of C6 and chlorophyll (Zhou 
et  al. 2019) indicating that the fluorescent species 
represented by C6 may have other sources. Yamash-
ita et  al. (2010a, b) also conclude that C6 is not 
exclusively derived from heterotrophs as C6 appears 
to be generated by microbial communities, peri-
phyton, and from leachates of higher plants (Scully 
et al. 2004). It has been suggested that C6 includes 
some lignin-like or tannin-like polyphenols (Hernes 
et  al. 2009; Maie et  al. 2007; Romero et  al. 2017; 
Schafer et  al. 2021) though C6 does not co-vary 
with lignin phenols (Walker et  al. 2009). C6 has 
been found in plant leachate without co-existence 
of humic components (Zhuang et  al. 2021). Col-
lectively, these findings indicate that this “protein-
like” C6 fluorophore could also represent plant-
derived non-ligninaceous aromatic fluorophores. 
Photochemistry has been excluded as a potential C6 
source as C6 has not been observed to be a major 
photo-product in the degradation of fluvial DOM 
(Zhou et al. 2019). Even though C6 is likely an aro-
matic fluorophore, it has been observed to be poorly 
photo-reactive in some studies (Dainard et al. 2015; 
Stedmon et  al. 2007a, b) and completely photo-
refractory by  Zhou et  al. (2019). When C6 was 
observed to photo-degrade (Stedmon et  al. 2007a, 
b) it has been suggested to be a source of ammo-
nia indicative of nitrogen  present in the molecules 
comprising C6 agreeing with the operational label 
of tyrosine- and tryptophan-like fluorophores. Evi-
dence from ultrahigh resolution mass spectrometry 
also suggests C6 to be comprised of proteinaceous 
material (Stubbins et al. 2014). In addition to being 
commonly proposed as a microbial exudate, C6 has 
been suggested to be bioavailable (Graeber et  al. 
2012; Podgorski et  al. 2021), by-product of micro-
bial activities, or a metabolism substrate for micro-
bial utilization (Yang et al. 2019) collectively agree-
ing that C6 includes biological compounds that are 
intermediates in aquatic productivity. C6 appears 
to be an environmentally ubiquitous fluorophore: 
it has been found in fluvial DOM, though not as a 
primary FDOM constituent (Harjung et  al. 2018; 
Osburn et  al. 2018), wetlands (Zhou et  al. 2019), 
and wastewaters (Zhou et  al. 2023). C6 is resist-
ant to adsorption to minerals (Groeneveld et  al. 
2020) and is highly persistent in lakes (Kothawala 
et al. 2014), which is likely due to slow degradation 
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kinetics and/or internal production. C6 correlates 
with total nitrogen, total phosphorus, and ammonia 
in effluents (Ryan et  al. 2022) suggesting it could 
be a tracer for wastewater. C6 has been also found 
to co-vary with various organic micropollutants 
in NY lakes indicative that C6 is likely a key non-
humic water quality parameter to monitor in future 
studies (Wang et  al. 2022b, a). Related to this, C6 
has been found to have similar spectral signature 
to that of polycondensed aromatic hydrocarbons, 
PAHs (Murphy et  al. 2006), but C6 did not corre-
late with benzenepolycarboxylic acids (Yamashita 
et  al. 2021), which are compound-specific markers 
for quantifying condensed aromatic structures like 
PAHs (Wagner et  al. 2017). Thus, C6 may contain 
some small aromatics such as 2–3 ring PAHs most 
likely originating from combustion by-products of 
boat gasoline or other fossil fuels.

Collectively, these previous observations for the 
six fluorescent components establish a baseline of 
knowledge, which paired with the observed FDOM 
dynamics in LG, allowed for assigning a function/
source for each component  in the LG watershed 
(Fig. 2, Table S7):

• C1 is a syringaldehyde-like fluorophore. It is 
derived from lignin and appears to be an inter-
mediate in aquatic biotic and abiotic processes. 
It is a C-type fluorophore per the classifications 
described by Coble et al. (2014).

• C2 is a D/E-type reduced quinone-like fluoro-
phore. It corresponds to freshly leached humic 
material from soil or plant detritus and likely has 
relatively high molecular weight.

• C3 is an M-type oxidized quinone-like fluoro-
phore. It is a by-product of aquatic microbiologi-
cal processes and likely has relatively low molecu-
lar weight.

• C4 is an N-type fluorophore of unknown structure 
comprised of microbial exudates and photochemi-
cal degradation by-products.

• C5 is a poorly characterized fluorophore with 
unknown structure that likely originates from 
plant litter/soil organic matter.

• C6 is B/T-type fluorophore, appearing like a mix-
ture of tyrosine and tryptophan-like fluorophores. 
It appears to represent proteinaceous material 
from primary production, plant-derived non-lign-
inaceous aromatics, or maybe even small PAHs.

Notably, some of the EEM spectra exhibited higher 
leverages and sum of squared errors (Figure S6) dur-
ing their PARAFAC modeling. These were samples 
that were not as well represented (lake samples, 
wastewater-influenced samples) as the pristine tribu-
taries in the dataset. This suggest that there are pos-
sibly other underlying fluorescent components in this 
dataset though they are likely of minor significance.

Comparison of FDOM composition in tributaries 
versus the lake

The six PARAFAC components identified in the data-
set were present in all samples indicating that the 
C1-C6 components are not specific to certain environ-
ments (e.g., tributary, lake, wetland, wastewater, etc.). 
This is in agreement with the latest findings about the 
composition of FDOM (Wünsch et  al. 2019) reveal-
ing that most fluorescent components are likely ubiq-
uitous in a wide range of different environments and 
are not tied to a biogeochemical origin (i.e., are not 
source-specific). However, fluorescent components 
vastly differ in concentrations across different biogeo-
chemical interfaces, which is showcased when PAR-
AFAC components in the LG tributaries and lake are 
compared (Fig. 3).

The tributary samples appear to be enriched in flu-
orescent components in the following order: C1 (i.e., 
highest concentration) > C2 > C3 > C5 > C4 > C6 (i.e., 
lowest concentration). The primary lignin-derived 
component C1 explains most of the variance in the 
dataset and is of the highest abundance (median of 
37%). The C2 component, which is the secondary 
terrestrial component (representing high molecular 
weight FDOM), is in lower amounts (17%) likely due 
to the poor solubility of high molecular weight mole-
cules in water. C1 and C2 are slightly correlated (Fig-
ure S7) suggesting a similar source and production in 
the tributary waters. The three terrestrial components 
(C1 + C2 + C5) collectively comprise about 2/3 of 
FDOM signal. The C3 and C4 components, which are 
degradation by-products from microbial, photochemi-
cal, or other oxidative processes, collectively repre-
sent about a third of FDOM (C3 = 16%, C4 = 12%). 
This indicates that these streams and brooks are 
photobiochemically active and rework FDOM even 
before it reaches LG. The C6 component accounted 
for little of the FDOM composition of LG tributaries 
(4%). This suggests that it is not sourced from soils or 
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other landscape sources. However, C6 may be related 
to DOM processing that does occur in the tributar-
ies. This would explain its presence in the tributaries, 
and the low concentrations can be explained by its 
slow degradation kinetics yielding high persistence 
(Kothawala et al. 2014)—it would be discharged into 
the lake faster than the time it would take for C6 to 
accumulate.

The lake samples appear to be enriched in fluo-
rescent components in the following order: C6 (i.e., 
highest concentration) > C4 > C1 > C3 > C2 > C5 
(i.e., lowest concentration). Thus, the lake samples 
are enriched in protein-like fluorophores (C6)  and 
DOM reprocessing by-products. This is expected for 
lake systems where DOM is reprocessed and inter-
mixed with new microbial DOM formed by aquatic 
microbiological processes such as primary produc-
tion. The three terrestrial components (C1, C2, and 
C5) are present in low quantities. The observed 
significant differences in FDOM composition in 
tributaries and lake samples agree with previous lit-
erature (Biers et al. 2007; Ma and Green 2004) and 
the observed trends provide confidence to the pre-
sented PARAFAC model and to its applicability for 
assessment of the LG watershed. However, obvious 

is the discrepancy between the oligotrophic charac-
ter of LG, implying low biological activity, and the 
high concentrations of protein-like C6 fluorescence 
implying high biological activity. This suggests that 
C6 does not represent proteinaceous compounds but 
others such as plant-derived non-ligninaceous aro-
matics or maybe even small PAHs.

In contrast with FDOM, bulk DOM characteris-
tics  of tributaries and lake did not exhibit signifi-
cant differences (Figure S9): DOC (1.8 ± 1.2 ppm-C 
vs. 1.9 ± 0.1  ppm-C), TDN (0.19 ± 0.12  ppm-N vs. 
0.19 ± 0.02  ppm-N), and C/N ratio (13.7 ± 8.0 vs. 
12.0 ± 0.4) remained fairly consistent throughout 
the sampling period for tributaries and lake samples, 
respectively. This indicated that FDOM characteri-
zation in this watershed can be more useful to deci-
pher biogeochemical changes that were not reflected 
by bulk DOM measurements. The tributaries were 
richer in CDOM (higher SUVA values), which was 
also of higher molecular weight (lower  SR values). 
This is expected as CDOM becomes degraded by 
sunlight, microbes, and other processes, in addi-
tion to being diluted, when it is exported to the lake. 
This agrees with the increased levels of humic com-
ponents C1, C2, and C5 in the tributaries.

Fig. 3  Box and whisker plots showing the relative contri-
bution of each PARAFAC component (C1–C6) in tributary 
(Tribs., N = 186) versus lake (N = 11) environments. Please 
note that while the lake was sampled in 12 locations, one of 
the samples was an outlier and was excluded during the PAR-
AFAC deconvolution. Outliers are labeled on the figure as 
their sample number and listed here with the site name and 
specific influence: 15 = Cedar Lane (wastewater-influenced); 
19 = Tahoe (Lake Front Terrace, pristine tributary); 39 and 

158 = Jeremy’s Stream (wetland-influenced); 41, 131, and 
190 = Dula Pond (wastewater-influenced); 83 and 191 = Hon-
dah (wastewater-influenced); 156 = Blind Brook (agricul-
ture-influenced); 177 = West Brook (’87 uppermost, pristine 
tributary); 179 = West Brook (below seep side inlet, wastewa-
ter-influenced); 180 = West Brook (downstream site, wastewa-
ter-influenced); 203 = Warner Bay (shallow bay in the lake); 
206 = 99 Cotton Point Road (pristine tributary); 214 = West 
Brook (seep at motel, wastewater-influenced)
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Impact on watershed characteristics on FDOM 
composition in LG tributaries

Several samples appear as outliers (Fig. 3) and these 
are mainly tributaries under a specific influence: 
Blind Brook (label 156) is agriculture-influenced; 
Jeremy’s Stream (labels 39 and 158) is wetland-influ-
enced; and Dula Pond, Hondah, West Brook (seep 
at motel), West Brook (below seep side inlet), West 
Brook (downstream site), and Cedar Lane (labels 15, 
41, 83, 131, 179, 180, 190, 191, 214) are all waste-
water-influenced. This indicates that watershed char-
acteristics affect the LG FDOM, which is generally 
expected (Hosen et al. 2014; Wagner et al. 2015). The 
remaining outliers (labels 19 = Tahoe (Lake Front 
Terrace), 177 = West Brook (’87 uppermost), and 
label 206 = 99 Cotton Point Road) are of pristine trib-
utaries and are, to our knowledge, not influenced by 
any specific watershed characteristics suggesting that 
LG FDOM composition may have some intermittent 
temporal variations that remain to be explored in the 
future with further sampling. The last outlier, the lake 
sample Warner Bay (label 203), whose FDOM has a 
very similar composition to the FDOM of the tribu-
taries, is fed by a large nearby wetland. Warner Bay is 
very shallow (less than 5 m at the sampling spot) and 
exhibits a very low residence time. Thus, its waters 
are constantly replenished from the wetland without 
having enough time for lake reworking processes to 
occur resulting in a spatially different composition 
than the rest of LG.

To more robustly explore the abundance of PAR-
AFAC components in tributaries of different influ-
ences, the PARAFAC scores (Fig.  3) were grouped 
into four categories: pristine, agriculture-, waste-
water-, and wetland-influenced tributaries (Fig.  4). 
The distribution of PARAFAC components in agri-
culture- and wastewater-influenced tributaries was 
significantly different than in pristine tributaries. 
Wetland-influenced tributaries showed no significant 
difference in their fluorescence composition relative 
to the pristine tributaries. Since wetlands accumu-
late terrestrial material and are therefore enriched in 
aromatic DOM, it is not surprising that the distribu-
tion of molecular groups is similar to the DOM that 
is released in the adjacent tributaries. Additional evi-
dence for this was acquired by the lack of correlation 
of component scores and percentage areas of storage 
(Figure S8), a parameter from StreamStats describing 

the abundance of ponds, wetlands, or other reser-
voirs (Ries Iii et al. 2017). Interestingly, the land-use 
analysis of the watershed also showed that forest cov-
erage % and developed (urban) land % did not cor-
relate with any PARAFAC component abundance 
suggesting consistent FDOM composition regardless 
of the land use (non-point sources of DOM) except 
for the abundance of point-sources of DOM such as 
WWTFs, wetlands, or agricultural farms.

The tributaries with agricultural influence exhib-
ited significantly different fluorescence distribution 
agreeing with previous findings (Graeber et al. 2012). 
Specifically, the abundance of C1 and C5 fluoro-
phores was lower relative to the pristine tributaries. 
The agriculturally disturbed tributaries are next to 
horse farms. One possible explanation is that physi-
cal soil disturbances (tillage, drainage, etc.) affect the 
complexes between soil organic matter and minerals 
and could cause release of DOM that would be oth-
erwise sequestered in non-disturbed soils (Ogle et al. 
2005). Another possible explanation is that the use 
of fertilizer has affected the soil chemistry to elevate 
microbial processes which collectively affect the com-
position of released DOM in LG tributaries (Heinz 
et  al. 2015; Wilson and Xenopoulos 2009). Surpris-
ingly, only C1 and C5 were significantly affected by 
agriculture indicating that they have some special 
susceptibility to this type of disturbance. While C1 
has been well described in the literature and can be 
affected by a variety of biogeochemical processes, C5 
is not so well studied and appears to be far less ubiq-
uitous. Thus, we suggest that C5 may be used as a 
novel agricultural disturbance tracer in the LG water-
shed and potentially in other systems as well.

All PARAFAC components were of significantly 
different distributions in the wastewater-influenced 
tributaries (Fig.  4). The humic components C1, 
C2, and C5 were lowered whereas the protein-like/
microbial-derived components C3, C4, and C6 were 
elevated relative to the pristine tributaries. This was 
expected based on the large number of previous 
reports on how WWTFs change DOM fluorescence 
composition (Coble et  al. 2014). In brief, humic 
components are generally removed by flocculation 
and oxidation processes (Yang et al. 2015). Proteina-
ceous and other biological compounds are generally 
produced in the biological treatment of wastewater 
(Hudson et al. 2007) and thus, would be found down-
stream. Knowledge of exactly how the three WWTFs 



 Biogeochemistry

1 3
Vol:. (1234567890)

in the LG watershed affect water quality should allow 
for taking measures to prevent the health LG from 
deteriorating and upkeep its ecological and societal 
productivity.

In the context of bulk DOM and CDOM, the 
tributaries also differed in quantity and quality upon 
catchment features (Figure S10): the wastewater-
influenced tributaries had higher TDN, lower C/N 
and  SR ratios, and were less aromatic than the pris-
tine tributaries. The DOC and CDOM loadings 
were significantly higher in wetland-influenced trib-
utaries than in pristine ones even though this was 

not observed when comparing FDOM components 
(Fig. 4). Thus, FDOM characterization appears less 
powerful than DOM and CDOM characterization 
for tracing wetland biogeochemical effects in this 
watershed. By the contrary, FDOM characterization 
distinguished the agricultural impact whereas DOM 
and CDOM characterization did not. Thus, combin-
ing  DOC/TDN measurements with optical analyses 
can provide a comprehensive view of the biogeo-
chemistry of this watershed. This is discussed and 
exemplified in the next section.

Fig. 4  PARAFAC component distributions in agriculture-
influenced (N = 6), wastewater-influenced (N = 23), wetland-
influenced (N = 13), and pristine tributaries (N = 143). Sig-

nificant differences of the disturbed tributaries relative to the 
pristine tributaries are denoted with an asterisk (p < 0.05)
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Temporal variability of FDOM composition in LG 
tributaries

The quantity and speciation of fluorophores is 
expected to vary throughout the year. The temporal 
variability in FDOM composition was evaluated for 
Northwest Bay Brook, the largest LG tributary (also 
a pristine one); Westbrook, a tributary downstream 
from one of the WWTFs; and Jeremy’s Stream, a trib-
utary affected by a wetland nearby (Fig. 5). Though 
the dataset is limited to 4–5 time points per stream, 
we have two time points representing the fall and 
summer seasons of the LG watershed, which is suf-
ficient for obtaining preliminary results that would 
seed large-scale temporal studies in the future using 
EEM and/or in-situ data. Unfortunately, the data for 
the two agriculture-influenced tributaries (Blind 
Brook and Ice House) were quite limited and thus, 
they were not evaluated for temporal variability of 
FDOM composition.

In these three tributaries, the primary humic com-
ponent C1 appears to be of stable abundance through-
out the sampling period varying with no more than 
6% (relative standard deviation of all C1 measure-
ments). The results for the minor humic components 
C2 and C5 are more variable (up to 17% relative 
standard deviation), but their abundances are still 
within 2–5% absolute difference of each other. This 
indicates that the inputs of humic material in LG are 
relatively constant for tributaries of different water-
shed characteristics and humic inputs do not appear 
to be drastically affected by seasonal changes such 
as differences in precipitation, cloud coverage, or 
precipitation.

The biologically produced C3, C4, and C6 fluo-
rophores are also generally of similar abundance 
throughout the year suggesting that microbiologi-
cal transformation and production of biological 
fluorophores in tributaries is relatively constant. 
Interestingly, C4 exhibited an increase of about 2% 
(absolute units) between the two summer tempo-
ral samplings (1 week apart). Given that all other 
components exhibited similar abundances during 
these two samplings, there must have been a spe-
cific event enhancing the production of this fluo-
rophore. Considering that C4 is likely comprised 
of microbial exudates and photochemical by-prod-
ucts, it is likely that the abundance of this fluores-
cent constituent is weather dependent — microbial 

productivity will be suppressed at lower tempera-
tures and photochemical transformation of DOM 
would be decreased in cloudy weather. This is cor-
roborated by the fact that the first sampling day 
(on 5-11-2021) was much colder (4–13  °C range) 
than the second sampling day (5-18-2021, 9–26 °C 
range; https:// www. wunde rgrou nd. com/).

The protein-like fluorophore C6 shows high vari-
ability in all tributaries (17 – 28% relative standard 
deviations). This fluorophore was low in concentra-
tion in the summer and higher in concentration in 
the fall. Given that warmer summer temperatures 
enhance primary productivity, if C6 was microbi-
ally produced it would have increased in the sum-
mer months, and not decreased as shown by our data 
(Fig. 5). Notably, photochemistry has been excluded 
as a potential C6 source (Zhou et  al. 2019) and it 
has been also found that C6 is poorly photo-reactive 
(Dainard et  al. 2015; Stedmon et  al. 2007a, b) or 
maybe even entirely photo-refractory (Zhou et  al. 
2019). The lack of a drastic shift in C6 between the 
two summer samplings agrees with the proposition 
that C6 is not directly related to short-term sunlight 
conditions, and it would likely have taken months 
of changing weather to affect its concentration. One 
potential explanation for the observed decrease in C6 
in summer months is that if C6 is biologically pro-
duced, and sunlight degrades other DOM species that 
happen to be utilized as food by microbes, the biolog-
ical production of C6 would be decreased. Another 
possible explanation is that C6 is a biologically labile 
compound that is actively utilized as food. In summer 
months the enhancement of microbiology by sunlight 
(Antony et al. 2018; Bostick et al. 2021; Kieber et al. 
1989; Wetzel et al. 1995) would yield higher C6 con-
sumption agreeing with our data. Unfortunately, this 
does not agree with the high C6 persistence shown by 
Kothawala et al. (2014) for oligotrophic lakes. Thus, 
while C6 exhibits protein-like fluorescence it might 
not be a proteinaceous compound at all and actually 
may be a photo-refractory degradation by-product of 
humics (C1, C2, C5) agreeing with numerous previ-
ous suggestions (Hernes et al. 2009; Maie et al. 2007; 
Romero et al. 2017; Schafer et al. 2021). This is cor-
roborated by the strong negative correlation between 
C6 and C1 (Figure S7) suggesting that C6 is a prod-
uct of C1 degradation occurring during downstream 
in-tributary processing or post-export during in-lake 
DOM processing.

https://www.wunderground.com/
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Fig. 5  Temporal variability in PARAFAC components in three selected tributaries. Error bars indicate a propagated 5% uncertainty. 
Sample labels are shown on the C1 panel
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Another observation is that the wastewater-influ-
enced tributary, Westbrook, exhibited unexpected 
variabilities. The sudden decrease in C1, C2, and 
C5, and sudden increase in C3 and C6 for this tribu-
tary indicate that the influence of WWTF effluent on 
DOM composition is intermittent. This variability 
is likely related to the amounts of wastewater being 
treated at the WWTF at the different points in time.

The tributaries also showed temporal variations in 
their bulk DOM and CDOM contents (Figure S11). 
The pristine and wetland-influenced tributaries gen-
erally exhibited minor variations. DOC and TDN 
remained relatively constant though the C/N ratio 
slightly increased for both from ~11 to ~17. This may 
be due to the warmer temperatures in October 2021 
(11.52 OC average temperature) than in October 2020 
(9.42  °C average temperature, https:// www. wunde 
rgrou nd. com/). Higher temperatures allow for more 
material to solubilize from soils, which explains 
why these two tributaries were more humic in Octo-
ber 2021. This also corroborates with the increase 
in CDOM content (higher α254), as it is expected 
that if more humic material is mobilized, both DOM 
and CDOM would increase. The slope ratio  SR and 
 SUVA254 remain relatively consistent indicating that 
the bulk quality (composition) of DOM remained the 
same additionally supporting this proposition. The 
wastewater-influenced tributary had similar trends 
with the exception of its vastly different shift in TDN: 
it decreased from ~2.3  ppm-N to ~1.3  ppm-N within 
a year. This may be due to operational changes at 
the corresponding WWTF, improved piping seals to 
reduce seepage, or lower wastewater inputs into the 
plant in 2021.

The use of DOC/TDN and absorbance parameters 
appears complementary to the fluorescence C1-C6 
measurements; however, they do not correlate (Fig-
ure S12) especially in the tributary samples. This is 
explainable by the different analytical windows of 
these techniques. However, our findings so far indi-
cate that the combination of the three techniques 
allows to completely distinguish the different types 
of disturbances to LG tributaries. Thus, measuring 
DOC, TDN, and absorbance and fluorescence spec-
tra appears the most effective approach for studying 
LG biogeochemistry. These data can be combined 
and used altogether in a principal component analysis 
(PCA) model, which can further simultaneously dif-
ferentiate the different types of samples and allow for 

the assessment of spatiotemporal variability (Figure 
S13). The trends of this PCA model mirror those that 
we have previously described in the paragraphs above 
showing that a holistic PCA approach is an effective 
way to look at LG biogeochemistry instead of the 
fragmented approach with box and whisker plots we 
used to separately assess DOC, TDN, CDOM, and 
FDOM metrics.

Future directions for research on the Lake George 
watershed using PARAFAC modeling

The LG watershed contains 92 permanent tributar-
ies and another 50 ephemeral that annually contrib-
ute with DOM inputs to LG. For this study only 64 
tributaries were sampled including all 11 major tribu-
taries. Capturing higher spatiotemporal resolution of 
tributaries will permit the capture of seasonal and 
hydrologic variability of DOC, CDOM, and FDOM 
delivered to LG. The data at present suggests that the 
inputs of DOM at baseflow conditions are relatively 
constant, although we would expect DOM quantity 
and composition to vary with rainfall or other run-
off events, which could result in short-term changes 
to DOM cycling and biogeochemistry. For example, 
DOM dynamics differ significantly during storms and 
snowmelt conditions (Garcia et  al. 2023; Humbert 
et al. 2019; Packer et al. 2020; Pellerin et al. 2012). 
Future work would benefit from assessing the DOM 
dynamics of LG during such events and comparing 
them to the DOM dynamics at baseflow. Furthermore, 
tributaries affected by agriculture, wetlands, wastewa-
ter, or other activities should also receive more atten-
tion in future studies as FDOM in such environments 
appears to be slightly more variable. Additional sam-
ple-paired measurements with nutrients (e.g., nitrate) 
or other tracers may be necessary to more precisely 
categorize and quantify wastewater/agriculture/wet-
land or other disturbances. Future research on tribu-
taries will allow for comprehensively evaluating and 
quantifying the inputs of DOM into LG and their 
fluctuations on spatiotemporal scales throughout the 
watershed.

Given that the biogeochemistry of lakes var-
ies most critically among depth gradients, it would 
be useful to obtain LG samples from different lake 
strata (epilimnion, metalimnion, hypolimnion lay-
ers) in addition to surface pelagic waters. Increasing 
the number of lake samples in this dataset will be a 

https://www.wunderground.com/
https://www.wunderground.com/
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critical future research aspect in order to create a 
robust PARAFAC model for successful deconvolu-
tion of both tributary and lake EEM spectra. It may 
be even necessary to separate the lake samples in a 
separate PARAFAC model for more precise deconvo-
lution of underlying lake FDOM components (Pitta 
and Zeri 2021).

Additionally, chlorophyll and light intensity meas-
urements should be taken and paired with tributary 
and lake samples to distinguish the roles of microbi-
ology and photochemistry in the FDOM cycling in 
LG (Berg et al. 2022). These fieldwork observations 
should be paired with laboratory experiments, which 
can allow to better understand the biogeochemical 
roles and underlying structural components of each 
fluorescent DOM component. Photochemical, micro-
bial, and abiotic (e.g., Fenton oxidation) incubations 
should be conducted to determine the lability/stabil-
ity of each component as well as determine if the 
degradation of one component could yield another 
one (Murphy et al. 2018). The observed strong nega-
tive correlation among C1 and C6 (Figure S7) sug-
gests that C6 is a by-product of the degradation of C1, 
however, a carefully designed empirical study must 
confirm this.

Conclusion

Characterizing DOM, CDOM, and FDOM at base-
flow conditions and spatiotemporally assessing 
them established a fundamental understanding of 
DOM variability in the LG watershed. Results from 
tributaries with known watershed disturbances from 
WWTFs, farms, and wetlands indicated that future 
research should certainly focus on such “impacted” 
areas to establish quantitative relationships between 
anthropogenic stressors and DOM quantity and qual-
ity. Continued research of LG will allow for pre-
venting the health of the lake from deteriorating and 
sustaining the watershed’s productivity for future 
generations. More broadly, exploring the dynamics 
of DOC, TDN, CDOM, and PARAFAC components 
of FDOM contributes to better understand broader 
DOM biogeochemistry in temperate lake watersheds. 
Most notably, the presented PARAFAC model here 
describes six different FDOM components in tribu-
tary and lake DOM, whose reactivity and overall 
biogeochemical cycling appears different, and will 

be useful in future biogeochemical studies of oligo-
trophic lakes in boreal and temperate regions.
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