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(June) and late (September) growing seasons. We 
found N was immobilized in June and mineralized in 
September. One year after experimental management, 
removal alone had no effect on N cycling compared 
to control plots, but addition of native seed mix and 
chipped stems reduced early-season nitrification in 
our Medium invasion site. Our findings suggest that 
rose invasion may increase N cycling rates when soils 
are dry, which may occur more frequently with future 
climate change. In addition, N cycling responds dif-
ferentially to management in the year following inva-
sive plant removal, but most noticeably under moder-
ate rose invasion.

Keywords  Forest restoration · Invasive shrubs · 
Nitrogen mineralization · Rosa multiflora · Soil 
nitrogen cycling · Temperate deciduous forest

Introduction

Non-native invasive plants (hereafter “invasive”) pose 
a significant threat to biodiversity worldwide (e.g., 
Vitousek et al. 1996, 1997a), and the eastern U.S. is 
one of the most vulnerable regions (Early et al. 2016). 
In addition to negative effects on native biodiversity, 
invasive plants are often associated with alterations to 
ecosystem function and processes, such as decompo-
sition (e.g., Ashton et al. 2005; Heneghan et al. 2007; 
Trammell et al. 2012), plant productivity (Ladwig and 
Meiners 2009; León et al. 2018), and biogeochemical 
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cycling of nutrients (Vitousek et al. 1997c; Liao et al. 
2008; Pellegrini et al. 2021). Changes in carbon (C) 
and nitrogen (N) cycling are cause for concern, as 
these cycles are inextricably linked. Nitrogen cycling 
has been greatly perturbed in the last 150 years 
(Vitousek et al. 1997b; Galloway et al. 2008; Fowler 
et  al. 2013; Kanakidou et  al. 2016), which can have 
cascading effects that ultimately impacts other eco-
systems via eutrophication and atmospheric N depo-
sition (Vitousek et  al. 1997a; Galloway et  al. 2003, 
2004; Clark et al. 2017).

Since 1900, atmospheric N deposition has more 
than doubled (Sutton et al. 2011; Fowler et al. 2013) 
leading to N saturation in many terrestrial ecosys-
tems (Vitousek et al. 1997b; Aber et al. 1998). Global 
reactive N emissions now far exceed what is natu-
rally produced (Fowler et al. 2013; Kanakidou et al. 
2016), beyond what may be considered a “safe oper-
ating space” (Rockström et  al. 2009; Steffen et  al. 
2015). Excess N in terrestrial ecosystems can have 
detrimental effects, leading to declines in native 
plant diversity (e.g., Stevens et  al. 2010; Boscutti 
et al. 2020), increased invasive plant abundance (e.g., 
Corbin and D’Antonio 2004), shifts in species com-
position and/or ecosystem type (Gilliam 2006; Bob-
bink et al. 2010), direct plant toxicity (Bobbink et al. 
2010; Pardo et  al. 2011), increased susceptibility of 
plants to extreme weather events (Grulke et al. 1998; 
Caporn et al. 2000; Friedrich et al. 2012), soil acidi-
fication (Stevens et al. 2010, 2018), loss of soil cati-
ons and reduced cation uptake efficiency (Pardo et al. 
2011), and eutrophication caused by nitrate (NO3

−) 
leaching (Stevens et  al. 2018). While some of these 
environmental impacts have been addressed by enact-
ing policies (Fowler et al. 2015; Gilliam et al. 2016; 
Reid and Aherne 2016) and regulations to control 
emissions (e.g., Clean Air Act), the effects of invasive 
plants have largely not been addressed and are often 
localized (e.g., Barney and Tekiela 2020; Pyšek et al. 
2020). Therefore, there is a great need to understand 
how N cycling is altered in the presence and spread of 
invasive plants, and how restoration and management 
efforts can mitigate their effect.

In forests of the northeastern United States, a 
dominant invasive plant is Rosa multiflora (multi-
flora rose), a shrub native to eastern Asia (Kurtz and 
Hansen 2013; Schulz and Gray 2013; Huebner et al. 
2014; Trammell et  al. 2020). While current For-
est Inventory and Analysis (FIA) data and results 

of large-scale studies show this shrub as the most 
abundant, other invasive plants (e.g., Berberis thun-
bergii, Microstegium vimineum, Lonicera japonica, 
Celastrus orbiculatus) dominate these forests and 
are increasing as well. Previous studies have found 
invasive shrubs are associated with changes in soil N 
cycling (e.g., Ehrenfeld et al. 2001; Ehrenfeld 2003) 
due to various plant traits such as higher leaf litter 
quality and quantity (Jo et al. 2015, 2017; Lee et al. 
2017), accelerated decomposition rates (Hawkes 
et al. 2005; Trammell et al. 2012), or shifts in micro-
bial communities (Kourtev et al. 2002; Elgersma and 
Ehrenfeld 2011; McLeod et al. 2016). However, most 
studies have focused on invasion in a single site, or 
comparisons between invaded and uninvaded habitats, 
and it remains uncertain how soil N cycling is altered 
along a gradient of invasion. Here, we focus on R. 
multiflora due to its dominance in small forests across 
our region. Additionally, R. multiflora has one of the 
highest leaf N concentrations (Jo et al. 2016), and its 
litter decomposes faster and releases N quicker than 
other native and invasive plants (Ashton et al. 2005), 
which may contribute to increased nutrient cycling in 
forest soils. Thus, studying soil N cycling along a gra-
dient of invasive plant abundance, and specifically R. 
multiflora invasion, can identify thresholds of density 
that influence soil N cycling rates, and assist in prior-
itizing forests for management interventions.

While studies have examined vegetation responses 
following forest restoration (e.g., Hartman and McCa-
rthy 2004; Johnson and Handel 2016; Hopfensperger 
et al. 2019), to our knowledge it remains unclear how 
soil N cycling in forest ecosystems may respond to 
invasive shrub removal, and specifically removal of 
R. multiflora. Moreover, additional management and 
restoration strategies after invasive shrub removal 
may lead to further changes in N cycling. For exam-
ple, Clark et  al. (2019) found that C addition was 
the only remediation approach that decreased soil N 
availability, while prescribed burning, thinning, and 
liming had no effect. Similarly, other studies have 
shown C additions such as wood chips or mulch may 
stimulate microbial N immobilization by increasing 
C:N in soils (e.g., Homyak et  al. 2008; Perry et  al. 
2010). Ultimately, we hope to understand whether 
soil N cycling can be altered to prevent or limit the 
spread of invasive shrubs in susceptible forests.

The overarching goal of this research was to study 
the abundance-impact of Rosa multiflora (hereafter 
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“rose”) on soil N cycling using an observational (fine-
scale) and manipulative experimental approach in 
three forests with varying invasion densities. In this 
study, we assessed soil N cycling rates (i.e., potential 
net N mineralization and net nitrification) and soil C:N 
under a gradient of rose cover, and we conducted a rose 
removal experiment to understand how short-term soil 
N processes respond to invasive plant removal. Spe-
cifically, we asked the following questions: (1) What 
are the fine-scale patterns (i.e., within forest sites) in 
potential mineralization rates under varying rose den-
sity, the density of other woody and herbaceous plants 
(i.e., non-rose stem density), and soil water content?, 
(2) How will rose removal influence mineralization 
rates?, (3) How will N mineralization rates respond to 
additional management strategies (i.e., native seed mix 
addition and C-rich soil amendment) within 1 year?, 
and (4) How does seasonality (early compared to late 
growing season) influence soil N cycling before and 
after management?

We expected soil N cycling rates to increase 
with increasing rose stem density, and in forest sites 
with greater rose invasion. Following invasive plant 
removal, we expected larger reductions in N cycling 
where invasion density was greatest, with smaller 
reductions as invasion density decreased due to 
fewer shrubs affecting soil N cycling. Furthermore, 
we expected the addition of seed mix would lead to 
increased plant N uptake (from new grass and sedge 
germinants; Moore et  al. 2023), thereby reducing 
nitrification via lower soil ammonium (NH4

+) pools. 
We expected the application of C-rich rose stems 
(as mulch) would directly increase soil C:N, slow-
ing N cycling rates, and the net change in %C (and 
thus molar C:N) would be positive and greater than 
the control group, while net change in %N should 
decrease. We expected to see differences in soil N 
cycling rates between peak growing season (warm, 
wet) and late growing season (warm, dry), specifi-
cally if soil moisture regimes influence rose impacts 
on soil N cycling rates.

Methods

Study area and design

We chose three forest sites that are part of a long-
term urban forest network called the FRAME 

(FoRests Among Managed Ecosystems; https://​
sites.​udel.​edu/​frame/) for soil analyses and inva-
sive plant removal. The selected sites were located 
in the piedmont region of northern Delaware and 
extreme southeast Pennsylvania within 13  km of 
one another. For the region, mean annual tempera-
ture is 13.2  °C and mean annual precipitation is 
119.3 cm  year−1 (NOAA 2020). Due to their prox-
imity, differences in precipitation among sites were 
minimal or non-existent; thus, differences in soil 
moisture likely reflect different biotic (vegetation, 
microbial community) or abiotic conditions. Soils 
in this Piedmont region are mostly ultisols, and our 
sites were Fallsington loam, Brinklow channery 
loam, and Glenelg silt loam soil series.

In 2015, vegetation was sampled in all 38 
FRAME sites, and sites were classified along an 
invasion gradient (Trammell et  al. 2020) based on 
the number of non-native woody stems ha−1, of 
which 75% were rose stems. Sites were then cat-
egorized as experiencing Low invasion (0.2–25 
non-native stems ha−1), Medium invasion (26–80.5 
non-native stems ha−1), or High invasion (> 80.5 
non-native stems ha−1) intensity. We selected one 
forest site from the Low, Medium, and High inva-
sion categories to assess initial woody stem density 
and soil C and N content, to be followed by an inva-
sive plant removal experiment.

In March of 2017, we surveyed each study for-
est site (i.e., Low, Medium, and High invasion) for 
invasive plant management locations (the “manage-
ment zone”). Within each management zone, a 400 
m2 patch of invasive shrubs (the “removal area”) 
was selected for invasive plant removal, to be car-
ried out the following year. Though each forest site 
differed in invasion intensity, we focused on where 
the rose invasion was greatest in each site; thus, the 
size (400 m2) and amount of non-native shrub cover 
within the management zone was consistent across 
sites (Fig.  1a). At each forest site, the management 
zone had to meet the following criteria: (1) invasive 
shrub cover, particularly rose, must be dense enough 
to establish 12 plots per site (9 treatment plots within 
the removal area and 3 rose-invaded control plots 
beyond its perimeter; see below for further details 
on the treatments), (2) plot size must be sufficiently 
small (4 m2) to accurately sample stem densities, and 
(3) each plot must be at least 1 m away from any other 
plots and/or trees (Fig. 1b).

https://sites.udel.edu/frame/
https://sites.udel.edu/frame/
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Vegetation sampling

In 2017, prior to invasive plant removal, we col-
lected abundance data for all trees, shrubs, and her-
baceous vegetation in each control (n = 3 site−1) and 
treatment plot (n = 9 site−1) at each forest site (n = 3 
sites). All plots were 4 m2 (2 m × 2 m). We revisited 
each plot for post-removal vegetation sampling in 
2018 and 2019 to assess plant abundance following 
invasive plant removal (Moore et al. 2023). All tree, 
shrub, and herbaceous stems were counted across all 
individuals of a given species during peak growing 
season, beginning in July. For multi-stemmed shrubs, 
rooting at the nodes when in contact with the ground 

(“layering”) was not observed in plots. Thus, each 
tree, shrub, and herb stem visibly emerging from the 
ground was defined as a single stem and counted. If 
identification to species was not possible, plants were 
identified to genus. Data were divided into rose stem 
density and non-rose stem density as potential drivers 
of soil N cycling rates.

Experimental removal

Our experimental design incorporated a control and 
three manipulative treatments (hereafter “manage-
ment strategies”). The goal of the manipulations was 
to conduct “easy-to-implement” and “cost-effective” 

Fig. 1   Schematic of study design showing a varying invasion intensity (i.e., Low, Medium, and High) within forests, but consistent 
invasive shrub cover within the management zone, and b placement of treatment and control plots in the management zones
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strategies for landowners, managers, and restoration 
professionals. Due to the constraints of the manage-
ment zone and number of management strategies, 
sample sizes at each forest site were small (n = 3 per 
management strategy). Within each site, 12 plots were 
established for a total of 36 plots across the three for-
est sites. Treatment strategies were additive, such that 
each subsequent treatment augmented the methods of 
the previous strategy. They were:

(1)	 Control—no invasive plant removal,
(2)	 Removal—hand pulling or cutting invasive 

plants, followed by stump treatment with the her-
bicide glyphosate,

(3)	 Seed mix—removal strategy with native plant 
seed mix amendment, and

(4)	 Mulch—removal and seed mix strategy with the 
addition of the cut/pulled rose stems, chipped and 
applied as mulch.

Implementation of management strategies

In February and March 2018, all invasive plants 
(i.e., trees/shrubs, vines, and herbs) within the 400 
m2 removal zone were removed at each of our for-
est sites. Small plants were hand-pulled, while larger 
plants were cut at approximately 10 cm above ground. 
Herbicide (50.2% glyphosate solution) was applied 
to the resulting stump immediately afterward. Inva-
sive stems were collected and allowed to air-dry at 
the study site for at least 6  weeks prior to chipping 
and mulching. In general, the resulting native plant 
community within each 400 m2 removal area (i.e., 
the removal, seed mix, and mulched treatment plots, 
plus surrounding space between them; see Fig.  1b) 
consisted of the shrubs Lindera benzoin, Viburnum 
dentatum, and Rubus spp.; seedlings and saplings of 
Acer rubrum, Liriodendron tulipifera, Liquidambar 
styraciflua, and Prunus serotina; woody and herba-
ceous vines; and numerous spring ephemerals, ferns, 
and other herbaceous plants (Moore et al. 2023).

In March 2018, a native seed mix was applied to 
plots in management strategies (3) and (4). Due to 
seasonal and local unavailability, we relied on seed 
collected from the midwestern U.S. (Prairie Moon 
Nursery, Winona, MN 55987). The seed mix was 
customized to include common, shade-tolerant native 
forest herbs and graminoids (grasses and sedges) 

present in or near our forest sites, and excluded spe-
cies known to be palatable to deer (e.g., Trillium 
spp.) The seed mix consisted of 29 herbaceous and 
7 graminoid (grass and sedge) species in quantities 
based upon seed size (Moore et al. 2023). Treatment 
plots (6 site−1) were hand sown and overseeded with 
26.96 g of seed (6.74 g/m2).

In May 2018, R. multiflora (rose) stems were 
separated from other invasive stems that were cut 
during removal and chipped on-site using a Tazz 
K32 Chipper Shredder. Due to the large number 
of entangled stems, other woody invasive species 
may have unintentionally been chipped (e.g., Japa-
nese barberry [Berberis thunbergii]), though care 
was taken to exclude them to the best of our ability. 
The resulting mass of chipped rose stems was simi-
lar at each site (Low = 10.55 kg, Medium = 10.65 kg, 
High = 10.55 kg). Within 3 days of mulching, 3.5 kg 
of chipped stems were applied by hand to each plot 
in the mulch treatment group (n = 3 site−1), forming a 
layer approximately ¼ inch thick on the soil surface.

Soil sampling and in vitro laboratory incubation

Soils were collected in June and September of 2017 
(pre-removal year) and 2018 (first season post-
removal) at each forest site. Our initial goal was to 
sample soils in 2019 (two seasons post-removal) as 
well, but due to building renovations and lab reloca-
tion in 2019, and the COVID-19 pandemic in 2020, 
we were unable to sample more than 1-year post-
removal. In each plot (n = 12 site−1), leaf litter was 
removed prior to sampling, and a soil push probe 
was used to collect 2-cm diameter cores from the 
top 10  cm of soil. Three composite samples were 
taken per plot, bagged and homogenized. Soils were 
transported to the lab on ice and processed either 
upon arrival, or stored at 4  °C in a refrigerator and 
processed within 48  h after collection. Soils were 
sieved (2  mm) to remove rocks, roots, leaves, and 
other debris. Three 10  g (± 0.1  g) subsamples were 
weighed and used for determining soil moisture con-
tent, initial nitrate (NO3

−) and ammonium (NH4
+) 

content, and potential net nitrification and net N 
mineralization rates following a 30-day in  vitro lab 
incubation. Incubations determine the net (not gross) 
amount for both nitrification and N mineralization, 
and these are referred to herein simply as Nitrification 
and N mineralization.
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For gravimetric determination of soil mois-
ture content, soils were weighed before being oven 
dried at 105  °C for 72  h, then removed and placed 
in a desiccator to allow cooling before re-weighing. 
Oven-dried soil mass was used to calculate the fresh-
weight-to-dry-weight conversion factor and gravi-
metric soil moisture content [i.e., soil water content 
(SWC)], which exerts control over N cycling and is 
important in interpreting potential differences among 
sites. For the 30-day incubation, 10  g (± 0.1  g) of 
field-moist soil were placed into a tared, 250  mL 
Erlenmeyer flask, then sealed with parafilm. Parafilm 
was punctured with a small syringe needle to allow 
gas exchange. Flasks were placed in an incubator 
and kept at 25 °C for the duration of the incubation. 
Soils were incubated at field-level SWC values for the 
entire incubation period, thus exerting site-specific 
soil moisture on N cycling rates. To ensure that soil 
moisture was maintained at field moisture content 
values, flasks were weighed at least once per week. 
If the weight decreased by more than 1 g, an equiva-
lent amount of DI water was injected into the flask 
through the parafilm using a small syringe. After 
approximately 30 days, soils were removed from the 
incubator and prepared for extraction.

Determination of nitrate, ammonium, and nitrogen 
mineralization rates

Prior to analysis, NO3
− and NH4

+ were extracted 
from soil using a 2 M KCl solution. For the soil sam-
ples collected in 2017, the extract was analyzed for 
NO3

− and NH4
+ by colorimetric spectrophotometry 

using a SEAL AQ2 Discrete Analyzer (SEAL Ana-
lytical, Mequon, Wisconsin 53092). Due to instru-
ment down time, the SEAL AQ2 was used only for 
NH4

+ quantification for June 2018 soil samples. 
For NO3

− analyses on the June 2018 soil samples, a 
spectro::lyser V2 (s::can Messtechnik GmbH, Vienna, 
Austria) was used to measure NO3

− via UV–Vis 
spectrometry. The September 2018 soil samples were 
analyzed for NH4

+ and NO3
− by colorimetric spectro-

photometry using a SEAL Analytical AutoAnalyzer 3 
flow injection analyzer at the University of Delaware 
Soil Testing Lab.

To ensure that NO3
− concentration results were 

comparable across the analytical instruments, a ran-
domly chosen subsample of soil extracts (n = 14) pre-
viously analyzed on the AQ2 in 2017 were analyzed 

on the other two instruments as well. Results of 
one-way ANOVA indicated no significant difference 
(P = 0.875) in the measured NO3

− concentrations 
among these three instruments.

Potential nitrification was calculated as the net 
change in soil NO3

−–N between initial soil collection 
and incubated extract following 30-day incubation. 
Potential N mineralization was calculated as the net 
change in soil NO3

−–N plus NH4
+–N between initial 

soil content and incubated extract.

Soil C and N

To determine total soil C and N, all soils from Sep-
tember 2017 and the control and mulch treatment 
group from September 2018 were ground using a ball 
mill (Mixer Mill MM200, Retsch, Haan, Germany). 
Soil C (%), N (%), and C:N were measured using an 
elemental combustion system (4010 CHNSO ana-
lyzer, Costech Analytical, Costech Valencia, CA, 
USA) interfaced with a Thermo Delta V Ratio Mass 
Spectrometer (Thermo, Bremen, Germany) at the 
University of Maryland Center for Environmental 
Science’s Appalachian Laboratory (Frostburg, MD). 
Soil C:N ratio was expressed on a molar basis.

Statistical data analysis

All data analyses were performed in R version 4.1.0 
(R Core Team 2021) using the rstatix (Kassambara 
2021) and relaimpo (Grömping 2006) packages. Sig-
nificance was considered at the α = 0.05 level, but in 
some cases the α ≤ 0.10 critical values are reported 
to identify potential trends. For all analyses, data for 
June and September were analyzed separately since 
we were not directly testing for differences between 
growing seasons. After checking for normality and 
homoscedasticity of the data, we performed one-way 
analysis of variance (ANOVA) followed by Tukey’s 
post-hoc multiple comparisons test to determine 
potential differences between forest sites in soil N 
cycling metrics (i.e., nitrification and N mineraliza-
tion rates) and soil C and N metrics (i.e., soil %C, 
%N, and molar C:N) prior to management. To deter-
mine N cycling patterns across all sites, we first used 
the ‘calc.relimp’ function of relaimpo to assess rela-
tive importance of explanatory variables (rose stem 
density, non-rose stem density, and soil water content 
[SWC]), which considers the contribution of each 
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variable in explaining variance (i.e., partitioned R2) 
in multiple linear regression models, and then deter-
mined R2 of the model for each month (June and 
September) by N cycling metric (nitrification and N 
mineralization rates) combination. For models that 
explained a considerable amount of variance (i.e., 
with R2 above 0.3 threshold), we report ‘lmg’ (i.e., 
partitioned R2, hereafter “Variable Effect Size”) for 
each explanatory variable and then perform simple 
linear regressions between explanatory variables and 
soil N cycling rates. Non-rose stem density was log-
transformed (ln) to improve normality, and we report 
results of those analyses with transformed data.

To assess differences in soil N cycling among man-
agement strategies following invasive plant removal, 
we calculated the net change between pre- and post-
removal (2017 to 2018) nitrification and N minerali-
zation rates. Then, we performed one-way ANOVA 
followed by Tukey’s post-hoc test to determine sig-
nificant differences among management strategies, 
analyzing each site and month of sampling separately. 
We also calculated net change in soil water content 
(SWC) and analyzed the change between years with 
a paired t-test for June and September separately. To 
determine potential differences in soil C and N met-
rics between the control and mulched treatment (i.e., 
C amendment) groups, we calculated the net change 
between the pre- and post-removal (2017 to 2018) 
soil %C, %N, and molar C:N, then used Welch’s t test 
due to small sample sizes (n = 3 plots strategy−1; 6 
plots site−1) and differences (> threefold) in standard 
deviations between groups.

Results

Initial Soil N cycling and C:N

Prior to invasive plant removal and management, we 
analyzed differences in soil N cycling rates across 
forests (Fig.  2; Table  1 for means and Table  S1 for 
results of one-way ANOVA and post-hoc analyses). 
In June, the Low invasion site had significantly lower 
nitrification and N mineralization compared to the 
Medium and High invasion sites (P < 0.01; Fig. 2a, b). 
In September, there was a shift from N immobiliza-
tion to N mineralization, and nitrification was higher 
in the Low invasion site compared to the Medium 
(P < 0.001) and High invasion sites (P = 0.021; 

Fig. 2c). Furthermore, N mineralization was lower in 
the Medium invasion site compared to the Low inva-
sion site in September (P = 0.060), though neither dif-
fered from the High invasion site (Fig. 2d).

Prior to experimental manipulation, we found 
significant differences in soil %C (F2,33 = 36.52, 
P < 0.001), %N (F2,33 = 25.18, P < 0.001), and molar 
C:N (F2,33 = 84.09, P < 0.001) across the sites. Soil C 
(%), N (%), and molar C:N were significantly high-
est in the Low invasion site, followed by the Medium 
invasion site, and lowest in the High invasion site 
(Table 2).

Soil N cycling along a gradient of invasion

To understand how N cycling related to rose inva-
sion, we sampled the plant community and deter-
mined species abundance (i.e., initial stem densities) 
prior to management. While many invasive shrubs 
were present, only two nonnative herbs (Alliaria peti-
olata, Cardamine impatiens) and one nonnative grass 
(Microstegium vimineum) were present; however, 
grasses were estimated as percent cover and were not 
included in stem counts (Moore et al. 2023). Relative 
importance analysis indicated that the models (i.e., 
rose stem density, non-rose stem density, and SWC) 
explained a considerable amount of variance (i.e., 
R2 > 0.30) for nitrification (R2 = 0.630) and N min-
eralization (R2 = 0.651) in June, and for nitrification 
(R2 = 0.349) in September (Fig.  3a–c). However, for 
N mineralization in September, the proportion of var-
iance explained by the model was considerably low 
(i.e., R2 < 0.18; Fig.  3d). In June, soil water content 
(SWC) was most important for explaining N process 
rates (Variable Effect Size; nitrification = 0.38, N 
mineralization = 0.51), while rose stem density was 
most important for explaining nitrification in Septem-
ber (Variable Effect Size = 0.15).

For models with R2 > 0.3, relationships between 
rose stem density, SWC, non-rose stem den-
sity, and soil N cycling rates are reported. In the 
early growing season (June), potential nitrifica-
tion (R2 = 0.271, P = 0.001) and N mineraliza-
tion (R2 = 0.116, P = 0.042) decreased as rose 
density increased (Fig.  4a, b). Similarly, nitrifica-
tion (R2 = 0.451, P < 0.001) and N mineralization 
(R2 = 0.566, P < 0.001) decreased with increasing 
SWC (Fig.  5a, b). The relationships between non-
rose stem density and soil N cycling were opposite 
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to the relationships observed with rose density; nitri-
fication (R2 = 0.451, P < 0.001) and N mineralization 
increased (R2 = 0.374, P < 0.001) as non-rose stem 

Fig. 2   Means (± 1 SE) of 
potential net nitrification 
and net N mineralization 
in the early (June) (a, b) 
and late (September) (c, d) 
growing season of 2017. 
Letters indicate signifi-
cant* differences (P < 0.05) 
between sites. Note the 
different y-axes scales. 
*Indicates a trend toward 
significant differences 
(P < 0.10) between sites

Table 1   Means (± 1 SE) of potential net nitrification and net 
N mineralization in June and September 2017

Letters indicate significant* differences (P < 0.05) between 
sites in each month and N cycling metric (Nitrification or N 
mineralization)
*Indicates a trend toward significant differences (P < 0.10) 
between sites

Month Invasion Nitrification N Mineralization
µg NO−

3
–N

g−1 DW soil d−1
µg [ NO−

3
 + NH+

4
]-N

g−1 DW soil d−1

June Low − 1.21 (0.18)A − 1.31 (0.22)A

Medium − 0.36 (0.07)B − 0.46 (0.10)B

High − 0.65 (0.09)B − 0.63 (0.09)B

September Low 0.66 (0.08)A 0.91 (0.10)A*

Medium 0.25 (0.05)B 0.66 (0.06)B*

High 0.40 (0.06)B 0.73 (0.06)AB*

Table 2   Means (± 1 SE) of soil C and N metrics in the Low, 
Medium, and High Invasion forest sites in September 2017, 
prior to invasive plant removal

Letters indicate significant pairwise differences (P < 0.05; 
Tukey–Kramer post-hoc test) among sites for each Metric

Metric Invasion Mean (± 1 SE)

% C Low 4.07 (0.26)A

Medium 3.17 (0.13)B

High 1.92 (0.10)C

% N Low 0.28 (0.02)A

Medium 0.24 (0.01)B

High 0.17 (0.01)C

molar C:N Low 16.62 (0.19)A

Medium 15.35 (0.22)B

High 13.16 (0.16)C
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density increased (Fig.  6a, b). Patterns in the late 
growing season (September) were mostly opposite 
those found in the early growing season. Potential 
nitrification increased with increasing rose density 
(R2 = 0.284, P < 0.001; Fig. 4c) and SWC (R2 = 0.146, 
P = 0.022; Fig.  5c), yet decreased as non-rose stem 
density increased (R2 = 0.295, P < 0.001; Fig. 6c).

The proportion of N mineralization due to ammon-
ification differed among our sites prior to manage-
ment. In June, ammonification accounted for 22% of 
N mineralization at the Medium invasion site, yet less 
than 10% of N mineralization was from ammonifica-
tion at the Low and High invasion sites. In Septem-
ber, ammonification accounted for more than 62% 
of N mineralization at the Medium invasion site, but 
26% at the Low invasion site and 44% at the High 
invasion site was from ammonification (Table S2).

Soil N responses to invasive plant management

Within each of our forest sites, we found that remov-
ing invasive plants (i.e., strategy #2) had no effect on 
soil N cycling (i.e., nitrification and N mineraliza-
tion) when compared to control plots (i.e., strategy 
#1; P > 0.10; Figs. 7, S1, S2; Table S3) after 1 year. 
However, post-removal treatments (i.e., addition 
of native seed mix [strategy #3] and invasive stems 
as mulch [strategy #4]) resulted in greater soil N 
cycling responses in the Medium invasion site in June 
(Fig. 7). Net change in nitrification rate was positive 
under all management strategies, though the increase 
was smaller in the seed mix (P = 0.067) and mulched 
(P = 0.061) treatment groups compared to the con-
trol group (Fig. 5a). There were no differences in N 
cycling metrics among management strategies at the 

Fig. 3   Variable Effect Size 
(as Partitioned R2) showing 
the relative importance of 
each explanatory variable in 
the 2017 linear regression 
models. a Net nitrification 
in June, b net N mineraliza-
tion in June, c net nitrifica-
tion in September, d net N 
mineralization in September



310	 Biogeochemistry (2024) 167:301–319

1 3
Vol:. (1234567890)

Low and High invasion sites in either the early or late 
growing seasons (P > 0.10; Figs. S1, S2).

Within each forest site, amending the soil with 
carbon-rich, chipped rose stems resulted in site-spe-
cific changes in soil C and soil N metrics (%C, %N, 
and molar C:N) when compared to the control strat-
egy (Fig.  8). In the Low invasion site, there were 
trends toward significant net decreases in mean soil 
C (%) and N (%) in the mulched treatment group 
(%C = -0.66 ± 0.19%; %N = -0.01 ± 0.02%) compared 
to the control group (%C = 0.22 ± 0.32%, P = 0.091; 
%N =  + 0.05 ± 0.02%, P = 0.073; Fig.  8a, b). In the 
High invasion site, there were trends toward a sig-
nificant net increase in mean soil N (%) and net 
decrease in mean soil C:N in the mulched treatment 
group (%N = 0.08 ± 0.03%; C:N = − 1.029 ± 0.423) 
compared to the control group (%N = -0.003 ± 0.012, 

P = 0.074; C:N = 0.392 ± 0.262, P = 0.057; Fig. 8h, i). 
There were no differences in soil C and N metrics in 
the Medium invasion site (P > 0.10).

Discussion

In general, we found differences in N cycling across 
forests along a gradient of rose density (Fig. 4), soil 
water content (SWC; Fig. 5), and non-rose stem den-
sity (Fig.  6) as expected. Assessing N cycling dur-
ing early and late growing seasons also revealed dif-
ferences in nitrification and N mineralization rates, 
and the importance of SWC and rose stem density in 
explaining N cycling varied by month (Fig. 3). Across 
sites, rose density was a better predictor of N cycling 
in September (Fig.  4), while SWC was a better 

Fig. 4   Potential net nitrification and net N mineralization as 
a function of R. multiflora (rose) stems in the early (June) (a, 
b) and late (September) (c, d) growing season across all three 
forest sites. Equation, R2, P value, and trendline are shown 

for models with Variable Effect Size (Partitioned R2) > 0.30, 
as indicated by the R package ‘relaimpo’. Note the different 
y-axes scales
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predictor in June (Fig. 5). N cycling responses follow-
ing invasive plant removal varied by site and among 
management strategies (Figs.  7, S1, S2). The addi-
tion of the seed mix, both with and without mulch, 
resulted in decreases in the June nitrification rate at 
the Medium invasion site compared to control plots 
(Fig. 7). Variation in N cycling responses to different 
management strategies emphasizes the importance of 
studying forests that differ along a gradient of inva-
sion and understanding N cycling within invaded for-
ests prior to management.

N Cycling within and across forests

Across our forest sites, N cycling differed by inva-
sion intensity (Fig.  2) and was significantly related 
to rose invasion (i.e., rose stem density) during both 

seasons prior to invasive plant removal (Fig. 4). Pre-
vious studies have found increased rates of nitrifica-
tion and N mineralization in the presence of invasive 
shrubs (e.g., Ehrenfeld et  al. 2001; Ehrenfeld 2003; 
Jo et al. 2015), though we found this relationship was 
only true in September, and potential nitrification 
and N mineralization decreased with increasing rose 
stem density in June. In contrast, patterns between 
N cycling and non-rose stem density were opposite 
(Fig. 6) the patterns observed with rose stem density 
(Fig. 4). Thus, rose invasion influences soil N cycling 
rates in an opposite direction than all other plants in 
the same location. While other invasive shrubs have 
been shown to affect N cycling, rose is the most abun-
dant invader in our study system (i.e., 83% of non-
native stems prior to management), and we expected 
the effects of other invasive species to be minimal. 

Fig. 5   Potential net nitrification and net N mineralization as a 
function of Soil Water Content (SWC) in the early (June) (a, 
b) and late (September) (c, d) growing season across all three 
forest sites. Equation, R2, P value, and trendline are shown for 

models with Variable Effect Size (Partitioned R2) > 0.30, as 
indicated by the R package ‘relaimpo’. Note the different axes 
scales
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These findings provide evidence that rose is driving 
changes in N cycling since the relationship between 
rose and N cycling rates are not a consequence of 
plant abundance, but the presence of rose shrubs 
specifically.

In the early growing season (June), soil water 
content was more important (i.e., had higher 
Variable Effect Size) than rose density and non-
rose density in explaining variation in N cycling 
(Fig.  3a, b). However, the combined plant effects 
still explained considerable variation, and both rose 
density (P < 0.05) and non-rose density (P < 0.01) 
had clear impacts on N cycling (Fig. 4). All three 
sites had low C:N values (< 17:1; Table 2) indica-
tive of microbial C-limitation and N mineralization 
prior to invasive plant removal and management. 

Therefore, organic matter quality may not explain 
the patterns we observed in N immobilization 
in the early growing season. Water quantity may 
be an important mechanism, and high SWC sug-
gests gaseous N loss (i.e., denitrification, nitrous 
oxide [N2O] emission) may be occurring (Myers 
et  al. 1982; Bateman and Baggs 2005; Robertson 
and Groffman 2015; De Neve 2017). Additionally, 
nitrification and N mineralization decreased as 
SWC increased (Fig. 5a, b) within our forest sites, 
suggesting that denitrification may play a promi-
nent role in N cycling in the early growing sea-
son, when soils are wetter and plant dormancy has 
recently ended (Groffman and Tiedje 1989, Groff-
mann et  al. 1993), in our system. Moreover, soil 
N pools of NH4

+ and NO3
− significantly increased 

Fig. 6   Potential net nitrification and net N mineralization 
as a function of non-rose stem density (all herbs, shrubs, 
and trees except R. multiflora) in the early (June) (a, b)  and 
late (September) (c, d)  growing season across all three forest 
sites. Graphs show raw data, but R2 and P values are based 

on log-transformed (ln) non-rose stem density, and are shown 
for models with Variable Effect Size (Partitioned R2) > 0.30, 
as indicated by the R package ‘relaimpo’. Note the different 
y-axes scales
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in June, yet ammonification and nitrification sig-
nificantly decreased with increasing SWC at these 
sites (Moore 2022), which may suggest an elevated 
amount of N2O is being produced during nitrifi-
cation when soils are wetter (Bateman and Baggs 
2005) and warmer (Inatomi et  al. 2019). Thus, 
more study is needed to understand the relation-
ship between rose and soil moisture across spatial 
and temporal scales. Other factors which we did 
not consider in this study, such as soil pH, texture 
and microbial community composition, may pro-
mote N immobilization under lab conditions, and 
future studies could investigate these potential 
relationships.

N cycling responses to management strategies

Overall, responses to management strategies var-
ied within our forest sites, and did not support our 
hypothesis that removing invasive plants would 
decrease N cycling rates in the most invaded site 
within the time period of the experiment. Further-
more, unmanipulated control plots exhibited unex-
pected changes in N cycling across sites. For exam-
ple, in 2018, all sites experienced a net increase in 
potential N mineralization in June, but a net decrease 
in September (Figs. 7, S1, S2). Changes in soil water 
availability between the 2 years may be responsible 
for these patterns. In 2017, soils were wetter in June 

Fig. 7   Mean net change (± 1 SE) in potential net nitrification 
and net N mineralization rates during early (June) (a, b)  and 
late (September) (c, d) growing season in plots at the Medium 

Invasion site following management in 2018. Letters indi-
cate trends toward significant differences (P < 0.10) between 
groups. Note the different y-axes scales
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and drier in September, but in 2018, soils were wetter 
in September and drier in June (Fig. S3). The year-to-
year variation in SWC is thus an important driver of 
N cycling rates in this system, and may override plant 
influences, especially since rose had a stronger influ-
ence when soils were drier.

Post-removal treatments (i.e., seed mix addi-
tion, seed mix plus mulched stem amendment) at the 
medium invasion site led to a smaller net increase 
in nitrification rate compared to the control group 
(Fig.  5a). The vast majority of germinants from the 
seed mix in 2018 were sedges and grasses, though 
5 of 29 herb species germinated in low abundances 
(Moore et  al. 2023). This suggests that newly 

germinating plants were assimilating N from soils. 
Moreover, in 2019, we observed 24 of 29 herb species 
were present, many with relatively high abundance 
(Moore et al. 2023). Thus, a single year of manage-
ment may not be sufficient to observe changes in N 
cycling among the various strategies in the Low and 
High invasion sites, and continued management over 
subsequent years may be necessary to observe differ-
ences in N cycling. Over time, net changes in plant 
communities (Moore et  al. 2023) and soil amend-
ments may increasingly influence N cycling post 
invasive plant removal.

Amending the soil with C-rich mulched stems 
(plus hand-sowing the native seed mix) after invasive 

Fig. 8   Mean net change (± 1 SE) in soil % C, % N, and molar 
C:N in control and mulched treatment plots at the Low (a, b, 
c), Medium (d, e, f), and High (g, h, i) invasion sites following 

invasive plant removal in 2018. Letters indicate trends toward 
significant differences (P < 0.10) between groups. Note the dif-
ferent y-axes scales
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plant removal resulted in changes to soil C and N 
metrics, yet the observed changes differed by site and 
did not follow our expectations (Fig. 8). In the Low 
invasion site, mulch amendment reduced soil N (%) 
as expected, yet also reduced soil C (%) unexpectedly 
(P < 0.10). The low invasion site primarily consisted 
of small rose shrubs that were hand-pulled (Moore 
et  al. 2023), which could have caused the decreased 
soil C via belowground root removal. We cannot 
rule out the possibility there was not enough time 
for decomposition of mulch amendments to increase 
soil C content within 1 year. However, in the Medium 
invasion site, soil C increased and C:N decreased in 
the mulch treatment, though these patterns were not 
significant due to high variation and low sample size. 
In the high invasion site, soil C had a non-significant 
increase with the mulch addition and soil N (%) sig-
nificantly increased (P < 0.10) leading to decreased 
C:N (P < 0.10) compared to control plots in the first 
year following management. Iannone et  al. (2013) 
found that mulch from the invasive shrub Rhamnus 
cathartica (European buckthorn), with similar C:N 
(72:1) compared to our rose mulch (77:1), increased 
soil available N. Microbial access to mulch may be 
impeded initially due to the low surface area:volume 
of mulch (Cornwell et  al. 2009), thereby limiting N 
immobilization and negating short-term effective-
ness of mulch. However, rose stem mulch was more 
N-rich in the High invasion site compared to the other 
sites, which may have caused these observed changes 
in soil N (%) and C:N following the soil amendment 
management technique. This further suggests a posi-
tive feedback loop with N, as rose litter and stem 
quality may have had a long-term influence on soil 
conditions (higher available N) in the high invasion 
site with legacies of rose invasion. Thus, differences 
in C:N of the rose mulch between invasion densities 
suggests a possible threshold for management.

In this manipulated experiment, we found that 
addition of mulched stems reduced invasive shrubs 
in our highly invaded forest site (Moore et al. 2023), 
but we caution land managers to consider poten-
tial adverse effects on soil C and N if employing 
this strategy short-term, especially since it did not 
result in significant changes to N cycling that we 
expected to observe after 1 year of management in 
the high invasion site. Moreover, C:N declined under 
both control and mulched management strategies in 
the low and medium invasion sites suggesting that 

C-rich mulched stem addition following invasive 
plant removal is likely not enough to offset potential 
changes in soil C and N cycling due to other pro-
cesses, such as decomposition, microbial respiration, 
or changes in soil moisture due to climate change. 
Thus, more time may be needed to incorporate this 
C-rich organic matter into soil C and N pools.

Conclusion

We found N cycling was related to rose invasion and 
SWC within sites, but these relationships varied by 
season. Rose density and SWC were unrelated in June 
2017 (when soils were very wet), and SWC was the 
most important predictor of N cycling rates. How-
ever, SWC increased with increasing rose density 
in September 2017 when soils were drier, and rose 
density had the greatest effect on N cycling. There-
fore, rose has a greater effect on nitrification, and 
thus N mineralization, when soils are less saturated, 
and invasion may have a more pronounced effect on 
soil N cycling in climates predicted to receive more 
moderate rainfall. Amending the soil with C-rich rose 
stems (chipped and applied as mulch) did not increase 
soil C:N within our sites, and is likely not a viable 
short-term management strategy, if the goal is to 
reduce nitrification and losses of N from the system 
quickly, given the additional cost and labor. While 
this study examined potential N cycling responses 
only in the year following invasive plant removal, 
it is possible that these changes take more time to 
occur. Our goal was to sample soils in 2019 as well, 
but we were unable to sample more than 1-year post-
removal. However, in our assessment of the plant 
community in 2019 (Moore et  al. 2023), we found 
greater differences 2 years post removal. Thus, long-
term research could uncover meaningful patterns that 
may be associated with different management strate-
gies. Continued research in forests along a gradient 
of invasion and evaluation of management strategies 
will be necessary to further comprehend the relation-
ships between invasive shrubs and soil N cycling.
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