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framework, we emphasise the interplay between sub-
strate characteristics and the abundance of active clay 
surfaces on microbial processes such as carbon use 
efficiency and recycling. We postulate that microbial 
use and recycling of plant- and microbially-derived 
substrates decline with increased abundance of active 
clay surfaces, and that the shape of these relationships 
depend on the affinity of each substrate to adsorb, 
thereby affecting the efficiency by which organic mat-
ter remains in the soil and is stabilised into MAOM. 
Our framework provides avenues for novel research 
and ideas to incorporate interactions between clay 
surfaces and microbes on SOM stabilisation in bio-
geochemical models.

Abstract  Soil organic matter (SOM) plays a cen-
tral role in the global carbon balance and in mitigat-
ing climate change. It will therefore be important to 
understand mechanisms of SOM decomposition and 
stabilisation. SOM stabilisation is controlled by biotic 
factors, such as the efficiency by which microbes use 
and produce organic compounds varying in chemis-
try, but also by abiotic factors, such as adsorption of 
plant- and microbially-derived organic matter onto 
soil minerals. Indeed, the physicochemical adsorption 
of organic matter onto soil minerals, forming mineral 
associated organic matter (MAOM), is one of the sig-
nificant processes for SOM stabilisation. We integrate 
existing frameworks of SOM stabilisation and illus-
trate how microbial control over SOM stabilisation 
interacts with soil minerals. In our new integrated 
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Introduction

Soil organic matter plays an important role in soil fertil-
ity and structure. It is one of the major components of the 
global carbon (C) cycle as it contains more C than in ter-
restrial plant biomass and atmosphere combined (Field 
et al. 2004; Schlesinger 1990). It also plays a crucial role 
in soil surface-atmosphere exchange of greenhouse gases 
(Grandy and Neff 2008; Grandy and Robertson 2006; 
Kuzyakov 2011). Owing to its large size, relatively small 
changes in the SOM stock can have a significant impact 
on the atmospheric carbon dioxide (CO2) concentration 
(Eglin et al. 2010; Magdoff and Weil 2004; Scharlemann 
et al. 2014). Protecting SOM from microbial decomposi-
tion (SOM stabilisation) is therefore important to mitigate 

climate change, but the mechanisms of SOM stabilisation 
still remain poorly understood.

Most C components of plant organic matter 
input into the soil are decomposed biotically by 
microbes and respired into the atmosphere over 
short (< 50 years) time scales (Dwivedi et al. 2019). 
However, a significant portion of the C in SOM is 
not respired but can become abiotically (i.e., chemi-
cally, or physically) protected before or after micro-
bial processing. As such, organic C in soil can per-
sist over much longer (100  s to > 1000  years) time 
scales (Dwivedi et  al. 2019). The age of C in SOM 
tends to increase with soil depth (Balesdent et  al. 
2018; Schrumpf et al. 2013). This is because micro-
bial SOM processing is often more abundant at shal-
low soil depths, whereas stabilisation of SOM onto 
mineral surfaces becomes more dominant in the 
deeper soil (> 30 cm) (Jackson et al. 2017). Increased 
residence time of SOM with soil depth has also been 
associated with variation in the chemical properties 
of organic inputs and lower nutrient availability in 
sub-surface soil, which may inhibit microbial activ-
ity (Rumpel and Kögel-Knabner 2011). Thus, both 
biotic factors (e.g., plant inputs, microbial composi-
tion) and abiotic factors (e.g., clay content, mineral-
ogy) are critical regulators of SOM formation and 
stabilisation.

Soil organic matter is considered as one of the 
most complex and least-understood components of 
soil (Magdoff and Weil 2004). It is a heterogeneous 
mixture of organic compounds with variable compo-
sition and decomposition rates (Chenu et  al. 2015; 
Kleber and Johnson 2010). There are multiple func-
tional pools in SOM, each stabilised by a specific 
mechanism, and each having a certain turnover rate. 
A simple approach to isolate functional SOM pools 
into mineral-associated organic matter (MAOM) and 
particulate organic matter (POM) has been proposed 
to understand and predict broad-scale SOM dynam-
ics (Lavallee et  al. 2020). They defined MAOM as 
the fraction of SOM consisting of single molecules 
or microscopic fragments of organic material that are 
directly from plant material or have been chemically 
transformed by the soil biota, and that is associated 
with minerals and protected from decomposition. 
On the other hand, POM is the lightweight and rela-
tively undecomposed fraction of organic matter that 
includes easily decomposable (labile) compounds and 
mostly plant-derived compounds that are structurally 
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complex and have high activation energies compared 
to MAOM (Cambardella and Elliott 1992; Lavallee 
et al. 2020; von Lützow et al. 2008). Because of the 
strong physicochemical sorption of OM with clay 
minerals and metal oxides (Kleber et  al. 2021; Ras-
mussen et  al. 2018), the MAOM fraction has been 
acknowledged as an important pool for the long term 
C stabilisation in the soil (Grandy and Neff 2008; 
Jagadamma et  al. 2012; Kiem and Kögel-Knabner 
2003; Kögel-Knabner 2002; Marschner et  al. 2008; 
Rumpel et al. 2010; von Lützow et al. 2007).

It has become increasingly clear that microbial 
products (e.g., necromass) are important for MAOM 
formation (Kallenbach et al. 2016; Liang et al. 2019), 
particularly in environments that provide favour-
able conditions for microbial growth (Angst et  al. 
2021a). Therefore, the efficiency of SOM stabilisa-
tion through the formation of organo-mineral com-
plexes (or MAOM) will also depend on how effi-
ciently plant compounds are turned into microbial 
products that interact with minerals (Bradford et  al. 
2013; Cotrufo et  al. 2013). An important parameter 
in this regard is the microbial growth efficiency, or 
carbon use efficiency (CUE), i.e., the proportion of 
C substrates (here, we focus on non-microbial prod-
ucts) that is used by microbes for their growth instead 
of being respired. When a greater proportion of C 
substrate is used for microbial growth, this can ulti-
mately result in more stable C into organo-mineral 
complexes (Cotrufo et al. 2013). However, microbial 
CUE can vary strongly with substrate type, nutrient 
availability, and other soil conditions (Manzoni et al. 
2012), and much uncertainty remains about how this 
affects SOM stabilisation through MAOM forma-
tion. Furthermore, the formation and persistence of 
MAOM will depend on how strongly organic com-
pounds adsorb onto mineral surfaces, which can 
vary among organic compounds and type of mineral 
(Kleber et  al. 2021; Sokol et  al. 2019). The interac-
tions between organic compounds and clay minerals 
would also affect the proportion of C that remains 
unprotected in the soil. Unprotected C has a greater 
possibility of being recycled by microbes (i.e., more 
frequent decomposition cycles of dead microbial 
cells by living microbes), eventually resulting in 
more C lost as CO2 and less C remaining in the soil 
(Angst et  al. 2021b; Hagerty et  al. 2014) that could 
potentially form stable complexes with minerals. To 
account for microbial recycling effects, Geyer et  al. 

(2020) defined microbial “C stabilisation efficiency” 
(CSE), a metric that includes microbial products for 
C growth and use in the CUE equation.

From the above, it becomes clear that biotic pro-
cesses such as microbial decomposition, CUE and 
recycling of substrates do not operate independently 
from abiotic processes such as adsorption onto soil 
minerals to stabilise SOM through the formation of 
MAOM. However, these interactions have rarely 
been considered in experimental studies or current 
frameworks of SOM stabilisation. Indeed, we know 
very little about how microbially controlled SOM 
stabilisation (including rate and strength of stabilisa-
tion) depends on abiotic processes such as adsorption 
and type of soil minerals. Here, we first discuss cur-
rent models of SOM stabilisation and then propose a 
new framework integrating abiotic (variation in the 
abundance of clay particles that have the capacity to 
adsorb organic compounds on their surfaces, referred 
to as active clay surfaces hereafter) and biotic mecha-
nisms (microbial CUE and recycling of substrates) 
of SOM stabilisation. Our framework highlights the 
need to incorporate interactions between clay surfaces 
and biotic controls on SOM stabilisation in biogeo-
chemical models.

Models of SOM stabilisation

Traditional models of SOM dynamics assume the 
decomposition of plant litter based on simple first-
order kinetics that do not account for the formation 
of organo-mineral complexes through abiotic con-
trol (e.g., CENTURY and RothC models, Coleman 
and Jenkinson 1996; Parton et  al. 1983). However, 
studies using solid-state 13C nuclear magnetic reso-
nance (NMR) spectroscopy have revealed that much 
of SOM is microbial-derived and has few similari-
ties with plant litter (Knicker 2011). Also, microbial 
necromass can make up more than half of all topsoil 
organic C in agricultural, grassland, and forest eco-
systems (Liang et  al. 2019), although plant biomol-
ecules, such as lipids, lignin, and sugars, might also 
contribute to the formation of organo-mineral com-
plexes (Angst et al. 2021a). Regardless, it has become 
clear that stabilisation of SOM is not solely based on 
intrinsic properties of the organic matter that control 
(first-order) decomposition rates but is influenced by 
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physicochemical interactions with the soil environ-
ment (Schmidt et al. 2011).

Cotrufo et  al. (2013) proposed the microbial effi-
ciency-matrix stabilisation (MEMS) framework, 
where SOM is stabilised through the formation of 
organo-mineral complexes, with labile plant com-
pounds being the dominant source of these com-
plexes. The idea behind this framework is that labile 
plant compounds are used more efficiently by soil 
microbes than relatively recalcitrant plant compounds 
and therefore a greater fraction of labile plant com-
pounds end up in the microbial necromass or as a 
microbial by-product (e.g., extracellular enzymes) 
that can react with soil minerals to form organo-
mineral complexes (MAOM). However, this may also 
depend on the extent of soil C saturation or the inher-
ent capacity of soils to stabilise C (Castellano et  al. 
2015). In contrast, some plant compounds that are 
relatively slow to decompose, such as slow-decaying 
plant litter may eventually be lost to the soil as CO2 
when their conversion to microbial necromass is low. 
If this indeed occurs in different soil types and land 
uses, this will profoundly change the current view 
of how the quality of plant inputs influences SOM 
stabilisation.

Later, Liang et al. (2017) introduced another con-
ceptual framework for soil C stabilisation, referred to 
as the microbial C pump mechanism, where microor-
ganism-mediated processes lead to SOM stabilisation. 
Two major pathways were described in this model by 
which microorganisms influence SOM formation: 
(1) ex-vivo (extracellular) modification, in which 
extracellular enzymes attack and transform plant 
residues, resulting in the deposition of plant-derived 
C that is not readily assimilated by microorganisms; 
and (2) in-vivo turnover of organic substrates (e.g., 
cell uptake–biosynthesis–growth–death), resulting in 
the deposition of microbial-derived C. In both path-
ways, microorganisms contribute to the formation of 
POM and MAOM fractions. The relative importance 
of in-vivo turnover and ex-vivo modification varies 
with different environmental conditions, and similar 
to the MEMS framework, this model also advocates 
that microbial necromass and metabolites are the pre-
cursors for SOM stabilisation. They further illustrated 
that the pathway of C is differently driven by bacte-
ria and fungi with different trophic lifestyles, such as 
autotrophic or heterotrophic lifestyles, substrate-use, 
and host species.

Sokol et  al. (2019) proposed a spatially explicit 
set of processes that link the plant C source with 
MAOM formation. They suggested that the forma-
tion of MAOM in areas of high microbial density 
(e.g., rhizosphere zone and other microbial hotspots) 
should primarily occur through an in-vivo micro-
bial turnover pathway and favour C substrates that 
are processed first by microbes. In contrast, in areas 
of low microbial density (e.g., certain regions of the 
bulk soil), MAOM formation should primarily occur 
through direct sorption of the intact or partially oxi-
dised plant compounds to un-colonised mineral sur-
faces, particularly substrates with a strong ‘sorptive 
affinity’ to mineral surfaces. Through this frame-
work, they describe how the primacy of biotic vs. 
abiotic (e.g., abundance of clay particles) controls 
on MAOM dynamics is not mutually exclusive but 
instead spatially dictated.

This spatial control over SOM stabilisation or per-
sistence was also highlighted in the ‘functional com-
plexity’ concept proposed by Lehmann et al. (2020). 
They postulated that an increase in spatial heteroge-
neity in the soil, combined with an increase in the 
molecular diversity of substrates, can reduce SOM 
decomposition. They argued that spatial heterogene-
ity decreases the likelihood that microbes are in direct 
contact with their substrates, while a greater molec-
ular diversity in substrates reduces decomposition 
because of a reduced energy return on investment in 
different types of extracellular enzymes.

However, none of these above-described concep-
tual frameworks considers the interactions between 
clay particles and biotic processes in relation to the 
SOM stabilisation. For instance, the rate and strength 
of substrate adsorption to minerals will be influenced 
by clay content and clay mineralogy, which in turn 
will influence the microbial C use and recycling. In 
other words, if more of the substrate is directly and 
rapidly adsorbed onto minerals (including micro-
bial products), then there will be less opportunity for 
microbes to recycle C, while there is also evidence 
that a decline in C availability can also directly influ-
ence microbial CUE (Min et al. 2016). Microbial use 
of substrates will further depend on the adsorption 
strength or affinity that can significantly vary among 
substrates, all of which would influence microbial C 
use and recycling of different substrates. Soils dif-
fer widely in clay content and mineralogy, interac-
tions between abiotic and biotic processes will have 
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important consequences for SOM stabilisation. 
Therefore, we propose a framework integrating the 
existing concepts on interactions between abiotic and 
biotic controls on OM stabilisation in soils varying in 
the abundance of active clay surfaces.

Framework to integrate interactions 
between abiotic and biotic processes on SOM 
stabilisation

Our framework integrates existing concepts and is 
primarily based on four principles described below. 
While the first three principles have been included 
in other frameworks of SOM stabilisation, the fourth 
principle is what makes this integrated framework 
distinct from others. We first illustrate these princi-
ples using three different types and contrasting plant 
organic matter inputs, which include glucose and 
oxalic acid, two simple and labile compounds that are 
frequently found in root exudates, and a plant litter 
(either from roots or shoots) that is structurally more 
complex (i.e., has a greater molecular diversity) and 
overall is slower to decay than the labile compounds. 
Plant litter consists of different compounds (lignin, 
cellulose, etc.) that vary greatly in composition 
depending on its source, the purpose of using plant 
litter here is to contrast rhizodeposition compounds 

with plant litter, since plants do not produce solely 
lignin or cellulose. We then describe six different 
scenarios about the fate of these three substrates in 
soils with either low or high abundance of active clay 
surfaces.

Principle 1  Microbial CUEs differ intrinsically 
among different substrates, which can be related to 
their energy content, C oxidation state, and structural 
complexity (Fig. 1a).

As a general rule, compounds that have a large 
energy content result in a high microbial CUE of such 
compounds (Fig.  1a). This is because microbes are 
frequently C-limited rather than being energy-limited, 
whereby energy-rich compounds liberate enough 
energy for maximum C-assimilation and growth 
resulting in a high microbial CUE (Gommers et  al. 
1988). However, the microbial CUE is not only deter-
mined by the energy content of a substrate but also 
depends on metabolic pathways (Dijkstra et al. 2015, 
2011) and C oxidation state of the substrate (Gunina 
et al. 2014, 2017; Manzoni et al. 2012). For instance, 
sugars are thought to be used more for anabolism 
(particularly when microbes are C-limited), and there-
fore result in a high microbial CUE, while carboxylic 
acids, such as oxalic acid, are used more for energy 
production, resulting in a much lower microbial CUE 
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Fig. 1   Schematic representation of the influence of energy content, C-oxidation state, and complexity of three contrasting substrates 
on microbial carbon use efficiency (CUE, a); and the adsorption affinity of original substrates and microbial products (b)
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(Gunina et  al. 2014). The structural complexity of a 
substrate may also affect CUE. Microbes need to pro-
duce extracellular enzymes to break down substrates 
before they can be taken up. Because the produc-
tion of extracellular enzymes requires energy, and 
a greater number of enzymatic steps are required to 
breakdown more complex substrates, complex sub-
strates have a relatively low microbial CUE (Ågren 
and Bosatta 1987). Therefore, a more complex nature 
of plant litter (and its breakdown products) is thought 
to result in a lower microbial CUE compared to 
labile and more simple substrates used for anabolism 
(Cotrufo et al. 2013).

Principle 2  Substrates (including microbial prod-
ucts) differ in their adsorption affinity to clay min-
erals, while the adsorption affinity of microbial 
products is usually higher than or as high as for the 
substrates they were derived from (Fig. 1b).

Adsorption of organic compounds onto clay min-
erals occur through different mechanisms, including 
ligand exchange reactions, hydrophobic interactions 
and van der Waals forces, hydrogen bonding, and cat-
ion bridging (Gu et al. 1994; Sposito 1984; Yeasmin 
et  al. 2014). Ligand exchange between the carboxyl 
and hydroxyl functional groups of organic compounds 
and mineral surfaces has been considered as one of 
the most dominant adsorption mechanisms (Gu et al. 
1994), and therefore, carboxylic acids (such as oxalic 
acid) tend to have a high adsorption affinity to clay 
minerals, particularly iron oxides (Jagadamma et  al. 
2012, 2014; Yeasmin et al. 2014). In contrast, without 
carboxyl or hydroxyl functional groups, glucose has 
a much smaller tendency to directly adsorb onto clay 
minerals (Fischer et al. 2010). Fresh plant litter also 
tends to have a low density of these functional groups, 
but decomposition could result in increased formation 
of COOH and OH functional groups on material that 
remains undecomposed (Kögel-Knabner et al. 1988). 
It can therefore be expected that the adsorption affin-
ity of plant litter would increase with time. Other 
chemical characteristics, such as hydrophobicity and 
aromaticity could also influence the adsorption affin-
ity of plant litter (Kaiser and Zech 1997; Keiluweit 
and Kleber 2009).

However, regardless of the type, once substrates 
are processed and incorporated into microbial bio-
mass, the microbial products, including microbial 

necromass and extracellular enzymes, have chemical 
structures that are expected to have a greater adsorp-
tion affinity compared to the substrates they have 
derived from, possibly because of higher density of 
carboxyl or hydroxyl functional groups. For instance, 
specific extracellular enzymes produced by microbes 
usually contain a large number of functional groups 
and therefore have a tendency to adsorb onto soil 
clays minerals (LePrince and Quiquampoix 1996; 
Olagoke et al. 2020). Recently, this principle was also 
indirectly shown where rapid formation of microbial 
products from glucose resulted in increased sorp-
tion to clay, thereby preventing further decomposi-
tion of these microbial products (Geyer et al. 2020). 
Indeed, it has been suggested that MAOM formation 
is largely driven by adsorption with microbial prod-
ucts (Kallenbach et  al. 2016; Miltner et  al. 2012). 
However, most of these studies measured adsorption 
of microbial products that are left behind, and there is 
therefore the possibility that microbial products with 
low adsorption affinity are produced, and that are 
consequently decomposed.

Principle 3  Substrate complexity and adsorption 
affinity will affect C flow into MAOM and POM 
(Fig. 2).

This principle builds on prior conceptual frame-
works (Cotrufo et  al. 2013; Kaiser and Kalbitz 
2012; Sokol et al. 2019) and predicts that both sub-
strate complexity and adsorption affinity affect the 
C flow into MAOM and POM (Fig. 2). Labile and 
relatively simple compounds with low adsorption 
affinity, such as glucose, are readily taken up by 
microbes and therefore are not likely to be directly 
adsorbed onto minerals (Fischer et al. 2010). How-
ever, these compounds can still strongly contribute 
to MAOM formation through the in-vivo microbial 
pathway (Cotrufo et  al. 2013; Liang et  al. 2017; 
Fig. 2a), unless the capacity of soil to adsorb com-
pounds has been saturated (Castellano et  al. 2015; 
Stewart et  al. 2007). Labile and relatively simple 
compounds that have a high adsorption affinity, 
such as oxalic acid, are more likely to be directly 
adsorbed onto minerals and can escape micro-
bial uptake, particularly when they are produced 
at locations with low microbial density (Sokol 
et  al. 2019, Fig.  2b). In contrast, compounds that 
have greater structural complexity (e.g., structural 
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residues derived from plant litter that have under-
gone comminution) will not be readily decomposed 
and adsorbed to minerals, and therefore contribute 
mostly to POM (Fig. 2c). However, with time more 
of this material will be modified through microbial 
decomposition, which increases their likelihood to 
contribute to MAOM.

Principle 4  An increase in the abundance of active 
clay surfaces will increase adsorption, decrease 
microbial recycling, increase microbial CSE due to 
C flowing into MAOM, and the magnitude of this 
effect will depend upon the intrinsic microbial CUE 
and adsorption affinity of each organic compound 
(Fig. 3).

A first feature of this principle is represented by 
the potential for adsorption of organic C onto clay 
minerals, which will increase with increased abun-
dance of active clay surfaces (e.g., Jeewani et  al. 
2021, Fig.  3a). The abundance of active clay sur-
faces will also determine the maximum capacity (i.e., 
saturation) for soils to form complexes with organic 
C (Dexter et  al. 2008; Hassink 1997; Klopfenstein 
et al. 2015), while the actual rate of adsorption may 
be greater in soils that are further from C saturation 
(Castellano et  al. 2015; Stewart et  al. 2008). Fur-
thermore, we only focus here on the role of active 
clay surfaces, but we would like to point out that the 
adsorption capacity of soils will also be influenced 
by the type of clay minerals and by the thickness of 
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C accrual on a clay surface (Churchman et al. 2020; 
Jindaluang et al. 2013; Kalbitz et al. 2000; Schweizer 
et al. 2021; Singh et al. 2016). When there is a greater 
adsorption capacity, there will be less substrate avail-
able for microbes, including microbial products (e.g., 
Swenson et  al. 2015), and therefore, an increase 
in abundance of active clay surfaces would reduce 
microbial recycling of C (Fig. 3b). When there is less 
opportunity for microbes to recycle C, this will result 
in reduced loss of C as CO2, and therefore, a greater 
abundance of active clay surfaces would increase the 
microbial CSE (Fig. 3c). The CSE differs from CUE 
in that CSE includes microbial use of microbial prod-
ucts (Geyer et al. 2020).

Interactions between substrate type 
and abundance of active clay surfaces: six 
scenarios

We postulate six different scenarios based on the 
abovementioned four principles for each of the three 
substrates (glucose, oxalic acid, and plant litter) in 
soils with either a low or high abundance of active 
clay surfaces (Fig.  4). For each of these substrate 
types, we elaborate on how an increased abundance 
of active clay surfaces alters the C dynamics and why 
specific C flows are high or low based on the four 
principles stated above.

Soils with low abundance of active clay surfaces

In soils with low abundance of active clay surfaces, 
we postulate that most of the labile C (glucose, oxalic 
acid) will be taken up by microbes, and little C will 
flow into the POM pool (Fig. 4a, b). In contrast, much 

of the structural C (plant litter) is not readily taken 
up by microbes and will flow into the POM pool 
(Fig.  4c). Because of the low abundance of active 
clay surfaces, the capacity to adsorb C will be low for 
all three substrate types, and also adsorption of POM-
derived compounds, directly or indirectly through the 
microbial pathway, will be small (Haddix et al. 2020). 
As a consequence, there will be much opportunity for 
microbes to recycle microbial products, resulting in 
relatively high recycling rates for all three substrates. 
High rates of recycling, where microbial products are 
repeatedly used with time, in soils with low abun-
dance of active clay surfaces will generally have low 
microbial CSEs (Angst et al. 2021b). Although there 
will be intrinsic differences in microbial CUE among 
substrates, because of repeated recycling with time, 
microbial CSE will be low for all substrates. Indeed, 
during repeated recycling, increasingly more micro-
bial C will be respired and lost to the atmosphere. 
The MAOM pool in soils with low abundance of 
active clay surfaces will be small, and most of the soil 
C will exist in the POM pool, particularly when sub-
strates are added as plant litter.

Soils with high abundance of active clay surfaces

In soils with high abundance of active clay surfaces 
the role of adsorption will be more prominent. Direct 
adsorption of labile substrates with a high adsorption 
affinity (e.g., oxalic acid) can be high, where it com-
petes with microbial uptake (Fig.  4e). On the other 
hand, labile substrates with a low adsorption affin-
ity (e.g., glucose) will not be directly adsorbed onto 
minerals but immediately taken up by microbes, and 
only after the formation of microbial products, will 
adsorption onto minerals occur (Fig.  4d). Assuming 
that fresh plant litter will have a low adsorption affin-
ity, initial adsorption of plant litter will be small, also 
because it is not readily taken up by microbes. How-
ever, with time it is expected that after modification 
by microbes, the modified litter in the POM pool will 
have a greater ability to form MAOM (Fig.  4f, also 
see Haddix et al. 2020). Because of the high adsorp-
tion affinity of microbial products, there is less likeli-
hood of recycling of microbially derived compounds 
(Samson et  al. 2020b), and therefore we expect that 
microbial recycling will tend to be lower in soils 
with high abundance of active clay surfaces. Indeed, 
(Angst et al. 2021b) also suggested a greater retention 

Fig. 4   Framework depicting the fate of glucose (a, d), oxalic 
acid (b, e), and plant litter (c, f) in soils with low (a, b, c) and 
high abundance of active clay surfaces (AACS) (d, e, f). Glu-
cose and oxalic acid are represented as labile C, while plant 
litter is structural C. Green arrows indicate C flowing into the 
particulate organic matter pool (POM), brown and red arrows 
indicate microbial uptake and respiration, and blue arrows 
indicate adsorption onto minerals forming mineral associated 
organic matter (MAOM). Microbial recycling pathways are 
further made distinct with red arrows. The thickness of the 
arrows indicates the relative size of the C flows. The back-
ground colour of each panel indicates the variation in micro-
bial carbon stabilisation efficiency (CSE), as indicated by the 
colour bar on the left

◂
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of C derived from plant litter in a clay-rich soil due 
to reduced microbial recycling. As a consequence, we 
also expect that the microbial CSE of different plant 
substrates should be higher in soils with high abun-
dance of active clay surfaces (as observed by Angst 
et al. 2021b for grass litter), and particularly for labile 
compounds that intrinsically result in a high micro-
bial CUE, such as glucose. Due to the high adsorp-
tion of microbial products and other compounds with 
high adsorption affinity, we predict relatively large 
MAOM pools in soils with high abundance of active 
clay surfaces, although where plant litter is an impor-
tant component of plant input, POM may also remain 
high.

Further considerations

In our new framework, we have attempted to integrate 
interactions between abiotic and biotic processes 
in relation to SOM stabilisation and showed possi-
ble scenarios for the SOM stabilisation in soils with 
low and high abundances of active clay surfaces. We 
understand that this framework does not specifically 
consider the role of soil aggregation, which can also 
be important for SOM stabilisation and depend on 
clay content (Chivenge et  al. 2011; Six et  al. 2004, 
2002; von Lützow et al. 2006). For instance, recently 
it was suggested that clay may be more important 
for protecting SOM through aggregation rather than 
mineral adsorption (Schweizer et al. 2021). Also, our 
framework does not explicitly consider the effects 
of variability in the soil microbial community (e.g., 
variation in bacteria and fungi) on SOM stabilisa-
tion (Kallenbach et al. 2016). Published studies have 
suggested that fungi-dominated soils may accumu-
late more C than bacteria-dominated soils because 
fungi produce more structural compounds than bac-
teria and have a relatively high CUE (Six et al. 2006; 
Thiet et al. 2006). However, evidence for this remains 
inconclusive, as it has also been suggested that fungi 
have a lower CUE than bacteria, possibly because 
fungi produce C-costly enzymes to break down com-
plex structures (Poll et  al. 2006; Ullah et  al. 2021). 
Soil pH can have a strong influence on the soil micro-
bial community composition and microbial CUE 
(Jones et al. 2019; Zheng et al. 2019), therefore may 
influence SOM stabilisation (O’Brien et  al. 2015), 
which has not been considered here. Furthermore, our 

framework only focuses on the abundance of active 
clay surfaces but not on the clay mineralogy, which 
remains key area for future research as different min-
erals have different organic matter adsorption affini-
ties (Churchman et  al. 2020; Jones and Singh 2014; 
Kalbitz et al. 2000; Singh et al. 2016; Yeasmin et al. 
2014, 2017, 2020). Finally, our framework does not 
include the role of plant roots other than being a 
source of SOM substrate (either as exudates or root 
litter). However, roots can cause rhizosphere priming, 
destabilising SOM, possibly both POM and MAOM 
pools (Dijkstra et al. 2021). We therefore believe it is 
critically important to understand the different roles 
of soil aggregation, microbial community, and plant 
roots on SOM stabilisation in soils that vary in clay 
content and mineralogy.

Conclusions

Mechanisms leading to the decomposition of SOM 
are well documented, although uncertainties persist 
regarding the stability of SOM. To address this criti-
cal gap, a robust predictive understanding and model-
ling of the SOM dynamics are essential for examining 
short- and long-term changes in soil C storage (espe-
cially the microbial dynamics and different pools such 
as POM and the more stable MAOM) and feedbacks 
with climate. While several frameworks about SOM 
dynamics and stabilisation have been put forward 
focusing on plant inputs and microbial interactions, 
there is still a lack of empirical and conceptual under-
standing of how these biotic controls on SOM stabi-
lisation interact with abiotic soil factors such as the 
abundance of active clay surfaces (but see Samson 
et  al. 2020a). Our framework advances this under-
standing by linking plant C source and chemistry 
with adsorption and microbial pathways of POM and 
MAOM formation in soils varying in the abundance 
of active clay surfaces. We believe that accounting 
for interactions between biotic and abiotic controls 
on SOM stabilisation is necessary to understand how 
efficiently C substrates of different chemistries are 
incorporated into POM and MAOM in different soils.
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