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Abstract As rock-derived primary minerals weather

to form soil, they create reactive, poorly crystalline

minerals that bind and store organic carbon. By

implication, the abundance of primary minerals in soil

might influence the abundance of poorly crystalline

minerals, and hence soil organic carbon storage.

However, the link between primary mineral weather-

ing, poorly crystalline minerals, and soil carbon has

not been fully tested, particularly at large spatial

scales. To close this knowledge gap, we designed a

model that links primary mineral weathering rates to

the geographic distribution of poorly crystalline

minerals across the USA, and then used this model

to evaluate the effect of rock weathering on soil

organic carbon. We found that poorly crystalline

minerals are most abundant and most strongly corre-

lated with organic carbon in geographically limited

zones that sustain enhanced weathering rates, where

humid climate and abundant primary minerals co-

occur. This finding confirms that rock weathering

alters soil mineralogy to enhance soil organic carbon

storage at continental scales, but also indicates that the

influence of active weathering on soil carbon storage is

limited by low weathering rates across vast areas.

Keywords Soil organic matter � Weathering � Soil
mineralogy � Poorly crystalline minerals

Introduction

The majority of the terrestrial biosphere’s carbon is

stored belowground as soil organic carbon (SOC)

(Jobbágy and Jackson 2000). Small changes in the

relative size of the global SOC pool can influence

atmospheric CO2 levels, and hence global climate

(Conant et al. 2011; Minasny et al. 2017). However, in

most soils, a significant fraction of SOC is associated

with minerals that limit its rate of exchange with the

atmosphere (Torn et al. 1997; Schmidt et al. 2011;

Rasmussen et al. 2018a). One particularly important

class of minerals that enhance accumulation of SOC

are reactive, poorly crystalline minerals (PCMs)

composed of Al and Fe (oxy) hydroxides (Torn et al.
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1997; Masiello et al. 2004). PCMs are produced in soil

by weathering of rock-derived primary minerals.

Primary mineral weathering thus ultimately controls

the abundance of PCMs and associated SOC. Under-

standing the linkage between primary mineral weath-

ering, PCMs, and SOC is important for predicting

future changes in the global SOC pool.

Local studies have shown that PCMs are correlated

with SOC stocks across soils of different ages,

climates, and parent materials (Dahlgren et al. 1997;

Torn et al. 1997; Chadwick et al. 2003; Masiello et al.

2004; Heckman et al. 2009; Rasmussen et al. 2018b).

More expansive, continental scale data syntheses

indicate that PCMs play a major role in SOC storage

in humid climates (Rasmussen et al. 2018a; Kramer

and Chadwick 2018; von Fromm et al. 2021). These

studies relate PCMs to SOC; however, they have not

specifically evaluated the role of primary mineral

weathering in controlling PCM abundance. Here we

expand on these studies by (1) specifying a quantita-

tive relationship between primary mineral weathering

rates and PCM abundance that accounts for both

climate and the availability of readily weathered

minerals, and (2) testing the role of primary mineral

weathering in contributing to SOC storage at conti-

nental scales relevant to the global C cycle.

Primary mineral weathering rates, PCM stocks, and

SOC storage are linked because PCMs are relatively

transient weathering products (Fig. 1a). Studies of soil

age gradients show that PCMs accumulate during the

initial stages of weathering and then decline as

primary minerals (e.g., feldspars) are exhausted and

PCMs ripen into less reactive crystalline secondary

minerals (e.g., phyllosilicate clays) (Torn et al. 1997;

Masiello et al. 2004; Garcia Arredondo et al. 2019).

Across rock types, PCMs are most abundant in soils

formed from volcanic parent materials rich in

feldspars and glass with feldspar-like composition

(Heckman et al. 2009; Rasmussen et al. 2018b).

Furthermore, studies of climate gradients show that

PCMs are most abundant in humid climates, where the

potential for weathering is highest (Dahlgren et al.

1997; Chadwick et al. 2003).

Taken together, these facts indicate that primary

mineral weathering rates determine the abundance of

PCMs. PCMs disappear over time as they ripen into

more crystalline minerals; consequently, active weath-

ering is required to maintain soil PCMs. More

specifically, we propose that a simple quantitative

relationship should link PCMs to the weathering rate

in most contexts. If PCMs are produced (P, in units of

MT-1) at a rate proportional to the weathering rate (W,

MT-1) and are transformed into crystalline minerals at

a rate described by a first order constant (k, T-1), then

at steady state PCM abundance will be proportional to

the weathering rate:

dPCM

dt
¼ P� PCM � k; P / W ð1Þ

PCMsteady state ¼
P

k
; )PCMsteady state / W ð2Þ

Based on this simple set of relationships, PCMs

should be most abundant where primary mineral

weathering is actively occurring—and by implication,

it is in these environments that PCMs have the greatest

potential to influence soil carbon storage (Wang et al.

2018; Rasmussen et al. 2018b). Notably, this relation-

ship emphasizes the weathering rate as the proximate

control on PCM stocks, rather than the weathering

state (i.e., time integrated loss of elements or miner-

als). The weathering state is not a suitable general

proxy for PCM abundance because soils can exhibit

the same degree of chemical depletion even if mineral

transformations are occurring at vastly different rates

due to differences in climate and parent material. By

contrast, the weathering rate is directly related to the

process of PCM formation, and hence we expect that it

is more closely correlated with PCM abundance.

Assuming that PCMs and weathering rates are

closely linked, it follows that PCM abundance should

depend on the major factors that influence weathering

rates. Climate is one major factor influencing primary

mineral weathering: mineral dissolution rates in the

field are correlated with soil water fluxes across

several orders of magnitude (Maher 2010; Yu and

Hunt 2017). This relationship reflects the dependence

of weathering on solute transport in percolating water

(Maher 2010), and also the effect of water availability

on biological productivity, which supplies acidity that

drives weathering reactions (Richter and Billings

2015). Geologic factors provide a second major

control on weathering. Weathering rates are reduced

in old, low-relief landscapes where primary minerals

are depleted during soil development (Slessarev et al.

2019). This suggests that regions where both climate

and primary mineral availability favor weathering are

limited in extent (Fig. 1b, c). We term these regions
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where wet climate and abundant primary minerals co-

occur ‘‘enhanced weathering zones’’ and hypothesize

that they are dominant—but geographically limited—

sites of PCM formation and SOC accumulation at

continental scales. It is the presence of these enhanced

weathering zones that explains the broad correlation

between PCMs and SOC in humid climates. However,

in humid regions outside of enhanced weathering

zones, we hypothesize that the accumulation of PCM’s

and associated SOC is limited by the scarcity of

readily weathered primary minerals.

To test this hypothesis, we combined three regional

databases (Table 1) using a mechanistically-informed

statistical model that linked PCM abundance to the

two key factors controlling weathering—climate and

primary minerals—across the conterminous United

States. We then used this model to gauge the

relationship between PCMs and SOC storage in

enhanced weathering zones, which we operationally

defined as geographic regions where wet climate and

abundant primary minerals co-occur.

a b

c

Fig. 1 Weathering, poorly crystalline minerals, and soil organic

carbon across scales. a Conceptual rendering at the mineral

scale: weathering of primary minerals to poorly crystalline

minerals (PCMs) favors strong organo-mineral interactions and

carbon accumulation. b Modeled weathering rates across the

conterminous United States (see ‘‘Methods’’). c Modeled

weathering rates depend on percolation (m y-1) and primary

minerals (% plagioclase feldspar)

Table 1 Data sources used in this analysis

Variables Dataset Type References

Major elementals, quantitative

mineralogy

US Geological Survey North American Soil Geochemical

Landscapes Project (NASGLP)

Points Smith et al. (2014)

NH4-oxalate extractable Al and

Fe, total organic C

National Cooperative Soil Survey (NCSS) Soil

Characterization Database

Points (http://ncsslabdatamart.sc.

egov.usda.gov/)

Total organic C Rapid Carbon Assessment database (RaCA) Points Wills et al. (2014)

Percolation (Q) USGS monthly water balance model Gridded McCabe and Wolock

(2011)

Data used were the most recent versions of each database as of November 2020
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Materials and methods

Methods overview

To develop the model linking PCM abundance to

weathering, we estimated weathering rates based on an

empirical relationship between silicate weathering

kinetics and average soil water fluxes (Maher 2010;

Yu and Hunt 2017). Using this empirical relationship,

we estimated weathering rates for plagioclase feld-

spar, which we used as a proxy for the broader suite of

primary minerals because it is one of the most

abundant and readily weathered primary silicates in

soils and a precursor for Al-rich PCMs.

This approach required two inputs: (1) an estimate

of the percolation flux through the soil, which we

obtained from the US Geological Survey (USGS)

monthly water balance model (McCabe and Wolock

2011); and (2) an estimate of plagioclase feldspar

abundance, which we obtained by interpolating quan-

titativemineralogy observations from the USGSNorth

American Soil Geochemical Landscapes Project

(NASGLP) across the conterminous United States

(Smith et al. 2014). We related the plagioclase

weathering rate to observed PCM abundance mea-

sured via NH4-oxalate extraction and averaged over

whole soil profiles (sampled to 100 cm or contact with

parent material) using data reported in the US National

Cooperative Soil Survey (NCSS) Soil Characteriza-

tion Database (Table 1) (http://ncsslabdatamart.sc.

egov.usda.gov/).

Following this initial analysis, we used additional

inputs from the NASGLP database to expand our

model to a broader set of factors: dependence of Fe

PCMs on total Fe, and the potential contribution of Al-

and Fe-rich secondary minerals to PCMs. We

expanded the model by formulating a pair of statistical

relationships linking oxalate extractable Al and Fe to

primary, secondary, and total Al and Fe pools, fitting

the data with quantile regressions (‘‘Statistical model

of PCMs’’).

Next, to evaluate the strength of the relationship

between PCMs and SOC, we defined geographic

domains based on climate and primary mineral

availability. Within each domain, we computed spa-

tially-weighted Pearson’s correlation coefficients

(r) between PCMs and SOC (‘‘Correlation analysis’’),

aggregating the total PCM pool as a molar-weighted

sum (Al ? � Fe). We also evaluated the sensitivity of

our conclusions to spatial bias by repeating the

correlation analysis with a second database of SOC

concentrations, the Rapid Carbon Assessment (RaCA)

(Wills et al. 2014), using the statistical model to

predict PCMs because this database did not include

PCM measurements. All calculations were performed

in R (R Core Team 2020), with spatial operations

using the ‘‘raster’’ and ‘‘rgdal’’ packages (Bivand et al.

2020; Hijmans 2020).

Soil profile data

We obtained point estimates of PCM abundance by

using NH4-oxalate extractable Al and Fe from the

NCSS database, and we obtained SOC data from both

the NCSS and RaCA databases. NH4-oxalate extracts

poorly crystalline oxyhydroxide phases of Al (princi-

pally allophane, imogolite, and nano-crystalline gibb-

site (Dahlgren 2015)) and Fe (e.g., ferrihydrite and

nano-crystalline goethite (Schulze 2015)). This

method is not entirely selective, in that it can also

extract Al and Fe from crystalline aluminosilicates and

Fe(II)-bearing minerals (Dahlgren 2015). We consid-

ered this ‘‘background’’ contribution due to the non-

selectivity of NH4-oxalate extraction when construct-

ing statistical models (see ‘‘Statistical model of

PCMs’’).

We summarized soil profile data by computing

depth-weighted averages of % NH4-oxalate

extractable Al and Fe and % SOC for individual soil

profiles to a depth of 100 cm, or to the depth of the

lowermost C, AC, or BC horizon if the profile

terminated above a depth of 100 cm. The resulting

dataset included 4,019 soil profiles from the NCSS

database with both SOC and NH4-oxalate extraction

data and 4,027 profiles from RaCAwith SOC data (see

Supplementary Material for detailed methods related

to soil profile calculations).

Environmental data

We obtained values for the average water percolation

flux from the USGS monthly water balance data

product (McCabe and Wolock 2011). This data

product includes monthly estimates of ‘‘runoff’’,

defined as water in excess of evaporative demand

and available soil water storage, which we treat as

synonymous with percolation (discounting net loss of

water from overland flow). The monthly water balance
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model is parametrized using high-resolution climate

data interpolated from weather stations across the

conterminous United States (Prism Climate Group,

Oregon State University 2011). Percolation values

were averaged for the period 1980–2015. To define

arid and humid climates when analyzing subsets of the

data, we used mean annual precipitation (MAP) and

potential evapotranspiration (PET) values associated

with the water balance model to identify regions where

MAP\ PET (arid climates) and MAP C PET (humid

climates).

We assigned quantitative mineralogy and major

element concentrations to soil profiles from the NCSS

and RaCA databases by spatially interpolating values

from the USGS NASGLP soil mineralogy database.

The NASGLP database only includes quantitative

mineralogy data from a composite of the soil A

horizon and from deeper in the soil column (typically

80–100 cm) (Smith et al. 2014). We determined that

the mineralogy values of surface and deep samples

were similar relative to the range of values reported

across the conterminous United States, and so we

averaged the two values to create a single set of

mineralogy estimates. Where mineralogy values were

below detection, we substituted values equal to one

half of reported detection limits (Smith et al. 2014).

We then associated these values with each NCSS or

RaCA soil profile by identifying all NASGLP obser-

vations within 50 km of the profile. These mineralogy

observations were then used to assign mineralogy and

elemental estimates to the profile using inverse

distance weighting, where weights (wi) were obtained

from the distance between the profile and the

NASGLP observations (di) using the formula:

wi ¼
1
d2iPn
i¼1

1
d2i

ð3Þ

Weights were then used to obtain weighted-average

values for each profile. To create continuous maps

derived from soil mineralogy (e.g., Fig. 1), this same

process was repeated substituting a regular grid of

points at a 15 arc-minute resolution. Individual pixels

in each map (n = 13,010) thus represent point esti-

mates at the center of each cell, with climate data

obtained by extracting from the USGS monthly water

balance or PRISM grids and mineralogy data obtained

by inverse distance weighting of neighboring

NASGLP points.

Estimating weathering rates

We used an empirical relationship between climate

and weathering kinetics (Yu and Hunt 2017) to obtain

an expression for silicate weathering rates as a

function of climate. This empirical relationship

ignores the effects of temperature on weathering, but

it explains observed variation in weathering rates

across several orders of magnitude (Yu and Hunt

2017). The weathering kinetic constant for plagioclase

feldspar (Rb, y
-1), was obtained from Eq. 4 (Yu and

Hunt 2017):

Rb ¼ 0:0001 � Qð Þ0:9698 ð4Þ

With Q equal to the percolation rate from the USGS

monthly water balance model, in units of meters of

water per year. To obtain plagioclase feldspar weath-

ering rates in soil in units of kg plagioclase t soil-1 -

ka-1, we multiplied Rb (in units of ka-1) by the mass

fraction of plagioclase obtained from the NASGLP

dataset (in units of kg t-1).

Defining mineral pools

Before fitting statistical models to predict PCM

abundance, we divided the total Al and total Fe

estimates obtained from the NASGLP dataset into

generalized primary and secondary mineral pools. In

practice, the primary mineral pool excluded primary

phyllosilicates (e.g., biotite) which were not identifi-

able from the data, and consisted of feldspar minerals,

with all residual minerals assigned to an approximated

secondary mineral pool. We excluded hornblende and

amphibole, which were only detected in a small

number of the samples in the NASGLP dataset

(\ 16%). Consequently, detailed data for Fe-bearing

minerals were not available, and the total Fe pool was

partitioned using feldspar content to infer the degree of

weathering (see below). Our estimates should thus be

considered generalized or proxies for total primary

mineral content, particularly for Fe.

To estimate total feldspar Al, we first divided total

plagioclase feldspar into albite (NaAlSi3O8) and

anorthite (CaAl2Si2O8) fractions using the following

approach: (1) total plagioclase was assumed to be

standard oligoclase (80% albite, 20% anorthite); (2)

the sodium content of the oligoclase pool was

calculated; (3) if total % Na in the sample was less
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than the Na in oligoclase, albite content was recalcu-

lated so that the albite content equaled the Na content

in molar equivalents; (4) if albite was recalculated,

anorthite was also recalculated by subtracting the mass

of albite from the mass of total plagioclase. We then

calculated the total Al in feldspars by summing Al in

albite and Al in anorthite, plus additional Al contained

in K-feldspar (KAlSi3O8). To estimate secondary Al,

we subtracted our estimate of primary Al (Al in

feldspars) from the total Al concentration reported in

the NASGLP database. If primary Al exceeded total

Al (\ 1% of the data), then primary Al was set equal to

total Al, and secondary Al equaled zero. To partition

Fe into primary and secondary pools, we assumed that

transformation of primary Al and primary Fe into

secondary phases is broadly correlated. Primary Fe

was calculated as Fepri = Fetot*(Alpri/Altot), where

Fepri and Alpri are the primary Fe and Al pools and

Fetot and Altot are the total Fe and Al pools. This

approach ensured that Fepri and secondary Fe (Fesec)

added up to equal total Fe.

Statistical model of PCMs

To model PCM abundance, we used quantile regres-

sion (Koenker and Bassett 1978). Quantile regression

allowed us to fit linear models to the data while

accommodating strongly heteroskedastic errors. We

fit the median of the data to generate predictions for

PCM abundance, but also fit the first and third quartiles

of the data to quantify the relative strength of primary

versus secondary minerals in predicting PCMs across

a range of PCM abundance.

We specified a model structure to estimate NH4-

oxalate extractable Al and Fe (Alox and Feox) based on

the hypothetical co-dependence of these PCM pools

on climate and mineral abundance. Themodel for each

element consisted of three terms: (1) a term repre-

senting weathering combining climate (Q, mm) and

the amount of the corresponding element in primary

minerals; (2) a weathering term combining climate

and the amount of the corresponding element in

secondary minerals; and (3) a term linking Alox and

Feox to total soil Al and Fe. This final term functioned

as an intercept for the model to account for ‘‘back-

ground’’ Al and Fe that might be extractable from

crystalline minerals even when weathering rates and

PCM abundance are zero; hence no separate intercept

term was included. This ensured some realistic bounds

on the predicted values of Feox and Alox: when total Al

and Fe equaled zero then Alox and Feox equaled zero.

Equations 5–6 show the model form, where a1-a3 and

b1-b3 are fitted coefficients.

Alox ¼ a1 � Alpri � Q þ a2 � Alsec � Q þ a3 � Altot
ð5Þ

Feox ¼ b1 � Fepri � Q þ b2 � Fesec � Q þ b3 � Fetot
ð6Þ

Quantile regressions were fit using the R package

‘‘quantreg’’ (Koenker 2018). When fitting the models,

data were weighted to ensure that densely sampled

regions of the NCSS dataset were not overrepresented.

Weights were calculated based on the local density of

observations, which we defined by counting the

number of NCSS profiles (n) within 1 decimal-degree

grid cells defined by each integer value of latitude and

longitude. Weights were then obtained by assigning

the value (1/n) to each profile based on the grid cell it

occupied and then dividing by the sum of 1/n across all

profiles.

The uncertainty associated with model parameters

was estimated by bootstrap resampling the data in 1

decimal degree grid cells. In this blocked-bootstrap

approach, grid cells were sampled with replacement

and parameters were obtained from the resampled data

10,000 times. Because grid cells rather than individual

soil profiles were randomized, this approach propa-

gated uncertainty related to the spatial dependence

into the confidence intervals. In all cases, confidence

intervals were obtained from the bootstrap replicates

using the BCa method in the R package ‘‘boot’’

(Davison and Hinkley 1997; Canty and Ripley 2020).

To generate estimates of PCMs derived from

primary minerals versus secondary minerals, we

recalculated predictions after replacing the primary

Al and Fe pools with zero values, and then subtracted

these predicted values from the predicted values of the

original model. This difference was taken to represent

the contribution of primary minerals to PCMs across

space. This process was repeated after setting sec-

ondary pools to zero to obtain the secondary mineral

contribution. We did not reset the total Al and Fe pools

in this calculation, and so the ‘‘background’’ contri-

bution linked to total Al and Fe is not represented.

To validate the statistical model, we divided the

data into two broad geographic zones and cross
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validated by training the model on each zone and

testing on the other (Roberts et al. 2017). We defined

two zones that each encompassed a range of soil

primarymineral contents and climate conditions. Zone

1 included the Western US and part of the Southeast-

ern US: all observations west of the meridian 105� W
and north of 35�N, and all observations west of 90�W
and south of 35� N. Zone 2 included all remaining

observations, encompassing the Central and Eastern

US. We evaluated model performance during cross

validation by comparing the R-squared value between

predictions and observations and the root-mean-

squared error (RMSE) in model training and testing

contexts.

Correlation analysis

We quantified the strength of the correlation between

PCMs and SOC in different geographic domains by

calculating Pearson’s correlation coefficient on log-

transformed variables. We used a log transformation

because it linearizes the relationship between PCMs

and SOC (Supplementary Fig. 1). To account for

clustering in the data, we computed weighted corre-

lations after dividing the data into spatial blocks, with

weights obtained in the same way described above for

the regression analysis. We computed weighted cor-

relations using the R package ‘‘wCorr’’ (Emad and

Bailey 2017). We also constructed confidence inter-

vals for the spatially-blocked data using bootstrap

resampling, using the same protocol employed for the

regression analysis. To visualize correlations while

accounting for clustering, we resampled the data with

replacement (sample size = 4,019) with sampling

probabilities obtained in the same way described

above.

To evaluate the correlation between PCMs and

SOC across a range of environmental contents, we

subdivided the data into three geographic domains

based on climate and primary mineral availability: (1)

a ‘‘water-limited’’ domain where mean annual poten-

tial evapotranspiration (PET) exceeded mean annual

precipitation (MAP); (2) a ‘‘weathered’’ domain where

MAP C PET and feldspar Al abundance was less than

or equal to the median value for the conterminous

United States (1.7%); and (3) ‘‘enhanced weathering

zones’’, where MAP C PET and feldspar Al abun-

dance was greater than 1.7%. Quantile boundaries

were computed across the conterminous US using

estimates at the 13,081 grid points used for generating

maps of soil mineralogy (see Environmental data

section above). We further analyzed the data after

dividing them into four groups based on quartiles. The

values 0.83%, 1.70%, and 2.91% were the first, second

and third quartiles respectively. Data were binned

using the minimum and maximum primary Al values

(0.005% and 9.16%) and the quartile values to define

boundaries between bins, with intervals open on the

left and the final interval including the maximum

value. We then computed correlations across the

binned subsets of the data within a limited climate

domain, where MAP C PET and MAP–PET\ 1 m.

Results

Primary mineral weathering rates predict poorly

crystalline mineral abundance

Our estimate of the plagioclase weathering rate was

positively related to observed PCM abundance

(Fig. 2). This relationship was noticeably stronger

for Al (Fig. 2a) than for Fe (Fig. 2b), reflecting the fact

that plagioclase—which does not contain Fe—can

only provide a rough proxy for Fe weathering.

Additionally, Fe weathering is complicated by Fe’s

redox-active chemistry, which enables reductive dis-

solution of crystalline secondary minerals and re-

precipitation as PCMs (Ginn et al. 2017; Barcellos

et al. 2018; Chen et al. 2019). To address these

complexities, we formulated the model as a pair of

statistical relationships for Al and Fe which accounted

for contributions to PCMs from both primary mineral

weathering and transformation of secondary minerals

(‘‘Statistical model of PCMs’’, Table 2). When

constructing the models, data were weighted inversely

to the local spatial density of observations, so that

heavily sampled regions did not dominate the fitting

process (see ‘‘Methods’’). The statistical model per-

formed similarly for Al and Fe, and explained 50% of

the variation in total PCM abundance (Supplementary

Fig. 2). We cross validated the model by splitting the

data into two geographic zones (Supplementary

Fig. 3). The model achieved similar R-squared and

RMSE values in training and testing contexts (Sup-

plementary Fig. 4) and yielded similar coefficient

estimates (Supplementary Table 1). Strong perfor-

mance in these cross validation tests indicates that the
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model describes general relationships between PCM

stocks, climate, and the concentrations of readily-

weathered primary minerals versus secondary miner-

als in soil. Furthermore, the relative magnitude of the

model coefficients indicates that primary minerals

(e.g., feldspars) are more strongly associated with

PCMs than secondary minerals (e.g., phyllosilicates,

Fig. 3). This supports our hypothesis that naturally

occurring enhanced weathering zones with a high

abundance of primary minerals are dominant sites of

PCM formation and feature large PCM stocks.

a

b

Fig. 2 Weathering rates predict concentrations of poorly

crystalline minerals. Poorly crystalline Al (a) and Fe (b) versus
estimated plagioclase weathering rates. Points are depth-

weighted averages of 4,019 individual soil profiles from the

National Cooperative Soil Survey database, with averages

calculated to 100 cm or the bottom of the lowermost C horizon.

Red lines show quantile regression fits to the data at the 25th,

50th, and 75th percentiles

Table 2 Quantile regression statistics

Coefficient Value 95% CI

Alox = a1*Q*Alpri ? a2*Q*Alsec ? a3*Altot

a1 11.0*10–5 [7.9*10–5, 13.9*10–5]

a2 2.8*10–5 [2.2*10–5, 4.0*10–5]

a3 1.1*10–2 [0.9*10–2, 1.3*10–2]

Feox = b1*Q*Fepri ? b2*Q*Fesec ? b3*Fetot

b1 14.8*10–5 [7.2*10–5, 19.7*10–5]

b2 5.7*10–5 [2.3*10–5, 8.6*10–5]

b3 4.6*10–2 [3.9*10–2, 5.4*10–2]

Values are fitted coefficients for each model, fitting the 50th

quantile. The 95% confidence intervals were obtained from

spatially blocked bootstrapping (see ‘‘Methods’’). The variable

Q was in units of mm when fitting the model
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Fig. 3 Contribution of primary minerals to predicting PCMs.

Points show the ratio of quantile regression coefficients for

different prediction quantiles (the 25th, 50th, and 75th

quantiles). Blue points show the ratio for quantile regression

models of oxalate extractable Al (a1/a2, Eq. 5—see ‘‘Meth-

ods’’), and red points show the ratio for oxalate extractable Fe

(b1/b2, Eq. 6). The dashed line indicates a ratio of 1 where

primary and secondary minerals are equally important for

predicting PCMs. Error bars show 95% confidence intervals

obtained from 10,000 bootstrap samples using a spatially-

blocked approach (see ‘‘Methods’’)
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Soil carbon is concentrated in enhanced

weathering zones

We hypothesized that enhanced weathering zones are

a dominant site of SOC storage at continental scales

because they feature PCM-rich soils. We tested this

hypothesis by evaluating the strength of the correla-

tion between PCMs and SOC inside versus outside of

the enhanced weathering zones: if the elevated PCMs

in these zones are accompanied by elevated SOC, this

implies stronger correlation. To evaluate the strength

of the relationship between PCMs and SOC in the

enhanced weathering zones, we first defined three

geographic domains (Fig. 4a) based on climate and

primary mineral availability: (1) a ‘‘water-limited’’

domain where mean annual potential evapotranspira-

tion (PET) exceeds mean annual precipitation (MAP);

(2) a ‘‘weathered’’ domain where MAP C PET and

feldspar Al abundance is less than or equal to the

median value for the conterminous United States

(1.7%); and (3) ‘‘enhanced weathering zones’’, where

MAP C PET and feldspar Al abundance is greater

than 1.7%.

We estimated the correlation between PCMs and

SOC across weathering domains, and found that PCMs

and SOC were most strongly correlated in enhanced

weathering zones, which included coastal and mon-

tane regions in the western USA and in the post-glacial

landscapes of the northeastern and upper mid-western

USA (Fig. 4b; r = 0.60; 95% CI [0.53, 0.66]). These

are regions where primary minerals are abundant due

to geologic factors: high relief and volcanism in the

western USA, and glaciation in the northeastern and

mid-western USA (Slessarev et al. 2019). PCMs and

SOC were not as strongly correlated in the weathered

domain (Fig. 4c; r = 0.40; 95% CI [0.21, 0.53]),

which included low-relief, humid regions of the

central and southeastern USA where the climatic

potential for weathering is high but plagioclase is

depleted. The correlation between PCMs and SOC

was also relatively weak in the water-limited domain

that encompasses much of the western USA (Fig. 4d;

r = 0.42; 95% CI [0.28, 0.52]), reflecting the fact that

PCMs are not abundant in arid climates, and thus other

factors (e.g., exchangeable Ca2? (Rowley et al. 2018;

Rasmussen et al. 2018a; von Fromm et al. 2021))

likely explain continental-scale variation in SOC in

drier regions.

We used the statistical model to attribute PCMs to

primary mineral weathering versus secondary mineral

transformation across space (Fig. 4e). The model

indicated that primary minerals are a major source of

PCMs in enhanced weathering zones, but a minor

source of PCMs in the weathered domain. Other

factors may be responsible for the presence of PCMs

in weathered soils, including reductive transformation

of crystalline Fe secondary minerals into less ordered

forms (Ginn et al. 2017; Barcellos et al. 2018; Chen

et al. 2019), or resistance of some PCMs against

transforming into more crystalline clay minerals

(Coward et al. 2018). Along with the correlation

analysis (Fig. 4b–d), this result shows that the rela-

tionship between PCMs and SOC is strongest in

minimally weathered soils where weathering drives

PCM formation.

Evaluating the correlation between PCMs and SOC

is complicated because direct observations of PCMs

are not evenly distributed across space (Supplemen-

tary Fig. 5). This reflects the fact that PCMs are

surveyed because they are a diagnostic feature of

particular soil types (e.g., volcanic ash soils) and are

measured less commonly where these soil types are

absent. To account for this bias, we repeated the

correlation analysis with a second database of SOC

measurements which was collected evenly across the

conterminous US (the Rapid Carbon Assessment

(Wills et al. 2014)), using our statistical model to

predict PCM abundance because this database did not

include PCM measurements. We confirmed that the

correlation between predicted PCMs and SOC was

stronger in enhanced weathering zones than in weath-

ered soils across these data (Supplementary Fig. 6).

We also evaluated the correlation between PCMs and

SOC after dividing the data into a larger number of

weathering domains, while also excluding samples

from high rainfall environments that fall dispropor-

tionately in the enhanced weathering zones and

consequently might bias our result (Supplementary

Fig. 7). This analysis confirmed that PCMs explain

progressively more variation in SOC as primary

mineral abundance increases, even when high rainfall

environments are excluded.
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Discussion

We investigated the role of primary mineral weather-

ing in generating PCMs and enhancing SOC storage.

We found that: (1) PCMs are most abundant in regions

that contain both a wet climate and an abundant supply

of primary minerals; and (2) PCMs are most strongly

correlated with SOC within these same environments.

Our results are consistent with previous work showing

that PCMs and SOC are most strongly correlated in

humid climates (Rasmussen et al. 2018a), but also

illustrate that this correlation depends on the avail-

ability of primary minerals that can fuel active

weathering. Consequently, within the broad envelope

of humid climates, the capacity of PCMs to influence

SOC is a function of geologic factors that locally

enhance primary mineral abundance (e.g., parent

material composition, landscape age, and topographic

relief). Because enhanced weathering zones are lim-

ited in geographic extent, PCMs may explain less of

a

b

e

c d

Fig. 4 Correlation between SOC and PCMs across weathering

domains. amap of weathering domains and boundaries between

domains, with water availability (MAP–PET) plotted versus %

feldspar Al. b–d depth-weighted average %SOC versus PCM

abundance in enhanced weathering zones, weathered soils, and

water-limited soils. To account for clustering, points represent a

random sample of 4,019 observations with sampling

probabilities weighted inversely to spatial density (see ‘‘Meth-

ods’’). Weighted Pearson’s correlation coefficient (r) is shown
for each domain. (e) modelled PCM abundance (weight %), with

red hue indicating PCMs attributed to primary mineral

weathering, and blue indicating PCMs attributed to other drivers

(e.g., transformation of secondary minerals)
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the variation in SOC stocks at continental scales than

previously argued; rather, their influence appears

greatest at local or regional scales (Heckman et al.

2020; Nave et al. 2021). However, PCMs remain

functionally important for SOC storage even when the

total abundance of PCMs is low, given that PCMs and

crystalline metal oxides account for a relatively

constant fraction (* 60%) of subsoil organic carbon

in climates where precipitation exceeds evaporative

demand (Kramer and Chadwick 2018). In combina-

tion with our results, this fact suggests that processes

that maintain moderate levels of PCMs in weathered

soils (e.g., Fe redox cycling) are likely important for

the geography of SOC outside of enhanced weathering

zones.

More broadly, our analysis suggests that the

abundance of primary minerals controls poorly crys-

talline mineral abundance, and thus ultimately limits

SOC storage across vast areas. Small changes in

primary mineral abundance in weathered soils could

alleviate limitation of PCM formation and enhance

SOC storage. Specifically, our statistical model pre-

dicts that increasing feldspar Al by 1% of the soil mass

would increase Al in PCMs by 20–41% (interquartile

range) across the portion of the conterminous United

States where precipitation exceeds evaporative

demand. This implies that over long timescales, soil

carbon storage outside of enhanced weathering zones

might be affected by geologic processes than alter the

flux of primary minerals to the soil (e.g., long distance

dust transport), and may potentially be affected by

human managed process that affect soil primary

mineral stocks (e.g., soil erosion, or accelerated

weathering geoengineering (Taylor et al. 2016)).

Finally, our model suggests that it is the weathering

rate rather than the weathering state that proximately

governs PCM abundance and SOC storage. The

dependence of PCM stocks on the weathering rate

implies that processes affecting mineral dissolution

may potentially affect PCMs at relatively short

timescales. The role of PCMs in the global carbon

cycle thus depends on dynamic interactions between

environmental drivers, weathering rates, PCM forma-

tion, and SOC cycling. To the extent that climate

change influences weathering at short timescales (e.g.,

by altering soil hydrology, pCO2, or synthesis of

organic acids), future climate dynamics may influence

the mineralogical capacity of soils to store C. Fore-

casting and managing SOC effectively in the coming

century will benefit from a more complete under-

standing of how quickly PCMs and associated SOC

respond to environmental change.

Acknowledgements We thank Claire Kouba, Adam Davis,

Lucas Janzen, and Katerina Georgiou for helpful suggestions.

Research at LLNL was performed under the auspices of the

DOE, Contract DE-AC52-07NA27344.

Author contributions Conceptualization: EWS, OAC, NS,

EEN, JPR; Methodology, Investigation, and Visualization:

EWS; Supervision: EEN, JPR; Writing—original draft: EWS;

Writing—review & editing: EWS, OAC, NS, EEN, JPR.

Funding This study was supported by the U.S. Department of

Energy (DOE), Office of Biological and Environmental

Research, Genomic Science Program (GSP) Lawrence

Livermore National Laboratory ‘Microbes Persist’ Soil

Microbiome Scientific Focus Area SCW1632. Additional

salary support for ES was provided by LLNL LDRD 19-ERD-

010. Research at LLNL was performed under the auspices of the

DOE, Contract DE-AC52-07NA27344.

Data availability Derived data products (maps of mineral

abundance) and code are available at Zenodo.org (https://doi.

org/10.5281/zenodo.5098200). Instructions for accessing third

party datasets needed for reproducing the analysis are included

with the code.

Declarations

Conflict of interest The authors declare no competing

interests.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

Barcellos D, O’Connell C, Silver W et al (2018) Hot spots and

hot moments of soil moisture explain fluctuations in iron

and carbon cycling in a humid tropical forest soil. Soil Syst

2:59. https://doi.org/10.3390/soilsystems2040059

123

Biogeochemistry (2022) 157:1–13 11

https://doi.org/10.5281/zenodo.5098200
https://doi.org/10.5281/zenodo.5098200
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/soilsystems2040059


Bivand R, Keitt T, Rowlingson B (2020) rgdal: bindings for the

‘‘geospatial’’ data abstraction library. R package version

1.5–18

Canty A, Ripley B (2020) boot: bootstrap R (S-Plus) functions.

R package version 1.3–25

Chadwick OA, Gavenda RT, Kelly EF et al (2003) The impact

of climate on the biogeochemical functioning of volcanic

soils. Chem Geol 202:195–223. https://doi.org/10.1016/j.

chemgeo.2002.09.001

Chen C, Barcellos D, Richter DD et al (2019) Redoximorphic Bt

horizons of the Calhoun CZO soils exhibit depth-depen-

dent iron-oxide crystallinity. J Soils Sediments

19:785–797. https://doi.org/10.1007/s11368-018-2068-2
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Jobbágy EG, Jackson RB (2000) The vertical distribution of soil

organic carbon and its relation to climate and vegetation.

Ecol Appl 10:423–436. https://doi.org/10.1890/1051-

0761(2000)010[0423:TVDOSO]2.0.CO;2

Koenker R (2018) quantreg: quantile regression. R Package

Version 5:38

Koenker R, Bassett G (1978) Regression quantiles. Economet-

rica 46:33. https://doi.org/10.2307/1913643

Kramer MG, Chadwick OA (2018) Climate-driven thresholds in

reactive mineral retention of soil carbon at the global scale.

Nat Clim Change 8:1104–1108. https://doi.org/10.1038/

s41558-018-0341-4

Maher K (2010) The dependence of chemical weathering rates

on fluid residence time. Earth Planet Sci Lett 294:101–110.

https://doi.org/10.1016/j.epsl.2010.03.010

Masiello CA, Chadwick OA, Southon J et al (2004) Weathering

controls on mechanisms of carbon storage in grassland

soils: weathering controls on carbon storage. Glob Bio-

geochem Cycles. https://doi.org/10.1029/2004GB002219

McCabe GJ, Wolock DM (2011) Independent effects of tem-

perature and precipitation on modeled runoff in the con-

terminous United States: effects of temperature and

precipitation on runoff. Water Resour Res. https://doi.org/

10.1029/2011WR010630

Minasny B, Malone BP, McBratney AB et al (2017) Soil carbon

4 per mille. Geoderma 292:59–86. https://doi.org/10.1016/

j.geoderma.2017.01.002

Nave LE, Bowman M, Gallo A et al (2021) Patterns and pre-

dictors of soil organic carbon storage across a continental-

scale network. Biogeochemistry. https://doi.org/10.1007/

s10533-020-00745-9

Prism Climate Group, Oregon State University (2011) Prism

climate data

R Core Team (2020) R: A language and environment for sta-

tistical computing.

Rasmussen C, Heckman K, Wieder WR et al (2018a) Beyond

clay: towards an improved set of variables for predicting

soil organic matter content. Biogeochemistry

137:297–306. https://doi.org/10.1007/s10533-018-0424-3

Rasmussen C, Throckmorton H, Liles G et al (2018b) Controls

on soil organic carbon partitioning and stabilization in the

California Sierra Nevada. Soil Syst 2:41. https://doi.org/10.
3390/soilsystems2030041

Richter DB, Billings SA (2015) ‘One physical system’: Tans-

ley’s ecosystem as Earth’s critical zone. New Phytol

206:900–912. https://doi.org/10.1111/nph.13338

Roberts DR, Bahn V, Ciuti S et al (2017) Cross-validation

strategies for data with temporal, spatial, hierarchical, or

phylogenetic structure. Ecography 40:913–929. https://doi.

org/10.1111/ecog.02881

Rowley MC, Grand S, Verrecchia ÉP (2018) Calcium-mediated
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