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and were not consistent across annual timescales. Hot 
moments of nitrous oxide  (N2O) and carbon dioxide 
 (CO2) fluxes were more evenly distributed across 
space than methane  (CH4). In the corn system, hot 
moments of  CH4 flux were often isolated to a sin-
gle location but locations were not consistent across 
years. Spatiotemporal variability in soil moisture, 
soil oxygen, and temperature helped explain patterns 
in  N2O fluxes in the annual corn agroecosystem but 
were less informative for perennial alfalfa  N2O fluxes 
or  CH4 fluxes across ecosystems, potentially due to 
insufficient spatiotemporal resolution of the associ-
ated drivers. Overall, our results do not support the 
concept of persistent hot spots of soil  CO2,  CH4, and 
 N2O emissions in these drained agricultural peat-
lands. Hot moments of high flux events generally 
varied in space and time and thus required high sam-
ple densities. Our results highlight the importance of 
constraining hot moments and their controls to better 
quantify ecosystem greenhouse gas budgets.
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Introduction

Drained agricultural peatlands are characterized by 
some of the highest greenhouse gas emissions from 

Abstract Drained agricultural peatlands occupy 
only 1% of agricultural land but are estimated to be 
responsible for approximately one third of global 
cropland greenhouse gas emissions. However, recent 
studies show that greenhouse gases fluxes from 
agricultural peatlands can vary by orders of magni-
tude over time. The relationship between these hot 
moments (individual fluxes with disproportionate 
impact on annual budgets) of greenhouse gas emis-
sions and individual chamber locations (i.e. hot spots 
with disproportionate observations of hot moments) 
is poorly understood, but may help elucidate pat-
terns and drivers of high greenhouse gas emissions 
from agricultural peatland soils. We used continuous 
chamber-based flux measurements across three land 
uses (corn, alfalfa, and pasture) to quantify the spa-
tiotemporal patterns of soil greenhouse gas emissions 
from temperate agricultural peatlands in the Sacra-
mento-San Joaquin Delta of California. We found that 
the location of hot spots of emissions varied over time 
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terrestrial ecosystems due to soils that are often 
rich in organic carbon (C) and nitrogen (N) content 
(Leifeld and Menichetti 2018; Hemes et  al. 2019; 
Anthony and Silver 2020; Anthony et al. 2023). The 
oxidation of soil organic C to carbon dioxide  (CO2) 
during drainage drives the majority of the global 
warming potential (GWP) from agricultural peat-
land soils (Freeman et  al. 2022). However, nitrous 
oxide  (N2O) and methane  (CH4) can represent up to 
35% of  CO2-equivalent  (CO2e) agricultural peatland 
emissions (Anthony and Silver 2021). Combined 
agricultural peatland  CO2,  N2O and  CH4 emissions 
are estimated to contribute to 32% of global cropland 
emissions while accounting for only 3% of global 
land area and providing only 1% of crop kilocalories 
worldwide (Carlson et al. 2017; Freeman et al. 2022).

Soil  N2O and  CH4 emissions are often character-
ized by hot moments, where the majority of annual 
emissions occur on a timescale of days to weeks 
(Molodovskaya et  al. 2012; Savage et  al. 2014; 
Krichels and Yang 2019; Anthony and Silver 2021; 
Anthony et al. 2023). Hot moments of  N2O and  CH4 
high emission events are often poorly constrained, but 
can be triggered by weather events (rainfall, freeze/
thaw) or management induced changes (fertilization, 
irrigation, flooding, drainage) to the soil environment 
(Conrad 1989; McNicol and Silver 2014; Wagner-
Riddle et al. 2017; Krichels et al. 2019a). The drivers 
of spatial variability in  N2O and  CH4 fluxes are even 
less well understood. Low lying areas, legacies of 
prior land use, and areas of particularly high resource 
availability may be important locations for high emis-
sion potential, termed hot spots, on the landscape. 
There are several ways in which hot spots of high 
fluxes may manifest in agricultural ecosystems (sensu 
McClain et al. 2003, Wagner-Riddle et al. 2020). Hot 
spots could be characterized by consistently high 
greenhouse gas emissions from a single locale or set 
of locales such as a drainage ditch or furrow which 
have near constant low or dynamic redox and high 
substrate availability. Alternatively, locations with 
periodic high flux events (i.e., hot moments) may be 
limited to a single or few locations relative to a larger 
ecosystem matrix, thus linking hot spots with hot 
moments. Locations with a higher probability for hot 
moments of high flux may be characterized by micro-
topography (e.g., low lying areas), properties of veg-
etation (e.g., high litterfall inputs), or land use lega-
cies (e.g., N fixing crops) (Krichels and Yang 2019; 

Hall et al. 2023). Finally, hot spots could occur incon-
sistently as locales with a higher proportion of hot 
moments than the surrounding matrix for a defined 
period (month, season, year) that vary over space and 
time. This final category of greenhouse gas emission 
hot spot would be particularly difficult to character-
ize but could be linked to dynamic soil heterogene-
ity (Totsche et  al. 2010), land management activi-
ties such as tillage, planting, or fertilizer application 
that may reduce spatial variability in soil conditions 
(Adewale et al. 2016), or result from random, or cha-
otic processes associated with ecosystem complexity 
(Baveye et al. 2018; Sokol et al. 2022).

The datasets needed to constrain hot spots and 
hot moments of ecosystem processes are inherently 
large and complex. Denitrification and methanogen-
esis are often regulated by non-linear and interactive 
effects which are difficult to model using traditional 
approaches. Machine learning models can help cap-
ture trends and identify important drivers and predic-
tors of ecosystem processes; relationships are deter-
mined from available data, allowing for unbiased 
projections while providing insights into functional 
relationships (Saha et  al. 2021). Machine learning 
models can also be used to make projections at larger 
spatial and temporal scales (Alber et al. 2019). Super-
vised machine learning models, such as random for-
est modelling, utilize an algorithm for classification 
and regression based on the principle of recursive 
partitioning (Breiman 2001), and independent of the 
assumption of functional relationships between the 
response and predictor variables (Saha et al. 2021).

An important limitation of machine learning 
models is that they require large, high-quality train-
ing datasets to appropriately train the model with-
out using a significant proportion of the observed 
data (Qiu et  al. 2016). Accuracy likely improves 
with increased spatial and temporal data inputs 
and is therefore inherently limited by the scope of 
a training dataset. This makes it difficult to predict 
the occurrence and magnitude of hot spots and hot 
moments without adequate representation of large 
flux events within training datasets. Unexplained 
variability in previously developed models is likely 
a function of consistently underfitting hot moments 
or under sampling key driving variables (soil  O2, 
moisture, and temperature) across space or time. 
Continuous long-term (multi-month or year) meas-
urements of  N2O and  CH4 fluxes and their drivers 
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across scales are rare, limiting our ability to scale 
hot spots and hot moments across time and space.

Continuous automated measurements can 
improve the temporal resolution of greenhouse 
gas emissions data (Holst et al. 2008; Barton et al. 
2015). However, these approaches are still typically 
limited to 6–12 sampling locations and study dura-
tion is often less than one full year. Similar chal-
lenges exist for the determination of controlling 
variables occurring within soil environments (spa-
tial scales from aggregate to pedon and temporal 
scales from seconds to days). Patterns in substrate 
availability, gas diffusivity, and microbial activity 
throughout a soil profile are likely to be important 
drivers of observed spatiotemporal variability in 
agricultural peatland greenhouse gas emissions. 
Soil moisture content, redox conditions, and C and 
nutrient availability often vary with depth in soils, 
leading to differential patterns in C and N cycling 
(Jobbagy and Jackson 2000; Krichels et  al. 2019b; 
Thorup-Kristensen et al. 2020). Incorporating phys-
ical and biogeochemical conditions both vertically 
and horizontally in soils can significantly improve 
predictions of greenhouse gas fluxes (Potter 1997; 
Chatskikh et al. 2005; Xing et al. 2011; Feng et al. 
2021). Thus, challenges persist for the prediction of 
greenhouse gas emissions at an ecosystem scale and 
corresponding calibration data is likely to be critical 
to better predict spatiotemporal variability.

In agricultural peatlands, soil nitrate  (NO3
−) avail-

ability, water filled pore space (WFPS), and its effects 
on  O2 availability can be significant drivers of hot 
moment  N2O flux events (Pärn et al. 2018; Anthony 
and Silver 2021; Anthony et al. 2023). Soil  NO3

− can 
accumulate under oxic, well-drained soil conditions 
via N mineralization and nitrification following ferti-
lization or crop harvest (Kirk et al. 2015; Anthony and 
Silver 2021) and may be supplemented by Fe-coupled 
anaerobic ammonium oxidation in Fe- and C-rich 
peatlands soils (Martikainen et al. 1993; Golovchenko 
et al. 2007; Yang et al. 2012; Yang and Liptzin 2015). 
Due to a relatively unlimited organic C and N supply 
(in comparison to most other soils), many temperate 
agricultural peatland soils experience high rates of N 
mineralization and nitrification (Danevčič et al. 2010; 
Jerman et al. 2017; Oktarita et al. 2017) suggesting a 
sustained and active N cycling microbial community 
that likely facilitates the production and emission of 
 N2O.

Net  CH4 fluxes from agricultural peatlands are 
assumed to be minimal under drained conditions 
(Maljanen et al. 2010; Günther et al. 2019) as this is 
thought to favor aerobic respiration pathways that out-
compete methanogens for available substrate and/or 
stimulate methanotrophic activity (Conrad 2007). But 
irrigation or intense rainfall events can create peri-
ods of anaerobic conditions ideal for  CH4 production 
(Hemes et al. 2019; Anthony and Silver 2021). At the 
ecosystem scale, the influence of soil temperature, 
water table fluctuations, and plant activity drive  CH4 
fluxes in both drained and restored wetlands, often as 
scale emergent controls that can only be determined 
with high density eddy covariance measurements 
(Sturtevant et al. 2016; Oikawa et al. 2017; Chamber-
lain et al. 2018). However, spatial prediction of  CH4 
fluxes often suffers from the same pitfalls as  N2O flux 
predictions, with methods lacking agreement between 
observed and predicted fluxes and poor performance 
when extrapolated to other locations (Ehrhardt et al. 
2018; Gaillard et al. 2018).

Cover type and management are likely to be 
important determinants of the patterns and magnitude 
of greenhouse gas emissions from drained agricul-
tural peatlands. Agriculture practices in drained peat-
lands are generally determined by soil organic matter 
content and nutrient availability, and can range from 
grazed pastures to annual or perennial agricultural 
systems (Hatala et al. 2012; Knox et al. 2015), all of 
which may vary in rates and pathways of greenhouse 
gas fluxes. In some drained temperate peatlands 
including California’s Sacramento-San Joaquin Delta, 
soils with elevated organic matter content, and thus 
high rates of organic matter mineralization, are fre-
quently chosen for corn (Zea mays) agriculture given 
their inherent productivity. As annual cropping sys-
tems, these ecosystems are often prioritized for win-
ter flooding of fallow fields for weed management and 
migrating waterfowl habitat that also coincide with 
hot moments of  CH4 and  N2O flux (Pellerin et  al. 
2014; Anthony and Silver 2021). In contrast, more 
degraded peat soils with higher mineral content are 
often prioritized for alfalfa (Medicago sativa) agri-
culture as this perennial is an N-fixing crop and can 
be productive over many years with a single plant-
ing and only periodic summer irrigation (Anthony 
et al. 2023). The most degraded soils are often man-
aged as ditch-irrigated grazed pasture as they are not 
economically suitable for crop agriculture (Teh et al. 
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2011; Knox et al. 2015). Drained and irrigated peat-
lands generally experience predictable periods of 
inundation followed by well-aerated conditions; this 
combination fosters the biogeochemical environment 
needed to drive high greenhouse gas fluxes (Hemes 
et al. 2019; Anthony and Silver 2021; Anthony et al. 
2023). Dynamic redox conditions over time can sup-
port high substrate availability for both denitrifers 
(e.g., higher redox) and methanogens (e.g., lower 
redox) (Conrad 1989). Methane and  N2O fluxes can 
also be supported by microtopographic variability 
that leads to temporary ponding in low-lying regions 
with gradients of reducing conditions and well-aer-
ated environments.

To better constrain greenhouse gas budgets and 
their drivers from agricultural peatlands, we con-
ducted continuous in-situ soil greenhouse gas flux 
measurements from three different agricultural peat-
land land uses in a small geographical area (~ 60 
 km2): an annual corn cropping system, a perennial 
alfalfa cropping system, and a grazed irrigated pas-
ture. These systems provided a unique template to 
explore the variability in greenhouse gas fluxes across 
land uses while controlling for climate and general 
soil conditions (e.g., drained peatland). We tested the 
hypothesis that drained peatland agricultural creates 
persistent hot spots of  CH4 and  N2O emissions due to 
low or fluctuating redox conditions, respectively, and 
that the majority of hot moments would be limited to 
a relatively few hot spot chambers. We also hypoth-
esized that this method of quantifying hot spots and 
hot moments would identify relatively less  CO2 hot 
spots and hot moments as soil respiration would be 
more uniformly distributed across these agricultural 
peatland ecosystems with variability driven by sea-
sonality in temperature and precipitation. We pre-
dicted that the annual corn system would have fewer 
emission hot spots due more uniformity in inputs and 
surface soil disturbance from intensive management, 
while the perennial alfalfa system and pasture would 
have relatively greater hot spot variability due to the 
development of greater heterogeneity over time in 
the absence of intensive management. We used con-
tinuous cavity ringdown spectroscopy and automated 
chambers to measure  CO2,  CH4, and  N2O fluxes. 
Soil sensing data of  O2, moisture, and temperature 
across three soil depths (10, 30, and 50 cm) from the 
corn and alfalfa sites allowed us to explore potential 
drivers. Our goal was to quantify the spatiotemporal 

distribution of chamber-scale hot spots and hot 
moments in agricultural peatlands, the relationships 
between hot spots and hot moments of greenhouse 
gas flux, and explore machine learning methods to 
predict these hot spots and hot moments across differ-
ent agricultural peatland land uses.

Methods

Site description

We used data from three agricultural peatland sites 
in the Sacramento-San Joaquin Delta region of Cali-
fornia. The sites experienced a similar climate over a 
relatively small regional scale (~ 60  km2) but had con-
trasting land uses and soil conditions (Table 1). The 
datasets included over 98,000 chamber flux measure-
ments from an organic-rich annual maize agroeco-
system (38.1091° N, 121.5351° W; hereafter referred 
to as corn). Preliminary data on temporal flux pat-
terns from years 1 to 3 were reported in Anthony 
and Silver (2021); here we added an additional year 
of observations and explored spatial dynamics not 
previously considered. We also included data from a 
continuous perennial alfalfa agroecosystem (cham-
bers: 38. 1076° N, 121.5021° W, tower: 38.0992° N, 
121.4993°  W; hereafter referred to as alfalfa) with 
103,000 flux measurements; as with the corn site 
previous work explored the temporal dynamics of 
greenhouse gas emissions from this site, but did 
not report spatial patterning (Anthony et  al. 2023). 
Finally, we included data from a continuously grazed 
irrigated pasture 38.0402° N, − 121.7272° W; here-
after referred to as pasture) with 33,000 flux meas-
urements. These are the three dominant land uses for 
drained agricultural peatlands in the region, account-
ing for 53% of crop acreage (The Delta Protection 
Commission 2020). Importantly, grazed pastures 
often occur on degraded peatland soils where other 
agricultural activity is less likely to be profitable 
(Hatala et  al. 2012; Buschmann et  al. 2020). Corn 
was the only system to receive N fertilizer inputs, 
which were applied at a rate of 118 kg N  ha−1  year−1 
(Anthony and Silver 2021). Here we used the three 
datasets, where we include both fluxes to the atmos-
phere from soil and fluxes from the atmosphere to 
the soil, to explore spatial dynamics both within and 
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across agricultural peatland ecosystems and relation-
ships to temporal patterns which previous studies did 
not address.

Greenhouse gas flux measurements

All datasets collected soil fluxes of  CO2,  CH4, and 
 N2O continuously using an automated chamber sys-
tem for 1 to 4  years. Each system consisted of nine 
opaque, automated gas flux chambers (eosAC, 
Eosense, Nova Scotia, Canada) connected to a multi-
plexer (eosMX, Eosense, Nova Scotia, Canada). The 
multiplexer allowed for dynamically signaled cham-
ber deployment and routed gases to a cavity ring-
down spectrometer (Picarro G2508, Santa Clara, CA, 
USA). Chambers were measured sequentially over 
a 10-min sampling period with a 1.5-min flushing 
period before and after each measurement. Chambers 
were deployed in a 10 × 10 m grid design, with each 
chamber approximately 5  m from other chambers. 
Vegetation was included in all pasture chambers and 
randomly assigned to bare soil (n = 4) or plants (n = 5) 
in alfalfa. In corn, chambers were randomly assigned 
to beds (n = 3) or furrows (n = 6) without vegetation 
included due to the height of the stalks. Data filter-
ing and detection limits are described in detail in 
Anthony & Silver (2021) and Anthony et al. (2023).

Site-level net ecosystem  CO2 exchange (NEE) 
and calculated site-level global warming potential 
(GWP) utilizing annual flux measurements from 

paired Ameriflux towers in corn (US-Bi2) and pasture 
(US-Snf) sites (Kasak et al. 2020; Rey-Sanchez et al. 
2021) was employed to contextualize the importance 
of hot moments on net ecosystem  CO2e budgets. 
For the alfalfa site, we utilized annual net ecosystem 
exchange (NEE) estimates from a nearby (< 1  km) 
Ameriflux tower (US-Bi1) in an alfalfa agroecosys-
tem with identical management practices and soil 
type (Anthony and Silver 2020; Rey-Sanchez et  al. 
2022b). The eddy covariance technique captures con-
tinuous, long-term exchange of  CO2,  CH4, water, and 
energy fluxes between the landscape and the atmos-
phere, along with measurements of environmental 
drivers (Eichelmann et al. 2018). Fluxes were meas-
ured at a frequency of 20 Hz using open-path infra-
red gas analyzers (LI-7500 for  CO2, LI-7700 for  CH4, 
LiCOR Inc., Lincoln, NE, USA). Sonic anemometers 
measured sonic temperature and three-dimensional 
wind speed at 20  Hz (WindMaster Pro 1590, Gill 
Instruments Ltd, Lymington, Hampshire, England). 
To convert  N2O and  CH4 flux measurements to  CO2e, 
we used the IPCC AR5 100-year GWP values of 28 
 CO2e for  CH4 and 298  CO2e for  N2O (Myhre et  al. 
2013).

Environmental sensors

In both the corn and alfalfa systems, two sets of 
soil sensors per site were installed at depths of 
10  cm, 30  cm, and 50  cm and included  O2 and soil 

Table 1  Descriptions of soil C (% ± SE), soil N (% ± SE), and soil pH (± SE) in the top 0–15 cm and relevant management informa-
tion

Land use Soil C (%) Soil N (%) Soil pH Flux measurement 
periods

Soil sensor measure-
ment periods

Management infor-
mation

Corn: Annual maize 
cropping system

15.2 ± 0.4% 1.0 ± 0.02% 5.89 ± 0.05 June 2017–June 2021 October 2018–June 
2021

Flooded in winter 
(approximately 
November-March) 
for migrating 
waterfowl habitat

Alfalfa: Perennial 
alfalfa cropping 
system

5.3 ± 0.02% 0.38 ± 0.01% 4.93 ± 0.04 January 2017–January 
2021

October 2018–January 
2021

Flood irrigated 
approximately once 
a month during 
from May–Sep-
tember

Pasture: Irrigated, 
grazed pasture

9.0 ± 0.1% 0.63 ± 0.01% 5.13 ± 0.07 April 2019–July 2020 April 2019–July 2020 Ditch subsurface irri-
gation to maintain 
productivity (May–
September), grazed 
by cattle year-round
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temperature sensors (SO-110, Apogee Instruments, 
Logan, UT) and moisture sensors (CS616, Camp-
bell Scientific, Logan, UT) connected to a datalog-
ger (CR1000, Campbell Scientific, Logan, UT) from 
September 2018-February 2021 in alfalfa and Octo-
ber 2018-July 2021 in corn. Sensors were installed 
as close to corresponding chamber grid locations as 
possible while minimizing soil disturbance and lim-
iting interference with agricultural activities. Except 
for periodic agricultural events, sensors remained 
installed throughout the year. Data filtering and data 
gaps are described in detail in Anthony & Silver 
(2021) and Anthony et al. (2023).

Statistical analyses and machine learning

Following data filtering, annual fluxes and the quan-
tity and magnitude of hot moments and hot spots 
were determined. Annual fluxes were determined 
by taking the mean annual flux of each chamber as 
well as the mean annual flux for each field location. 
We defined hot moments as flux measurements with 
values greater than four standard deviations from 
the mean (Anthony and Silver 2021; Anthony et  al. 
2023), as statistically 99.9% of the population should 
fall within four standard deviations of the mean given 
a normally-distributed dataset. All individual flux 
datasets  (CO2,  CH4, and  N2O) from each field site 
were approximately log-normally distributed. Calcu-
lating standard deviations on non-Gaussian datasets 
generally overestimates the true standard deviation 
(Carter 2013), but is still appropriate in describing the 
spread of the variable of interest. Therefore, quantify-
ing hot moments in this manner is generally conserv-
ative, as using an inflated standard deviation quanti-
fies individual flux observations that are significantly 
outside the range of expected observations. Determin-
ing the variation across datasets can provide a metric 
to compare how moments vary across fluxes  (CO2, 
 CH4, and  N2O) and across ecosystem. We defined a 
hot spot as any individual chamber with greater than 
11% of hot moment observations within an annual 
flux dataset. This metric was chosen because if hot 
moments were evenly distributed across chambers, 
each chamber would represent 11% of hot moment 
observations. Therefore, any hot spot chamber with 
greater than 11% of hot moment observations would 
thus disproportionately contribute to the total ecosys-
tem flux. Spatiotemporal differences in hot spots were 

tested with two-way analysis of variance (ANOVA) 
of annual mean greenhouse across chambers and site-
years for each location.

The greenhouse gas flux and soil sensor datasets 
(corn and alfalfa only) were collected with sufficient 
spatiotemporal frequency to utilize machine learn-
ing approaches to determine drivers of  N2O and  CH4 
fluxes. We used a random forest machine learning 
model (Hamrani et al. 2020; Saha et al. 2021) for both 
datasets separately to determine if increased sampling 
density can predict  N2O and  CH4 fluxes. Input vari-
ables included individual observations of  N2O and 
 CH4 fluxes and volumetric water content (VWC), 
 O2, and temperature across a soil profile (10, 30, and 
50  cm) as predictor variables. As sensors were not 
deployed with each individual chamber, some spa-
tial resolution could not be accounted for with sensor 
observations. The relative importance of each input 
variable in the machine learning models were deter-
mined by utilizing a node impurity measure, which is 
related to the corresponding response variance in the 
variable of interest (Segal and Xiao 2011).

Results

Spatiotemporal patterns in emissions across 
ecosystems

The three land uses differed in patterns of greenhouse 
gas emissions and net ecosystem exchange (Table 2). 
The alfalfa and pasture were net  CO2e sinks over 
the study periods. The corn had mean annual emis-
sions of 46.7 ± 0.8  Mg  CO2e  ha−1   year−1 with  CO2 
accounting for 58.0% of this, followed by 34.9% as 
 N2O and 7.1% as  CH4. Together, the average annual 
GWP of  N2O plus  CH4 was 19.6 ± 0.8  Mg  CO2e 
 ha−1  year−1 (Table 2). The alfalfa site was on average 
a net  CO2e sink of -23.3 ± 0.5 Mg  CO2e  ha−1  year−1. 
Soil  N2O emissions decreased the net  CO2e sink by 
8.0% and the average GWP of  N2O plus  CH4 was 
1.84 ± 0.01  Mg  CO2e  ha−1   year−1. The pasture site 
had the lowest annual fluxes with -9.66 ± 0.11  Mg 
 CO2e  ha−1  year−1, with  N2O decreasing the net  CO2e 
sink by 12.8% and an average GWP of  N2O plus  CH4 
of 1.54 ± 0.11 Mg  CO2e  ha−1  year−1.

The frequency of hot moments varied by site. 
In the corn, hot moments of  N2O and  CH4 emis-
sions represented 1.1 ± 0.2 and 1.3 ± 0.2% of 
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measurements, respectively, but contributed to 
45 ± 1% of annual  N2O fluxes and to 140 ± 9% of 
annual  CH4 fluxes. In the alfalfa system hot moments 
of  N2O emissions were only 0.1 ± 0.05% of annual 
measurements but were 31.6 ± 0.2%of the annual flux 
(Anthony et al. 2023). The alfalfa ecosystem did not 
experience significant changes in annual  CH4 budg-
ets from either hot spots or hot moments and over-
all was a small net  CH4 sink (Fig. 4, middle). In the 
grazed pasture, hot moments of  N2O flux accounted 
for 22% of total  N2O emissions but were again less 
than 1% of measurements. Hot moments of  CH4 flux 
were only 0.3% of fluxes but decreased the net  CH4 
sink by 53% (from − 24.1 to − 11.3 g   m−2   year−1). 
Hot moments of  CO2 emissions consistently contrib-
uted less to overall fluxes than hot moments of  N2O 
or  CH4. Hot moments of  CO2 emissions were of the 
greatest importance to the total ecosystem GWP flux 
in the pasture ecosystem relative to the corn or alfalfa. 
In the pasture only 1.0% of  CO2 flux measurements 

represented 5.4% of net  CO2 emissions (Figure S6, 
top). In the corn system,  CO2 hot moments were 
only 0.4% of observations but represented 4.3% of 
net  CO2 emissions (Figure S4, top). Hot moments of 
 CO2 fluxes were the lowest percent of total emissions 
in the alfalfa system, with hot moments representing 
0.5% of measurements but 2% of net  CO2 emissions 
(Figure S5, top).

Hot spots of greenhouse gas emissions across 
ecosystems

We used the individual chamber measurements to 
explore the spatial and temporal distribution of hot 
spots of greenhouse gas emissions across time. Across 
all three field sites, no individual chamber was con-
sistently a hot spot of  CO2,  CH4, or  N2O emissions on 
annual timescales (Figs. 1, 2, 3). We found significant 
temporal variability in the magnitude of greenhouse 
gas fluxes both within and cross chamber locations 

Table 2  Annual mean [ecosystem respiration  (Reco)] ecosystem exchange (NEE) and GWP from  N2O,  CH4, and total net ecosystem 
carbon dioxide equivalent  (CO2e) budgets by site

Note that this analysis does not account for removed biomass from harvest or grazing

Site Reco
(Mg  CO2  ha−1  year−1)

NEE  CO2
(Mg  CO2  ha−1  year−1)

N2O
(Mg  CO2e  ha−1  year−1)

CH4
(kg  CO2e  ha−1  year−1)

Total
(Mg  CO2e  ha−1  year−1)

Corn 66.1 ± 0.04 27.1 ± 0.02 16.3 ± 0.4 3,300 ± 700 46.7 ± 0.1
Alfalfa 64.5 ± 0.1 − 23.3 ± 0.5 1.86 ± 0.01 − 15 ± 1 − 21.2 ± 0.5
Pasture 70.2 ± 0.3 − 11.10 ± 0.01 1.55 ± 0.03 − 0.11 ± 0.11 − 9.66 ± 0.01

Fig. 1  Annual mean (± standard error) (left)  CO2 (g  CO2 
 m−2   day−1), (middle)  CH4 (mg  CH4  m−2   day−1), and (right) 
 N2O (mg  N2O  m−2   day−1) fluxes by chamber from an annual 
corn agricultural peatland from June 2017 through June 2021. 

White, orange, blue, and gray bars are annual mean flux meas-
urements with black error bars representing annual standard 
error
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(p < 0.001, Figs. 1, 2, 3). For  CO2, the corn site had 
four chambers with over 11% of hot moments, with 
the highest at 19.8% followed by 19.1%, 16.9%, and 
14.3%. On an annual basis, the location of hot spot 
chambers varied across years. There were also four 
chambers were over 11% of the  CO2 flux in alfalfa, 
with one hot spot representing 27.5% of all hot 
moment observations, followed by 21.1%, 16.4%, 
and 12.6% in the other chambers; hot spot chambers 
also varied over time on an annual time scale. The 
pasture site only had two chambers over 11% of the 
 CO2 flux, with one chamber representing 65.6% of all 
hot moments, followed by 11.4% of observations in 
the other chamber. Importantly, all chambers exhib-
ited individual hot moments of  CO2 flux in both the 
corn and alfalfa site, while two of the nine chambers 
in the pasture site had no hot moments observations. 

However, hot moments of  CO2 flux were not signifi-
cant proportions of total  CO2 soil flux budgets, repre-
senting a maximum of only 4% of annual soil  CO2 flu
xes.

The relative contribution of hot spots to  N2O hot 
moment fluxes was similar to the distribution for  CO2 
hot spots in all three sites, with the largest individ-
ual hot moment observations for both  CO2 and  N2O 
observed in the same chambers. Hot moments of  N2O 
emissions were relatively common, with the majority 
of chambers exhibiting hot moments of  N2O fluxes in 
all three agroecosystems (Fig. 5). There were individ-
ual locations with higher annual  N2O fluxes than all 
other chambers, but hot moments of  N2O flux were 
observed across multiple chamber locations (Fig. 1, 2, 
3). In the corn site the highest contribution was 19.1% 
of  N2O hot moments from one chamber, followed 

Fig. 2  Annual mean (± standard error) (left)  CO2 (g  CO2 
 m−2   day−1), (middle)  CH4 (mg  CH4  m−2   day−1), and (right) 
 N2O (mg  N2O  m−2   day−1) fluxes by chamber from a peren-
nial alfalfa agricultural peatland January 2017 through January 

2021. White, orange, blue, and gray bars are annual mean flux 
measurements with black error bars representing annual stand-
ard error

Fig. 3  Annual mean (± standard error) (left)  CO2 (g  CO2 
 m−2   day−1), (middle)  CH4 (mg  CH4  m−2   day−1), and (right) 
 N2O (mg  N2O  m−2   day−1) fluxes by chamber from a grazed 

pasture agricultural peatland April 2019 through April 2020. 
Red bars are annual mean flux measurements with black error 
bars representing annual standard error
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by 16.6%, 14.0%, 12.9%, and 11.6% from four other 
chambers with over 11% of the hot moments. There 
were only three chambers with greater than 11% of 
 N2O hot moment observations in the alfalfa site, with 
a single hot spot representing 32.8% of observations 
(followed by 22.9% and 16.4%, respectively). At the 
pasture site, a single hot spot represented 68.5% of 
 N2O hot moments from one chamber that was also 
the largest contribution to  CO2 hot spots.

Most  CH4 hot moments were generally focused in 
one location. In the corn site, 57.3% of all  CH4 hot 
moment fluxes occurred in only one chamber, with all 

other chambers accounted for less than 11% of total 
hot moment observations. Alfalfa and pasture sites 
had similar distributions of  CH4 hot spots. In alfalfa, 
33.3% of hot moments were observed from one cham-
ber, followed by 15.3% and 13.6% in two other cham-
bers while in the pasture site 24% of hot moments 
from one chamber with only two other chambers over 
11% of observations, at 21.3% and 16%, respectively. 
In the corn site hot moments of  CH4 flux were pre-
dominantly driven by fluxes from a single location 

Fig. 4  Annual mean (± standard error)  CH4 (mg  CH4 
 m−2   day−1) fluxes with and without hot moments by chamber 
from an (top) annual corn agricultural peatland from June 2017 
through June 2021, (middle) a perennial alfalfa agricultural 
peatland from January 2017 through February 2021, and (bot-
tom) a grazed pasture agricultural peatland from April 2019 
through June 2020

Fig. 5  Annual mean (± standard error)  N2O (mg  N2O 
 m−2   day−1) fluxes with and without hot moments by chamber 
from an (top) annual corn agricultural peatland from June 2017 
through June 2021, (middle) a perennial alfalfa agricultural 
peatland from January 2017 through February 2021, and (bot-
tom) a grazed pasture agricultural peatland from April 2019 
through June 2020
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that contributed disproportionately to a net ecosys-
tem  CH4 flux (i.e. a hot spot, Fig. 4). In contrast, in 
the perennial alfalfa and grazed pasture systems,  CH4 
hot spots only had a small impact on the net  CH4 sink 
(Fig. 4).

Machine learning predictions of nitrous oxide and 
methane fluxes

A machine learning model using the corn flux and 
sensor dataset was able to account for 81% of the 
variance observed in  N2O fluxes with soil VWC,  O2, 
and temperature sensor data across depths (10, 30, 
and 50  cm) (Fig.  6). Node impurity measurements 
suggested both VWC and temperature across depths 
had the highest relative importance in determining 
 N2O fluxes. With the alfalfa agroecosystem dataset, a 
machine learning model was only able to account for 
16% of the variance observed in  N2O fluxes (Fig. 6) 
and soil  O2, VWC, and temperature all had similar 

values of relative importance. Both the alfalfa and 
corn machine learning models systematically under-
fit the largest  N2O fluxes (Fig.  6). For  CH4 fluxes, 
machine learning performed significantly worse. The 
models were only able to account for 24% of the vari-
ance in the annual corn cropping system and 6% of 
the variance in the perennial alfalfa cropping system 
(Fig. 7).

Discussion

The relationship between hot spots and hot moments 
of emissions

Hot spots of greenhouse gas emissions can be char-
acterized in several ways: as sites with consistently 
high emissions, sites with a higher proportion of hot 
moments than the surrounding matrix, or locations 
with high emissions for a defined period (month, 

Fig. 6  Comparison of 
observed  N2O fluxes 
(nmol  m−2  s−1) to machine 
learning predicted  N2O 
fluxes (nmol  m−2  s−1) 
from agricultural peatland 
corn (a) and (b) alfalfa 
agroecosystems. Predictor 
variables were identical for 
each ecosystem (10, 30, and 
50 cm depths with oxygen, 
moisture, and temperature 
sensors)

Fig. 7  Comparison of 
observed  CH4 fluxes 
(nmol  m−2  s−1) to machine 
learning predicted  CH4 
fluxes (nmol  m−2  s−1) 
from agricultural peatland 
corn (a) and (b) alfalfa 
agroecosystems. Predictor 
variables were identical for 
each ecosystem (10, 30, and 
50 cm depths with oxygen, 
moisture, and temperature 
sensors)
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season, year) that vary over space and time. It is well 
known that the rates and reactions of biogeochemi-
cal processes can vary greatly in space and time, and 
it is often postulated that similar mechanisms drive 
the occurrence of both hot spots and hot moments 
(McClain et  al. 2003; Bernhardt et  al. 2017). This 
often leads to the assumption that hot spot and hot 
moment phenomena occur at similar rates for these 
biogeochemical processes, thus exhibiting similar 
influences on elemental cycles and ecosystem green-
house gas budgets. Here we found that the occurrence 
and magnitude of hot spots and hot moments of  CO2, 
 CH4, and  N2O fluxes were not consistent across time 
or space, were not consistently distributed across eco-
systems, and differed by gas. Hot moments of  N2O 
fluxes were common across chambers in both the corn 
and alfalfa sites, and hot spots of emissions differed 
across the years in the two longer term datasets. In the 
pasture, there was a single hot spot of  N2O emissions 
that accounted for 69% of the hot moments over the 
1-year study period. Interestingly, the most produc-
tive hot spots of  N2O emissions occurred primarily in 
the same chambers as high  CO2 emission at all sites. 
This may indicate that these hot spots have high labile 
C availability and organic matter mineralization rates, 
characteristics that can support both nitrifier denitri-
fication and canonical denitrification (Firestone and 
Davidson 1989; Wallenstein et  al. 2006). Methane 
hotspots were also tied to hot moments of emissions 
and were largely limited to a single chamber location 
in the corn site. The corn site had a single chamber 
with a disproportionate impact on total ecosystem 
fluxes. Patterns for  CH4 in alfalfa and pastures eco-
systems were more variable over time.

Predicting hot spots and hot moments requires 
intensive sampling across scales

Historically, predictive  N2O and  CH4 models uti-
lized controlling variables together with assumptions 
regarding rate constants and kinetics (Müller et  al. 
2007; Rütting and Müller 2007; Riley et  al. 2011). 
Machine learning approaches are becoming more 
popular for predicting  N2O fluxes, but their wider 
application has been limited by the lack of sufficient 
within site replication and the high sampling fre-
quencies of relevant variables across scales needed 
to effectively train models. Due to methodological 
limitations in how we measure greenhouse gas fluxes, 

we are currently only able to measure these phenom-
ena at limited scales in the field (either chamber- or 
eddy covariance-scales). Here we used datasets with 
33,000 to 103,000 flux measurements at the chamber-
scale. In the corn ecosystem, VWC and temperature 
across depths had the highest relative importance in 
determining  N2O fluxes, similar to previous observa-
tions using wavelet coherence analyses (Anthony and 
Silver 2021). The lower predictability of  N2O fluxes 
observed in the alfalfa ecosystem and unexplained 
variance in the corn system may be due to low spatial 
resolution of the sensor measurements and underfit-
ting of hot moments of emissions. Both systems only 
had two sets of sensors per field and were installed at 
10, 30, and 50 cm depths, which may or may not have 
corresponded to locations where hot moments of  N2O 
production occurred, and the spatiotemporal controls 
on them may be more variable across a field. As both 
machine learning models systematically underfit the 
largest  N2O hot moments, this is likely representa-
tive of the unaccounted spatial and temporal variance 
driving these extreme hot moments in both models. 
This underfitting may be occurring if the input soil 
variables are not capturing the spatiotemporal varia-
bility, and/or our limited spatial resolution during hot 
moment observations.

In both the pasture and alfalfa sites a low num-
ber of significant  CH4 hot moments, such as those 
observed in wetlands or thawing permafrost (Elder 
et  al. 2021; Rey-Sanchez et  al. 2022a), is not sur-
prising as these land uses are predominantly drained 
throughout the year. There are several potential expla-
nations for the poor  CH4 model performance in the 
machine learning models used here. First, some other 
unmeasured variable, such as C substrate availabil-
ity or the presence of reducible Fe or sulfate species, 
could be a strong driver of soil  CH4 flux (Chamber-
lain et  al. 2018, 2019). Another potential explana-
tion may be that there was insufficient spatial cover-
age of soil profile measurements of  O2, temperature, 
and VWC. This would suggest that increasing spatial 
measurements of the variables controlling  CH4 hot 
spots, potentially alongside each individual chamber, 
is needed to appropriate quantify the variables con-
trolling the spatial variability in  CH4 fluxes at the 
chamber scale observed.

Combining chamber-based measurements with 
larger scale measurements (such as eddy covari-
ance) may help to better constrain the spatiotemporal 
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drivers of ecosystem-scale variability. High den-
sity eddy covariance-based measurements have 
significantly increased the amount and availability 
of ecosystem-scale  CH4 flux datasets (Knox et  al. 
2019; Delwiche et  al. 2021). These eddy covariance 
datasets have also highlighted the increased abil-
ity to determine time-scale emergent drivers at eco-
system scales (Sturtevant et  al. 2016; Chamberlain 
et al. 2018). However, they are generally not able to 
measure the dynamics and controls of  CH4 fluxes at 
the spatial scales needed to accurately determine the 
distribution and drivers of hot spots and hot moments. 
Additionally, eddy covariance measurements of  CH4 
have detection limits that are too high to accurately 
determine  CH4 consumption. Eddy covariance meas-
urements alongside chamber measurements can pro-
vide insights to spatiotemporal variability of  CH4 
fluxes and help determine their importance at the eco-
system-scale. Another approach that may improve the 
ability to model hot spots and hot moments utilizes 
eddy covariance flux measurements of  CH4 fluxes and 
footprint-weighted hot spot detection (Rey-Sanchez 
et  al. 2022a) alongside automated chamber and soil 
sensor measurements at smaller scales to constrain 
the spatiotemporal distribution of  CH4 hot spots and 
hot moments. Unfortunately, current eddy covariance 
methods for  N2O measurements are often prohibi-
tively expensive and have higher detection limits than 
chamber-based measurements (Tallec et  al. 2019; 
O’Connell et al. 2022).

Drivers of nitrous oxide and methane hot spots

Drivers of soil greenhouse gas fluxes often vary 
across scales, from seconds (e.g., respiration) to years 
(e.g., succession) and from micrometers (e.g., soil 
aggregate) to kilometers (e.g., whole ecosystems) 
(Anthony et  al. 2023). Interactions between soil  O2 
availability, temperature, moisture, and substrate 
concentrations are thought to drive hot spots and hot 
moments of soil  N2O and  CH4 flux (Butterbach-Bahl 
et  al. 2013; Nazaries et  al. 2013; Pärn et  al. 2018). 
The magnitude of soil  N2O and  CH4 fluxes also likely 
depends on the previous biogeochemical conditions 
as these will influence the composition of the micro-
bial community and its response to events such as 
soil inundation or changes in substrate availability 
(Wallenstein et al. 2006). High rates of denitrification 
require both  NO3

− and labile C (Dietz and Clausen 

2006). In contrast, methanogenesis, as a low-energy 
yielding oxidation–reduction reaction, is assumed to 
only occur in the absence of other electron accep-
tors under very low redox conditions (Conrad 1989). 
Thus, controls on the spatiotemporal availability of 
these substrates likely facilitate increased variability 
in hot spots and hot moments.

In agricultural peatlands, these variables are often 
controlled by both the rate and extent of soil drainage. 
The amount of time that peat soils are drained, the 
rate of soil inundation, and soil organic matter content 
are directly related to land use practices. The sever-
ity of peatland degradation determines economically 
viable land uses, but these land uses often lead to fur-
ther peatland degradation (Leifeld et al. 2019, 2020). 
Corresponding land use and the extent of peatland 
degradation may also play a role in the magnitude 
of hot moments. Soil  NO3

− concentrations accumu-
late under oxic, well-drained soil conditions follow-
ing soil organic N mineralization (Kirk et  al. 2015; 
Anthony and Silver 2021), and the rate of accumula-
tion is likely dependent on both the concentration of 
mineralizable organic matter and the amount of time 
and extent of soil drainage that provides optimal con-
ditions for nitrification. In the corn agroecosystem, 
the elevated organic matter content and high organic 
matter mineralization rates coupled with extended 
periods of soil inundation were likely drivers of the 
magnitude of hot spots and hot moments (Anthony 
and Silver 2021). High C and  NO3

− substrate avail-
ability, along with spatiotemporal variability in redox 
conditions driven by variations in moisture,  O2, and 
temperature, likely contributed to the distribution of 
hot spots and hot moments observed. The distribu-
tion of hot spots and hot moments in the alfalfa agro-
ecosystem likely suggests that elevated N availability 
from alfalfa N-fixation and short-term changes in  O2 
availability stimulated  N2O fluxes but did not produce 
redox conditions suitable for  CH4 production. In the 
degraded pasture, the ditched subsurface irrigation 
likely maintained anaerobic conditions throughout the 
soil profile, limiting hot moments of  N2O flux from 
incomplete denitrification. The patterns observed in 
the pasture agroecosystem were likely to be affected 
by the lower C substrate availability, which may help 
explain the spatiotemporal variation in  CH4 produc-
tion and limited  CH4 hot moments. Combined, these 
results suggest variation in substrate availability, soil 
moisture content, flooding duration, and associated 
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effects on  O2 availability and soil redox conditions 
likely contribute to the variation in hot spots and hot 
moments observed across these agricultural peatland 
ecosystems. These differences also contribute to the 
variation in ecosystem greenhouse gas budgets and 
the effects of hot spots and hot moments on these 
budgets observed across the three land uses in this 
study.

The magnitude and distribution of hot spots and hot 
moments in agricultural peatlands vary across time 
and space

The findings reported here highlight the importance 
of hot moments in overall  N2O and  CH4 budgets in 
agricultural peatland soils. We found significant vari-
ability in hot spots of greenhouse gas fluxes over time 
and space. Hot spots (here defined as a location with 
a disproportionate number of hot moment observa-
tions) occurred in all three ecosystems but were gen-
erally not characterized by sustained high emissions 
from a single location, except in the pasture site with 
a shorter observation period. Hot spots were more 
commonly characterized by high proportion of hot 
moments in single changes over time, or high emis-
sions from different chambers that varied within and 
across years. Variability in the controls on greenhouse 
gas fluxes, such as soil moisture, soil  O2, and sub-
strate availability are likely driving these differences. 
However, poor spatiotemporal resolution of these var-
iables or other potential unmeasured drivers are likely 
limiting our ability to predict the occurrence of hot 
spots and hot moments. Given the elevated substrate 
availability and predictable management-induced 
changes in soil redox conditions in many agricul-
tural peatland soils, they are an ideal place to study 
the biogeochemical processes controlling greenhouse 
gas fluxes. Quantifying the drivers of this variability 
in agricultural peatland soils will greatly improve our 
understanding of the processes, controls, and distribu-
tion of hot spots and hot moments of greenhouse gas 
fluxes and improve land management decisions that 
to help mitigate climate change. Given the significant 
variability in hot spots and hot moments across agri-
cultural peatland ecosystems, spatiotemporally inten-
sive measurements of  CO2,  CH4, and  N2O fluxes and 
their associated drivers are needed to appropriately 
constrain their respective greenhouse gas budgets. 
Emerging technologies are dramatically increasing 

soil sensor capabilities while simultaneously decreas-
ing per sensor cost (e.g., Baumbauer et  al. 2022). 
This can help us improve both sampling density and 
sampling frequency, allowing us to capture the driv-
ers of greenhouse gas fluxes across spatial and tem-
poral scales. Overall, these findings contribute to a 
better understanding of the biogeochemical patterns 
and pathways of soil greenhouse gas fluxes in agri-
cultural peatland soils, highlight the considerable 
variability in hot spot and hot moment emissions 
across space and time, and the need for datasets with 
increased spatiotemporal resolution of both  N2O, and 
 CH4 fluxes and their controls to properly model eco-
system-scale fluxes.

Acknowledgements The authors appreciate assistance from 
Gisela Gonzalez, Heather Dang, Tibisay Peréz, and numerous 
other members of both the Silver Lab and the Berkeley Biom-
eteorology Lab at the University of California, Berkeley. The 
concept for this paper was developed at the workshop titled 
"Peatlands for climate change mitigation in agriculture" that 
took place in Aarhus, Denmark, on 4-5 October 2022, and 
which was sponsored by the Organisation for Economic Co-
operation and Development (OECD) Co-operative Research 
Programme: Sustainable Agricultural and Food Systems. The 
opinions expressed and arguments employed in this publication 
are the sole responsibility of the authors and do not necessarily 
reflect those of the OECD or of the governments of its Member 
countries.

Author contributions All authors contributed to the study 
conception and design. Material preparation, data collection 
and analysis were performed by TLA. The first draft of the 
manuscript was written by TLA and WLS. All authors read 
and approved the final manuscript. McIntire Stennis grant 
CA-B-ECO-7673-MS to WLS partially supported this work. 
W. L. Silver was also supported by funds from breakthrough 
strategies & solutions, and the VKR, OC, Jewish Community, 
Northern Trust, and Trisons Foundations.

Funding This work was supported by a Contract by the Cali-
fornia Department of Water Resources (award 4600011240). 
We thank the California Department of Water Resources 
and the Metropolitan Water District of Southern California 
for research site access. T. L. Anthony was supported by the 
California Sea Grant Delta Science Fellowship. This material 
is based upon the work supported by the Delta Stewardship 
Council Delta Science Program under Grant No. 5298 and Cal-
ifornia Sea Grant College Program Project R/SF-89. The con-
tents of this material do not necessarily reflect the views and 
policies of the Delta Stewardship Council, nor does mention of 
trade names or commercial products constitute endorsement or 
recommendation for use.

Data availability The daily mean greenhouse gas fluxes by 
chamber (chamber  CO2,  CH4,  N2O, and eddy covariance  CO2), 
and soil  O2, temperature, and moisture sensor data in this study 



474 Biogeochemistry (2024) 167:461–477

1 3
Vol:. (1234567890)

will be deposited in the Dryad database: https:// doi. org/ 10. 
5061/ dryad. qz612 jmnx

Declarations 

Competing interests The authors declare no conflict of inter-
ests.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.

References

Adewale C, Higgins S, Granatstein D et al (2016) Identifying 
hotspots in the carbon footprint of a small scale organic 
vegetable farm. Agric Syst 149:112–121. https:// doi. org/ 
10. 1016/j. agsy. 2016. 09. 004

Alber M, Buganza Tepole A, Cannon WR et al (2019) Integrat-
ing machine learning and multiscale modeling—perspec-
tives, challenges, and opportunities in the biological, bio-
medical, and behavioral sciences. Npj Digit Med 2:1–11. 
https:// doi. org/ 10. 1038/ s41746- 019- 0193-y

Anthony TL, Silver WL (2020) Mineralogical associations 
with soil carbon in managed wetland soils. Glob Chang 
Biol 26:6555–6567. https:// doi. org/ 10. 1111/ gcb. 15309

Anthony TL, Silver WL (2021) Hot moments drive extreme 
nitrous oxide and methane emissions from agricultural 
peatlands. Glob Chang Biol. https:// doi. org/ 10. 1111/ gcb. 
15802

Anthony TL, Szutu DJ, Verfaillie JG et al (2023) Carbon-sink 
potential of continuous alfalfa agriculture lowered by 
short-term nitrous oxide emission events. Nat Commun 
14:1926. https:// doi. org/ 10. 1038/ s41467- 023- 37391-2

Barton L, Wolf B, Rowlings D et al (2015) Sampling frequency 
affects estimates of annual nitrous oxide fluxes. Sci Rep 
5:1–9. https:// doi. org/ 10. 1038/ srep1 5912

Baumbauer CL, Goodrich PJ, Payne ME, Anthony T, Beck-
stoffer C, Toor A, Silver W, Arias AC (2022) Printed 
potentiometric nitrate sensors for use in soil. Sensors 
22(11):4095

Baveye PC, Otten W, Kravchenko A et  al (2018) Emergent 
properties of microbial activity in heterogeneous soil 
microenvironments: different research approaches are 
slowly converging, yet major challenges remain. Front 
Microbiol 9:1929

Bernhardt ES, Blaszczak JR, Ficken CD et  al (2017) Control 
points in ecosystems: moving beyond the hot spot hot 
moment concept. Ecosystems 20:665–682. https:// doi. org/ 
10. 1007/ s10021- 016- 0103-y

Breiman L (2001) Random forests. Mach Learn 45:5–32. 
https:// doi. org/ 10. 1023/A: 10109 33404 324

Buschmann C, Röder N, Berglund K et  al (2020) Land Use 
Policy Perspectives on agriculturally used drained peat 
soils: comparison of the socioeconomic and ecological 
business environments of six European regions. Land Use 
Policy 90:104181. https:// doi. org/ 10. 1016/j. landu sepol. 
2019. 104181

Butterbach-Bahl K, Baggs EM, Dannenmann M et  al (2013) 
Nitrous oxide emissions from soils: how well do we 
understand the processes and their controls? Philos Trans 
R Soc Lond Ser B 368:20130122. https:// doi. org/ 10. 1098/ 
rstb. 2013. 0122

Carlson KM, Gerber JS, Mueller ND et al (2017) Greenhouse 
gas emissions intensity of global croplands. Nat Clim 
Chang 7:63–68. https:// doi. org/ 10. 1038/ nclim ate31 58

Carter RE (2013) A standard error: distinguishing standard 
deviation from standard error. Diabetes 62:e15. https:// 
doi. org/ 10. 2337/ db13- 0692

Chamberlain SD, Anthony TL, Silver WL et  al (2018) Soil 
properties and sediment accretion modulate methane 
fluxes from restored wetlands. Glob Chang Biol 24:4107–
4121. https:// doi. org/ 10. 1111/ gcb. 14124

Chamberlain SD, Hemes KS, Eichelmann E et al (2019) Effect 
of drought-induced salinization on wetland methane emis-
sions, gross ecosystem productivity, and their interactions. 
Ecosystems. https:// doi. org/ 10. 1007/ s10021- 019- 00430-5

Chatskikh D, Olesen JE, Berntsen J et al (2005) Simulation of 
effects of soils, climate and management on N2O emis-
sion from grasslands. Biogeochemistry 76:395–419. 
https:// doi. org/ 10. 1007/ s10533- 005- 6996-8

Conrad R (2007) Microbial ecology of methanogens and meth-
anotrophs. Adv Agron 96:1–63. https:// doi. org/ 10. 1016/ 
S0065- 2113(07) 96005-8

Conrad R (1989) Control of methane production in terrestrial 
ecosystems. Exchange of trace gases between terrestrial 
ecosystems and the atmosphere. Wiley, New York, pp 
39–58

Danevčič T, Mandic-Mulec I, Stres B et al (2010) Emissions of 
CO2, CH4 and N2O from Southern European peatlands. 
Soil Biol Biochem 42:1437–1446. https:// doi. org/ 10. 
1016/j. soilb io. 2010. 05. 004

Delwiche KB, Knox SH, Malhotra A et al (2021) FLUXNET-
CH4: a global, multi-ecosystem dataset and analysis of 
methane seasonality from freshwater wetlands. Earth 
Syst Sci Data 13:3607–3689. https:// doi. org/ 10. 5194/ 
essd- 13- 3607- 2021

Dietz ME, Clausen JC (2006) Saturation to improve pollutant 
retention in a rain garden. Environ Sci Technol 40:1335–
1340. https:// doi. org/ 10. 1021/ es051 644f

Ehrhardt F, Soussana J-F, Bellocchi G et al (2018) Assessing 
uncertainties in crop and pasture ensemble model simu-
lations of productivity and N2O emissions. Glob Chang 
Biol 24:e603–e616. https:// doi. org/ 10. 1111/ gcb. 13965

Eichelmann E, Hemes KS, Knox SH et  al (2018) The effect 
of land cover type and structure on evapotranspiration 
from agricultural and wetland sites in the Sacramento/

https://doi.org/10.5061/dryad.qz612jmnx
https://doi.org/10.5061/dryad.qz612jmnx
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.agsy.2016.09.004
https://doi.org/10.1016/j.agsy.2016.09.004
https://doi.org/10.1038/s41746-019-0193-y
https://doi.org/10.1111/gcb.15309
https://doi.org/10.1111/gcb.15802
https://doi.org/10.1111/gcb.15802
https://doi.org/10.1038/s41467-023-37391-2
https://doi.org/10.1038/srep15912
https://doi.org/10.1007/s10021-016-0103-y
https://doi.org/10.1007/s10021-016-0103-y
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.landusepol.2019.104181
https://doi.org/10.1016/j.landusepol.2019.104181
https://doi.org/10.1098/rstb.2013.0122
https://doi.org/10.1098/rstb.2013.0122
https://doi.org/10.1038/nclimate3158
https://doi.org/10.2337/db13-0692
https://doi.org/10.2337/db13-0692
https://doi.org/10.1111/gcb.14124
https://doi.org/10.1007/s10021-019-00430-5
https://doi.org/10.1007/s10533-005-6996-8
https://doi.org/10.1016/S0065-2113(07)96005-8
https://doi.org/10.1016/S0065-2113(07)96005-8
https://doi.org/10.1016/j.soilbio.2010.05.004
https://doi.org/10.1016/j.soilbio.2010.05.004
https://doi.org/10.5194/essd-13-3607-2021
https://doi.org/10.5194/essd-13-3607-2021
https://doi.org/10.1021/es051644f
https://doi.org/10.1111/gcb.13965


475Biogeochemistry (2024) 167:461–477 

1 3
Vol.: (0123456789)

San Joaquin River Delta, California. Agric For Meteorol 
256–257:179–195. https:// doi. org/ 10. 1016/j. agrfo rmet. 
2018. 03. 007

Elder CD, Thompson DR, Thorpe AK et al (2021) Characteriz-
ing methane emission hotspots from thawing permafrost. 
Glob Biogeochem Cycles 35:e2020GB006922. https:// 
doi. org/ 10. 1029/ 2020G B0069 22

Feng J, Yang T, Li F et al (2021) Impact of tillage on the spatial 
distribution of CH4 and N2O in the soil profile of late rice 
fields. Soil Tillage Res 211:105029. https:// doi. org/ 10. 
1016/j. still. 2021. 105029

Firestone MK, Davidson EA (1989) Microbiologial Basis 
of NO and N2O production and consumption in soil. 
Exchange Trace Gases Terr Ecosyst Atmos. https:// doi. 
org/ 10. 1017/ CBO97 81107 415324. 004

Freeman BWJ, Evans CD, Musarika S et al (2022) Responsible 
agriculture must adapt to the wetland character of mid-lat-
itude peatlands. Glob Chang Biol 28:3795–3811. https:// 
doi. org/ 10. 1111/ gcb. 16152

Gaillard RK, Jones CD, Ingraham P et al (2018) Underestima-
tion of N2O emissions in a comparison of the DayCent, 
DNDC, and EPIC models. Ecol Appl 28:694–708. https:// 
doi. org/ 10. 1002/ eap. 1674

Golovchenko AV, Tikhonova EY, Zvyagintsev DG (2007) 
Abundance, biomass, structure, and activity of the micro-
bial complexes of minerotrophic and ombrotrophic peat-
lands. Microbiology 76:630–637. https:// doi. org/ 10. 1134/ 
S0026 26170 70501 77

Günther A, Barthelmes A, Huth V et al (2019) Prompt rewet-
ting of drained peatlands reduces climate warming despite 
methane emissions. bioRxiv preprint 1–13

Hall SJ, Tenesaca CG, Lawrence NC et  al (2023) Poorly 
drained depressions can be hotspots of nutrient leach-
ing from agricultural soils. J Environ Qual 52:678–690. 
https:// doi. org/ 10. 1002/ jeq2. 20461

Hamrani A, Akbarzadeh A, Madramootoo CA (2020) Machine 
learning for predicting greenhouse gas emissions from 
agricultural soils. Sci Total Environ 741:140338. https:// 
doi. org/ 10. 1016/j. scito tenv. 2020. 140338

Hatala JA, Detto M, Sonnentag O et al (2012) Greenhouse gas 
(CO2, CH4, H2O) fluxes from drained and flooded agri-
cultural peatlands in the Sacramento-San Joaquin Delta. 
Agric Ecosyst Environ 150:1–18. https:// doi. org/ 10. 
1016/j. agee. 2012. 01. 009

Hemes KS, Chamberlain SD, Eichelmann E et  al (2019) 
Assessing the carbon and climate benefit of restoring 
degraded agricultural peat soils to managed wetlands. 
Agric For Meteorol 268:202–214. https:// doi. org/ 10. 
1016/j. agrfo rmet. 2019. 01. 017

Holst J, Liu C, Yao Z et  al (2008) Fluxes of nitrous oxide, 
methane and carbon dioxide during freezing–thawing 
cycles in an Inner Mongolian steppe. Plant Soil 308:105–
117. https:// doi. org/ 10. 1007/ s11104- 008- 9610-8

Jerman V, Danevčič T, Mandic-Mulec I (2017) Meth-
ane cycling in a drained wetland soil profile. J Soils 
Sediments 17:1874–1882. https:// doi. org/ 10. 1007/ 
s11368- 016- 1648-2

Jobbagy EG, Jackson RB (2000) The vertical distribution of 
soil organic carbon and its relation to climate and vegeta-
tion. Ecol Appl 10:423–436

Kasak K, Camilo R-S, Szutu D, Baldocchi D (2020) AmeriF-
lux BASE US-Snf Sherman Barn

Kirk ER, Van Kessel C, Horwath WR, Linquist BA (2015) 
Estimating annual soil carbon loss in agricultural peatland 
soils using a nitrogen budget approach. PLoS ONE 10:1–
18. https:// doi. org/ 10. 1371/ journ al. pone. 01214 32

Knox SH, Jackson RB, Poulter B et al (2019) FLUXNET-CH4 
synthesis activity: objectives, observations, and future 
directions. Bull Am Meteor Soc 100:2607–2632. https:// 
doi. org/ 10. 1175/ BAMS-D- 18- 0268.1

Knox SH, Sturtevant C, Matthes JH et  al (2015) Agricultural 
peatland restoration: effects of land-use change on green-
house gas (CO2 and CH4) fluxes in the Sacramento-San 
Joaquin Delta. Glob Chang Biol 21:750–765. https:// doi. 
org/ 10. 1111/ gcb. 12745

Krichels AH, DeLucia EH, Sanford R et  al (2019a) Histori-
cal soil drainage mediates the response of soil green-
house gas emissions to intense precipitation events. 
Biogeochemistry 142:425–442. https:// doi. org/ 10. 1007/ 
s10533- 019- 00544-x

Krichels AH, Sipic E, Yang WH (2019b) Iron redox reactions 
can drive microtopographic variation in upland soil car-
bon dioxide and nitrous oxide emissions. Soil Syst 3:1–16. 
https:// doi. org/ 10. 3390/ soils ystem s3030 060

Krichels AH, Yang WH (2019) Dynamic controls on field-
scale soil nitrous oxide hot spots and hot moments across 
a microtopographic gradient. J Geophys Res Biogeosci 
124:3618–3634. https:// doi. org/ 10. 1029/ 2019J G0052 24

Leifeld J, Klein K, Wüst-Galley C (2020) Soil organic matter 
stoichiometry as indicator for peatland degradation. Sci 
Rep 10:1–9. https:// doi. org/ 10. 1038/ s41598- 020- 64275-y

Leifeld J, Menichetti L (2018) The underappreciated poten-
tial of peatlands in global climate change mitiga-
tion strategies. Nat Commun. https:// doi. org/ 10. 1038/ 
s41467- 018- 03406-6

Leifeld J, Wüst-Galley C, Page S (2019) Intact and managed 
peatland soils as a source and sink of GHGs from 1850 
to 2100. Nat Clim Chang 9:945–947. https:// doi. org/ 10. 
1038/ s41558- 019- 0615-5

Maljanen M, Sigurdsson BD, Guömundsson J et  al (2010) 
Greenhouse gas balances of managed peatlands in the 
Nordic countries present knowledge and gaps. Bio-
geosciences 7:2711–2738. https:// doi. org/ 10. 5194/ 
bg-7- 2711- 2010

Martikainen PJ, Nykänen H, Crill P, Silvola J (1993) Effect of 
a lowered water table on nitrous oxide fluxes from north-
ern peatlands. Nature 366:51–53. https:// doi. org/ 10. 1038/ 
36605 1a0

McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical 
hot spots and hot moments at the interface of terrestrial 
and aquatic ecosystems. Ecosystems 6:301–312. https:// 
doi. org/ 10. 1007/ s10021- 003- 0161-9

McNicol G, Silver WL (2014) Separate effects of flooding and 
anaerobiosis on soil greenhouse gas emissions and redox 
sensitive biogeochemistry. J Geophys Res Biogeosci 
119:557–566. https:// doi. org/ 10. 1002/ 2013J G0024 33

Molodovskaya M, Singurindy O, Richards BK et  al (2012) 
Temporal variability of nitrous oxide from fertilized crop-
lands: hot moment analysis. Soil Sci Soc Am J 76:1728. 
https:// doi. org/ 10. 2136/ sssaj 2012. 0039

https://doi.org/10.1016/j.agrformet.2018.03.007
https://doi.org/10.1016/j.agrformet.2018.03.007
https://doi.org/10.1029/2020GB006922
https://doi.org/10.1029/2020GB006922
https://doi.org/10.1016/j.still.2021.105029
https://doi.org/10.1016/j.still.2021.105029
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1111/gcb.16152
https://doi.org/10.1111/gcb.16152
https://doi.org/10.1002/eap.1674
https://doi.org/10.1002/eap.1674
https://doi.org/10.1134/S0026261707050177
https://doi.org/10.1134/S0026261707050177
https://doi.org/10.1002/jeq2.20461
https://doi.org/10.1016/j.scitotenv.2020.140338
https://doi.org/10.1016/j.scitotenv.2020.140338
https://doi.org/10.1016/j.agee.2012.01.009
https://doi.org/10.1016/j.agee.2012.01.009
https://doi.org/10.1016/j.agrformet.2019.01.017
https://doi.org/10.1016/j.agrformet.2019.01.017
https://doi.org/10.1007/s11104-008-9610-8
https://doi.org/10.1007/s11368-016-1648-2
https://doi.org/10.1007/s11368-016-1648-2
https://doi.org/10.1371/journal.pone.0121432
https://doi.org/10.1175/BAMS-D-18-0268.1
https://doi.org/10.1175/BAMS-D-18-0268.1
https://doi.org/10.1111/gcb.12745
https://doi.org/10.1111/gcb.12745
https://doi.org/10.1007/s10533-019-00544-x
https://doi.org/10.1007/s10533-019-00544-x
https://doi.org/10.3390/soilsystems3030060
https://doi.org/10.1029/2019JG005224
https://doi.org/10.1038/s41598-020-64275-y
https://doi.org/10.1038/s41467-018-03406-6
https://doi.org/10.1038/s41467-018-03406-6
https://doi.org/10.1038/s41558-019-0615-5
https://doi.org/10.1038/s41558-019-0615-5
https://doi.org/10.5194/bg-7-2711-2010
https://doi.org/10.5194/bg-7-2711-2010
https://doi.org/10.1038/366051a0
https://doi.org/10.1038/366051a0
https://doi.org/10.1007/s10021-003-0161-9
https://doi.org/10.1007/s10021-003-0161-9
https://doi.org/10.1002/2013JG002433
https://doi.org/10.2136/sssaj2012.0039


476 Biogeochemistry (2024) 167:461–477

1 3
Vol:. (1234567890)

Müller C, Rütting T, Kattge J et al (2007) Estimation of param-
eters in complex 15N tracing models by Monte Carlo 
sampling. Soil Biol Biochem 39:715–726. https:// doi. org/ 
10. 1016/j. soilb io. 2006. 09. 021

Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic 
and Natural Radiative Forcing. Climate Change 2013: The 
Physical Science Basis Contribution of Working Group I 
to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change, pp 659–740. https:// doi. org/ 10. 
1017/ CBO97 81107 415324. 018

Nazaries L, Murrell JC, Millard P et  al (2013) Methane, 
microbes and models: fundamental understanding of the 
soil methane cycle for future predictions. Environ Micro-
biol 15:2395–2417. https:// doi. org/ 10. 1111/ 1462- 2920. 
12149

O’Connell CS, Anthony TL, Mayes MA, Pérez T, Sihi D, Sil-
ver WL (2022) Utilizing novel field and data exploration 
methods to explore hot moments in high-frequency soil 
nitrous oxide emissions data: opportunities and chal-
lenges. Front For Glob Chang 5:674348

Oikawa PY, Jenerette GD, Knox SH et  al (2017) Evaluation 
of a hierarchy of models reveals importance of substrate 
limitation for predicting carbon dioxide and methane 
exchange in restored wetlands. J Geophys Res Biogeosci 
122:145–167. https:// doi. org/ 10. 1002/ 2016J G0034 38

Oktarita S, Hergoualc’H K, Anwar S, Verchot LV (2017) Sub-
stantial N2O emissions from peat decomposition and 
N fertilization in an oil palm plantation exacerbated by 
hotspots. Environ Res Lett. https:// doi. org/ 10. 1088/ 1748- 
9326/ aa80f1

Pärn J, Verhoeven JTA, Butterbach-Bahl K et al (2018) Nitro-
gen-rich organic soils under warm well-drained conditions 
are global nitrous oxide emission hotspots. Nat Commun 
9:1–8. https:// doi. org/ 10. 1038/ s41467- 018- 03540-1

Pellerin B, Anderson FE, Bergamaschi B (2014) Assessing the 
role of winter flooding on baseline greenhouse gas fluxes 
from corn fields in the Sacramento-San Joaquin Bay Delta

Potter CS (1997) An ecosystem simulation model for methane 
production and emission from wetlands. Global Biogeo-
chem Cycles 11:495–506. https:// doi. org/ 10. 1029/ 97GB0 
2302

Qiu J, Wu Q, Ding G et al (2016) A survey of machine learning 
for big data processing. EURASIP J Adv Signal Process 
2016:67. https:// doi. org/ 10. 1186/ s13634- 016- 0355-x

Rey-Sanchez C, Arias-Ortiz A, Kasak K et al (2022) Detecting 
hot spots of methane flux using footprint-weighted flux 
maps. J Geophys Res 127:e2022JG006977. https:// doi. 
org/ 10. 1029/ 2022J G0069 77

Rey-Sanchez C, Szutu D, Baldocchi D, Hemes K (2021) Amer-
iFlux US-Bi2 Bouldin Island corn

Rey-Sanchez C, Wang CT, Szutu D, et al (2022b) AmeriFlux 
BASE US-Bi1 Bouldin Island Alfalfa

Riley WJ, Subin ZM, Lawrence DM et  al (2011) Barriers to 
predicting changes in global terrestrial methane fluxes: 
analyses using CLM4Me, a methane biogeochemistry 
model integrated in CESM. Biogeosciences 8:1925–1953. 
https:// doi. org/ 10. 5194/ bg-8- 1925- 2011

Rütting T, Müller C (2007) 15N tracing models with a Monte 
Carlo optimization procedure provide new insights on 
gross N transformations in soils. Soil Biol Biochem 

39:2351–2361. https:// doi. org/ 10. 1016/j. soilb io. 2007. 04. 
006

Saha D, Basso B, Robertson GP (2021) Machine learning 
improves predictions of agricultural nitrous oxide (N2O) 
emissions from intensively managed cropping systems. 
Environ Res Lett. https:// doi. org/ 10. 1088/ 1748- 9326/ 
abd2f3

Savage K, Phillips R, Davidson E (2014) High temporal fre-
quency measurements of greenhouse gas emissions from 
soils. Biogeosciences 11:2709–2720. https:// doi. org/ 10. 
5194/ bg- 11- 2709- 2014

Segal M, Xiao Y (2011) Multivariate random forests. Wires 
Data Min Knowl Discov 1:80–87. https:// doi. org/ 10. 1002/ 
widm. 12

Sokol NW, Slessarev E, Marschmann GL et al (2022) Life and 
death in the soil microbiome: how ecological processes 
influence biogeochemistry. Nat Rev Microbiol 20:415–
430. https:// doi. org/ 10. 1038/ s41579- 022- 00695-z

Sturtevant C, Ruddell BL, Knox SH et  al (2016) Identify-
ing scale-emergent, nonlinear, asynchronous processes 
of wetland methane exchange. J Geophys Res Biogeosci 
121:188–204. https:// doi. org/ 10. 1002/ 2015J G0030 54

Tallec T, Brut A, Joly L et al (2019) N2O flux measurements 
over an irrigated maize crop: a comparison of three meth-
ods. Agric For Meteorol 264:56–72. https:// doi. org/ 10. 
1016/j. agrfo rmet. 2018. 09. 017

Teh YA, Silver WL, Sonnentag O et  al (2011) Large green-
house gas emissions from a temperate peatland pas-
ture. Ecosystems 14:311–325. https:// doi. org/ 10. 1007/ 
s10021- 011- 9411-4

The Delta Protection Commission (2020) The State of Delta 
Agriculture : Economic Impact , Conservation and Trends

Thorup-Kristensen K, Halberg N, Nicolaisen M et  al (2020) 
Digging deeper for agricultural resources, the value of 
deep rooting. Trends Plant Sci 25:406–417. https:// doi. 
org/ 10. 1016/j. tplan ts. 2019. 12. 007

Totsche KU, Rennert T, Gerzabek MH et  al (2010) Biogeo-
chemical interfaces in soil: the interdisciplinary challenge 
for soil science. J Plant Nutr Soil Sci 173:88–99. https:// 
doi. org/ 10. 1002/ jpln. 20090 0105

Wagner-Riddle C, Congreves KA, Abalos D et al (2017) Glob-
ally important nitrous oxide emissions from croplands 
induced by freeze–thaw cycles. Nat Geosci. https:// doi. 
org/ 10. 1038/ ngeo2 907

Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) 
Environmental controls on denitrifying communities and 
denitrification rates: insights from molecular methods. 
Ecol Appl 16:2143–2152. https:// doi. org/ 10. 1890/ 1051- 
0761(2006) 016[2143: ECODCA] 2.0. CO;2

Xing H, Wang E, Smith CJ et  al (2011) Modelling nitrous 
oxide and carbon dioxide emission from soil in an incuba-
tion experiment. Geoderma 167–168:328–339. https:// doi. 
org/ 10. 1016/j. geode rma. 2011. 07. 003

Yang WH, Liptzin D (2015) High potential for iron reduction 
in upland soils. Ecology 96:2015–2020. https:// doi. org/ 10. 
1890/ 14- 2097.1

Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from 
soil through anaerobic ammonium oxidation coupled to 
iron reduction. Nat Geosci. https:// doi. org/ 10. 1038/ ngeo1 
530

https://doi.org/10.1016/j.soilbio.2006.09.021
https://doi.org/10.1016/j.soilbio.2006.09.021
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1111/1462-2920.12149
https://doi.org/10.1111/1462-2920.12149
https://doi.org/10.1002/2016JG003438
https://doi.org/10.1088/1748-9326/aa80f1
https://doi.org/10.1088/1748-9326/aa80f1
https://doi.org/10.1038/s41467-018-03540-1
https://doi.org/10.1029/97GB02302
https://doi.org/10.1029/97GB02302
https://doi.org/10.1186/s13634-016-0355-x
https://doi.org/10.1029/2022JG006977
https://doi.org/10.1029/2022JG006977
https://doi.org/10.5194/bg-8-1925-2011
https://doi.org/10.1016/j.soilbio.2007.04.006
https://doi.org/10.1016/j.soilbio.2007.04.006
https://doi.org/10.1088/1748-9326/abd2f3
https://doi.org/10.1088/1748-9326/abd2f3
https://doi.org/10.5194/bg-11-2709-2014
https://doi.org/10.5194/bg-11-2709-2014
https://doi.org/10.1002/widm.12
https://doi.org/10.1002/widm.12
https://doi.org/10.1038/s41579-022-00695-z
https://doi.org/10.1002/2015JG003054
https://doi.org/10.1016/j.agrformet.2018.09.017
https://doi.org/10.1016/j.agrformet.2018.09.017
https://doi.org/10.1007/s10021-011-9411-4
https://doi.org/10.1007/s10021-011-9411-4
https://doi.org/10.1016/j.tplants.2019.12.007
https://doi.org/10.1016/j.tplants.2019.12.007
https://doi.org/10.1002/jpln.200900105
https://doi.org/10.1002/jpln.200900105
https://doi.org/10.1038/ngeo2907
https://doi.org/10.1038/ngeo2907
https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
https://doi.org/10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
https://doi.org/10.1016/j.geoderma.2011.07.003
https://doi.org/10.1016/j.geoderma.2011.07.003
https://doi.org/10.1890/14-2097.1
https://doi.org/10.1890/14-2097.1
https://doi.org/10.1038/ngeo1530
https://doi.org/10.1038/ngeo1530


477Biogeochemistry (2024) 167:461–477 

1 3
Vol.: (0123456789)

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.


	Hot spots and hot moments of greenhouse gas emissions in agricultural peatlands
	Abstract 
	Introduction
	Methods
	Site description
	Greenhouse gas flux measurements
	Environmental sensors
	Statistical analyses and machine learning

	Results
	Spatiotemporal patterns in emissions across ecosystems
	Hot spots of greenhouse gas emissions across ecosystems
	Machine learning predictions of nitrous oxide and methane fluxes

	Discussion
	The relationship between hot spots and hot moments of emissions
	Predicting hot spots and hot moments requires intensive sampling across scales
	Drivers of nitrous oxide and methane hot spots
	The magnitude and distribution of hot spots and hot moments in agricultural peatlands vary across time and space

	Acknowledgements 
	References




