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non-flow phase of one month with small rain events 
with varying frequency (weekly, 3 × weekly, and no 
rain). Sediment was sampled at the surface and from 
the hyporheic zone at the end of the non-flow phase. 
We quantified microbial respiration of the dry sedi-
ments and sediment DOC leaching after simulated 
flow resumption. We found that, at the surface, more 
frequent rain events significantly increased microbial 
respiration from 12.6 ± 0.25  µg CO2 g−1 DW h−1 to 
26.5 ± 11.3 µg CO2 g−1 DW h−1 between the control 
and 3 × weekly rain events. The average amount of 
DOC leached from surface sediments during flow 
resumption was reduced by 0.813 ± 0.62  mg L−1 
with more frequent rain events. More frequent rain 
events also resulted in the leaching of fresher DOM 
with increased tryptophan fluorescence and a higher 
BIX. This, along with higher glucosidase activity in 
the biofilms, indicates higher OC processing during 
the drought period with more frequent rain events. 
Small rain events also enhanced Shannon diversity 
of microbial communities, with a stronger presence 
of ‘terrestrial-like’ bacterial clades. We propose that 
rain events during drought, even those of small size, 
are highly relevant for fluvial organic C processing 
during the dry phase. Future research should explic-
itly consider small rain events when investigating C 
fluxes in intermittent streams to fully understand the 
C processing in these systems with climate change. 
We conclude that small rain events impact DOM 
dynamics during reflow and likely impact the cascad-
ing C processing in the downstream river network.

Abstract  With climate change, streams and rivers 
are at increased risk of droughts and flow intermit-
tency. The full implications of these conditions for 
fluvial carbon (C) processing and stream-atmosphere 
CO2 emissions are not well understood. We per-
formed a controlled drought experiment in outdoor 
hyporheic flumes. We simulated small rain events that 
increase sediment moisture content, but do not cause 
streamflow in order to investigate how these events 
affect streambed dissolved organic C dynamics, bio-
film respiration and enzyme activity, and bacterial 
community composition. Flumes were subject to a 

Responsible Editor: J.M. Melack

L. E. Coulson · G. Weigelhofer · T. Hein · J. Schelker 
Wassercluster Lunz – Biologische Station GmbH, Dr. Carl 
Kupelwieser Promenade 5, 3293 Lunz am See, Austria

L. E. Coulson (*) · G. Weigelhofer · T. Hein 
Institute of Hydrobiology and Aquatic Ecosystem 
Management, University of Natural Resources and Life 
Sciences (BOKU), Gregor‑Mendel‑Str. 33/DG, 
1180 Vienna, Austria
e-mail: laura.coulson@wcl.ac.at

S. Gill 
Department of Geography and Environmental Studies, 
Ulster University, Coleraine Campus, Coleraine, 
Northern Ireland, UK

C. Griebler · J. Schelker 
Division of Limnology, Department of Functional 
and Evolutionary Ecology, University of Vienna, 
Djerassiplatz 1, 1030 Vienna, Austria

http://orcid.org/0000-0003-1388-0433
http://orcid.org/0000-0002-1298-2721
http://orcid.org/0000-0002-6426-3454
http://orcid.org/0000-0002-7767-4607
http://orcid.org/0000-0002-8602-581X
http://orcid.org/0000-0002-0274-7605
http://crossmark.crossref.org/dialog/?doi=10.1007/s10533-022-00919-7&domain=pdf


160	 Biogeochemistry (2022) 159:159–178

1 3
Vol:. (1234567890)

Keywords  Flow intermittency · Sediment biofilm · 
Rain events · Microorganisms

Introduction

Streams and rivers play an important role in the 
global carbon (C) cycle. They receive, transform, and 
transport organic carbon (OC) from terrestrial sources 
to the oceans (Allen and Pavelsky 2018; Drake et al. 
2018). As OC is mineralized by aquatic microorgan-
isms during transport, it contributes to the emissions 
of carbon dioxide (CO2) from aquatic systems to 
the atmosphere (Hotchkiss et al. 2015). C cycling in 
streams is shaped by drying and rewetting commonly 
occurring during droughts (Fierer and Schimel 2002). 
Several studies have shown that dry streambeds may 
act as hotspots for CO2 emissions compared to per-
ennial reaches (Boodoo et  al. 2019; Gómez-Gener 
et  al. 2016; Marcé et  al. 2019). Rewetting creates 
further hot moments for both microbial respiration 
and dissolved organic C (DOC) leaching (Harjung 
et  al. 2018), thereby increasing aquatic CO2 emis-
sions (Gallo et al. 2013; von Schiller et al. 2019) and 
impacting the C cycle in downstream water bodies.

Microbial biofilms in streams are important sites 
for biotic OC transformation, storage, and release 
(Battin et  al. 2016; Leff et  al. 2016; Pusch et  al. 
1998). Biofilms occupy large surface areas of the stre-
ambed and the hyporheic zone (HZ). Droughts, dry-
ing, and rewetting can affect microbial OC processing 
and microbial community structure in multiple ways.

Structural changes of the stream microbiome 
include the loss of some heterotrophic organisms in 
coarser sediments (Timoner et  al. 2012), while in 
some sediments, such as sand, enough moisture may 
be stored for maintaining the community structure 
and retaining some functionality (Coulson et al. 2021; 
McKew et  al. 2011). Desiccation may decrease the 
microbial biomass and change the microbial com-
munity composition (Amalfitano et al. 2008; Timoner 
et al. 2014). Community shifts occur due to the fact 
that certain bacterial groups can resist desiccation 
better than others. Several authors have observed 
an increase in the proportion of alpha- and beta-
Proteobacteria during the dry phase, probably due 
to losses in other more sensitive groups (Amalfitano 
et  al. 2008; Gionchetta et  al. 2020). Furthermore, 
Actinobacteria are more resistant to drought due to 

their gram-positive cell wall (Gionchetta et al. 2020; 
Timoner et al. 2014).

Functional changes of the stream microbiome 
include the reduction of OC mineralization during the 
dry phase which is tightly linked to a similar reduction 
of extracellular enzymatic activities (EEAs) (Amalfit-
ano et al. 2008; Gionchetta et al. 2019; Pohlon et al. 
2013; Zoppini and Marxsen 2010). The exudation 
of extracellular enzymes from bacteria embedded in 
fluvial biofilms are the first step in OC breakdown in 
streams (Marxsen and Fiebig 1993). Here, enzyme-
based decomposition models have shown that ter-
restrial organic matter is hydrolyzed by a group of 
correlated C-acquiring enzymes whos activity can be 
expressed by a few representatives (e.g. glucosidase; 
Arnosti et  al. 2014). Changes in microbial respira-
tion depend on the remaining moisture content and 
oxygen availability, showing increases under moist 
and oxygen-rich conditions during the initial phase of 
drying (Arce et al. 2021; Coulson et al. 2021; Fromin 
et al. 2010), but decreases in most fluvial ecosystems 
during non-flow conditions (Acuña et al. 2015; Oprei 
et al. 2019; von Schiller et al. 2019).

Upon flow resumption, a short pulse of water 
with strongly enhanced DOC and inorganic nutri-
ent concentrations is released (Arce et  al. 2015; 
Gessner  1991; von Schiller et  al. 2011), exceeding 
base flow and sometimes even flood flow concentra-
tions (Bernal et al. 2005; Vazquez et al. 2018). This 
DOC and nutrient pulse originates from organic mat-
ter accumulated in the terrestrial ecosystem during 
drought, as well as in fluvial sediments during the 
dry phase. In sediments, the accumulation is caused 
by reduced decomposition rates and enhanced cell 
lysis due to osmotic stress (Kaiser et al. 2015; Marcé 
et al. 2019; Meisner et al. 2013; Schiller et al. 2019). 
While the precise DOC composition depends on the 
respective source in the sediments (e.g. Shumilova 
et al. 2019), many studies have reported a high pro-
portion of low molecular weight DOM, thus of higher 
bioavailability, triggering events of high microbial 
respiration (Harjung et al. 2018, 2019b; Kaiser et al. 
2015; Marcé et  al. 2019; von Schiller et  al. 2019). 
Consequently, several studies have observed high 
respiration rates upon rewetting of dry soils (Spon-
seller  2007), stream sediments (Arce et  al. 2021; 
von Schiller et al. 2019; Zlatanović et al. 2018), and 
pond sediments (Fromin et  al. 2010). Repeated dry-
wet cycles resulting from, for example, frequent water 
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level fluctuations on the sediment surface and in the 
hyporheic zone can also stimulate microbial respira-
tion even over longer time periods (Gómez-Gener 
et  al. 2021; Pinto et  al. 2020). This reduced impact 
to the hyporheic zone can be attributed to changes in 
the physical habitat with depth, such has higher mois-
ture content, reduced porosity, and decreasing organic 
matter content with depth (Boodoo et  al. 2019; 
Coulson et  al. 2021). Rain events during droughts 
can rewet sediments without reinstating flow, distin-
guishing them from other rewetting types, which has 
similar effects on microbial respiration. For example, 
Gallo et  al. (2013) observed increased CO2 emis-
sions from dry river beds during a rainfall simulation 
experiment of low intensity. Similarly, in laboratory 
drying-rewetting experiments with benthic stream 
sediments, simulated rainfall boosted sediment CO2 
evasion depending on rainfall intensity and duration 
of the preceding desiccation phase (Arce et al. 2021). 
Yet despite these relevant first findings, there remains 
large uncertainty on the precise mechanisms and 
implications of small rain events occurring during 
the non-flow phase on sediment OC processing and 
mineralization.

The aim of this study was to evaluate the effects 
of short rain events on the microbial respiration in 
benthic and hyporheic sediments during the non-flow 
period and the DOC leaching after flow resumption 
with a rainfall simulation experiment. We wanted 
to know whether the effects of small rain events 
depended on the frequency of rainfall and whether the 
hyporheic communities responded differently to the 
rain events than the surface sediment communities. 
The simulated rain events were short and resulted 
only in an increase sediment moisture content with-
out sediment saturation or flow resumption. We 
hypothesized that (1) an increase in the frequency of 
short rain events enhances sediment respiration dur-
ing the non-flow period, reduces the amount of DOC 
leached, and alters the quality of DOM leached to 
fresher, lower MW compounds during flow resump-
tion. We further expected that (2) the bioavailability 
of the DOM leached will increase with enhanced 
rainfall frequency due to the stimulation of micro-
bial mineralization by rewetting. Finally, we expected 
that (3) these predicted effects are most pronounced 
near the sediment surface and decline with increasing 
sediment depth, due to a reduced impact of drought 

(Coulson et  al. 2021) and surface rainfall in the 
deeper hyporheic zone (HZ).

Methods

Experimental design and sample collection

We addressed these hypotheses through a drought 
experiment in outdoor hyporheic flumes. The flumes 
were filled with natural gravel and pre-conditioned 
with sediment microbial communities from stream 
water. This provided us the exceptional opportunity to 
study sediment processes under nearly natural envi-
ronmental conditions, in which the presence of water 
in the stream and sediments can be fully controlled. 
This experiment was conducted in six roofed out-
door flumes (5 m long, 0.6 m wide, 1.2 m deep) that 
were filled with coarse natural fluvial gravel (aver-
age diameter: 25 mm) to a depth of 60 cm to create 
a HZ (Coulson et  al. 2021). The flumes are part of 
the experimental flume facilities at the WasserClus-
ter Lunz Biological Station, Austria, located in the 
eastern European Alps (47° 15′ N, 15° 04′ E). In this 
pre-alpine region underlain by karstic calcareous 
rock, non-flow periods in streams can occur naturally 
during summer (May through September) and in cold 
winters (January through March). The average air 
temperature in summer 2020 was 16.5 °C.

In order to evaluate the temporal dynamics of sedi-
ment microbial processes during non-flow conditions, 
we used reusable sediment samplers as described in 
Coulson et  al. (2021). In short, the samplers consist 
of four outer cores that are permanently installed 
in the HZ of each flume made of a perforated plas-
tic tube (PVC, 7.5  cm diameter, holes every ~ 4  cm) 
placed in the sediment. In each outer core, a screened 
inner core composed of a 3  mm PVC mesh was 
installed. The inner cores were then filled with sedi-
ment inside nylon mesh bags (grain size < 4.0  mm, 
~ 100 mL sediment per bag). For sampling, the inner 
core was removed from the outer core and sediment 
bags retrieved for further processing and analysis. 
Removed sediment bags were replaced with new 
bags to maintain the vertical position of the remain-
ing bags within the core. Replacement bags were 
excluded from subsequent sampling to avoid uneven 
pre-conditioning bias.
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The flumes, with the sediment cores and bags 
installed, were pre-conditioned for two months prior 
to the experiment with stream water from the Oberer 
Seebach (OSB) stream. The OSB is a pristine oli-
gotrophic mountain stream providing well aerated, 
CaCO3-buffered (mean pH = 8.3 ± 0.2), low nutri-
ent waters (Fasching et  al. 2016). The OSB water 
has microbial abundance of 5 × 105–3.86 × 106  cells 
mL−1, with a Shannon diversity index of 7.6–7.9 
using 16  S rRNA sequencing (Caillon et  al. 2021; 
Caillon and Schelker  2020). The OSB water was 
allowed to flow through the flumes at the surface, and 
5 and 10 cm below the sediment surface. We used a 
roof to exclude direct rainfall to the flumes during 
pre-conditioning and the experimental drought. Sur-
face flow during pre-conditioning was approximately 
60 mL per second. This would result in a theoretical 
turnover time of the entire gravel-filled volume of the 
hyporheic flumes of roughly 4 h.

After pre-conditioning, all flumes were drained and 
subjected to a non-flow period for one month. During 
this period, we used three sediment cores per flume 
for the different treatment. This amounted to 6 repli-
cates per treatment, one from each flume. The treat-
ments were as follows: One set of cores was allowed 
to dry naturally for the entire experimental period, a 
second set of cores experienced rain events once per 
week, and a third set of cores experienced rain events 
three times per week. This setup of treatments across 
flumes allowed us to statistically account for potential 
systematic variability originating from differences in 
pre-conditioning between the flumes.

Rain events were simulated by removing the inner 
cores from the sediment samplers and sprinkling arti-
ficial rainwater (stream water diluted 1:1 with ultra-
pure deionized water (MQ)) onto the intact cores 
from above. Thus, similar to a potential natural short 
rain event during drought, surface sediments received 
more rainwater than deeper HZ sediments. We used 
15 mL of artificial rainwater over 30  min per core, 
which would be roughly equivalent to a rain inten-
sity of 10  mm per hour with a duration of 30  min. 
We chose this volume following prior experimental 
testing, which suggested that this amount can be con-
sidered as non-effective rainfall, as it did not exceed 
the field capacity of the sediment. The field capacity 
is the amount of water retained in soil or sediment 
at a matrix potential of − 33  kPa, which is approxi-
mately equivalent to the amount of water retained 

after excess water has drained by gravity for 2–3 days 
(Dingman 2002). We thus assumed, that this amount 
would not initiate streamflow in a dry streambed. For 
simplicity, we standardized the amount of artificial 
rainwater added per experimental rain event by pipet-
ting. All differences in rain fluxes among treatments, 
thus, refer to the total amount added over the duration 
of the experiment.

Sediment was sampled from sediment bags at the 
end of the non-flow phase by removing bags from 
the inner cores. To avoid the direct effects of the rain 
events, samples were collected 6 days after the last 
rain event for the samples that experienced weekly 
rain events and 2 days after the last rain event for 
the samples that experienced 3 rain events per week. 
Samples were collected from the surface, the shal-
low HZ (~ 10  cm below the sediment surface), and 
the deep HZ (~ 40 cm below the surface). Six repli-
cates for each treatment and the three depths (surface, 
shallow HZ, and deep HZ) were sampled (total n = 54 
samples). Sediments were brought to the lab within 
two hours after sampling and a portion was used 
for the leaching experiment. The leaching experi-
ment was performed in a lab-controlled environment 
to simulate the complete rewetting of the sediments 
upon flow resumption. For this purpose, 20 g of fresh 
sediment from each sample bag was incubated in 100 
mL stream water in 250 mL glass bottles. The bottles 
were gently shaken in the dark for 4 h at 20 °C. After 
incubation, the leachate was filtered (0.7  μm, pre-
combusted Whatmann GF/F filters) and analyzed for 
DOC concentrations. Values were then compared to 
concentrations of similarly treated sediment samples 
collected at the beginning of the drought experiment 
(after pre-conditioning). Samples were stored dark 
and cool. DOC and DOM spectroscopic character-
istics were measured within 24  h using a Shimadzu 
TOC-L Analyzer (DOC; Shimadzu Scientific Instru-
ments, Kyoto, Japan), a Hitachi fluorescence spec-
trophotometer F-7000 (fluorescence spectroscopy; 
Hitachi High-tech Corporation, Kyoto, Japan), and a 
Shimadzu UV-1700 spectrophotometer (absorbance; 
Shimadzu Scientific Instruments, Kyoto, Japan).

The remaining sediment from the experiment was 
immediately analyzed for bacterial respiration, mois-
ture content, and organic matter (OM) content. To 
gain additional understanding about the conditions 
of the microbial biofilms and their OC processing 
ability, the sediments were also analyzed for EEA, 



163Biogeochemistry (2022) 159:159–178	

1 3
Vol.: (0123456789)

bacterial abundances, and microbial community com-
position (surface samples only). Bacterial abundance 
samples (1  g sediment per sample) were fixed with 
formaldehyde (final concentration 2.5%) and stored at 
4 °C until analysis. Sediment samples for 16s rRNA 
bacterial community analysis were filled into a ster-
ile microcentrifuge tube under sterile condition and 
stored at − 20 °C until DNA extraction. Due to lim-
ited resources, only surface sediment samples were 
extracted for 16s rRNA community analysis.

Laboratory analyses

Increased respiration indicates an increase in stream 
ecosystem functions, that is, biofilm metabolism, 
and therefore an increased breakdown of OC in bio-
film (Battin et  al. 2003, 2008). Bacterial respiration 
was measured via the MicroResp™ system. This 
was done as described in the MicroResp technical 
manual (MicroResp™, James Hutton Ltd, Aberdeen, 
UK). The sediment was weighted into a deep 96-well 
microplate (approximately 0.7 g sediment per well, 3 
analytical replicates per sample). The microplate was 
incubated for 6 h at 25 °C with CO2 detection gel and 
the absorbance was measured using a spectrophoto-
metric microplate reader (Varioskan Flash, Thermo 
Fischer Scientific, Vaanta, Finland) at 570 nm. Mois-
ture content (percent water over dry weight) of the 
sediment was determined by drying the sediment at 
80  °C for 24  h. Ash free dry weight (AFDW) was 
determined by treating the sediments at 400  °C for 
4 h and is expressed as percent OM over dry weight.

We used glucosidase activity as proxy for the 
activity of the entire group of terrestrial OC-degrad-
ing enzymes in freshwater systems (Arnosti et  al. 
2014). High glucosidase levels are indicative of an 
enhanced OC degradation in the biofilm (Romaní 
and Sabater  2001). EEA of β-D-1,4-glucosidase 
(hereafter, glucosidase) was measured in the sedi-
ment according to the method described by Romani 
and Sabater (2001). In short, 120 µL substrate (final 
concentration 0.3 mM) was added to 1.0  g of sedi-
ment suspended in 4 mL sterile filtered stream water 
(0.2 μm pore size, polyethersulfone (PES)). Gluc was 
measured using an enzyme specific 4-methylumbel-
liferyl (MUF)-substrate (MUF-β-d-glucopyranoside, 
Sigma-Aldrich, Germany). After 1  h, glycine buffer 
(2 mL, pH 10.4) was added to stop the reaction 
and fluorescence was measured with 365/455 nm 

excitation/emission wavelengths, that is specific for 
the MUF-substrate on a platereader (Varioskan Flash, 
Thermo Fischer Scientific, Vaanta, Finland).

Bacterial abundances were determined according 
to the protocol described by Duhamel and Jacquet 
(2006). Prokaryotic cells in the fixed samples were 
detached from the sediment, filtered, and diluted 100 
times. The samples were then stained with SYBR 
Green II stain (200  × diluted in DMSO, Invitrogen 
Molecular Probes Inc., California, USA), and ana-
lyzed by flow cytometry (CytoFLEX, Beckman Coul-
ter GmbH, Krefeld, Germany). An increase of bacte-
rial abundances over time generally indicates overall 
bacterial growth in the environment (i.e. an increase 
in heterotrophic biomass) (Timoner et al. 2012).

Changes in microbial community composition 
refer to changes of ecosystem structure and can be 
indicative of ecosystem alterations, such as droughts 
(Amalfitano et al. 2008; Timoner et al. 2014). Moreo-
ver, changes in community composition may also alter 
ecosystem functioning, such as respiration (Bell et al. 
2009; Langenheder et al. 2010; Peter et al. 2011). It 
should be noted, however, that ecosystem functioning 
of altered communities can also remain completely 
unchanged, due to extensive functional redundancy 
within a community (Frossard et  al. 2012). In order 
to analyse microbial community composition, we 
used the Qiagen DNeasy Power Soil Kit (Hilden, 
Germany) with the manufacturer’s protocol to extract 
DNA from the sediments. We included experimental 
controls (n = 2) to account for any potential contami-
nation. Extracted products were sent to LGC Biose-
arch Technologies (LGC Genomics Gmbh, Berlin, 
Germany). The laboratory first quantified the DNA 
using gel electrophoresis. The V3–V4 region of the 
16s rRNA gene was then amplified with polymerase 
chain reactions using 341 F and 785R primers (Thijs 
et  al. 2017). Resultant DNA were sequenced using 
the Illumina Mi-Seq platform (300  bp paired-end 
reads) for amplicon creation.

Data Analysis

Differences between treatments were evaluated using 
the non-parametric Kruskal–Wallis test (Kruskal and 
Wallis  1952) with pairwise Mann–Whitney U-tests 
(Mann and Whitney 1947) with a Bonferroni correc-
tion for multiple comparisons (Dunn  1961), as part 
of the standard stats package in R. This was chosen 
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since the data was not normally distributed as tested 
by Shapiro Wilk tests. All statistical analyses was 
performed in R v.3.5.3 (R Core Development Team 
2020).

In order to evaluate DOM quality in the leachate 
samples, excitation-emission matrices were analyzed 
by a PARAFAC model (Andersen and Bro  2003; 
Pucher et  al. 2019). A blank sample was subtracted 
from each sample to reduce noise. Samples were nor-
malized to Raman units and corrected for inner-filter 
effects. Raman and Rayleigh scatter-bands of first and 
second order were removed and interpolated. The 
model was calculated with a tolerance of 10−12 and 
40 converging random initializations. Three samples 
were identified as outliers due to high leverage and 
excluded from the model, but their sample loadings 
were calculated after completion of the final model. 
The model was validated by half-split comparisons, 
a visual inspection of the spectra and components 
were compared with other studies using the Open-
Fluor database (Murphy et  al. 2014). Five compo-
nents were identified in the samples (Table 1). Other 
spectroscopic parameters were also evaluated, includ-
ing the biological index (BIX; Gabor et  al. 2014), 
specific ultraviolet absorbance at 254 nanometers 
(SUVA 254; Weishaar et  al. 2003), and the ratio of 
absorption at 250 to 365 nanometers (E2:E3; Helms 
et al. 2008). Statistical analysis between treatments on 
the PARAFAC results were performed as described 
before DOC quantity and DOM quality give indica-
tions of the amount ofC produced by the biofilm dur-
ing drought and the bioavailability of that DOM (Bat-
tin  1999; von Schiller et  al. 2011). For example, an 

increased DOC quantity leached indicates increased 
microbial C degradation occurring in the biofilm dur-
ing drought. Here we used different tools to describe 
DOM quality, such as the PARAFAC-components, 
the biological index (BIX), specific ultraviolet 
absorbance at 254  nm (SUVA 254), and the ratio 
of absorption at 250 to 365  nm (E2:E3). BIX, also 
known as the “freshness” index, correlates to micro-
bially derived, autochthonous DOM and therefore, an 
increase in BIX indicates the presence of more micro-
bially derived, “fresh”, DOM (Gabor et al. 2014; Wil-
son and Xenopoulos 2009). An increase in SUVA254 
indicate a higher proportion of aromatic molecules 
(Weishaar et al. 2003). The E2:E3 ratio is a proxy for 
molecular weight. As the E2:E3 ratio increases, the 
relative size of the DOM molecules decreases (Helms 
et al. 2008).

To analyze sequence data, we used Mothur version 
1.44.3 (Schloss et  al. 2009), and the Mothur MiSeq 
SOP (Kozich et  al. 2013) with some modification. 
Identification of operational taxonomic units (OTUs) 
was performed with the SILVA reference data-
base (version 132), with a 97% similarity and above 
required for identification. Due to limitations of the 
reference database, a maximum homopolymer of 8 
was chosen. Chimeric fragments were identified and 
removed with UCHIME (Edgar et al. 2011). NCBI’s 
BLAST was used to identify sequences that could not 
be identified through SILVA. We were able to iden-
tify all but one OTU with 97% similarity. OTU23 is 
therefore reported as Proteobacteria_unclassified. In 
order to ordinate the samples based on dissimilarity in 
community composition, nonmetric multidimensional 

Table 1   PARAFAC components, peak wavelengths, descriptions, and references

Component Peaks (EX/EM in nm) Description References

Component 1
(hum-terr C1)

< 245 (355)/448 Humic-like, terrestrial origin; A and C peak C1 river samples (Lin and Guo 2020);
C2 (Queimaliños et al. 2019)

Component 2
(hum-proc C2)

< 245 (305)/402 Humic-like, reprocessed, terrestrial origin; A and 
M peak

C1 (Queimaliños et al. 2019);
C2 sample set D (Shutova et al. 2014)

Component 3
(hum-photo C3)

< 245/500 Humic-like, photochemically degraded C2 river samples (Lin and Guo 2020)
C2 (Pucher in prep.)

Component 4
(tryp C4)

295 (< 245)/340 Protein-like, tryptophan-like, generated by micro-
bial communities and leachates from higher 
plants

C4 (Chen et al. 2017)
C8 (Yamashita et al. 2011);
G6 (Murphy et al. 2014)

Component 5
(tyr C5)

275/314 Amino-acid-like, tyrosine-like C4 (Osburn et al. 2016);
C5 (Du et al. 2016);
C3 (Bittar et al. 2015)
C7 in Murphy et al. (2014)
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scaling (NMDS) with Bray-Curtis distances were 
executed using the ‘vegan’ package (Oksanen et  al. 
2020). To test the differences between treatments, we 
used an ANOSIM analysis with 9999 permutations.

Relative abundances were calculated and visual-
ized with the ‘phyloseq’ package (McMurdie and 
Holmes 2013). All statistical analyses was performed 
in R v.3.5.3 (R Core Development Team 2020). Alpha 
diversity was calculated using the Shannon diversity 
index in the ‘vegan’ package (Jost  2007). The dif-
ferences between treatments for the Shannon diver-
sity index were evaluated using the non-parametric 
Kruskal–Wallis test (Kruskal and Wallis  1952) with 
pairwise Mann–Whitney U-tests (Mann and Whit-
ney  1947) with a Bonferroni correction for multiple 
comparisons (Dunn  1961), as part of the standard 
stats package in R.

To gain insight into the effects of short rain events 
during drought on respiration and DOC leaching for 
the total OC loss, we calculated an organic C mass 
balance for each treatment in our system. Organic C 
in the sediment was calculated from OM content via 
the Van Bemmelen factor (1.72) which is commonly 
used to convert soil organic matter into soil organic C 
(Ahn and Jones 2013). The mass balance was calcu-
lated as:

 where Cstart is the sediment OC content at the begin-
ning in the sediment, Cresp is the total C respired dur-
ing the course of the experiment, Cleach is the amount 
of C lost through the artificial leaching at the end of 
the experiment, and Crainfall is the C added by artificial 
rain additions. It is important to note that the same 
amount of C input from rain events was calculated 
for the HZ samples as for the surface samples, even 
though the rain event was only applied to the surface 
of the sediment core and may thus not have reached 
the deeper HZ. Leached DOC and respiration were 
included in the calculation as means for each treat-
ment and depth.

Results

Rain events affected respiration, moisture content, 
bacterial abundances, and OM content at all depths, 
while glucosidase activity and DOC leaching were 

(1)ΔC = Cstart − Cresp − Cleach + Crainfall

only affected at the sediment surface (Fig.  1). Res-
piration was significantly higher with increasing rain 
events at all depths (Kruskal–Wallis, p < 0.05, n = 6) 
but did not differ between depths within the same 
treatment (Fig. 1a). In contrast, leached DOC was sig-
nificantly higher in the samples that did not experi-
ence any rain event (Kruskal-Wallis, p < 0.05, n = 6) 
(Fig.  1b). However, this pattern was only present in 
the surface samples, while the HZ samples showed no 
significant differences in the amount of leached DOC 
between treatments. Leached DOC amounts were 
significantly higher in surface sediment samples than 
in HZ samples for the dry treatment (Kruskal–Wal-
lis, p < 0.05, n = 6). Moisture content increased with 
increasing rain events, however differences between 
treatments were only significant in the deeper HZ 
samples (Kruskal-Wallis, p < 0.05, n = 6) (Fig. 1c). As 
expected, the moisture content was higher in the HZ 
than on the surface for all treatments (Kruskal–Wal-
lis, p < 0.05, n = 6). OM content appeared to increase 
(mostly non-significant) with increasing rain events 
with no clear differences between depths (Fig.  1d). 
Bacterial abundances appeared also higher in the 
samples that experienced more rain events, but dif-
ferences were not statistically significant. We also did 
not observe differences between depths (Fig. 1e). Glu-
cosidase activities significantly increased with rain 
frequency in the surface samples (Kruskal–Wallis, 
p < 0.05, n = 6) but not in the HZ (Fig. 1f). Glucosi-
dase activities were generally higher in the surface 
samples than in the HZ (Kruskal–Wallis, p < 0.05, 
n = 6).

Frequent rain events also affected the quality of the 
DOM leached from the samples. Generally, the sam-
ples that experienced no rain events and weekly rain 
events had similar DOM qualities in their leachates, 
while samples that experienced 3  × weekly rain 
events were different (Fig.  2). No rain and weekly 
rain event samples showed higher fluorescence sig-
nals of humic-like, terrestrial material (components 
1–3; Fig.  2a; Table  1), while the tryptophan-like 
component C4 was highest in the samples that expe-
rienced 3x weekly rain events (Fig.  2b; Table  1). 
Increased raining frequency also resulted in a higher 
BIX (Fig.  2d) corresponding to the higher tryp C4 
fluorescence. Interestingly, component 5 described 
as tyrosine-like and thus also supposedly represent-
ing proteins was lowest in the 3 × weekly rain events 
(Fig. 2c). The E2:E3 ratio was usually higher in the 
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rain treatments than in the dry treatment, indicating 
increased amounts of low-molecular components. We 
observed no consistent pattern of SUVA254 across 
treatments. Surface leachates contained generally 
more humic-like terrestrial material (components 

1–3, Fig.  2a; Table 1) than deeper hyporheic layers, 
while SUVA254 increased with depth.

The microbial community in the surface sedi-
ments showed a significantly higher Shannon diver-
sity in the treatment with 3 rain events per week than 
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Fig. 1   Various parameters measured at the end of the experi-
ment across the different treatments and depths: a respiration, 
b dissolved organic carbon (DOC) leached from the sediment 
after the experiment, c moisture content, d ash free dry weight 
(AFDW), e bacterial abundances, and f glucosidase activity. 
p-values indicate the differences between treatments based on 

Kruskal–Wallis test (n = 6). The edges of the boxplots repre-
sent the interquartile range (25th−75th percentile), the middle 
line represents the median, the whiskers indicate the largest 
and smallest values within 1.5 ×  the interquartile range, and 
the dots indicate outside values greater than 1.5 × and less than 
3 × the interquartile range
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in the weekly rain event treatment (Mann–Whitney, 
p = 0.0092, n = 5; Table  2). Note that due to low 
DNA amounts obtained from the samples, only 
one sample from the dry treatment was analyzed. 

There were also significant differences in the 
microbial communities between the two treatments 
(ANOSIM, 9999 permutations, R = 0.9434). With 
increased rain frequency, the relative abundance of 
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Actinobacteria increased, while those of Flavobac-
teria and Gamma-Proteobacteria decreased (Fig. 3).

We found differences in the sediment C mass 
balances among treatments and sediment depths 
(Fig.  4). The lowest estimated total C losses were 
found in the 3x weekly rain event treatments, 
whereby C loss rates were equal across depth lay-
ers (82 × 10−6 µg C g−1 DW h−1). The weekly rain 
event treatment showed the highest estimated C 
loss of all in the surface sediments (240 × 10−6  µg 
C g−1 DW h−1), while C losses in the shallow and 
the deep HZ amounted to less than half of the sur-
face rates. In the dry treatment, estimated total C 
losses were around 150 × 10−6 µg C g−1 DW h−1 on 
the surface and in the deep HZ. Here, the shallow 
HZ showed the lowest C loss of all. Respiration was 
by far the dominant pathway for OC losses in all 
treatments and depths. Estimated average respira-
tion rates (200–500 × 10−6 µg C g−1 DW h−1) often 
exceeded total C losses by far, probably due to inac-
curacies and assumptions in the mass balance cal-
culations. The largest differences were found in the 
3  × weekly rain events treatment, with respiration 
rates approximately 5 times the total C loss rates. 
The smallest differences were observed in the dry 
treatment (except in the shallow HZ).

Discussion

This experiment shows that mid-drought rain events 
can increase the amount of sediment OC respired by 
sediment biofilms, resulting in decreased DOC leach-
ing from the sediments upon rewetting. This effect 
becomes stronger with increasing rain frequency. 
Although the leaching of DOC from dry stream sedi-
ments has been investigated previously (Shumilova 
et al. 2019), this is one of the first studies to show that 
the amount of DOC released into the stream water 
after rewetting can be altered by short rain events 
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Table 2   Results of statistical analyses for Shannon diversity 
index

Bold values indicate significant differences (p > 0.05). Note 
only one sample exists for the “Dry” treatment

Treatment Average Shannon 
diversity index

p-Values from Mann–Whit-
ney U tests comparing the 
different treatments with 
Bonferroni correction

Dry Weekly 3 × weekly

Dry 2.7 – 0.55 0.67
Weekly 2.2 ± 0.1 – – 0.0092 
3 × weekly 2.6 ± 0.08 – – –
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during drought. As these rain events do not directly 
contribute to stream runoff, they may be considered 
irrelevant from a stream water volume perspective. 

However, our results demonstrate that short rain events 
during drought may have profound effects on fluvial C 
cycling, as they modify sediment OC partitioning.

Fig. 4   Mass balances for the three treatments (no rain events, 
weekly rain events, and 3x week rain events) and for the three 
depths (surface, shallow hyporheic zone (HZ) (10  cm below 
the surface), and deep HZ (40 cm below the surface). All val-
ues are 10−6 µg C g DW−1. Orange arrows indicate respiration, 
blue arrows indicate rainfall, and green arrows for DOC leach-

ing after rewetting. Respiration and rainfall numbers are in µg 
C g DW−1 for the entire experiment. Leaching numbers are in 
µg C g DW−1 for 1 h. Note that the rain event may not have 
made it to the HZ, this value corresponds to the “rain” that was 
applied to the surface
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Short rain events during drought increase respiration 
and decrease DOC leaching

Several studies have demonstrated that rewetting 
may increase sediment respiration in lotic and len-
tic systems, where sediments exposed to frequent 
wet-dry cycles are among those with the highest 
respiration rates (Kosten et  al. 2018; Pinto et  al. 
2020; Obrador et al. 2018). A global study of 200 
intermittent stream reaches across different biomes 
yielded a 32-fold to 66‐fold increase in respiration 
upon sediment rewetting, with rates reaching up to 
6.6 mg CO2 g−1 h−1 (von Schiller et al. 2019). In a 
previous desiccation study in our flumes (Coulson 
et al. 2021), we found respiration rates of 15–45 µg 
CO2 g−1 h−1 immediately upon rewetting compared 
to pre-drying rates of 30–35 µg CO2 g−1 h−1. Here, 
the increase was higher in sediments exposed to 
longer drought duration. While each of these stud-
ies focused on the complete inundation of the 
sediments, we know from soil science that the full 
saturation of sediment pore spaces with water is 
not necessarily required to achieve this respiration 
peak induced by rewetting and known as the Birch 
effect (Birch  1958; Sponseller  2007). In fact, 
our study showed an increase in respiration with 
increasing rain event frequency at all sediment 
depths, although moisture content remained far 
below saturation (rain events only approximated 
field capacity). Likewise, simulated rain events in 
ephemeral stream channels resulted in high CO2 
peaks of up to 1.6 g C m−2 h−1 without reinstating 
stream flow in the sediments (Gallo et  al. 2013). 
In a similar laboratory desiccation-rain study, 
Arce et  al. (2021) observed CO2 peaks after rain 
events, the magnitude of which depended on the 
drought duration and the rain intensity. Thus, CO2 
fluxes from dry streambeds to the atmosphere may 
still be underestimated especially in temperate cli-
mate regions where small rain events may occur 
frequently during the non-flow phase.

While respiration rates increased with increas-
ing rain frequency, the amount of DOC leached from 
sediments after immersion in water decreased in the 
surface sediments. Furthermore, samples that expe-
rienced no rain and weekly rain events had similar 
DOM leachates with more humic-like, terrestrial 
material (C1–C3, Table 1). On the other hand, sam-
ples that experienced rain events 3  × per week had 

more protein-like components (C4) and fresher mate-
rial (BIX). This clearly points towards higher micro-
bial activity in these samples, and is fully congruent 
with the higher respiration rates, higher glucosidase 
activities, and lower amount of DOM leached (Tie-
fenbacher et al. 2020).

We assume that the repeated gentle rewetting by 
the small rain events and the subsequent slow dry-
ing kept the mineralization activity of the biofilms 
in the surface sediments high, thereby providing the 
microorganisms with labile DOC that was respired. 
Studies have shown that EEAs are rapidly activated 
in dry sediments upon rewetting (Pohlon et al. 2018; 
Zoppini and Marxsen  2010), potentially support-
ing substantial C mineralization. In contrast to the 
surface sediments, leaching and glucosidase activ-
ity remained low in the HZ sediments. It is possible 
that the higher moisture contents in the HZ buffered 
the effects of drying and rewetting caused by the 
rain events (Coulson et al. 2021). Furthermore, light 
rain initiates a weak, unidirectional water and solute 
transport through the unsaturated sediments from the 
surface to deeper layers. Thus, we suggest that the 
increased hyporheic respiration was largely fueled 
by labile DOC produced on the sediment surface or, 
to a minor degree added by our artificial rainwater. 
It must be mentioned here that no leaching from the 
sediment cores was observed during the rain simu-
lations, that is no water (and thus no DOC) left the 
cores during or after the rain additions. Finally, it 
should be noted, that rain-induced vertical solute 
transport or translocation through unsaturated sedi-
ments clearly distinguishes the effects of short rain 
events during drought from those of other rewetting 
events occurring during flood either through surface 
flow resumption, or through groundwater level rise 
(Fig. 5).

We propose that more mechanistic studies are 
required both under controlled lab conditions and in 
the field to understand the consequences of differ-
ent rewetting types on sediment OC cycling and CO2 
production in intermittent streams on larger spatial 
scales. We want to stress the importance of consid-
ering dry stream sediments as 3-dimensional com-
partments, in which the term “rewetting” must not 
be restricted solely to the re-initiation of streamflow 
but should represent solute transport mechanism 
under unsaturated and saturated conditions across the 
3-dimensional space.
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Respiration as the dominant C loss regardless of 
depth

We found that respiration was by far the most domi-
nant C flux in the calculated C mass balances for this 
experiment. High respiration has been measured in 
dry riverbeds (von Schiller et  al. 2014), with CO2 
fluxes often more than twice those of the studied 
streams during flowing conditions (Gómez-Gener 
et  al. 2016). In our experiment, respiration was the 
dominant flux not only at the sediment surface, but 

also in the HZ. As drying is a continuous process, 
the initial drying has been observed to result in 
increased oxygen availability and thereby, can stimu-
late organic matter degradation (Marcé et al. 2019). 
Similarly, desiccated ponds showed an increased 
breakdown of OC and subsequent release of CO2 
(Fromin et  al. 2010), while previous flume experi-
ments support the idea that moderate drought con-
ditions enhance sediment OC degradation (Harjung 
et  al. 2019a). This indicates that moderate drying 
(i.e. higher remaining moisture content) in the HZ 

Fig. 5   Characteristic properties and they physical controls of different rewetting types occurring in intermittent streams and rivers: 
Rewetting by flooding (left column), rewetting by groundwater rise (center column) and rewetting by rain (right column)
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can also stimulate high respiration in the subsurface 
during drought.

It is important to note that certain assumptions 
were made during the mass balance that limit the 
interpretation of our results. Respiration, for example, 
was only measured at the end of the experiment. This 
was assumed to be the rate for the entire duration of 
the experiment. However, respiration is expected to 
show some fluctuation with temperature and mois-
ture content (i.e. immediate increases following rain 
events).

Rain events change the microbial community 
structure and functioning

Changes in sediment moisture affect the microbial 
community (Sponseller  2007; Zeglin et  al. 2011) as 
different stages of drying and rewetting select dif-
ferent microbial species (Arce et  al. 2018; Sabater 
et  al. 2016). In general, lower moisture content can 
decrease microbial diversity. The remaining drought 
community is then assumed to represent a subset of 
the fluvial community during flowing conditions 
(Acuña et  al. 2015; Timoner et  al. 2012; Timoner 
et  al. 2014). In our experiment, Shannon diversity 
was significantly higher in the samples that experi-
enced three rain events per week as compared to the 
samples that experienced weekly rain. With increased 
rain events, the community composition also showed 
a shift towards a higher abundance of Actinobacte-
ria which have, among others, also been associated 
with terrestrial communities (Aslam et al. 2016; Bar-
nard et  al. 2013; Schimel et  al. 2007). Other drying 
experiments have demonstrated increased relative 
abundance of Actinobacteria with drought (Amalfit-
ano et  al. 2008; Gionchetta et  al. 2019). The study 
by Amalfitano et  al. (2008) also showed decreasing 
relative abundances of Flavobacteria and gamma-Pro-
teobacteria with increasing drought. This clearly con-
trasts with our results; in our experiment the abun-
dance of Flavobacteria and gamma-Proteobacteria 
increased with increasing rain events.

Overall, the community results indicate that while 
rain events maintain an intermediate moisture content 
with a matric potential between the permanent wilt-
ing point and field capacity, the microbial commu-
nity of the stream sediment may shift towards a more 
terrestrial-like community. Such a shift can well be 
anticipated, as the physical habitat characteristics in 

dry sediments (unsaturated conditions, high oxygen 
availability; strong variation in microhabitat struc-
ture through small-scale variation in matric potential 
within pore-spaces) should ultimately cause a shift 
towards a more soil-like community under drought 
(Arce et al. 2019). Moreover, reoccurring small rain 
events may enhance the habitat diversity in some 
sediments, potentially enhancing microbial diversity 
and the prevalence of terrestrial bacteria—a pattern 
consistent with our data, while in other sediments 
(cf. Amalfitano et al. (2008)) the later may not be the 
case. It is also important to highlight that this shift in 
community composition and diversity is more pro-
nounced with more frequent rain events. This indi-
cates that dry streambeds shift more towards soil hab-
itats during the non-flow phase even with additional 
sediment moisture content present.

Although we only analyzed community com-
position at the surface, we can see there was a shift 
towards OTUs that represent a terrestrial community 
in the samples that experienced more rain events, as 
highlighted above. This shift is also reflected in the 
glucosidase activities where the wetter sediments had 
higher levels. Higher glucosidase indicates higher OC 
processing in the biofilm (Romaní and Sabater 2001). 
This higher level of OC processing in wetter condi-
tions is also reflected in the higher respiration rates 
and the more labile DOC leached after rewetting. 
Overall, we conclude that more frequent small rain 
events facilitate a shift in the community towards a 
more terrestrial composition as well as higher OC 
processing resulting in less but more labile DOC 
being leached.

Conclusions and implications

In this experiment, we found that short rain events 
during drought increased sediment respiration 
as compared to uninterrupted desiccation during 
drought. Respiration also dominated the C fluxes 
during drought, greatly exceeding the C entering the 
system with rainfall and leaving the sediment through 
leaching during rewetting. Rain events shifted the 
microbial community toward a more soil-like com-
position, while maintaining a higher microbial diver-
sity as compared to the full drought. The less diverse 
communities in the drier sediments also demonstrated 
decreased C processing than in the wetter sediments. 
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We also found that rain events decreased the DOC 
output after rewetting. Our results demonstrate the 
difference in rewetting caused by rain events versus 
the rewetting by increasing surface-flow or ground-
water rise and highlight the relevance of even small 
rain events when investigating C fluxes in intermittent 
stream sediments.

The implications of small rain events identified 
in this study are likely to be of different relevance 
in different sections of a river network and in differ-
ent climates. Firstly, headwater streams are generally 
considered the part of the river network that experi-
ences flow intermittency most frequently (Datry et al. 
2014). In humid catchments located along the north-
ern European Alps, almost only headwater streams 
experience flow intermittency. This is because 
streamflow further downstream is supported by 
increasing groundwater inflows, while karstification 
enhances channel losses and groundwater recharge in 
high elevations (Hartmann et al. 2015).

Secondly, the spatiotemporal distribution of pre-
cipitation, such as the known increase with elevation 
(Smith 1979; Spreen 1947), may structure the occur-
rence of small rain events in fluvial networks. Here, 
we propose that small rain events during droughts are 
most likely to occur at mid-range elevations, while 
high elevations will experience either significantly 
higher, or no precipitation at all during dispersed con-
vective events—the most common type of precipita-
tion during summer drought along the northern Alps.

Thirdly, sediment C accumulation in fluvial 
sediments is spatially variable. Key drivers of high 
fluvial sediment and C accumulation (primar-
ily as particulate organic C (POC)) are low channel 
slopes and reduced flow velocity (van Rijn  1993). 
Along the northern Alps, these conditions can be 
typically found in mid elevation valleys (elevation 
range ~ 400–1000 m a.s.l.). This compartment of the 
stream network can be defined as the lower upland 
zone (cf. Datry et al. 2017).

We note that our experimental setup well repre-
sents such a mountain system. Our experiment was 
performed in a side-channel of the Oberer Seebach, 
a 2nd order stream in the Ybbs river network in 
Lower Austria (Fasching et al. 2016). It is located at 
600 m a.s.l. and has a slope of 0.41% (Battin 1999). 
The Oberer Seebach has also fallen dry in the past, 
for example during exceptionally dry summers (see 
Ejarque et  al. 2017). Considering all factors, we 

expect our results to be most relevant for 2nd and 3rd 
order streams at mid-elevations, with low slopes. In 
our study river network of the Ybbs River, 2nd or 3rd 
order streams account for 37% of the total stream sur-
face area of the entire stream network (Schelker et al. 
2016).
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